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Summary 

Current therapeutic interventions to eradicate latent HIV (“reservoir”) and 

restore immune function in ART-treated HIV infection have yet to show efficacy. 

To explore mechanisms of HIV persistence, we apply an integrated systems 

biology approach and identify a distinct group of individuals with poor CD4 T-cell 

reconstitution (Immunologic non-responders, “INRs”) and high frequencies of 

cells with inducible HIV. Contrary to the prevailing notion that immune activation 

drives HIV persistence and immune dysfunction, peripheral blood leukocytes 

from these subjects have enhanced expression of a network of genes regulated 

by cellular senescence driving transcription factors (TFs) FOXO3, SMAD2 and 

IRF3. In these subjects, increased frequencies of regulatory T cells and 

expression of the TGF-β signaling cascade are complimented by the 

downregulation of cell cycle, metabolic and pro-inflammatory pathways. 

Lactobacillaceae family and metabolites (members of the butyrate family – i.e. α-

ketobutyrate) were correlated with Treg frequencies in “Senescent-INRs” ex vivo, 

triggered the differentiation of TGF-β producing Tregs and promoted HIV latency 

establishment in vitro. These cascades, downstream of PD-1/TGF-β, prevent 

memory T cell differentiation and are associated with an increase in frequencies 

of cells with inducible HIV ex vivo. Our findings identify cellular senescence 

responses that can be targeted by PD-1 or TGF-β specific interventions that have 

shown safety and efficacy in cancer, and may prove to be crucial for HIV 

eradication. 
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Introduction  

HIV infection remains a major global public health concern (WHO, 

https://www.who.int/news-room/fact-sheets/detail/hiv-aids). Although effective 

combined anti-retroviral therapy (cART) has altered the course of HIV disease by 

preventing viral replication, it is not curative and does not fully restore immune 

function1. Depending on the population studied and outcome definitions2, up to 

20% of cART-treated subjects fail to reconstitute CD4+ T-cell numbers despite 

years of effective treatment with sustained HIV suppression, and are predisposed 

to excessive risk of non-HIV comorbidities3.  

These immune non-responder subjects (INRs) show severe homeostatic 

alterations in CD4 T-cells, including lower frequencies of naïve CD4 T-cells, 

accumulation of highly differentiated T-cells, T-cell activation and apoptosis4-6. 

Impairment in IL-7/L-7R signal transduction axis7, heightened chronic 

inflammation and persistent type I interferon production; are thought to be 

important mediators of poor CD4 T cell homeostasis and reduced thymic 

function8 in the INRs. Additionally, CD4 T cells in the INRs have higher 

expression of replicative senescence9 and exhaustion markers10, and show an 

increase in frequencies of immunosuppressive CD4+ regulatory T-cells (Tregs)11. 

Using multivariate analyses, we previously reported that naive T-cell depletion, 

higher frequencies of cycling CD4+ central memory (CM) and effector memory 

(EM) T-cells, expression of the T-cell activation markers (CD38, HLA-DR, CCR5 

and/or PD-1 (p<0.0001)), and levels of soluble CD14 (sCD14) distinguished INRs 

from immune responder subjects (IRs). These groups are distinguishable even 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


4 

 

when adjusted for CD4+ T-cell nadir, age at cART initiation, and other clinical 

indices12-14. Collectively these studies highlight the contribution of dysregulated 

pro-inflammatory pathways to the lack of immune reconstitution in INRs. 

Despite the ability of cART to inhibit HIV replication, the proviral DNA 

integrates into the human genome and persists within memory CD4 T-cells15. 

This cellular "reservoir" reignites rounds of virus replication if cART is 

interrupted16, stressing the need for long-term cART administration. Indeed, 

reconstitution of CD4 counts during uninterrupted cART leads to a decrease in 

intact pro-viral DNA17, whereas elevated levels of inflammatory markers 

characteristic of INRs (IL6, TNF�, IL1β, IFN�/β, MIP1�/β, RANTES) are 

associated with HIV persistence18. The activated state of the innate immune 

system can trigger HIV replication, alter homeostatic proliferation and sustain the 

HIV reservoir by occasional expansion and contraction of individual CD4 T-cell 

clones19-21. Specifically, increased expression of co-inhibitory receptors (PD-1, 

LAG-3, and TIGIT) that can drive cellular quiescence upon receptor engagement 

and inhibit HIV replication, have been shown to contribute to the magnitude of 

the HIV reservoir 21-23.  

In this study of two independent cohorts of HIV-infected cART-treated 

individuals, we identified INRs with high serum levels of anti-inflammatory 

molecules (triggered by elevated FOXO3 expression, TGF-β associated genes), 

a senescent CD4 T cell profile with absence of homeostatic proliferation (and 

lack of CD4 recovery), and heightened frequencies of cells with inducible HIV 

RNA. 
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Results 

We used an unbiased approach that integrates data-sets from peripheral 

blood transcriptome, high density flow cytometry and plasma cytokine measures, 

to identify cellular and molecular drivers of HIV persistence and lack of CD4 T 

cell recovery (Supplementary Fig. 1a), in two independent cohorts of HIV-

infected subjects (see Study Participants in Material and Methods; Table S1, 

Table S2). All subjects were under cART for at least three years and maintained 

consistent CD4 counts four years prior to sample collection (Supplementary Fig. 

1b). The Cleveland Immune Failure cohort (CLIF) was composed of 61 subjects 

(17 immune responders - IRs - >500 CD4 T-cells/mm3 and 44 immune non-

responders - INRs - <350 CD4 T-cells/mm3); whereas, the Study of the 

Consequences of the Protease Inhibitor Era cohort (SCOPE) included 41 

subjects (20 IRs with >500 CD4 T-cells/mm3 and 21 INRs with <350 CD4 T-

cells/mm3). 

 

Transcriptional profiling reveals systemic senescence as a driver of poor 

immune reconstitution   

Exploratory analyses of whole blood transcriptomic data (CLIF cohort 

subjects; using unsupervised clustering described in the methods) (Fig. 1a and 

Supplementary Fig. 1c) identified three groups of subjects with unique 

transcriptional profiles: IRs and two distinct INR groups, “INR-A” and “INR-B”. 
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INR-As exhibited the highest transcriptomic variation from IRs with approximately 

3000 differentially expressed genes (DEGs). In contrast, INR-Bs were proximal to 

IRs with <400 DEGs (Table S3-5). Age, years on cART, CD4 counts, CD4 nadir, 

markers of gut barrier dysfunction (sCD14), and inflammation (IL-6, IP10) - all 

known predictors of morbidity and mortality in INRs24 - failed to distinguish the 

two INR groups (Supplementary Fig. 1d-p). Interestingly, DEGs specific to INR-

As were mostly down-regulated (72% and 66% when contrasted against IRs and 

INR-Bs, respectively), suggesting a quiescent transcriptional state within these 

subjects (Supplementary Fig. 2a). 

Comprehensive pathway analyses using MSigDb’s Hallmark module25-27 

(Fig. 1b, Table S6) revealed that several pathways, reflective of significantly 

elevated CD4 numbers, were upregulated in IRs when compared to both INR-As 

and INR-Bs. Notably, when comparing INR-As and INR-Bs (where CD4 numbers 

are comparable), INR-As showed significantly decreased expression of 

inflammation, cell cycling, apoptosis, and cellular metabolism genesets, 

indicative of a senescent state28,29. INR-As had reduced expression of genes 

regulated by Myc, a primordial TF that regulates pathways involved in 

proliferation and metabolism (glycolysis, oxidative phosphorylation and fatty acid 

metabolism) of activated T cells30.  

Cell subset deconvolution (using gene signatures from Nakaya et al31) 

revealed a significant down-regulation in INR-As of genesets specific to all major 

innate and adaptive immune cell subsets (Fig. 1c, Table S7). Apoptosis, 

transcription/cell migration, and cellular/lipid metabolism (lipid storage, GTP 
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metabolic process) were enriched in gene signatures down-regulated in T-cells, 

myeloid dendritic cells (mDCs) and monocytes, respectively (Supplementary Fig. 

2b). Similarly, down-regulation of genesets (extracted from Novershtern et al32 - 

see methods for detail) specific to CD4 and CD8 T-cells naive, memory and 

effector cell subsets (Fig. 1d, Table S8). Altogether, these data provide 

supporting evidence for decreased global transcription and systemic senescence 

in immune cells from INR-As, when compared to INR-Bs or IRs. 

 

Transcriptional profiles downstream of FOXO3 and SMAD2/3 signaling are 

enriched in senescent INRs  

  To identify mechanisms underlying poor immune reconstitution observed 

in INR-As, we first identified TFs that were specifically enriched in INR-As (p < 

0.05, Supplementary Fig. 2c, Table S9). These TFs included IRF3 (driver of type 

I IFN production33), FOXO3 (transcriptional repressor34), SMAD2 (TGF-β 

signaling35) and CCNT2 (Negative regulator of HIV Tat protein; i.e. driver of HIV 

latency induction36) (Supplementary Fig. 2c). Next, we used the Reactome 

pathway database (using ClueGO, FDR <0.05)37,38 to map the functions of 

upregulated genes in the INR-As (vs IRs and INR-Bs; FDR < 0.05, Table S10). 

We observed the enrichment of cellular processes downstream of the above-

mentioned TFs including heme metabolism, TGF-β signaling, IRF3 activation, 

reactive oxygen species (ROS) production and inhibition of NF-κB activation (Fig. 

1e) in these subjects. Specifically, features of senescence regulated by FOXO3 

including SOD/CAT39-41 (driver of ROS production) (Fig 1e); and FOXO4/TP5342 
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driven anti-apoptotic genes (BCL2L1; FDR < 0.01)43-45 were upregulated in INR-

As. Interestingly, we observed the enrichment of key senescence associated 

genes which are known targets of SMAD2/3 including ‘Inducer of Promyelocytic 

Leukemia’ (PML; conductor of TGF-β signaling via SMAD2/3, and regulator of 

HIV latency46,47), WEE148 (cell cycle regulator) and GLUL49,50 (metabolic 

regulator) (Supplementary Fig. 2d). These senescent features of INR-As were 

further confirmed by the downregulation MYC target genes (known to control 

ribosomal biosynthesis and translation)51, genes of the electron transport chain, 

and genes regulating major metabolic pathways (including glycolysis, oxidative 

phosphorylation and fatty acid metabolism) (Supplementary Fig. 2d, Fig. 1c).  

The senescent/anti-inflammatory profile of INR-As contrasted the pro-

inflammatory profile of INR-Bs where the enrichment of inflammatory pathways 

downstream of TLR/IL1, cell cycling, and apoptosis/pyroptosis (Supplementary 

Fig. 2d) was observed. Increased expression of several members of the pro-

inflammatory NF-κB family of TFs (NFKB1, NFKB2 and RELB) (Supplementary 

Fig. 2d), upregulation of NF-κB target genes including chemokines (e.g. CCL2 

and CCL17)52, genes of the inflammasome complex (NLRP3, IL1B and IL18)53 

and effector genes driving apoptosis/pyroptosis (e.g. CASP4, DIABLO, CASP2 

and CASP3)54 were characteristics of this group (Supplementary Fig. 2d). 

Overall, our data suggest that a signaling cascade downstream of TGF-β 

signaling (SMAD2/3; PML) which culminates by the upregulation in the INR-As of 

FOXO3/4 driven senescence downstream of TGF-β and characterized by 

impaired cell metabolism and cell cycle arrest. The expression of the above listed 
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transcriptional repressors in INR-As could further explain the inhibition of cell 

metabolism, cell cycle and inflammation all associated to cell senescence55. INR-

As will henceforth be referred to as “Senescent-INRs”.  

A gene-based classifier confirms the generalizability of the Senescent-INR 

phenotype in HIV-infected subjects 

Our next objective focused on demonstrating that other cohorts of HIV 

infected cART treated subjects also include senescent INRs. We built and 

validated a gene-based nearest shrunken centroid classifier (see methods) to 

identify Senescent-INRs in an independent cohort (SCOPE) of cART-treated HIV 

infected subjects. The classifier, trained on the CLIF cohort, consisted of 352 

features (genes, Table S11) and provided a misclassification error rate of 0.26 

(Supplementary Fig. 3a). Using the unsupervised approach (initially applied in 

the CLIF cohort), we confirmed two distinct INR groups in the SCOPE cohort 

(Supplementary Fig. 3b). The 352-gene classifier segregated these two INR 

groups in the SCOPE cohort with an accuracy of 81% (Fig. 1f, Supplementary 

Fig. 3c), thus validating the generalizability and reproducibility of two INR groups 

(PCA representation of the 352-gene classifier discriminates senescent INRs in 

Fig. 1g) and highlighting the potential use of this classifier to distinguish 

Senescent-INRs in clinical settings. This classifier (Table S11) included genes 

associated with the induction of a senescent profile (FOXO3, FOXO4, and 

TGFBR2)43,56, genes indicative of senescence biology (RIOK3, IRF3, 

BCL2L1)57,58 and regulators of mitochondrial activity (NDUFS3, CYB5R3, 

ATP5G2)59. Several transporters of macromolecules: SLC6A8 (Sodium- and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


10 

 

chloride-dependent creatine transporter 160), SLC48A1 (Heme transporter61), 

SLC4A1 (Band 3 anion transporter62), SLC25A23 (Mitochondrial Calcium 

carrier63) and SLC38A5 (glucose64) were also upregulated in Senescent-INRs 

and were features of the classifier (Table S11). These results higjlight several 

molecular pathways specific to cellular senescence65-68 and recapitulate the 

pathways (senescence, metabolism, and cell cycle) that discriminate between 

the two INR groups. These data counter-intuitively suggest that failure to 

increase CD4 T-cell numbers in senescent INRs to levels observed in IRs could 

be due to senescence and not to previously described pro-inflammatory 

cytokines and pathways12.  

