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Abstract 

We performed quantitative proteomics on 61 human-derived breast cancer cell lines to a depth 

of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and 

reproducibility. We used the datasets to identify and characterize the subtypes of breast 

cancer and showed that they conform to known transcriptional subtypes, revealing that 

molecular subtypes are preserved even in under-sampled protein feature sets. All datasets are 

freely available as public resources on the LINCS portal. We anticipate that these datasets, 

either in isolation or in combination with complimentary measurements such as genomics, 

transcriptomics and phosphoproteomics, can be mined for the purpose of predicting drug 

response, informing cell line specific context in models of signalling pathways, and identifying 

markers of sensitivity or resistance to therapeutics.  

 

Background & Summary 

Targeted therapy relies on the identification of actionable changes in signal 

transduction, proliferation or cell death pathways that are drivers of transformed states. In 

some cases these changes are associated with a recurrent mutation or overexpression of an 

oncogene. In other cases, the causes of differences in drug sensitivity are less well 

understood. Some breast cancer subtypes are particularly responsive to targeted therapy 

owing to high expression of one or more of the estrogen (ER), progesterone (PR), or HER2 

receptors. Moreover, the presence or absence of these receptors, which is most commonly 

measured by immunohistochemistry (IHC), defines clinical breast cancer subtype and mode of 

first line therapy (expression of ER and/or PR defines the hormone receptor (HR) positive 

subtype and over-expression of HER2/ERBB2 defines the HER2 positive subtype). The third 
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breast cancer subtype, triple negative breast cancer (TNBC), lacks high levels of ER, PR and 

HER2 expression, is genetically heterogeneous and is the least effectively treated1. It is 

therefore of considerable interest to identify recurrent changes in TNBCs that might be 

targeted to treat disease. Breast cancers can also be classified into molecular subtypes based 

on gene expression signatures. These include the luminal A/B and basal designations that 

generally encompass HR positive and TNBC disease respectively, with HER2 enriched 

cancers comprising a separate molecular subtype2–4.   

Multiple studies have been performed in which panels of TNBC cell lines are subjected 

to transcript profiling to identify differences among them5,6. However, transcript levels do not 

necessarily correlate with the abundance of proteins, which are the ultimate targets of small 

molecule and antibody therapies7. Moreover, in some tumor types, the effects of copy number 

alterations extend to mRNA abundance without necessarily propagating to changes in protein 

abundance8. It is therefore valuable to measure the levels of proteins across panels of cell 

lines as a means to identify changes in cell state. Of particular interest are changes that might 

individually or in combination determine sensitivity to new or existing drugs for the treatment of 

breast cancer. It has been shown that computational models of drug sensitivity that are trained 

using protein expression data can complement or even outperform models trained on 

transcript or genomic data alone9–11. Thus, a standardized dataset on protein expression levels 

in breast cancer cell lines of all three clinical subtypes is expected to constitute a valuable 

resource for drug discovery and development of predictive biomarkers.  

In this data descriptor we describe systematic profiling of 60 widely used breast cancer 

cell lines using Tandem Mass Tag (TMT) liquid chromatography mass spectrometry (LC/MS). 

TMT LC/MS is a method for labelling multiple samples (up to 11 in the current work) with mass 
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tags and then analysing them in a single run of the mass spectrometer, thereby enabling direct 

comparison of protein levels. In this data descriptor we provide a technical summary of the 

TMT based mass spectrometry approach and the resulting data. Quality metrics used to asses 

both technical and biological validity are explained and we discuss how the resulting data can 

be leveraged to characterize preclinical (cell line) models of breast cancer, generate testable 

hypotheses of resistance to therapy and discover novel biological insight.  

 

Methods 

Culture Conditions 

All cell lines used in this study were of human female origin and derived from breast cancers 

except the 184A1, 184B5, MCF 10A, MCF12A and HME1 cell lines which were derived from 

non-malignant human breast epithelia. Cell lines were maintained, free of mycoplasma, in their 

recommended growth conditions (as listed below), and were identity-validated by STR 

profiling12. 

Mass Spectrometry   

A schematic description of our mass spectrometry workflow is shown in Figure 1. Data were 

collected in 8 separate mass spectrometry runs. Because data collection spanned many 

months and instrumentation and protocols improved over this period, methods differed slightly 

between batches (runs 1-4 and runs 5-8) as described below. 

 

Sample Collection: Cells grown in their recommended growth medium to ~60% confluence 

were rinsed twice with phosphate-buffered saline (PBS) and then gently scraped from 15 cm 

dishes in PBS supplemented with protease and phosphatase inhibitors (HaltTM Protease and 
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Phosphatase Inhibitor Single-Use Cocktail, EDTA Free, ThermoFisher, Catalog Number 

78441) followed by centrifugation at 300 g for 5 minutes at 4ºC. The supernatant was 

discarded and pellets were snap frozen in liquid nitrogen and stored at -80o C.   

 

Protein Solubilisation and Digestion: Cell pellets were solubilized in lysis buffer (2% SDS, 150 

mM NaCl, 50 mM Tris pH 7.4) supplemented with Halt™ Protease and Phosphatase Inhibitor 

Single-Use Cocktail, EDTA Free (ThermoFisher, Catalog Number 78443) with a hand-held 

tissue homogenizer. Disulfide reduction was performed by adding dithiothreitol (DTT) to a final 

concentration of 5 mM and heating to 37˚C for 1 hour, followed by alkylation of cysteine 

residues with iodoacetamide at a final concentration of 15 mM and incubation at room 

temperature in the dark for 30 minutes. Protein concentration was determined using a Micro 

BCA™ Protein Assay Kit (ThermoFisher, Catalog Number 23235) following the manufacturer’s 

protocol. Detergent was removed by methanol/chloroform protein precipitation as follows: ice 

cold methanol (3 parts lysis buffer volume), chloroform (2 parts lysis buffer volume) and water 

(2.5 parts lysis buffer volume) were added sequentially with vortexing after each addition 

followed by centrifugation at 4000 x g for 10 min. The top layer was aspirated while taking care 

not to disrupt the interface. Ice cold methanol (3 parts lysis buffer) was added, the samples 

were vortexed, centrifuged (4000 x g, 10 min.), and the supernatant aspirated leaving behind 

the protein pellet; this methanol wash procedure was repeated a total of three times13. 

Precipitates were solubilized in freshly prepared 8 M urea in 200 mM EPPS, pH 8.5. 60 µg of 

solubilized total protein from each sample was then used for TMT labelling. Following a 10 min 

incubation at 37˚C, the urea concentration was reduced by dilution with 200 mM EPPS, pH 8.5 

to 4 M (runs 1-4) or 2 M (runs 5-8) final urea concentration and digestion was then performed 
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by overnight incubation at room temperature in the presence of Lys-C protease (Wako, 

Catalog Number 129-02541) at an enzyme-to-substrate ratio of 1:75. Following further dilution 

of the sample with 200 mM EPPS to a final urea concentration of 1.6 M (runs 1-4) or 0.5 M 

(runs 5-8), digestion was continued by incubation of the sample at 37˚C for 6 hours with trypsin 

(Promega, Catalog Number V5113) at an enzyme to substrate ratio of 1:75. Aliquots 

corresponding to 65 µg per sample (runs 1-4) or 150 µg per sample (runs 5-8) were withdrawn 

for TMT labelling.  

 

Digest Check: Aliquots equivalent to 5-10 µg from two samples were pooled, desalted and 

peptides purified by reverse phase chromatography on stage tips14 (described below). The 

peptides were then dried and resuspended in 3% acetonitrile, 5% formic acid (FA) to a final 

concentration of ~2 µg/µl. The missed cleavage rate was measured by LC-MS/MS to evaluate 

the quality of the digest; a result under 15% of potential cleavage sites remaining uncleaved 

was deemed sufficient to proceed with labelling.  