 

The classifier gene set highlights the role of senescence in driving the 

magnitude of the inducible HIV reservoir  

Although poor immune reconstitution has been associated with HIV 

persistence69, the cellular effectors and molecular mechanisms driving this 

association remain to be identified. To assess the role of senescence in HIV 

persistence, we measured frequencies of CD4 T-cells with inducible multi-spliced 

HIV RNA (“inducible HIV”) on all subjects of the SCOPE cohort using the Tat/rev 

Induced Limiting Dilution Assay (TILDA)70. Our data show that the Senescent-

INRs have significantly higher inducible HIV when compared to IRs (~4.3-fold 

increase in median values, p<0.021) and INR-Bs (~5.5-fold increase in median 

values, p = 0.046) (Fig. 1h). As might be expected, inducible HIV levels were 

negatively correlated with CD4 counts, selectively in Senescent-INRs (rho = -
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0.52; p < 0.05) while this correlation was not significant in inflammatory INRs and 

in IRs. In addition, SCOPE cohort subjects with the highest levels of inducible 

HIV showed a significant enrichment in (i.e. could be predicted by) the classifier 

geneset (Fig. 1i). Comprehensive analyses of the whole transcriptome confirmed 

that genesets characteristic of Senescent-INRs (i.e. cell cycle arrest and ROS 

production) were associated with higher inducible HIV (Table S12).  

To better characterize the impact of senescence on intrinsic mechanisms 

of anti-viral activity, we studied the interplay of three master-regulators (IRF3: 

Type I IFN response33, IRF7: anti-viral response71, FOXO3: Senescence42) that 

showed significant alterations in senescent INRs (Fig 2). Increased expression of 

IRF3 (Fig. 2a) in Senescent-INRs was strongly associated with higher levels of 

FOXO3 (Fig. 2b), and contrasted the significantly reduced expression of IRF7 

(Fig. 2c). These findings are in line with previous reports where a negative 

feedback loop between FOXO3 and IRF772 has been ascertained, and suggest 

that Senescent-INRs could exhibit heightened inducible HIV when compared to 

IRs and INR-Bs as a consequence of the FOXO3 driven downregulation of innate 

antiviral immunity. Indeed, restriction factor genes known to curb HIV life cycle 

and known tobe transcriptional targets of IRF 71,73 were reduced (examples 

include SAMHD1, BST2, APOBEC3G and MX2) in subjects with the lowest 

inducible HIV (Fig. 2d, Table S12). In contrast, ChIP-seq validated targets of 

FOXO3/IRF374,75 (Fig. 2d, Table S12) and type I IFN regulated genes76 (Table 

S12) that were correlated with higher inducible HIV included genes involved in 

promoting HIV replication (AFF177, MT2A78, DARC79), induction of latency 
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(BRD480, GMPR81) and persistence of HIV infected cells (BCL2L182). These data 

show that lower levels of IRF7 as a consequence of higher IRF3/FOXO3 lead to 

dysregulated antiviral innate immunity and heightened inducible HIV in the 

senescent INRs.  

 

Signalling via TGF-β is a hallmark of senescent INRs and directly drives HIV 

latency in memory CD4 T cells in vitro 

Transcriptional profiling identified the TGF-β pathway (PML, SMAD2/3; 

Fig. 1e, Supplementary Fig. 2c,d) as a driver of cellular senescence in our 

cohort. T-regulatory cells (Tregs) that express Forkhead box P3 (FOXP3) are a 

primary source of TGF-β and are critical in maintaining immune homeostasis83,84. 

To ascertain the role of Tregs in driving senescence and HIV persistence, we 

developed a high-dimensional flow cytometry panel (Table S13) to quantify 

master regulators of Treg function (SATB1 and FOXP385), to discriminate 

differentiated Tregs (CD45RA, CD49B and CD3986), to assess proliferation 

(Ki67) and to measure the capacity to activate TGF-β by expression of GARP 

and/or LAP (two molecules involved in promoting latent (LAP) or activated 

(GARP) forms of TGF-β87,88). Density projection of CD4 T cells expressing these 

markers on a two-dimensional UMAP (https://arxiv.org/abs/1802.03426) revealed 

distinct distribution of cells within Senescent-INRs (Fig. 3a). Next, we used 

unbiased clustering89 (Fig. 3a) to identify three clusters of CD4 T cells (Fig. 3b, 

Table S14) that were enriched in senescent INRs (vs IRs) and expressed 

markers characteristic of TGF-β producing Tregs (FOXP3, CD25, lowCD127, 
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LAP and GARP) (Fig. 3c). The most abundant of these clusters (i.e. Cluster 7; 

0.81-5.34% of CD4 T cells) also showed an effector Treg phenotype (high CD39, 

low CD45RA) and low levels of markers that define IL-10 producing Tregs (Tr1) 

(i.e. CD49B, LAG390) (Fig. 3c).   

We assessed the systemic impact of these Treg clusters by studying their 

association with groups of cytokines that define the host plasma milieu. To this 

end, unsupervised clustering of the 43 different plasma cytokines using 

independent methods (k-means, and hierarchical clustering91) was performed 

and revealed four clusters of plasma cytokines across all subjects of the SCOPE 

cohort (Table S14, Supplementary Fig. 4a,b,c). Of these clusters, the overall 

centroid score of cytokine “Cluster 3” showed significant association with the 352 

classifier genes in Senescent-INRs (NES = 2.9, FDR = 0, Supplementary Fig. 4d, 

Table S15). No significant correlation between cytokine Cluster 3 centroid score 

and the classifier genes was observed INR-Bs or IRs (Table S15). Cluster 3 

included several anti-inflammatory cytokines: TGF-β1, TGF-β2 (triggers of the 

TGF-β pathway92), IL13 (known to inhibit inflammatory cytokine production93), 

KC/GRO (CXCL1) (another anti-inflammatory cytokine94), VEGF (the inhibitor of 

apoptosis95) as well as growth and homeostatic cytokines (IL3, IL7)96,97 

(Supplementary Fig. 4c). Importantly, our data showed that frequencies of 

GARP+ Tregs (Treg cluster 7) were univariately correlated with members of 

cytokine cluster 3 (Fig. 3d, including TGF-β2 and IL-7; Table S16), and were 

associated with an enrichment in the classifier genes that were predictive of 
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inducible HIV (significantly overlapped leading edge genes represented in Fig. 

3e, Table S17).  

The downstream impact of heightened frequencies of TGF-β secreting 

Tregs on HIV latency was confirmed by the observation that ChIP-Seq validated 

SMAD2/3 targets98 and HDAC1/2 targets (induced after siRNA knockdown)99 

were more abundant in subjects with the highest inducible HIV and frequencies 

of GARP+ Tregs (Fig. 3e). These genesets were characterized by enhanced 

expression of genes that activate latent TGF-β (i.e. FURIN100), restrict T cell 

differentiation (LGAL3; inducer of TGF-β driven activation of β-catenin101,102) and 

reduce cell cycling (i.e. GADD45A103). The co-operation between HDAC1/2 

targets (i.e. BCL2L1, FKBP1B) and SMAD2/3 can restrict chromatin accessibility 

and induce cell quiescence (Fig. 3e). 

 

Microbial metabolites drive Treg differentiation and TGF-β production in 

Senescent-INRs 

Bacterial translocation is a known feature of HIV pathogenesis in ART-

treated and untreated HIV-infected subjects104. INRs of the CLIF cohort 

(Supplementary Fig. 1m) exhibited significantly higher levels of sCD14 (marker of 

disease progression and leaky gut105) compared to IRs. However, Senescent-

INRs and INR-Bs showed comparable sCD14 levels (Supplementary Fig. 1m, 

p=0.567). We therefore monitored for qualitative changes in the microbiome 

(prevalence of different bacterial quasispecies), which could be associated to the 

different transcriptomes, cytokine environments and T-cell subset distributions 
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that distinguished the two groups of INRs. Of note, several bacterial metabolites 

produced by commensal bacteria (i.e. acetates, butyrates, and propionate) have 

been shown to regulate Treg differentiation106,107 and T-cell homeostasis. We 

examined the host microbiome of INRs using PathSeq108,109 to obtain an overall 

quantitative and qualitative measure of the viral, bacterial, fungal, parasite and 

helminth burden in subjects of the SCOPE cohort. We performed mass 

spectrometry (MS) to measure plasma metabolite levels and to identify bacterial 

metabolites that would be associated (ex vivo) or could trigger (in vitro) Treg 

differentiation, TGF-β production or senescence, and monitor their association 

with Treg frequencies and levels of senescent cytokines.  

Using PathSeq, we first observed higher Shannon diversity 

(Supplementary Fig. 5a) and increased abundance of the Firmicute phylum in the 

Senescent-INRs (Fig. 4a, p=0.05). All other bacterial phyla that were detectable 

by Path-Seq were not significantly different in abundance between Senescent 

and inflammatory INRs (Fig. 4a). Furthermore, we observed that overall species 

diversity of the Firmicute phylum (assessed by the Bray-Curtis dissimilarity 

statistics110) significantly distinguished the two groups of INRs (Supplementary 

Fig. 5b). To granularly assess the differences between the Senescent-INRs and 

inflammatory INRs, we generated a NCBI Taxonomy tree (newick tree files 

created using the phyloT - http://phylot.biobyte.de - and visualized using the iTOL 

- http://itol.embl.de - web-interfaces, respectively) of all bacterial genera with 

median abundance > 0 TPM in either of the three groups in the SCOPE cohort. 

We observed that the Senescent-INRs (vs inflammatory INRs) were significantly 
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enriched in genera from all major phyla. These included general like 

Moraxella/Bradyrhizobium (Proteobacteria), and Actinobacteria like 

Kytococcus/Mycobaacterium (Fig. 4b). More importantly, we observed that the 

abundance of Lactobacillus (an anti-inflammatory genus and a member of the 

Firmicute phylum – i.e. phylum higher in Senescent-INRs) and the 

Lactobacillaceae family were significantly correlated with inducible HIV levels 

(Fig. 4b) (Supplementary Fig. 5c). Altogether, these data support microbiome 

changes specific to Senescent-INRs; and pinpoint the presence of Firmicute 

species in plasma that are associated with magnitude of the HIV reservoir in 

Senescent-INRs.  

Bacterial translocation is known to have a major impact on host and 

systemic microbial metabolome which leads to alterations of innate immune 

responses. Hence, we assessed the drivers of variation in total plasma 

metabolite levels in the SCOPE cohort. The primary components of variation 

(Principal Component 1 and Principal Component 2; derived from PCA analyses 

of ~750 detectable metabolites) were associated with inducible HIV (PC2 vs 

TILDA p-value <0.05; Fig. 4c) and the classifier geneset (PC1 vs classifier genes 

that predict inducible HIV - p-value <0.05; Fig. 4c). The PCA analyses confirmed 

the role of the systemic metabolome in driving inducible HIV. Given the 

association of the higher Lactobacilli abundance with inducible HIV, we 

performed univariate analyses to identify plasma microbiome derived metabolites 

(i.e. short-chain fatty acids and bile acids) that correlated with inducible HIV 

levels, These metabolites included members of the liver-biliary axis (i.e. primary 
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liver/bile metabolites like bilirubin, biliverdin, cholate and glycol-beta-muricholate; 

secondary liver/bile metabolites like ursodeoxycholate), carnitine derivatives and 

members of the hydroxybutyrate family (i.e. α-ketobutyrate and hydroxybutyryl 

carnitine) (Figure 4d). Several, but not all, of these metabolites were also 

associated with SMAD2/3 and HDAC1/2 target genesets, C7 GARP+ Tregs and 

inducible HIV (Fig. 4d). Importantly, this analysis showed that α-ketobutyrate was 

significantly correlated (p = 0.089) with C7 GARP+ Treg frequencies, 

emphasizing the association between Tregs, metabolome and inducible HIV. 

Together these data indicate that microbial metabolites and the microbiome 

could constitute integral components of the mechanisms that fuel HIV 

persistence.  

 

TGF-β production resulting from alpha-ketobutyrate driven Treg 

differentiation causes increased HIV latency in vitro  

To establish a causal link between butyrate metabolites on GARP+LAP+ 

Treg differentiation, we used the approach described by Ohno and 

Rudensky106,107. Briefly, we assessed the impact of increasing concentrations of 

alpha-ketobutyrate on sorted naïve CD4 T-cells obtained from uninfected 

subjects in the presence of IL-2, anti-CD3/28 and/or TGF-β stimulation (Fig. 5a). 

TCR stimulation in the presence of TGF-β led to a profound increase in 

frequencies of FOXP3+ cells111. Addition of increasing concentrations of alpha-

ketobutyrate in the absence of TGF-β preferentially led to the differentiation of 

naïve T-cells into GARP+FOXP3+ cells (Fig. 5a,b). Of note, TGF-β synergized 
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with alpha-ketobutyrate to drive the differentiation of GARP+ Tregs 

(Supplementary Fig. 5d). This was supported by increased TGF-β1 cytokine 

secretion in the supernatant of naïve CD4 T-cell cultures stimulated with alpha-

ketobutyrate (Fig. 5c). Furthermore, increasing concentrations of alpha-

ketobutyrate led to significantly heightened levels of PD1 expressing CD4 T-cells 

(Fig. 5d). alpha-ketobutyrate induced GARP+ Treg (TGF-β producing) and PD1+ 

CD27+ phenotypes were also associated with loss of effector function - shown by 

reduced production of T- helper cytokines (i.e. IL17A, IFN-γ, IL9) (Supplementary 

Fig. 5f). Altogether, these data indicate that in addition to enhancing Treg 

differentiation, the abundance of hydroxybutyrates could drive the upregulation of 

TGF-β processing/suppressive activity of Tregs. The latter, as shown in Fig 3, 

are critical for the maintenance of the HIV reservoir. 

To provide evidence for a direct role of TGF-β in the induction of HIV 

latency, we developed an in vitro culture model112 where TGF-β was added to 

HIV-infected CD4 T-cells. Increased numbers of CD4 T-cells with integrated 

proviral DNA were observed after 14 days of culture with increasing 

concentrations (0 to 50 ng/mL) of TGF-β (r= 0.7; p = 0.009) (Fig. 5e), 

demonstrating that TGF-β contributes to heightened levels of non-replicative 

forms of HIV DNA and establishment of the HIV reservoir. We reversed latency in 

this system by stimulating CD4 T cells induced to become latent by addition of 

increased concentrations of TGF-β ( 0.2-20ng/mL)  induced with immobilized 

CD3 and soluble CD28 specific antibodies. Our data show that frequencies of 

HIV p24+ cells were significantly higher in conditions where the highest 
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concentrations of TGF-β (0.2-20ng/mL) were added (Fig. 5f). Altogether, these in 

vitro/ex vivo observations validate the critical role of TGF-β producing Tregs in 

driving the mechanistic establishment and/or maintenance of the HIV reservoir. 

 

Increased frequencies of senescent PD1+ TCMs with impaired 

mitochondrial function drive lower CD4 counts in the senescent INRs 

Given that signaling via TGF-β/FOXO3 axis drives surface PD1 

expression113, cell cycle arrest and impaired metabolism114 - we used high-

dimensional flow cytometry, transcriptomics and cytokine data to identify the 

cellular drivers of immune reconstitution or lack thereof ; we hypothesized that 

the upregulation of protein levels of PD-1 and reactive oxygen species (ROS; 

measured by intracellular CellROX staining) in CD4 T-cells could be associated 

with lower CD4 counts115. Using the analytical strategy described in the above 

section, we identified a cluster of PD1hi ROShi CD4 central memory T-cells (TCM, 

Cluster 9; Fig. 6a,b,c, Table S18) that was uniquely up-regulated in Senescent-

INRs (i.e. not higher in INR-Bs vs IRs) when compared with IRs. Conversely, a 

cluster of PD1hi ROSlo CD4 effector memory T-cells (TEM, Cluster 17; Fig. 

6a,b,c, Table S18) was uniquely upregulated INR-Bs. In line with previous 

studies21,116, these data confirm the negative impact of PD-1 expression on T-cell 

homeostasis and immune reconstitution.  

A granular assessment of the plasma cytokine milieu revealed that levels 

of cytokines that drive effector differentiation (i.e. IL-15112) were directly 

correlated with increased frequencies of PD1hi ROSlo CD4 TEMs in INR-Bs (vs 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


20 

 

IRs) (p<0.05, Table S19). Whereas, increased frequencies of PD1hi ROShi CD4 

TCMs in the senescent INRs (vs IRs) were directly associated with higher 

plasma IFNα/IL-29 (type I and III IFN; two cytokines that drive PD1 expression117 

and lower levels of fractalkine (a chemotactic factor downstream of IL-15 driven 

effector differentiation118) (Fig. 6d), indicating that unlike in the IRs, CD4 TCMs in 

senescent INRs express PD1, have impaired mitochondria and are stalled at the 

TCM stage. Evidence of impaired metabolism and cellular senescence in these 

PD1hi ROShi TCMs was obtained by identifying metabolic and cell cycling 

genesets that associate with this cell subset (in senescent INRs vs IRs). Our data 

show that individuals with higher levels of PD1hiROShi TCMs had poor 

mitochondrial metabolism profiles (higher ROS and lower oxidative 

phosphorylation) (Fig. 6e, Table S20), reduced cMyc activity (Fig. 6e, Table S20) 

and increased expression of genes that drive cellular senescence (Fig. 6f, Table 

S20). Here, expression of catalase (CAT), peroxidins (PRDXs) and cell cycle 

inhibitory genes (i.e. CDKN2D) was increased in senescent-INRs; while genes 

that regulate oxidative phosphorylation (NDUFs and COXs) and MYC target 

genes that drive transcription (RPSs)/translation (EIFs) were expressed at lower 

levels. Concurrently, frequencies of PD1hiROShi TCMs were also associated with 

higher cellular senescence pathways downstream of impaired mitochondrial 

activity (i.e: oxidative stress induced senescence, SASP) (Fig. 6f, Table S20), 

and were observed to be the highest in subjects with higher inducible HIV (Fig. 

6e, Table S20). Altogether, these results indicate that PD1 expressing TCMs with 

impaired mitochondrial metabolism are senescent cells lacking the capacity to 
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cycle and to differentiate into effector cells, thereby driving low CD4 cellular 

counts.  

 

Integrated multi-omic model highlights cellular and molecular effectors of 

senescence as drivers of HIV persistence and lack of immune 

reconstitution 

Using unbiased and holistic approaches, we highlighted gene expression 

profiles, cytokines and T-cell subsets that were independently associated with 

HIV persistence and lack of CD4 reconstitution in the Senescent INRs. To 

investigative the interplay of pathways driving these cellular and viral phenotypes 

and HIV persistence, we integrated multi-omic signatures above (Figures 2, 3 

and 4, Table S21) across all subjects (n=41). Our data show that the levels of 

inducible HIV were positively correlated to senescence as characterized by 

impaired metabolism115 (increased ROS, decreased OX/PHOS), reduced 

transcription/translation (RPSs and EIFs) downstream of poor cMYC activity and 

TGF-β signaling (SMAD 2/3 target genes) (Fig. 6g, Supplementary Fig. 6). The 

induction of these cascades was consistent with higher expression of the 

transcriptional repressors that induced senescence (i.e. FOXO3, FOXO4)42, and 

with lower expression of master regulators of innate antiviral activity (i.e. IRF7 

and restriction factors of viral replication) (Fig. 6, Supplementary Fig. 6). 

Lack of CD4 reconstitution was driven by senescence and impaired 

metabolism and as well by higher frequencies of GARP+ Tregs, increased 

expression of SMAD2/3 targets (including FURIN, SMOX) and heightened levels 
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of IRF3 mediated type I IFN production and induced genes (i.e. AFF, DARC, 

GUK1) (Fig. 6, Supplementary Fig. 6). These pathways (IRF3 and SMAD2/3) 

were associated with increased frequencies of cells with inducible HIV RNA. Our 

integrated analysis indicates that most pathways that drive HIV persistence were 

negatively associated with the recovery of CD4 numbers upon cART initiation in 

senescent subjects. Altogether, the integration of these multi-omic results 

provided further evidence for the direct interplay between Treg frequencies, TGF-

β production, heightened FOXO3 expression, interferon signaling, establishment 

of cellular senescence, impaired T cell homeostasis, and quiescent cellular and 

metabolic state as conditions that favor the maintenance of HIV reservoir in the 

unique senescent INR population described here. 

 

Discussion 

Studies of two independent cohorts of HIV infected cART-treated subjects 

described in this manuscript identified cellular senescence as a mechanism that 

underlies HIV persistence and failure to reconstitute CD4 T-cell numbers. Our 

results provide a mechanistic framework where anti-inflammatory cytokines, 

TGF-β, VGEF and IL-13, trigger the upregulation of a transcriptional network that 

drives Treg differentiation. Our integrated analysis associates the increased 

frequencies of TGF-β producing Tregs and metabolically impaired PD-1+ TCMs 

with inducible HIV and poor CD4 immune reconstitution. This establishes a 

systemic increase in senescent cells, which is associated with HIV persistence. 

Notably, we demonstrate that senescence triggered by gut dysbiosis as 
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characterized by a selective increase in the abundance of firmicutes and their 

metabolites including butyrates is observed only in Senescent-INRs. To our 

knowledge, this is the first report that provides a direct mechanistic role for the 

microbiome and bacterial metabolites in HIV persistence. These metabolites 

drive the differentiation of TGF-β producing Tregs and PD-1 expression, both of 

which are associated with the highest frequencies of cells with inducible HIV 

RNA and poor CD4 immune reconstitution. 

 Transcriptional profiling data underscore the critical role of signaling 

downstream of TGF-β that activates SMAD2/3 and the transcriptional repressor 

FOXO3 to induce senescence. Senescent-INRs, in our study, show increased 

expression of several molecules which are features of senescent cells. They 

include: FOXO4, a TF specifically upstream of the induction of senescence42; 

PML, triggers cellular quiescence, HIV latency and is also downstream of TGF-β; 

as well as molecules with anti-apoptotic activity (BCL-2, BCL-xL119) that ensure 

the survival of senescent cells. Moreover, features known to be characteristic of 

the senescent phenotype68 including decreased cell metabolism (oxidative 

phosphorylation), upregulation of transporters of ions/salts and inhibition of 

pathways that regulate cell cycle entry were characteristic of peripheral immune 

cell subsets in senescent INRs.   

In addition to their senescent profile, these subjects are also characterized 

by the downregulation NF-κB and IRF7, two TFs that control pro-inflammatory 

pathways. The decrease in the transcriptional activity of IRF7 likely results from 

increased activity of the transcriptional repressor FOXO372 and results in 
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diminished expression of IRF7 target genes (including innate antivirals like CD74, 

TRIM4, BST2, and APOBEC3G)71. This impaired expression of intrinsic 

mechanisms of innate antiviral immunity may in part explain the increased 

frequencies of cells with inducible HIV in Senescent-INRs. Interestingly, while 

expression of FOXO3 led to poor IRF7 transcriptional activity, it was associated 

with an increase in IRF3 transcriptional activity. Target genes of IRF3 and 

FOXO3 include TFs that regulate senescence associated pathways (i.e. SOX4, a 

TF that inhibits T-helper cell development and is triggered by TGF-β120) and 

RIOK3, an inhibitor of NF-κB58. Hence, while IRF7 inhibits the anti-inflammatory 

activity of FOXO3121, IRF3 will inhibit TNF induced NF-κB activation122 and as 

well trigger the inflammasome123; both( decreased IRF-7 and NFκ-b) could lead 

to poor immune responses and heightened HIV persistence. A senescent 

phenotype downstream of IRF3 driven type I IFN production and signaling to 

induce IFN stimulated genes (ISGs) has been described in aging cells124,125, and 

could contribute to CD4 T cell senescence shown in our study. A role for type I 

IFN signaling and ISGs in enhancing HIV persistence was confirmed by recent 

studies in humanized mice whereby the blockade of IFN-α/β receptor (IFNAR) 

led to a reduction of HIV-1 reservoir size and to the restoration of antiviral 

immunity126. These findings are supported by the significant correlation between 

a type I IFN signature and HIV reservoir observed in our data. Together, this 

previously undescribed transcriptional cooperation between FOXO3 and IRF3 

suggests novel mechanisms to understand the transcriptional regulation of 
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senescent immune cells associated with the lack of CD4 T-cell immune 

reconstitution and HIV persistence. 

FOXO3 is also known to transcriptionally regulate genes involved in redox 

balance and anti-oxidant defenses127,128. Our data highlights FOXO3 target gene 

SNCA (α-syneculin129), mitophagy related genes (PINK1 and PARKIN130) and 

GABARAPL2 (the autophagy regulatory gene131) and SLCs that are upregulated 

in Senescent-INRs as part of a mitochondrial damage response. The latter may 

help sustain processes responsible for oxidized lipid biogenesis and ROS 

production. Furthermore, the downregulated oxidative phosphorylation and 

glycolysis observed in these subjects could be driven by the upregulation of 

FOXO3 target genes CYB5R3 and peroxiredoxins (PRDX2, PRDX3, PRDX5) 

involved in maintaining redox balance and anti-oxidant defense132. PRDXs, 

specifically PRDX2, can get oxidized by ROS due to a lack of electron transport 

in the mitochondria132. Oxidized PRDX2 can then activate kinases including p38 

that initiate stress responses and protect cells from ROS mediated cell death, 

thereby supporting the survival of senescent cells132. In our data, the expression 

of genes associated with ROS production (Catalase and superoxide dismutase) 

and oxidized lipid biogenesis (CD36) were positively correlated with HIV reservoir 

size confirming the link between senescence and HIV reservoir establishment.  