 

TMT Labelling, Ratio Check and HPLC Fractionation: Equal amounts of protein were removed 

from each sample and labelled using a TMT10plex or TMT11plex Mass Tag Labelling Kit 

(ThermoFisher, Catalog Number A34808). TMT labelling efficiency was measured by LC-MS3 

analysis after combining equal volumes (equivalent to ~ 1 µg each) from each sample. At this 

stage a ratio check was performed in which the total peptide intensities from each sample were 

compared for equivalence. Equal amounts of labelled peptide from each sample (as judged 

from ratio check data) were then combined for subsequent fractionation in a single HPLC run; 

each run involved a total amount of approximately 600 µg protein. 
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Quenching of TMT labelling reactions was performed by adding hydroxylamine to a final 

concentration of 0.5% (v/v) and incubating samples for 15 minutes at room temperature. 

Formic acid (FA) was added to a final volume of 2% (v/v) to lower the pH below 3.0 and 

samples were combined and de-salted using a SepPak tC18 Vac RC Cartridge (50 mg, 

Waters, Catalog Number WAT054960). HPLC fractionation was performed over a period of 75 

minutes using an Agilent 1200 Series instrument with a flow rate of 600 µl/minute. Peptides 

were collected in a 96-well plate over a 65 min-gradient of 13-44%B with Buffer A comprising 

5% acetonitrile, 10 mM ammonium bicarbonate, pH 8 and Buffer B comprising 90% 

acetonitrile, 10 mM ammonium bicarbonate, pH 8. Fractions were pooled to generate a total of 

12-24 aliquots, followed by sample clean-up using the Stage Tip protocol with C18 Empore™ 

Extraction Disks (Fisher Scientific, Catalog Number 14-386-2). The matrix was primed with 

methanol and equilibrated with 70% acetonitrile, 1% FA followed by washing twice with 1% FA. 

Samples were loaded in 1% FA, followed again by two 1% FA washes, and finally peptides 

were eluted using 70% acetonitrile, 1% FA. Samples were dried before resuspension in MS 

Loading Buffer (3% acetonitrile, 5% FA).   

 

LC-MS: The first half of the dataset (runs 1-4) was recorded after peptide separation on 100 

µm columns packed with 1.8 µm C18 beads with a pore size of 12 nm (Sepax Technologies 

Inc.). The second half of the data (runs 5-8) was obtained after peptide separation on 75 µm 

columns packed with 2.6 µm Accucore beads (Thermo Fisher Scientific). Peptides were 

injected onto 30-40 cm, 100 and 75 µm (internal diameter) columns, respectively, and 

separated using an EASY-nLC 1200 HPLC (ThermoFisher Scientific). The flow rate was 450 
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nl/min for the 100 µm columns and 300 nl/min for the 75 µm columns with a gradient of 6-

28%B over 170 minutes with Buffer A comprising 3% acetonitrile, 0.4% FA and Buffer B 

comprising 100% acetonitrile, 0.4% FA for the 100 µm columns and 5-35%B over 240 minutes 

with Buffer A comprising 0.125% FA and Buffer B comprising 95% acetonitrile, 0.125% FA for 

the 75 µm columns. The columns were heated to 60˚C using a column heater (constructed in-

house). Samples from the HPLC were injected into an Orbitrap Fusion Lumos Tribrid MS 

(ThermoFisher, Catalog Number FSN02-10000) using a multi-notch MS3 method15,16. MS 

scans were performed in the Orbitrap over a scan range of 400-1400 m/z with dynamic 

exclusion. Rapid rate (runs 1-4) and Turbo rate (runs 5-8) scans were performed in the Ion 

Trap with a collision energy of 35% and maximum injection times of 120 ms and 200 ms, 

respectively. TMT quantification was performed using SPS-MS3 in the Orbitrap with a scan 

range of 100-1000 m/z and an HCD collision energy of 55%. Orbitrap resolution was 50,000 

(dimensionless units) with maximum injection times of 120 ms and 450 ms, respectively. MS 

isolation windows were varied depending on the charge state.  