The aforementioned senescence associated impaired mitochondrial 

metabolism was found to be enhanced in a subset of PD-1+ TCMs that were 

enriched in the senescent-INRs. The heightened expression of PD1+ and poor 

metabolic profile is suggestive of an accumulation of these cells in an early 
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memory differentiated state specifically within Senescent-INRs. We and others 

have shown that PD-1 expression leads to the accumulation of cells in the early 

memory differentiated stage133 while the genetic ablation of PD-1 resulted in their 

increased differentiation to the effector memory stage134. Additionally, T-cells 

from Senescent-INRs show downregulation of pro-apoptotic pathways and 

increased expression of anti-apoptotic molecules that potentially restrain cell 

turnover135. The blockade of T-cell differentiation from TCM to TEM as a 

consequence of PD-1 expression could explain the low CD4 T cell numbers 

observed in these subjects (in contrast to TEM cells which are known to expand 

and proliferate thereby increasing CD4 cell numbers112). This limited T-cell 

turnover in Senescent-INRs could explain the high frequencies of cells with the 

multiply spiced HIV RNA, as these cells would accumulate with time. 

Finally, we provide direct evidence for TGF-β producing Tregs as drivers 

of impaired T-cell homeostasis and HIV persistence in Senescent-INRs. In our 

study, the observed increase of active plasma TGF-β in Senescent-INRs is 

supported by the increased expression of GARP by these Tregs and activation of 

signal transduction cascades that lead to upregulation of FOXO3, PML and 

CCNT2 – all transcriptional targets of SMAD2/SMAD3 and downstream of TGF-

β35. PML, an interferon induced anti-viral protein136 is triggered by TGF-β46 and 

establishes cellular quiescence by stabilizing FOXO3 and FOXO4137. This 

stabilized FOXO4 binds to p53 and plays a crucial role in the downregulation of 

pro-apoptotic machinery42,43, a major hallmark of senescent cells. In vitro 

validation experiments, in addition to molecular and cellular mechanisms 
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described here implicate TGF-β in driving senescence and dysregulated type I 

IFN-driven pathways (via FOXO3 and IRF3) which impact T-cell homeostasis 

and promote HIV persistence. Further role of TGF-β in HIV persistence is 

provided by the presence of CCNT2 in the transcriptional network that is specific 

to senescent-INRs. CCNT2 and AFF1 are both components of the pTEFb 

complex which is critical for HIV replication77,138. Heightened levels of pTEFb in 

CD4 T cells could provide a mechanism to explain the higher levels of inducible 

HIV in these subjects.   

In addition, to the direct impact of α-ketobutyrate on FOXO3 upregulation, 

we describe a Treg dependent induction of senescence in Senescent-INRs. 

Using both ex vivo and in vitro experiments, we demonstrate that the 

differentiation of naive CD4 T-cells into GARP+ Tregs by exposure to α-

ketobutyrate and the prevalence of butyrate metabolism specific genes in Tregs. 

These novel findings confirm previous in vivo studies that have shown increased 

Treg differentiation upon exposure to butyric acid106,107. In our study, the 

observed increase of active plasma TGF-β in Senescent-INRs is supported by 

the increased expression of GARP by these Tregs and activation of signal 

transduction cascades that lead to upregulation of FOXO3 and PML. The 

elevated levels of butyrates can be attributed to an increase in ketone bodies 

(produced by the liver during periods of poor dietary intake139). These 

observations are supported by increased detection of both primary and 

secondary liver/bile acids in plasma from subjects with higher inducible HIV (i.e. 

senescent INRs). Alternately, the increase in plasma butyrates could also be 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


28 

 

attributed to increased bacterial metabolism107 and is supported by the positive 

association of butyrates/propionates with plasma LPS and IFABP in Senescent-

INRs - providing strong support for microbial translocation as a source of these 

metabolites. Heightened sCD14 and increased Firmicute phylum abundance 

(known producers of butyrates140,141) in the Senescent-INRs confirms a direct 

interplay between microbiome/metabolic changes and establishment of the 

Senescent phenotype. Together these data highlight the role of butyrate induced 

Treg differentiation106 in TGF-β production which leads to subsequent CD4 T-cell 

senescence, lack of CD4 reconstitution and higher inducible HIV production. 

They reveal for the first time a mechanism downstream of commensal bacteria 

(exemplified by the association of the Lactobacillaceae family and alpha-

ketobutyrate with inducible HIV) that can trigger the establishment of the HIV 

reservoir. 

Our findings provide a strong rationale for the evaluation of senolytic drugs 

that would target senescent cells142,143 as promising therapeutic interventions to 

reduce the HIV reservoir size. Combination interventions targeting PD-1 and 

TGF-β, or Senolytics, may have an improved therapeutic impact in Senescent-

INRs where frequencies of PD-1+ cells are a correlate of high HIV reservoir and 

poor CD4 T-cell reconstitution. Interestingly, senescence and TGF-β signaling 

have been highlighted as hallmarks of cancer where anti-PD-1 therapy has 

shown efficacy144. Our gene classifier should help identify subjects who will not 

respond to checkpoint therapies in HIV and cancer145, and could benefit from 

interventions that target both PD-1 and TGF-β. Senescent-INRs could also 
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benefit from interventions that promote T-cell differentiation (e.g. IL-15) or rescue 

the activity of deficient metabolic pathways allowing T-cells to overcome the 

senescent state and help restore both CD4 T-cell numbers and cell-mediated 

immunity, which could decrease reservoir size146. The multi-omics senescent 

features and the classifier gene-set described here thus represent critical tools to 

identify Senescent-INRs. Additionally, the integrated approach used herein holds 

potential for the identification of novel targets and the design of optimal trials that 

combine different drugs/biologics targeting senescence and exhaustion to restore 

immune homeostasis and eradicate HIV.  

 

Experimental Procedures 

Study Participants: These studies were approved by the Institutional Review 

Boards at University Hospitals/Case Medical Center and the Cleveland Clinic 

Foundation, the Vaccine and Gene Therapy Institute of Florida and University of 

California San Francisco; all patients provided written informed consent in 

accordance with the Declaration of Helsinki. Cohort 1 (CLIF): A total of 45 

immunologic non-responders (INRs) and 17 immune responders (IRs) were 

identified from the Cleveland Immune Failure cohort. The Cleveland Immune 

Failure study examined immunologic indices in healthy controls and 2 groups of 

patients who had been receiving ART for at least 2 years with plasma HIV RNA 

levels below detectable levels using routine clinical assays; typically, less than 50 

copies per milliliter. Transient blips in HIV RNA levels did not exclude 

participation if flanked by levels below limits of detection. Immune failure patients 
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(INRs) had CD4 T cells <350/µL and immune success patients (IRs) had CD4 T 

cells >500/µL. Detailed clinical indices, anti-retroviral regimens and basic 

demographics are listed in Table S1.  Cohort 2 (SCOPE): A total of 21 INRs and 

20 IRs were identified from the University of California San Francisco (UCSF) 

SCOPE cohort. Viral suppression was defined by at least two longitudinal tests 

that showed plasma HIV RNA levels below the limit of detection using standard 

assays (<40 Abbot RealTime HIV-1 assay, <40 Roche COBAS® 

Ampliprep/COBAS® Taqman® HIV-1 Test, <50 branched DNA); these tests were 

done 3 months prior to and on the date of specimen collection. Subjects with viral 

blips below 200 copies/ml in the time period since beginning ART (or since the 

end of last treatment gap) 2 years prior to the specimen date were not excluded 

from the study. Basic demographics and clinical readouts at the time of collection 

are listed in Table S2.   

 

Microarray Pre-processing and differential gene expression analyses: 

Whole blood was collected and lysed in RLT for RNA extraction (Qiagen, 

Valencia, CA, USA). For the CLIF cohort, cDNA obtained after reverse 

transcription reaction was hybridized to the Illumina Human HT-12 version 4 

Expression BeadChip according to the manufacturer’s instruction and quantified 

using the Illumina iScan System. The data were extracted using the 

GenomeStudio software. Similarly, the SCOPE cohort samples were run using 

an Affymetrix microarray system. Detailed analysis of the genome array output 

data was conducted using the R statistical language147 and the Bioconductor 
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suite148. Arrays displaying unusually low median expression intensity and 

variability across all probes relative to all arrays were discarded from the 

analysis. Probes that do not map to annotated RefSeq genes and control probes 

were removed. Quantile normalization followed by a log2 transformation using 

the Bioconductor package LIMMA was applied to raw microarrays intensities. To 

determine differences between groups or against a continuous variable, the 

LIMMA package149 was used to fit a linear model to each probe. A (moderated) 

Student’s t-test to assess significance in difference between groups, whereas a 

Pearson correlation test was used to assess significance against a continuous 

variable. The proportions of false positives were defined using the Benjamini and 

Hochberg method150. Unless indicated otherwise, genes that satisfied FDR <0.05 

were selected for data mining and functional analyses.  

 

Class identification, classifier training and validation: Class identification - In 

the CLIF cohort, 62 samples were hybridized by the Vaccine Genome Research 

Institute Genomics Core and 61 samples made it to the downstream analysis (44 

INRs and 17 IRs) after outlier identification and removal. Initial exploratory 

analysis (MDS plot – Fig. 1a) followed by unsupervised analysis (heatmap of top 

200 most variable probes – Supplementary Fig. 1c) revealed the discovery of two 

INR classes in the dataset. These presence of these subject cluster was 

confirmed when the Gap statistic technique91 was used on whole transcriptomic 

data to determine the optimal number of INR classes. The two classes of INRs 

were labeled: INR-A (an extreme INR phenotype, n = 15) and INR-B (INR 
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phenotype proximal to IRs, n = 29).  Differential expression analyses (described 

above) were used to identify the differences between IR and INR-A, IR and INR-

B and INR-A and INR-B. Classifier training - Construction of the INR-A – INR-B 

Classifier (Fig. 1f-g, Supplementary Fig. 3) was done using the Prediction 

Analysis of Microarrays for R (PAM) package from R. PAM uses the nearest 

shrunken centroid methodology151. A standardized centroid for each class (INR-A 

and INR-B) was computed. Ten-fold cross-validation was used to optimize the 

shrunken criteria. The-shrunken criteria that resulted in the lowest cross-

validated misclassification error rate was used to generate the optimized 

classifier on the CLIF cohort (training cohort). Supplementary Fig. 3a represents 

training of the 352 features used to build the classifier on the CLIF dataset (see 

features in Table S11). Classifier validation - Testing the classifier on the 

validation set (SCOPE cohort) is illustrated in Fig. 1f-g. There are no “true” labels 

that define INR-A or INR-B in the SCOPE testing cohort as they both fall under 

the label immune non-responders. In order to assess the performance of the 

classifier on the validation set, the two INR groups had to be defined. An 

unbiased unsupervised approach similar to the one used to discover the classes 

in the CLIF cohort was applied on the normalized Affymetrix microarray data of 

the SCOPE cohort. Supplementary Fig. 3b shows a heatmap representation of 

the expression of the top varying probesets (top 200 variant transcripts) on the 

full SCOPE dataset. Two clusters of INRs were identified using unsupervised 

clustering (color of branches in Supplementary Fig. 3b denote the discovered 

classes). This discovery allowed us to label the two subgroups of INRs in the 
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SCOPE cohort. The 352-gene classifier was then applied on the SCOPE cohort. 

ROC analysis was then used to assess the accuracy (80%) of the classifier on 

the SCOPE cohort (Fig. 1f). Throughout the study the INR classes in the SCOPE 

cohort were defined based on the 352-gene classifier (PCA representation of 

classifier genes in Fig. 1g). Whole transcriptome profiling of classifier defined 

classes in the SCOPE cohort is shown in Supplementary Fig. 3c. 

 

Pathway analyses. Gene Set Enrichment Analysis (GSEA)27 throughout the 

study was performed to assess enrichment in pathways that discriminated 

between classes (Fig. 1b-d), were associated with inducible HIV (Fig. 2d and Fig. 

3e), were associated with Treg cluster 7 (Fig. 3e), were associated with low CD4 

counts (Fig. 4e) and were associated with PD1hiROShi CD4 TCMs (Fig. 4e, f). 

Briefly, the whole transcriptome probe-set was collapsed to genes by assessing 

the most variable probes, pre-ranking of this collapsed transcriptome was done 

(t-statistic) and enrichment of various genesets was tested after running 1000 

permutations of enrichment. Hallmark MSigDB database25 (v 7.0) was used to 

identify pathways that differentiated IR, INR-A and INR-B subjects in the CLIF 

cohort (Fig. 1b). This database was also used to assess pathways driving lower 

CD4 counts in the Senescent INRs (Fig. 4e, Table S20), frequencies of 

PDhiROShi CD4 TCMs in the Senescent INRs (Fig. 4e, Table S20) and inducible 

HIV (Table S12) in the SCOPE cohort. Cell subset deconvolution: Major 

peripheral immune subset-specific gene expression signatures were obtained 

from Nakaya et. al31, and their enrichment was assessed (Fig. 1c, Table S7). In 
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addition, data from a comprehensive study with sorted hematopoietic stem cell-

subsets32 was used to generate gene-signatures specific to 38 unique subsets 

(each subset-specific signature was defined as genes found to be >2-fold higher 

with p<0.05 than in the pool of all other subsets) (Table S8). These signatures 

were used to assess variations in differentiated CD4 and CD8 T cell subsets in 

whole blood in Fig. 1d. Custom genesets: Senescence based gene signatures 

were extracted from Reactome database in MsigDB v7.0’s c2 module (Table S20 

lists of all pathways, Fig. 4f). Genesets specific to host antiviral restriction factors 

(Fig. 2d, Table S12) and IFN signaling (Fig. 1b, Fig. 2d, Table S12) were 

extracted from Abdel-Mohsen et. al73 and Interferome database76, respectively. 