 

Data Analysis 

Mass spectrometric data (Thermo “.RAW” files) were converted to mzXML format, to correct 

monoisotopic m/z measurements, and to perform a post-search calibration. Peptide spectrum 

matches were assigned with a SEQUEST (v.28 (rev. 12), (c) 1998-2007 Molecular Biotechnology, Univ. 

of Washington, J.Eng/S.Morgan/J.Yates licensed to Thermo Fisher Scientific Inc.) based software 

against a size-sorted forward and reverse database of the human proteome (Uniprot 02/2014) with 

added common contaminant proteins.  The database search included reversed protein sequences 

and known contaminants such as human keratins, which were excluded from subsequent 

analyses. Linear discriminant analysis was used to adjust PSM false discovery rate to (FDR) < 
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1% by applying the target-decoy database search strategy. Filtering was performed as 

described previously16. During peptide assignment for all data, oxidized methionine (+15.9949 

Da) was searched dynamically. All peptide searches considered TMT modification (+229.1629 

Da) on N-termini and lysine residues as static modifications. For protein identification and 

quantification, shared peptides were collapsed into the minimally sufficient number of proteins 

using rules of parsimony. Peptides with a total TMT value of >200 and an isolation specificity of 

> 0.7 were included in the final dataset.  

 

Data Records 

MS proteomics Level 1 Data on peptides have been deposited to the ProteomeXchange 

Consortium via the PRIDE19 partner repository with the dataset identifiers PXD015542 and 

PXD017494. 

Proteome datasets are also available on Synapse (ID syn7802481):  

https://www.synapse.org/#!Synapse:syn7802481; these data include Level 2 data on protein 

intensities (Synapse ID: syn20632472) and Level 3 data in which protein levels are normalized 

within and across runs. The datasets are also available for download via the HMS LINCS 

database (at https://lincs.hms.harvard.edu/db/datasets/20352/ and 

http://lincs.hms.harvard.edu/db/datasets/20370/) 

 

 
Technical Validation 

Mass Spectrometry instrument Quality Control 

Quality control checks for mass spectrometry were incorporated at multiple points in the 

workflow. To test for efficient digestion of samples, defined as <15% of potential proteolysis 
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sites uncleaved, a “digest check” was performed using LC-MS/MS as described in the 

methods section. TMT labelling efficiency aims for modification of >95% of available sites and 

was determined by LC-MS analysis via dynamic searches for N-terminal peptide modification 

by TMT. A “ratio check” was also performed using LC-MS3 to determine relative amounts of 

labelled peptides in each of the multiplexed samples, as described in the methods section. The 

purpose of the ratio check is to ensure equal amounts of peptide are pooled in the sample run 

through the mass spectrometer. 

 

Reproducibility of results 

73 samples (60 unique breast cancer cell lines and 13 technical or biological replicates) 

distributed across three breast cancer clinical subtypes (Figure 2A) were randomly divided 

into 8 runs. Each run had one or more bridge samples that comprised a mixed sample derived 

from six cell lines (HCC1806, Hs578T, MCF7, MCF10A, MDAMB231, SKBR3). By analysing 

the same bridge sample in each MS run it was possible to compare runs to each other (see 

below). A total of five biological replicates of the MCF 10A cell line were also present in the 

eight batches as a further measure of data reproducibility.  