SMAD2/3 and HDAC1/2 genesets were also extracted from MsigDB’s c2 module 

by searching this module for ‘SMAD2’, ‘SMAD3’, ‘HDAC1’ and ‘HDAC2’. The 

results of these analyses are shown in Fig. 3e (Table S17). The enrichment of 

the 352-geneset classifier gene-set was done where specified (Fig. 1i, Fig. 3e, 

Table S17). Leading Edge overlap and Sample Level Enrichment Analyses 

(SLEA): Leading edge genes from the analyses above were overlapped 

(significance of overlap was determined using Fischer’s Exact test; p < 0.05) to 

define new gene-lists that were associated with both “inducible HIV and Treg 

cluster 17” (Fig. 3e, Table S17) OR “CD4 counts and PD1hiROShi CD4 TCMs” 

(Fig. 4e, Table S20). SLEA was used to generate a z-score normalized value for 

genelists in Fig. 2d, 3e, 4e and 4f. These scores were correlated (spearman 

correlation test) with each other, minor (Treg frequencies and PD1hiROShi CD4 
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TCM frequencies) and major (inducible HIV and CD4 counts) outcomes to 

generate the integrated correlation network model in Fig. 5 and Table S21. 

 

Over-representation, gene-mania/correlation networks and transcription 

Factor (TF) analyses: Over-representation of Reactome pathways in genes that 

are upregulated in the INR-As (vs both IRs and INR-Bs; FDR < 0.05) was 

assessed using the ClueGO plug-in from Cytoscape 

(http://apps.cytoscape.org/apps/cluego37), and the results of these analyses were 

corrected for multiple comparisons using Bonferroni step-down correction (Fig. 

1e, see Table S10 for full results). GeneMania and correlations network: 

GeneMania Networks152 (http://genemania.org) were plotted to represent co-

expression of genes (Supplementary Fig. 2b and Supplementary Fig. 2d). 

Overlap between the genes included in the networks and Gene Ontology (GO) 

biological process was assessed using a Fisher exact test. Correlation networks 

in Fig. 3d, Fig. 4d, Fig. 5a and Supplementary Fig. 5a are based on significant 

Spearman correlations (p-value < 0.05) between the features indicated in each 

figure. All networks were plotted using the Cytoscape Plug-in – specific 

value/category for all nodes and edges are available upon request. Transcription 

factor list was generated by combining genes with known ChIP-seq validated 

targets from CHEA74 

(https://amp.pharm.mssm.edu/Harmonizome/resource/ChIP-

X+Enrichment+Analysis) and ENCODE 

(https://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+F
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actor+Targets) databases. The expression of these TFs was tested in INR-As vs 

INR-Bs or IRs (Supplementary Fig. 2c). IRF3 targets and FOXO3 targets were 

extracted from the ENCODE and CHEA databases cited above, respectively. Co-

expressed targets of FOXO3 and IRF3 that correlated with inducible HIV are 

represented in Fig. 2d (Table S12).  

 

Cell Preparation and flow cytometry: PBMCs were prepared from whole blood 

by ficoll-hypaque density sedimentation and cryopreserved in 10% dimethyl 

sulfoxide and 90% FBS. Two panels to evaluate Treg function and mitochondrial 

dysfunction in memory CD4s were run using previously titrated antibodies 

summarized in Table S13, S14 and S18. The cells were surface stained for 20 

minutes in the dark at room temperature, washed, fixed and permeabilized using 

the eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set (Cat# 00-

5523-00), as per manufacture instructions. Intracellular staining was performed in 

Perm-Wash provided by the kit for 45 minutes at 4oC. Samples were washed and 

re-suspended in staining buffer for acquisition. ~500,000 live-gated events were 

collected per sample on the LSRII flow cytometer (Becton Dickinson, San Jose, 

CA). Initial data cleaning and pre-gating was done using the Flow-Jo X software 

(TreeStar, Ashland, OR) (Supplementary Fig. 6). Briefly, lymphocyte gate based 

on FSC-A and SSC-A was defined. Single cells were then selected using a FSC-

A x FCS-H gate. Live CD3+CD4+CD8- cells were gated and exported for 

unbiased clustering analyses (Supplementary Fig. 6). For both panels, projection 

of the density of cells expressing markers of interest (Table S14, Table S18) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


37 

 

were visualized/plotted on a 2-dimensional UMAP 

(https://arxiv.org/abs/1802.03426, https://github.com/lmcinnes/umap). Clusters of 

cells using the RPhenograph package after 

(https://github.com/jacoblevine/PhenoGraph) after concatenating all samples per 

panel and bi-exponentially transforming each marker (Fig. 3a and c, Fig. 4a). 

Differences in cluster frequencies per group and MFI for each marker per cluster, 

for each are shown in Table S14 and Table S18. 

 

Measurement of inducible reservoir: The HIV reservoir was measured using 

the tat/rev induced limiting dilution assay (TILDA). This method measures the 

inducible reservoir by RT-qPCR using the limiting dilution assay previously 

described70. Briefly, 2 x106 CD4 T cells from 20x106 PBMCs were enriched using 

a CD4 T cell negative selection kit (Stem Cell). These cells were stimulated with 

PMA/Iono (100ng/ml and 1µg/ml, respectively) for 12 hours. A total of 744,000 

stimulated cells were then distributed in a limiting dilution in a 96-well plate and 

tat/rev msRNA expression was directly quantified (without prior RNA extraction) 

by semi-nested real-time PCR70. The frequencies of cells positive for inducible 

tat/rev msRNA per 106 CD4+ T cells were determined by using the maximum 

likelihood method (http://bioinf.wehi.edu.au/software/elda) (Fig. 1h,i). 

 

Measurement of plasma biomarkers: Plasma IL-6 in the CLIF cohort was 

measured using a high sensitivity ELISA kit for human IL-6 (Quantikine HS) from 

R&D Systems (Minneapolis, MN). Plasma levels of IL-7 in the CLIF cohort were 
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measured by high sensitivity IL-7 ELISA (Quantikine HS, R&D Systems, 

Minneapolis, MN). Plasma levels of IP10 in the CLIF cohort were measured by 

IP-10 ELISA (Quantikine, R&D Systems, Minneapolis, MN). Plasma levels of 

human Intestinal Fatty Acid Binding Protein (I-FABP) in the CLIF cohort were 

measured using a DuoSet ELISA Development kit from R&D Systems 

(Minneapolis, MN) following the manufacturer’s protocol. Levels of D-dimers in 

the CLIF cohort were measured using the Asserachrom D-DI immunoassay 

(Diagnostica Stago, Asnieres France) (Supplementary Fig 1.  d-m). 

Measurement of LPS in the CLIF cohort: Plasma samples were diluted to 10% or 

20% with endotoxin free water and then heated to 85oC for 15 minutes to 

denature plasma proteins. We then quantified plasma levels of LPS with a 

commercially available Limulus Amebocyte Lysate (LAL) assay (QCL-1000, 

Lonza, Walkersville, MD) according to the manufacturer’s protocol. Multiplex 

ELISA (Mesoscale): U-PLEX assay (Meso Scale MULTI-ARRAY Technology) 

commercially available by Meso Scale Discovery (MSD) was used for plasma 

cytokine detection. The assay was performed according to the manufacturer’s 

instructions 

(https://www.mesoscale.com/en/technical_resources/technical_literature/techncal

_notes_search). 25μL of plasma from each donor was combined with the 

biotinylated antibody plus the assigned linker and the SULFO-TAG™ conjugated 

detection antibody; in parallel a multi-analyte calibrator standard was prepared by 

doing 4-fold serial dilutions. Both samples and calibrators were mixed with the 

Read buffer and loaded in a 10-spot U-PLEX plate, which was read by the MESO 
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QuickPlex SQ 120. The plasma cytokines values (pg/mL) were extrapolated from 

the standard curve of each specific analyte. Cytokine clustering (Supplementary 

Fig. 4a,b,c) was performed using independent methods: (gap statistic method to 

identify and characterize optimal number of k-means clusters, and hierarchical 

clustering (ward clustering; Euclidean distance91). 

 

Microbiome and Metabolome. Pathogen-Sequencing: Host microbiomes were 

analyzed using the PathSeq technology. PathSeq involves deep sequencing of 

fragmented RNA and DNA (~100-1000 bases) in plasma to obtain an overall 

quantitative and qualitative measure of the viral, bacterial, fungal, parasite and 

helminth burden. Following RNA-sequencing, the reads that map onto host 

genomic and transcriptomic regions were identified and removed from the 

dataset. De novo assembly is then performed on the remaining, non-host 

sequences. The assembled contigs were aligned against the comprehensive “nt” 

database from NCBI to determine the microorganisms for which assembled 

sequences were derived. We used the Bray-Curtis dissimilarity statistic 110 

(Supplementary Fig. 5a,b) to assess the beta diversity and assess differential 

distribution of the abundance or total read counts of all phyla to species in the 

microbiome PathSeq data. Metabolomics: In collaboration with Metabolon, 

plasma metabolite levels for up to 1300 metabolites were measured. Metabolon 

uses four ultra-high-performance liquid chromatography/tandem accurate mass 

spectrometry (UHPLC/MS/MS) methods in a highly controlled environment to 

reduce noise and produce accurate results. The data generated using 
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UHPLC/MS/MS were referenced against a well-established library of known and 

novel metabolites.  

 

Treg differentiation in the presence of alpha-ketobutyrate: Naïve CD4 T cells 

extracted from 8 healthy donors were isolated using the EasySep™ Human 

Naïve CD4+ T Cell Isolation Kit (StemCell Technologies Catalog# 19555) and 

differentiated in vitro using the protocols described by Rudensky106. Briefly, 100-

200,000 naïve CD4 T cells were stimulated with Dynabeads Human T-Activator 

CD3/CD28 beads (ThermoFisher Scientific Cat# 111.31D, 1 bead/3 cells), 100 

U/mL of IL-2 (R&D Systems Cat# 202-IL-500), 0 to 1ng/mL of TGF-β (R&D 

Systems Cat# 240-B-010) and alpha-ketobutyrate (Cat#, from 0mM to 5mM) for 

3 days in 96-well round bottom plates. Viability post-stimulation, assessed post-

stimulation by staining with a fixable viability dye, was found to be >80% in all 

stimulation conditions. Secreted cytokines in the supernatants were quantified 

using the Mesoscale Discovery platform/kits described above. CD4 T cells were 

intracellularly stained with the Treg phenotyping panel described (Table. S8). 

 

Latency establishment and reactivation assay: The latency and reactivation 

assays developed by our group112 was used to assess the latency establishment 

in memory CD4 T cells post-stimulation with increasing doses of TGF-β. Briefly, 

memory CD4 T cells spinoculated with HIV (HIV strain information listed112) were 

incubated in the presence of antiretrovirals (effavirenz , Saquinavir and 

Ralegravir) and latency establishment media (supplemented with 0-40ng/mL of 
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TGF-β) for 13 days (or when the frequencies of HIV-p24+, measured by flow 

cytometry, CD4 T cells was negligible). Integrated HIV DNA was measured at 

this stage using the protocol described112. Reactivation of HIV post-latency was 

done after stimulation with 1ug/mL anti-CD3 and 1ug/mL of anti-CD28 for ~48 

hours; reactivated cells were quantified by monitoring the frequencies of p24+ 

cells using flow cytometry. 

 

Other statistical analyses: All univariate group-differences were analyzed using 

a non-parametric Wilcoxon-ranked test. All univariate correlation analyses were 

done using a non-parametric Spearman’s test. P<0.05 is reported as significant. 

 

Full Data Availability Statement: The raw and normalized data matrices for 

gene expression analysis of the CLIF and SCOPE cohorts were deposited into 

the Gene Expression Omnibus (GEO) database; GSE143742. 
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Figure Legends (F1-F6):  
 
Figure 1 | Whole blood transcriptional profiling identifies a 352-geneset 

signature that discriminates ART-treated Senescent-INRs and is associated 

with high inducible HIV. a, Multi-dimensional scaling (MDS) was used to reduce 

the Euclidean distance between whole blood samples of the CLIF cohort (n=61) 

into two dimensions that summarize the largest transcriptomic variation in the 

dataset. These two dimensions were used to represent the differences between 

samples (circles) in the scatter plot. Three groups were identified: IR (Grey; 

n=17), INR-A (Red; n=14), and INR-B (Blue, n=20). The first dimension of the 

plot, representing 23% of the transcriptomic variance between samples, depicts 

the observed transcriptomic difference between the three groups of subjects. b-

d, Heatmaps illustrating the normalized enrichment score (NES; red (high) to 

blue (low) scale shown on the heatmap) of the top genesets (GSEA p-value ≤ 

0.05) MSigDB: Hallmark25 (Table S6) + Interferome TypeI/II76 Pathways (b) Major 

immune cell Subsets31 (Table S7) (c) and T cell subsets32 (Table S8) (d) 

between IR vs INR-A, IR vs INR-B and INR-A vs INR-B subjects. Each row 

depicts a genesets, and columns represent the contrast between subject groups. 

e, Network highlighting the top biological functions associated with genes 

upregulated in INR-A subjects (vs IRs and INR-Bs; FDR < 0.05). As indicated, 

node color (dark red to orange) highlights the p-value resulting from over 

representation analyses, while the node size represents the number of genes per 

gene-set. Member genes are represented as white circles and connected to 

member geneset by grey edges (see Table S10 for details). Reactome database 
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was used to annotate the biological functions and the network was plotted using 

the ClueGo plug-in within cytoscape. f, Receiver operating characteristics (ROC) 

curve for the genes as predictors of INR groups. X- and Y- axes represent the 

False and True positive rates of prediction on the SCOPE validation dataset. A 

352 gene-based classifier (see Table S11 for list of genes) trained on the CLIF 

cohort segregates INR-A and INR-B subjects in the SCOPE cohort with an 

accuracy of 81%. The classifier which was tested across different microarray 

platforms confirmed the heterogeneity of ART-treated INR subjects in these two 

independent cohorts (see methods for details on approach used to build the 

classifier). g, Multi-dimensional Scaling was used to summarize the variation of 

the 352 genes of the classifier among subjects of the SCOPE cohort (n=41). 

Senescent-INR (Red), and INR-B (Blue) were identified along the first dimension 

of the MDS plot. h, Jitter plot illustrates significantly (Wilcoxon rank test p-values 

shown on plot) higher levels of inducible HIV (measured by TILDA70) in 

Senescent-INRs compared to IRs and INR-Bs. i, Heatmap illustrating the leading 

edge from the gene-based classifier that predict inducible HIV among subjects of 

the SCOPE cohort (n = 41; linear regression: classifier genes ~ inducible HIV, 

GSEA: NES=3.22, p<0.0001). Rows represent the z-score normalized genes in 

the leading edge and columns represent samples of the SCOPE cohort: IR 

(Grey), Senescent-INR (Red), and INR-B (Blue). As indicated in the legend, each 

row is z-score normalized. The magnitude of CD4 counts (purple) and the size of 

inducible HIV (black) are plotted as annotations at the top of the heatmap, as 
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indicated. Selected genes are highlighted in boxes to the left of the heatmap 

(See Table S12 for full leading-edge gene list). 

 

Figure 2 | Altered interferon signaling drives inducible HIV in Senescent 

INRs. a-b, Jitter plot illustrating significantly elevated levels of IRF3 expression in 

Senescent-INR subjects (a), scatter plot showing a significant positive correlation 

between FOXO3 and IRF3 expression (b) and diminished levels of IRF7 

expression in Senescent-INR subjects (c) of the CLIF cohort. A Wilcoxon rank 

sum test was used to assess significant differences between groups (**p < 0.01, 

****p<0.0001), and a spearman correlation test was used to assess significance 

of association (p-value and rho indicated on plot). d, Heatmap illustrating the 

dichotomy of interferon signaling driving the HIV reservoir size among subjects of 

the SCOPE cohort (Top block: linear regression: Restriction Factors ~ inducible 

HIV, GSEA: NES= - 1.6, p<0.05, Bottom block: positive correlates of inducible 

HIV that are targets of FOXO3 and IRF3). Rows represent the z-score 

normalized genes in the leading edge and columns represent samples of the 

SCOPE cohort: IR (Grey), Senescent-INR (Red), and INR-B (Blue). As indicated 

in the legend, each row is z-score normalized. The magnitude of CD4 counts 

(purple) and the size of inducible HIV (black) are plotted as annotations at the top 

of the heatmap, as indicated. See Table S12 for full gene-lists. 

 

Figure 3 | TGF-β signaling cascade exemplified by an increase in SMAD2/3 

targets and an increase in TGF-β producing Tregs is associated with an 
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increase in inducible HIV and drives latent HIV in vitro. a, Treg panel clusters 

determined using the PhenoGraph method (see Table S14) and visualized using 

the Uniform Manifold Approximation and Projection (UMAP) analysis were used 

to represent the distribution of Treg phenotypes in total CD4 T cells (using high-

dimensional flow cytometry) in IR, Senescent-INR, and INR-B subjects of the 

SCOPE cohort. FOXP3 expressing clusters that were abundant in Senescent-

INR subjects (vs IRs) are highlighted on the UMAP plot (See Table S14 for 

details). b, Violin plot illustrates significantly higher frequencies of Treg cluster 7 

(in total CD4 T-cells) in Senescent INR subjects. Wilcoxon rank test was used to 

assess significance and p-values are indicated on the plot. c, Heatmap 

highlighting the differences in markers between clusters. FOXP3+ clusters that 

were abundant in senescent INRs (i.e. clusters 1,7, and 19) are highlighted. Each 

column is z-score normalized value of the mean fluorescence intensity (raw 

intensities for every cluster can be found in Table S14). d, Network highlighting a 

positive correlation between FOXP3 expressing Treg clusters that are abundant 

in Senescent INRs (Clusters 1, 7 and 19) with plasma cytokine levels (of 

cytokines in cytokine cluster 3; See Supplementary Fig. 4b) measured on the 

same subjects. Triangular blue nodes depict plasma cytokines IL-7, TGF-β2, 

KC.GRO and VEGF; red edges highlight a positive correlation between those 

cytokines and the Treg clusters. Orange squares reflect high-density flow 

cytometry clusters, light blue triangles reflect plasma cytokine levels, red edges 

indicate significant positive correlation. A Spearman correlation test was used to 

assess significance (p-value <0.05) across IR, Senescent-INR, and INR-B 
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subjects of the SCOPE cohort (Table S16 lists the details of correlations between 

plasma cytokine cluster 3 members and Treg subsets). e, Heatmap highlighting 

overlapping leading-edge genes from the association of inducible HIV and 

frequencies of Treg cluster 7 with the 352 gene-based classifier genes (top 

block), SMAD2/3 targets (middle block) and HDAC1/2 targets (bottom block). 

Rows represent features and columns represent samples of the SCOPE cohort: 

IR (Grey), INR-A (Red), and INR-B (Blue). The gene-expression per row was 

centered at zero and to a standard deviation of 1 (z-score). As indicated in the 

figure, a red-white-blue gradient is used to depict the relative expression of the 

features. The magnitude of CD4 counts (purple), frequencies of Treg Cluster7 

(GARP+, dark blue) and size of HIV inducible reservoir (black) are plotted as 

annotations at the top of the heatmap. GSEA was used to assess the association 

between the features and inducible HIV/Treg cluster 7 frequencies (linear 

regression, p<0.05). Genes that showed a significant overlap (GSEA vs inducible 

HIV and Treg cluster 7 frequencies; significance (p-value <0.05 - assessed by 

Fischer exact test) amongst the leading-edge gene list/pathway are represented 

on the heatmap (See Table S17 for all the details). f-g The LARA in vitro 

model112 was used to characterize the impact of dose-dependent increase in 

TGF-β on the establishment of HIV latency in memory CD4+ T cells. Increasing 

concentrations of TGF-β (0.2-20ng/mL) during the latency phase of the assay led 

to heightened frequencies of CD4 T cells with integrated HIV DNA (f) and 

resulted in significantly higher frequencies of p24+ CD4 T cells upon reactivation 

with anti-CD3/28 antibodies (g). Spearman’s test was used to assess 
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significance for correlation in (f) (p-value and rho as indicated on graph) and 

Wilcoxon rank-sum test was used to assess significance between timepoints in 

(g) (p-value as indicated on graph). 

 

Figure 4 | Microbial metabolites drive Treg differentiation and TGF-β 

production in Senescent INRs.  

a, Box plots illustrating levels of bacterial phylum Firmicutes are heightened in 

Senescent-INRs (p=0.06) of the SCOPE cohort. Subject groups are plotted along 

the X-axis: INR-A (Red), and INR-B (Blue) and log10 of relative Firmicute 

abundance based on PathSeq plotted along the Y-axis. A Wilcoxon tank sum test 

was used to assess significance. 

b, Taxonomy tree of all genera with abundance >0 TPM in all subgroups (IRs, 

Senescent and Inflammatory INRs) of the SCOPE cohort. Each genus label and 

tree leaf is colored based on bacterial phyla annotation. Bar plots in the 

concentric circles represent log(TPM+1) value for each genus in Senescent or 

Inflammatory INRs form the SCOPE cohort. Stars beside the bars highlight 

significant differences between Senescent or Inflammatory INRs (P<0.05: large 

start, P<0.1: small star). Heatmap strip in the concentric circle shows the 

correlation value (Spearman’s rho) of each genus with inducible HIV. Stars 

beside the heatmap strip highlight significant correlations (P<0.05: large star, 

P<0.1: small star).  

c, Principal Component Analysis of all plasma metabolome highlights a cluster of 

subjects with high TILDA levels and reveals a significant negative correlation 
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between PC1 (x-axis) and the Classifier gene-set and a significant positive 

correlation between PC2 (y-axis) and TILDA. Spearman Correlation was used to 

assess significance, rho and p-values provided on the figure.    

d, Correlation matrix heatmap between abundance of plasma bile acid/microbial 

metabolites (plotted along the y-axis) and variables of interest including TILDA 

levels, GARP+ Tregs, SMAD2/3 and HDAC1/2 Targets (plotted along the y-axis). 

Analysis highlights α-ketobutyrate as the metabolite correlated with levels of 

TILDA and GARP+ Tregs. A spearman correlation was used to assess 

significance. Stars on the heatmap highlight significant correlations (P<0.05: 

large star, P<0.1: small star). 

 

Figure 5 | alpha-keto butyrate stimulation drives Treg differentiation and 

enhances TGF-β production. 

a, in-vitro experiment to assess the impact of increasing concentrations of alpha-

ketobutyrate on sorted naïve CD4 T cells from healthy subjects in the presence 

of IL-2, anti-CD3/28 antibodies and/or TGF-β. Dimension Reduction of high 

density flow cytometry analysis highlights UMAP1 and UMAP2 on X- and Y- axes 

respectively and illustrates that stimulation in the presence of TGF-β led to a 

profound increase in frequencies of GARP+FOXP3+ cells (a, Cluster 7) and 

GARP+PD1+ cells (a, Cluster 13).  

b, d Jitter plots highlighting that increasing concentrations of alpha-ketobutyrate 

preferentially led to differentiation into GARP+FOXP3+ cells (b) and increased 

levels of PD1 expressing quiescent cells (d). GARP+FOXP3+ and PD1+CD27+ 
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levels plotted along the Y-axis, while alpha-ketobutyrate increasing concentration 

levels are indicated on the X-axis. Conditions in the absence of TFG-b are 

designated with (-TGF-β). A Mann-Whitney U-test was used to assess 

significance across concentrations (* represents p-value <0.05 between groups).  

c, Plasma cytokine levels of TGF-β1 significantly increase with enhanced alpha-

ketobutyrate stimulation. TGF-β1 levels plotted along the Y-axis, while alpha-

ketobutyrate concentration levels are indicated on the X-axis. A Mann-Whitney 

U-test was used to assess significance across concentrations (* represents p-

value <0.05 between groups). 

e- f, LARA assay in vitro model was used to characterize the impact of dose-

dependent increased in TGF-β on the establishment of HIV latency in memory 

CD4+ T cells. Increasing concentrations of TGF-β (0.2-20ng/mL) during LARA 

latency culture results in heightened frequencies of CD4 T cells with integrated 

HIV DNA (e) and results in augmented numbers of p24+ CD4 T cells triggered by 

reactivation using anti-CD3/28 antibodies stimulation (f).  

 

Figure 6 | Heightened frequencies of PD1hiROShi CD4 TCMs and lower CD4 

counts in Senescent INRs are associated with poor mitochondrial 

metabolism and senescence. a, Clusters determined using the PhenoGraph 

method and visualized using the Uniform Manifold Approximation and Projection 

(UMAP) analysis were used to represent the distribution of CD4 T cells subsets, 

surface expression of PD-1 and markers of mitochondrial activity in CD4 T cells 

(using high-dimensional flow cytometry) in IR, Senescent-INR, and INR-B 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.15.422949doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.15.422949


50 

 

subjects of the SCOPE cohort (See Table S18 for details). Density Plots highlight 

the enrichment of a specific cluster “Cluster 9: PD1+TCM” in Senescent-INR 

subjects. b, Box plots illustrate unique and significantly higher frequencies of 

Cluster 9 (PD1+TCM in total CD4 T-cells) in Senescent INR subjects and Cluster 

17 (PD1+TEM in total CD4 T cells) in the Inflammatory INR. A Wilcoxon rank test 

was used to assess significance (*p-value of <0.05) (Table S18). c, MFIs of cell 

surface (CD45RA, CD27, CCR7, PD1) per cluster are shown. Clusters 9 (red) 

and 17 (blue) are overlaid to highlight the heightened levels of CD27 and CCR7 

in Cluster 9 (i.e. TCM), and low levels of CD27 and CCR7 in Cluster 17 (i.e. 

TEM). Both clusters showed relatively low levels of CD45RA and high levels of 

PD1. Black line across each plot discriminated traditionally gated negative 

population from the its positive counterpart. A head-to-head comparison between 

clusters 9 and 17 revealed a distinct upregulation in CellROX within cluster 9 (i.e. 