  Principal component analysis (PCA) was performed prior to data normalization and 

revealed a significant degree of clustering by batch (runs 1-4 versus runs 5-8). This was true 

despite the high overlap in actual proteins detected. We could identify two reasons for this 

batch effect: advances in instrumentation and analytical methods meant that later batches 

exhibited better signal to noise (Figure 2B, upper panel), as assessed by an increase in mean 

intensity per protein. Samples in the second batch, had a greater number of quantifiable 

peptides per protein (Figure 2B, lower panel). A second difference between the two batches 
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was in the number of aliquots generated by pooling HPLC fractions prior to MS. More aliquots 

were used in later MS runs (see the PRIDE19 datasets PXD015542 and PXD017494 for the 

number of runs per batch). To correct for these differences, the measured intensities for each 

protein in a run were normalized by the number of peptides detected for that protein. The 

samples in each run were then normalized to the bridge sample for that run so that the 

summed intensity scores across all samples were equivalent (within run normalization of 

samples). Finally, all samples were normalized to the data from the bridge sample of a 

reference run (run 4 in this study) to allow for comparisons across runs and batches.  

 

Biological validation 

 Subsequent to normalization, PCA based clustering of the 74 samples that were analysed by 

MS showed that data for each cell line clustered by transcriptional subtype (Figure 2C), 

suggesting that normalization was effective in removing batch effects. Further, the MCF10A 

replicates included in five runs comprising both batches clustered together, another indication 

that any remaining batch effects were small (Figure 2D). Out of 19,000 - 22,000 known human 

proteins20, we measured a total of ~13,000 unique proteins in our dataset. 7197 proteins were 

detected in all runs while the remaining proteins were observed to varying degrees in different 

runs.  (Figure 3A). In shotgun proteomics, there is variation in the number of proteins detected 

in each MS run due to under-sampling and differences from one sample to the next can 

therefore reflect both real biological variation and under-sampling. Nonetheless, our 

normalized protein abundance data clustered the cell lines studied according to known 

subtype, i.e luminal, basal A, basal B and non-malignant, suggesting that protein features in 
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the data capture the intrinsic heterogeneity of the cell line panel as previously established by 

transcript profiling (Figure 2C).  

 

Usage Notes 

 

The NIH LINCS program has defined different data levels for all data, including proteomics, 

that comprise: Level 1 (primary or raw; .raw files and mzXML files in the case of MS data), 

Level 2 (relative peptide intensities reported for each run), Level 3 (sub-threshold peptides and 

contaminant proteins removed, and batch normalized) and Level 4 (signatures and markers of 

response)21 (these data levels are described in detail in the accompanying overview 

manuscript). Level 1 data for the current study are available for download from the Pride 

repository (PXD015542 and PXD017494). Level 2 data were generated using software 

provided by the Gygi Laboratory at HMS and comprise summed protein intensity estimates 

(available on Synapse: syn20632472). The level 2 data can also be generated from raw files 

using MaxQuant22. The protein intensity estimates in Level 2 data were then normalized using 

bridge samples to make cross-run and cross batch comparisons possible (available on 

Synapse: syn21585559). Protein expression in TMT MS data are relative estimates and can 

only be compared across samples on a protein-by-protein basis. Comparison of the absolute 

levels of different proteins is not possible because the TMT signal-to-noise ratio (s/n), which is 

used for relative quantification, depends on the injection time for each MS3 scan (variability in 

injection time means that relative, not absolute, s/n height is used to determine peptide 

quantity). Moreover, differences in peptide ionization, length and molecular weight as well as 

sampling biases that affect the spectral intensities of individual peptides complicate 
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comparisons between proteins. However, these limitations can be, at least, partly overcome by 

using the intensity based absolute quantification (iBAQ) method that normalizes the intensities 

quantified for any give protein by the number of its theoretically observable peptides.23 This 

provides an estimate of absolute protein levels so that proteins in a sample can be compared 

with each other, but the units of the quantitation are still arbitrary (iBAQ normalized data 

comprise a set of LINCS Level 3 data, available on Synapse: syn21585566).   

The intensity of the MS1 peak is proportional to the number of ionized peptide 

molecules at the measured mass to charge ratio (m/z) of a given analyte. Thus, absolute 

quantification of analytes can be derived from MS1 spectra by spiking-in references of the 

same peptides in known amounts. To estimate the true concentrations of a subset of proteins 

in our samples, the bridge sample was spiked with 48 analytes in the UPS2 standard (Sigma 

Aldrich) selected to span the dynamic range of known protein concentrations. The iBAQ-

calibrated intensities of the bridge sample were then calibrated against the iBAQ values of the 

48 known analytes to derive estimates of absolute protein abundance in molecules/pg of cell. 