PD1+ TCMs that are increased in the senescent INRs) (Raw MFIs of all clusters 

are listed in Table S18). d, Correlation network highlighting significant 

associations between PD1+TCM cluster frequencies and plasma cytokine 

(positive: IL6, IL29, IFNa2a, negative: Fractalkine) in the pool of Senescent INRs 

and IRs (i.e. driven by lower CD4 counts in Senescent INRs vs IRs). Triangular 

blue nodes depict plasma cytokines; orange squares reflect high-density flow 

cytometry clusters; and red edges highlight a positive correlation between 

cytokines and cell clusters. A Spearman correlation test was used to assess 

significance (all edges have a significant p-value <0.05) across IR and 

Senescent-INR subjects of the SCOPE cohort (details of all correlations are 
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listed in Table S19). e, Heatmap highlighting a positive association between 

Reactive Oxygen Species and CD4 numbers (top block) and a negative 

association between Oxphos/targets of Myc and CD4 numbers (middle and 

bottom blocks) respectively. GSEA was used to assess the association between 

the features and CD4 numbers/PD1+ TCM frequencies (linear regression, 

p<0.05). Genes that showed a significant overlap (GSEA vs inducible HIV and 

PD1+ TCM frequencies; significance (p-value <0.05) assessed by Fischer exact 

test) amongst the leading-edge gene list/pathway are represented in the 

heatmap (See Table S20 for overlapping gene-lists and leading-edge gene lists). 

Rows represent z-score normalized (red-white-blue gradient) genes and columns 

represent subjects from the SCOPE cohort: IR (Grey), INR-A (Red), and INR-B 

(Blue). The magnitude of CD4 counts (purple), frequencies of PD1+TCM (dark 

red) and inducible HIV (black) are plotted as annotations at the top of the 

heatmap. f, Heatmap demonstrating the association of senescent specific 

pathways PD1+TCM cluster. Leading-edge genes from the association of 

PD1+TCM and senescence pathway were summarized into a SLEA 

representation (z-score per pathway per sample) (See Table S20 for details). 

Rows represent senescent-specific pathways and columns represent samples of 

the SCOPE cohort: IR (Grey), INR-A (Red), and INR-B (Blue). A red-white-blue 

gradient is used to depict the relative SLEA score of the features, where blue 

represent a low relative-expression and red a high relative-expression of the 

feature. The magnitude of CD4 counts (purple), frequencies of PD1+TCM (dark 
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red) and inducible HIV (black) are plotted as annotations at the top of the 

heatmap. 

g, Circle plot highlighting an integrated model associating leading/overlapping 

edges from genesets identified (classifier gene-set and biological pathways) in 

Figs 1 to 4, GARP+ Treg frequencies (grey), and PD1+TCM frequencies (grey) 

and with outcomes (CD4 counts, TILDA inducible HIV (orange)) across SCOPE 

cohort (n = 41). SLEA scores (z-score per pathway per sample) were calculated 

for each of these gene-lists (see Table S21 for the scores) and spearman’s test 

was used to assess correlation between all of the features mentioned. Color 

gradient of the Pathway node (white to red, white to blue) reflects relative 

enrichment (positive or negative; respectively) of pathway in Senescent-INRs 

compared to IR subjects. Edges between nodes represent a significant positive 

or negative correlation (red or blue respectively) (details for the full network are 

summarized in Table S21).  

 

Supplementary Figures (S1-S7):  

Supplementary Figure 1 | Gene Expression profiling provides a unique tool 

to identify two heterogeneous INR subject groups. a, Flow chart illustrating 

the steps in the multi–omics data analyses and integration utilized across two 

independent cohorts of HIV-infected ART-treated subjects. b, INR groups remain 

relatively stable over time and show slow CD4 T cell reconstitution. Plot 

represents absolute CD4 counts over 3 years for all samples in each group. X-

axis represents the draw date (in years) and y-axis represents the absolute CD4 
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count in cells/mm3. Red = INR-A, Blue =INR-B, Grey= IR. The fitted lines 

represent the rate of CD4 reconstitution over time (y=mx + b). c, Unsupervised 

analysis of gene expression data identifies three groups of HIV subjects treated 

with ART (IR, INR-A and INR-B) in the CLIF cohort. Gap Statistics revealed n=2 

optimal INR clusters (bootstrap n = 500, p= 0.00293). Heatmap shows the 

expression of the top 200 genes that distinguish the 3 groups. Hierarchical 

clustering (Euclidian distance, complete linkage) was used to re-group samples 

with similar expression of the top 200 varying genes. Gene Expression is 

represented as a gene-wise standardized expression (Z-score). d-o, several 

parameters associated with poor immune reconstitution in ART- treated subjects 

including: Duration of ART treatment (d), Age (e), CD4 Nadir (f) and CD4 counts 

at draw (g), Levels of D-dimer (h), Levels of IL6 (i), IP10 (j), IFABP (k), LPS (l), 

sCD14 (m) were assessed for their ability to distinguish the two groups of ART-

treated subjects. A Welch t-test was used to assess significance. INR-As and 

INR-Bs could not be distinguished for CD4 numbers and age (m), CD4 Nadir (n), 

or Years on ART (o). A Spearman correlation was used to assess significance. 

 

Supplementary Figure 2 | Diminished global transcriptional activity within 

INR-A subjects maps to down-regulation of T-cell, mDC and monocyte 

subset specific gene signatures and lack of effector CD8 function. a, Pie 

charts illustrating the majority of the transcriptional signal (~70%) specific to 

Senescent-INR subjects is due to down-regulation of genes. The majority of 

genes differentially expressed between INR-As and IRs (left) or INR-As and INR-
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Bs (right) are down-regulated (details of DEGs are in Table S3-S5). b, Networks 

highlighting the genes and functional annotations of T-cell, MDC, and Monocyte 

specific gene expression signatures down-regulated in INR-A subjects. GSEA 

(p<0.05) were used to assess significance of the down-regulation of subset gene-

sets, Gene Ontology (GO) was used to infer the biological function (over-

representation test p<0.05) and Gene Mania was used to plot co-expression 

networks. c, Volcano Plots illustrating the top Transcription Factors (TFs, 

squares) up- and down-regulated in INR-A vs IR (top panel) and INR-A vs INR-B 

(bottom panel) subjects. X-axis represents the log10FC of TF expression, and Y-

axis represents the –log10(p-value); dotted lines highlight the p-value ≤ 0.05 

cutoff. Top TFs up-regulated in INR-As are colored in red, whereas TFs specific 

to IRs or INR-Bs are colored in grey or blue respectively (See Table S9 for 

details). d, A functional network of the core TFs (diamonds) and their target 

genes (circles) up-regulated in INR-A subjects (red, left portion) or INR-Bs (blue, 

left portion). Network Inference and Cytoscape were used to plot the network. 

Reactome and GO terms were used to annotate the biological functions of the 

top downstream targets of the TFs up-regulated in INR-A subjects. As indicated 

in the figure, the node color represents log2 fold change in expression between 

the two INR classes. Edges within the network depict a link between a TF and its 

targets.  

 

Supplementary Figure 3 | Construction and Validation of the gene-based 

classifier. a, Training of the 352-gene classifier on the CLIF cohort. Results of 
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the 10-fold cross validation. Misclassification Error plot represents the optimal 

number of features (genes) that corresponds to the lowest misclassification error 

rate. The pamr package in R was used to train the classifier via the nearest 

shrunken centroid method; 352 genes were selected to segregate the two groups 

of immune non-responders (See Table S11 for list of classifier genes). b, 

Heatmap representation of the expression of the top 200 varying probesets in the 

SCOPE cohort. The expression intensities are represented using green-black-red 

color scale. Rows correspond to probesets and columns correspond to the 

profiled samples. Hierarchical clustering based on a complete linkage was used 

to regroup samples with similar gene-expression profiles. Two clusters of INRs 

(depicted in red and blue on the dendrogram) were identified using the 

unsupervised clustering. c, Multidimensional scaling (MDS) plot highlights the 

overall transcriptomic variation within the SCOPE validation cohort.  

 

Supplementary Figure 4 | Identification of a specific Senescent Cytokine 

Cluster. a, K-means clustering and the GAP statistic technique91 were used to 

identify the optimal number of cytokine clusters after 42 cytokines were 

measured using the meso-scale platform. Four clusters were observed. b, 

Hierarchical clustering technique identified similar clusters. Two stable clusters 

(identified concurrently by k-means and hierarchal clustering) and were 

observed, one of which contained TGF-β1/2, IL3/7/13, KC.GRO and VEGF. c, 

Table summarizes the cytokine Cluster members identified in (a). d, Heatmap 

demonstrating the expression of the TGF-β1/2 driven cytokine cluster “Cluster 3” 
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(top portion) and the expression of classifier features correlated to Cluster 3 

(bottom portion) across all subjects of the SCOPE cohort. Rows represent the 

features (plasma cytokine levels or TF expression levels) and columns represent 

samples of the SCOPE cohort: IR (Grey), INR-A (Red), and INR-B (Blue). A red-

white-blue gradient is used to depict the relative expression of the features, 

where blue represent a low relative-expression and red a high relative-

expression of the feature. The magnitude of the Senescent Cytokine Cluster 

(Cluster 3, dark green) is plotted as annotations at the top of the heatmap. GSEA 

was used to assess the association between the classifier features and Cluster 3 

of senescent cytokines (linear regression: classifier genes ~ Cluster 3, GSEA: 

NES=2.87, p<0.01), and the leading-edge features are represented (See Table 

S15 for detailed list of genes and associations of cytokine cluster 3 with 

transcriptome of all groups).  

 

Supplementary Figure 5 | Microbiome and Metabolome differences 

associated with Senescent-INR subjects map to Firmicutes and Butyrates.  

a, Violin jitter plot highlighting differences in PathSeq species diversity between 

Senescent-INR subjects (red) and inflammatory-INR subjects (blue) of the 

SCOPE cohort. The Shannon diversity index (H) accounting for both abundance 

and evenness of the species present was used and plotted along the y-axis. 

b, Bray-Curtis dissimilarity statistic to assess the beta diversity of the Firmicute 

species abundance in the microbiome PathSeq data of the SCOPE cohort. 

Clustering dendrogram reflects differential distribution of Senescent-INR (right 
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most branch) and INR-B (left-most branch) subjects summarizing a difference in 

the Firmicute microbial composition between these subjects. Circles reflect 

subjects: Senescent-INR (Red), and INR-B (Blue). Clustering distances reflect 

similarities and differences at the species level. 

c, Scatter plot highlighting a positive association between frequencies of CD4 T 

cells with inducible HIV as measured by TILDA plotted along the X-axis and 

levels of a specific family of the Firmicute phylum: Lactobacillaceae plotted along 

the Y-axis in -INR (red) and INR-B (blue) subjects of the SCOPE cohort.      

d-e, Jitter plots highlighting that increasing concentrations of alpha-ketobutyrate 

preferentially led to differentiation into GARP+FOXP3+ cells (d) and increased 

levels of PD1 expressing quiescent cells (e). GARP+FOXP3+ and PD1+CD27+ 

levels plotted along the Y-axis, while alpha-ketobutyrate increasing concentration 

levels are indicated on the X-axis. Conditions in the presence of TFG-b are 

designated with (+TGF-β). A Mann-Whitney U-test was used to assess 

significance across concentrations (* represents p-value <0.05 between groups). 

f, CD4 T cell subsets enriched after stimulation with alpha-ketobutyrate (i.e. 

GARP+ Tregs and PD1+ TCM; nodes in orange squares), were significantly 

positively associated (p < 0.05; Spearman’s rho>0 - red edges) with an increase 

in secreted TGF-β1 and a significant decrease in effector cytokines like IL17A, 

IFNg and IL9 (p < 0.05; Spearman’s rho<0 - blue edges).   

 

Supplementary Figure 6 | A multi-omic gene expression and flow cytometry 

model correlates with the magnitude of CD4 counts and inducible HIV. 
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Detailed network depicting an integrated model highlighting the association 

between gene-expression outcomes (genes and pathways, circular nodes), flow 

cytometry readouts (square nodes) and clinical outcomes (diamond nodes). 

Circular nodes reflect leading edge genes of biological pathways listed and are 

colored by the fold change in Senescent INR subjects. Triangular nodes reflect 

highlight transcription factors and are colored by the fold change in Senescent 

INR subjects. Edges between nodes represent a significant positive or negative 

correlation (red or blue respectively). A spearman correlation was used to assess 

significance (p-value < 0.05). 