Finally, we calculated the pg weight for a given number of cells per cell line model to derive the 

number of molecules for each protein per cell. An advantage of performing this absolute 

qualification step is that it makes it possible for independent datasets collected at different 

times and by different laboratories be integrated and compared. As an example, when we 

looked at the levels of proteins in the MAPK signalling pathway in MCF7 cells we found that 

SOS1 is an order of magnitude less abundant than other proteins in the pathway including 

GRB2, NRAS, and MAP2K1 (Figure 3B). This is consistent with previous data showing that 

SOS1 levels may be a limiting factor in receptor tyrosine kinase-mediated responses to growth 

factors24 
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Genomic and transcriptomic data have frequently been used to predict drug response and 

identify potential predictors or determinants of drug sensitivity25–27. As a first step in 

determining the utility of protein expression data in predicting drug response, we measured the 

responses of 56 breast cancer cell lines to the CDK4/6 inhibitor palbociclib (available on the 

LINCS database https://lincs.hms.harvard.edu/db/datasets/20343). Using iBAQ abundance for 

each of the 7197 proteins measured in all cell lines, we built univariate linear models to predict 

response (area over the GR curve) to palbociclib. The model included receptor status as a 

covariate to account for subtype specific differences in protein expression (The ‘lm’ package in 

R was used to encode the linear models using the formula “palbociclib GR AOC ~ protein 

expression + receptor status”) (Figure 3C). As expected, the abundance of RB1, a key 

substrate of CDK4/6 and mediator of cell cycle arrest28, was among the strongest predictors of 

response to palbociclib (p-value = 5.9e-06) and was positively correlated with increased 

sensitivity. In contrast, expression of CBX2 was correlated with resistance to palbociclib (p-

value = 2.5e-06). Overexpression of CBX2, a protein involved in DNA damage repair and 

chromatin homeostasis29,30, has been associated with upregulation of genes involved in cell 

cycle progression and worse 5-year survival in breast cancer patients31. The association of 

CBX2 expression with resistance to palbociclib in cell lines provides a rationale for considering 

it as a potential biomarker in humans and a possible therapeutic target to overcome resistance 

to CDK4/6 inhibitors. This preliminary analysis suggests that baseline protein expression in 

untreated cell line models can be used to generate testable hypotheses about factors that 

influence drug sensitivity and resistance. 
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Code Availability 

Computational tools to process data and plot figures shown in the paper are available 

on https://github.com/labsyspharm/lincs_proteomics_data_descriptor and 

https://github.com/datarail/msda. 
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Figure Legends 

 
Figure 1. Mass spectrometry workflow. Cell pellets were lysed and either 65 or 150 ug of 

protein of each sample was labelled using a TMT Mass Tag Labelling Kit (see methods for 

details of differences between runs). TMT labelled samples were pooled into a single 

multiplexed sample and a ratio check was performed to ensure that an equal amount of each 

TMT label was included. The samples were injected into an Orbitrap Fusion Lumos Tribrid 

mass spectrometer, and TMT quantification was performed in the Orbitrap using SPS-MS3. 

Assignment of MS/MS spectra was performed using Sequest.  

 

Figure 2. Distribution of samples for TMT LC/MS across cell lines and breast cancer subtypes. 

A total of 73 total samples were analyzed, representing 60 different cell lines and 13 technical 

and biological replicates for a subset of these lines. (A) Classification of samples based on 

molecular subtype (left panel) or receptor status (right panel). (B) Across-run-variability in 

mean protein intensities (green) and mean number of peptides reported per protein (orange) 
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prior to normalization. (C) Principal Component Analysis (PCA) of the dataset following 

normalization to correct for run-specific differences in intensities and number of peptides 

quantified per protein. Clustering was based on known transcriptional subtypes. (D) Correlation 

between technical replicates of a single cell line (the non-malignant MCF 10A cell line) across 

five batches after normalization. HME1 is included to show contrast with another non-

malignant cell line.  

 

Figure 3. (A) UpSet plot to illustrate the depth in protein coverage for each of the eight batches 

and the extent of overlap in measured proteins across them. (B) Network representation of the 

MAPK signaling pathway with the size of the nodes (colored in red) scaled based on their 

measured abundance (log10 iBAQ) in MCF7 cells. The CRAF protein (colored grey) is 

included but was not detected in MCF7 cells, but was present in other lines. (C) Volcano plot (-

log10 (p-value) against Effect size) shows the relative strength of each of the 7197 proteins in 

predicting breast cancer cell line response (GR AOC) to palbociclib. Negative effect size is 

associated with drug resistance and positive effect size is associated with sensitivity. 
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Supplementary Table 

 

Cell line Growth media Growth 

conditions 

184A1 MEBM (CC-3150) + 1% FBS + 1% P/S 37˚C, 5% CO2 

184B5 MEBM (CC-3150) + 1 ng/ml CT + 1% P/S 37˚C, 5% CO2 

AU-565 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

BT-20 EMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

BT-474 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

BT-483 RPMI-1640 + 20% FBS + 1% P/S, 0.01 mg/ml BI  37˚C, 5% CO2 

BT-549 RPMI-1640 + 10% FBS + 1% P/S, 1 ug/ml IN 37˚C, 5% CO2 

CAL-120 DMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 
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CAL-51 DMEM + 20% FBS + 1% P/S 37˚C, 5% CO2 

CAL-85-1 DMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

CAMA-1 EMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

EFM-19 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

EVSA-T EMEM + 10% FBS + 2 mM L-glutamine, 1% P/S 37˚C, 5% CO2 

HCC1143 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1187 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1395 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1419 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1428 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1500 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1569 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1806 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1937 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC1954 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC202 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC38 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

HCC70 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

hTERT-HME1 MEMB + Lonza CC-3150 kit 37˚C, 5% CO2 

Hs 578T DMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

MCF 10A DMEM/F12 (1:1) + 5% HS + 1% P/S, 20 ng/ml 

EGF, 0.5 mg/ml HC, 10 µg/ml IN, 100 ng/ml CT 

37˚C, 5% CO2 
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MCF12A DMEM/F12 + 5% HS + 1% P/S, 20 ng/ml EGF, 0.5 

mg/ml HC, 10 µg/ml IN, 100 ng/ml CT 

37˚C, 5% CO2 

MCF7 DMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

MDA-MB-134-VI L-15 + 20% FBS + 1% P/S 37˚C, 0% CO2 

MDA-MB-157 L-15 + 10% FBS + 1% P/S 37˚C, 0% CO2 

MDA-MB-175-VII L-15 + 10% FBS + 2mM L-glutamine, 1% P/S 37˚C, 0% CO2 

MDA-MB-231 DMEM + 10% FBS + 1% P/S 37˚C, 5% CO2 

MDA-MB-330 L-15 + 20% FBS + 2mM L-glutamine,1% P/S + 30 

ng/ ml EGF + 0.016 mg/ml IN + 2mM glutathione  

37˚C, 0% CO2 

MDA-MB-361 L-15 + 20% FBS + 1% P/S 37˚C, 0% CO2 

MDA-MB-415 L-15 + 15% FBS + 2mM L-glutamine,1% P/S, 10 

µg/ml IN 

37˚C, 0% CO2 

MDA-MB-436 L-15 + 10% FBS + 1% P/S, 10 µg/ml IN 37˚C, 0% CO2 

MDA-MB-453 L-15 + 10% FBS + 1% P/S 37˚C, 0% CO2 

MDA-MB-468 L-15 + 10% FBS + 1% P/S 37˚C, 0% CO2 

MGH312 RPMI + 10% FBS + 1% P/S 37˚C, 5% CO2 

MGH358 RPMI + 10% FBS + 1% P/S 37˚C, 5% CO2 

PDX1206 DMEM/F12 (3:1) + 7.5% FBS + 1% P/S, 0.125 

ng/ml EGF, 25 ng/ml HC, 5 µg/ml IN, 8.6 ng/ml CT, 

5 uM Y-27632 

37˚C, 5% CO2 

PDX1258 DMEM/F12 (3:1) + 7.5% FBS + 1% P/S, 0.125 

ng/ml EGF, 25 ng/ml HC, 5 µg/ml IN, 8.6 ng/ml CT, 

5 uM Y-27632 

37˚C, 5% CO2 
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PDX1328 DMEM/F12 (3:1) + 7.5% FBS + 1% P/S, 0.125 

ng/ml EGF, 25 ng/ml HC, 5 µg/ml IN, 8.6 ng/ml CT, 

5 uM Y-27632 

37˚C, 5% CO2 

PDXHCI002 DMEM/F12 (3:1) + 7.5% FBS + 1% P/S, 0.125 

ng/ml EGF, 25 ng/ml HC, 5 µg/ml IN, 8.6 ng/ml CT, 

5 uM Y-27632 

37˚C, 5% CO2 

SK-BR-3 McCoy's + 10% FBS + 1% P/S 37˚C, 5% CO2 

SUM1315MO2 F-12 + 5% FBS + 1% P/S, 10 ng/ml EGF, 5 µg/ml 

IN, 10 mM HEPES 

37˚C, 5% CO2 

SUM149PT F-12 + 5% FBS + 1% P/S, 1 µg/ml HC, 5 µg/ml IN, 

10 mM HEPES 

37˚C, 5% CO2 

SUM159PT F-12 + 5% FBS + 1% P/S, 1 µg/ml HC, 5 µg/ml IN, 

10 mM HEPES 

37˚C, 5% CO2 

SUM-185PE Ham's F12 + 5% FBS + 1% P/S + 5 µg/ml BI + 1 

µg/ml HC + 10 mM HEPES 

37˚C, 5% CO2 

SUM-190PT Ham's F12 + 1% FBS + 1% P/S, 5 µg/ml BI, 1 

µg/ml HC, 10 mM Hepes, 5 mM ethanolamine, 5 

µg/ml transferrin, 10 nM triiodo thyronine, 50 nM 

sodium selenite, 1 g/l BSA 

37˚C, 5% CO2 

SUM-44PE Ham's F12 + 1% FBS + 1% P/S, 5 µg/ml BI, 1 

µg/ml HC, 10 mM HEPES, 5 mM ethanolamine, 5 

µg/ml transferrin, 10 nM triiodo thyronine, 50 nM 

sodium selenite, 1 g/l BSA 

37˚C, 5% CO2 
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SUM-52PE Ham's F12 + 5% FBS + 1% P/S + 5 µg/ml BI + 1 

µg/ml HC + 10 mM HEPES 

37˚C, 5% CO2 

T47D RPMI-1640 + 10% FBS + 1% P/S, 1 µg/ml IN 37˚C, 5% CO2 

UACC-812 L-15 + 20% FBS + 2mM L-glutamine, 1% P/S, 20 

ng/ml  EGF  

37˚C, 0% CO2 

UACC-893 L-15 + 10% FBS + 1% P/S 37˚C, 0% CO2 

ZR-75-1 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

ZR-75-30 RPMI-1640 + 10% FBS + 1% P/S 37˚C, 5% CO2 

 

Abbreviations: fetal bovine serum (FBS), penicillin/streptomycin (P/S), insulin (IN), bovine 

insulin (BI), hydrocortisone (HC), epidermal growth factor (EGF), cholera toxin (CT).  
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Figure 1
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Figure 2
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Figure 3
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