  

Supplementary Figure 7 | Flow cytometry gating strategy for the markers 

used in this study. a, A lymphocyte gate based on FSC-A and SSC-A was 

defined. Single cells were then selected by FSC-A x FCS-H gate. Live cells were 

gated and successive gates to define T cell populations (CD3+CD4+ and 

CD3+CD8+) were made. b, Memory phenotypes gating of CD4 and CD8 subsets 

(Tcm: CD45RA-CCR7+CD27+, Ttm: CD45RA-CCR7-CD27+, Tem: CD45RA-

CCR7-CD27-, Naive: CD45RA+CCR7+CD27+CD95- and Tscm: 

CD45RA+CCR7+CD27+CD95+) were performed. c, Tregs were identified after 

initial gating on CD4 T cells and the expression of SATB1 was measured in this 

subset. d, the frequencies of PD1+, LAP+, a surrogate marker for TGF-β 

expression and GLUT1+ cells were measured in all subsets using the gating 

strategy described here. 
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- Mann-Whitney U test used for all column comparisons. 
- Spearman’s correlations were calculacted for XY plots.
- p<0.05 indicated on plots

n o p

m

Supplementary Fig. 1

Clinical Outcomes: 
HIV reservoir and 

CD4 count

Flow cytometry

Plasma cytokines

0

5

10

15

Ye
ar

s 
on

 A
R

T 
to

 “
tim

e 
of

 d
ra

w
” 

(y
ea

rs
)

0.1

1

10

100

1000

IL
-6

 (p
g/

m
L)

0

20

40

60

80

A
ge

 a
t d

ra
w

 (y
ea

rs
)

10

100

1000

10000

IP
10

 (p
g/

m
L)

0

200

400

600

C
D

4 
na

di
r 

co
un

t 
(/m

m
3  

bl
oo

d)
 

100

1000

10000

IF
A

B
P

 (p
g/

m
L)

0

500

1000

1500

C
D

4 
co

un
t (

/m
m

3  
bl

oo
d)

 

0

50

100

150

LP
S

 (p
g/

m
L)

i j k l

Most Abundant Transcripts

6303281014_H
6303281014_L
6303299045_B
6303299045_K
6303281014_C
9372535016_H
6303299009_C
6303281014_E
9372535016_B
9372535016_F
9372535016_C
9372535016_K
6303299045_C
9372535016_G
6330959014_E
9372535016_I
6260971076_D
6303299009_L
6303299009_J
6303281014_B
6303281014_A
6303299045_H
6330959014_J
6260971076_B
6330959014_H
6303299009_D
6260971076_I
6303281014_G
6303299045_E
6303299045_G
6260971076_G
6303299045_D
6260971076_A
6303281014_F
6330959014_K
9372535016_D
6303281014_K
6303281014_J
6303299045_F
6303299009_E
6260971076_C
6260971076_E
6303281014_I
6260971076_F
6303299045_J
6303299045_A
6330959014_I
9372535016_E
9372535016_J
6303299045_I
6260971076_K
6303299045_L
6330959014_L
6330959014_F
6330959014_G
6303299009_F
6260971076_L
6330959014_B
9372535016_A
6235783009_J
6260971076_J

RRP7B
GGA1
ProbeID: 6040397
XPNPEP3
PDCD7
LOC645895
KIAA0101
MGC16703
ProbeID: 5340154
RN7SL1
LOC100128505
CCR6
ProbeID: 6180301
ProbeID: 5090341
ZNF674
LOC727808
NAG18
MSH3
ANXA2P2
ProbeID: 3370356
ROCK2
ProbeID: 1260161
ProbeID: 1570059
LOC729324
ITIH5
ORC6
FARSB
FAM177A1
LOC100132593
ProbeID: 4730356
ProbeID: 2480711
ProbeID: 2320634
RPS16
ProbeID: 6280021
ProbeID: 6620563
ProbeID: 1940050
ProbeID: 4040008
ProbeID: 2360139
EEF1A1
ProbeID: 6350064
ProbeID: 4670170
ProbeID: 6060523
RPL27A
RPL32
RPL41
ProbeID: 6840170
ProbeID: 4120209
ProbeID: 3460537
ProbeID: 240088
RPL11
ProbeID: 5220047
ProbeID: 380491
RPS11
ProbeID: 6510753
RPS25
RPL38
ProbeID: 4860309
RPS10
RPS12
ProbeID: 3840722
B2M
ProbeID: 770743
RPL18A
ProbeID: 2370341
ProbeID: 130224
ProbeID: 5870328
RPLP2
ProbeID: 5490603
ProbeID: 5310494
ProbeID: 3610646
ProbeID: 3940719
ProbeID: 50615
ProbeID: 1260593
ProbeID: 580523
ProbeID: 6270131
RPS24
ProbeID: 1010411
ProbeID: 5090711
ProbeID: 6980397
ProbeID: 3390674
ProbeID: 3190300
UBC
UBB
ProbeID: 2650091
ProbeID: 4670634
ProbeID: 6280504
FTL
FTH1P16
HBA2
HBB
SLC25A39
C19orf22
OAZ1
HBA1
HBG2
HBG1
ProbeID: 540598
SLC7A5P2
LAIR1
CLUAP1

Group
CD4_Count CD4_Count

1

0.2

Group
FA
FB
S

−4

−2

0

2

4

Most Abundant Transcripts

6303281014_H
6303281014_L
6303299045_B
6303299045_K
6303281014_C
9372535016_H
6303299009_C
6303281014_E
9372535016_B
9372535016_F
9372535016_C
9372535016_K
6303299045_C
9372535016_G
6330959014_E
9372535016_I
6260971076_D
6303299009_L
6303299009_J
6303281014_B
6303281014_A
6303299045_H
6330959014_J
6260971076_B
6330959014_H
6303299009_D
6260971076_I
6303281014_G
6303299045_E
6303299045_G
6260971076_G
6303299045_D
6260971076_A
6303281014_F
6330959014_K
9372535016_D
6303281014_K
6303281014_J
6303299045_F
6303299009_E
6260971076_C
6260971076_E
6303281014_I
6260971076_F
6303299045_J
6303299045_A
6330959014_I
9372535016_E
9372535016_J
6303299045_I
6260971076_K
6303299045_L
6330959014_L
6330959014_F
6330959014_G
6303299009_F
6260971076_L
6330959014_B
9372535016_A
6235783009_J
6260971076_J

RRP7B
GGA1
ProbeID: 6040397
XPNPEP3
PDCD7
LOC645895
KIAA0101
MGC16703
ProbeID: 5340154
RN7SL1
LOC100128505
CCR6
ProbeID: 6180301
ProbeID: 5090341
ZNF674
LOC727808
NAG18
MSH3
ANXA2P2
ProbeID: 3370356
ROCK2
ProbeID: 1260161
ProbeID: 1570059
LOC729324
ITIH5
ORC6
FARSB
FAM177A1
LOC100132593
ProbeID: 4730356
ProbeID: 2480711
ProbeID: 2320634
RPS16
ProbeID: 6280021
ProbeID: 6620563
ProbeID: 1940050
ProbeID: 4040008
ProbeID: 2360139
EEF1A1
ProbeID: 6350064
ProbeID: 4670170
ProbeID: 6060523
RPL27A
RPL32
RPL41
ProbeID: 6840170
ProbeID: 4120209
ProbeID: 3460537
ProbeID: 240088
RPL11
ProbeID: 5220047
ProbeID: 380491
RPS11
ProbeID: 6510753
RPS25
RPL38
ProbeID: 4860309
RPS10
RPS12
ProbeID: 3840722
B2M
ProbeID: 770743
RPL18A
ProbeID: 2370341
ProbeID: 130224
ProbeID: 5870328
RPLP2
ProbeID: 5490603
ProbeID: 5310494
ProbeID: 3610646
ProbeID: 3940719
ProbeID: 50615
ProbeID: 1260593
ProbeID: 580523
ProbeID: 6270131
RPS24
ProbeID: 1010411
ProbeID: 5090711
ProbeID: 6980397
ProbeID: 3390674
ProbeID: 3190300
UBC
UBB
ProbeID: 2650091
ProbeID: 4670634
ProbeID: 6280504
FTL
FTH1P16
HBA2
HBB
SLC25A39
C19orf22
OAZ1
HBA1
HBG2
HBG1
ProbeID: 540598
SLC7A5P2
LAIR1
CLUAP1

Group
CD4_Count CD4_Count

1

0.2

Group
FA
FB
S

−4

−2

0

2

4Most Abundant Transcripts

6303281014_H
6303281014_L
6303299045_B
6303299045_K
6303281014_C
9372535016_H
6303299009_C
6303281014_E
9372535016_B
9372535016_F
9372535016_C
9372535016_K
6303299045_C
9372535016_G
6330959014_E
9372535016_I
6260971076_D
6303299009_L
6303299009_J
6303281014_B
6303281014_A
6303299045_H
6330959014_J
6260971076_B
6330959014_H
6303299009_D
6260971076_I
6303281014_G
6303299045_E
6303299045_G
6260971076_G
6303299045_D
6260971076_A
6303281014_F
6330959014_K
9372535016_D
6303281014_K
6303281014_J
6303299045_F
6303299009_E
6260971076_C
6260971076_E
6303281014_I
6260971076_F
6303299045_J
6303299045_A
6330959014_I
9372535016_E
9372535016_J
6303299045_I
6260971076_K
6303299045_L
6330959014_L
6330959014_F
6330959014_G
6303299009_F
6260971076_L
6330959014_B
9372535016_A
6235783009_J
6260971076_J

RRP7B
GGA1
ProbeID: 6040397
XPNPEP3
PDCD7
LOC645895
KIAA0101
MGC16703
ProbeID: 5340154
RN7SL1
LOC100128505
CCR6
ProbeID: 6180301
ProbeID: 5090341
ZNF674
LOC727808
NAG18
MSH3
ANXA2P2
ProbeID: 3370356
ROCK2
ProbeID: 1260161
ProbeID: 1570059
LOC729324
ITIH5
ORC6
FARSB
FAM177A1
LOC100132593
ProbeID: 4730356
ProbeID: 2480711
ProbeID: 2320634
RPS16
ProbeID: 6280021
ProbeID: 6620563
ProbeID: 1940050
ProbeID: 4040008
ProbeID: 2360139
EEF1A1
ProbeID: 6350064
ProbeID: 4670170
ProbeID: 6060523
RPL27A
RPL32
RPL41
ProbeID: 6840170
ProbeID: 4120209
ProbeID: 3460537
ProbeID: 240088
RPL11
ProbeID: 5220047
ProbeID: 380491
RPS11
ProbeID: 6510753
RPS25
RPL38
ProbeID: 4860309
RPS10
RPS12
ProbeID: 3840722
B2M
ProbeID: 770743
RPL18A
ProbeID: 2370341
ProbeID: 130224
ProbeID: 5870328
RPLP2
ProbeID: 5490603
ProbeID: 5310494
ProbeID: 3610646
ProbeID: 3940719
ProbeID: 50615
ProbeID: 1260593
ProbeID: 580523
ProbeID: 6270131
RPS24
ProbeID: 1010411
ProbeID: 5090711
ProbeID: 6980397
ProbeID: 3390674
ProbeID: 3190300
UBC
UBB
ProbeID: 2650091
ProbeID: 4670634
ProbeID: 6280504
FTL
FTH1P16
HBA2
HBB
SLC25A39
C19orf22
OAZ1
HBA1
HBG2
HBG1
ProbeID: 540598
SLC7A5P2
LAIR1
CLUAP1

Group
CD4_Count CD4_Count

1

0.2

Group
FA
FB
S

−4

−2

0

2

4

200

1000

0

500

1000

1500

2000

D
-d

im
er

 (n
g/

m
L)

h

0

20

40

60

80

A
ge

 a
t D

ra
w

 (y
ea

rs
)

0 500 1000
20

40

60

80

CD4 count
(/mm3 blood)

A
ge

 a
t d

ra
w

 (y
ea

rs
)

0

5

10

15

Ye
ar

s 
on

 A
R

T 

0 500 1000
0

5

10

15

CD4 count
(/mm3 of blood)

Ye
ar

s 
on

 A
R

T 

INR-A

INR-B

IR

0

200

400

600

C
D

4 
N

ad
ir

 (/
m

m
3  

bl
oo

d)

0 500 1000
0

200

400

600

CD4 count
(/mm3 blood)

C
D

4 
na

di
r 

(/m
m

3  
bl

oo
d)

 

0

500

1000

1500

C
D

4 
co

un
t (

/m
m

3  
bl

oo
d)

****
****

- Mann-Whitney U test used for all column comparisons. 
- Spearman’s correlations were calculacted for XY plots.
- p<0.05 indicated on plots
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Gene	 Descrip+on	
LRRC59	 leucine	rich	repeat	containing	59	[Source:HGNC	Symbol;Acc:28817]	
ERBB2IP	 erbb2	interac+ng	protein	[Source:HGNC	Symbol;Acc:15842]	
NLRP3	 NLR	family,	pyrin	domain	containing	3	[Source:HGNC	Symbol;Acc:16400]	
IL1A	 interleukin	1,	alpha	[Source:HGNC	Symbol;Acc:5991]	
RIPK2	 receptor-interac+ng	serine-threonine	kinase	2	[Source:HGNC	Symbol;Acc:10020]	
TLR4	 toll-like	receptor	4	[Source:HGNC	Symbol;Acc:11850]	
CASP5	 caspase	5,	apoptosis-related	cysteine	pep+dase	[Source:HGNC	Symbol;Acc:1506]	

GO	id	 Descrip+on	 q-value	
GO:0032732	 posi+ve	regula+on	of	interleukin-1	produc+on	 0.029611704	
GO:0007249	 I-kappaB	kinase/NF-kappaB	cascade	 0.029611704	
GO:0051092	 posi+ve	regula+on	of	NF-kappaB	transcrip+on	factor	ac+vity	 0.029611704	
GO:0032728	 posi+ve	regula+on	of	interferon-beta	produc+on	 0.029611704	
GO:0032727	 posi+ve	regula+on	of	interferon-alpha	produc+on	 0.029611704	
GO:0006954	 inflammatory	response	 0.043868137	

T-cells	
MDCs	

Monocytes	

GO	id Description
GO:0010883 regulation	of	lipid	storage
GO:0003924 GTPase	activity
GO:0046039 GTP	metabolic	process

GO	id Description
GO:0000975 regulatory	region	DNA	binding
GO:0044212 transcription	regulatory	region	DNA	binding

GO	id Description
GO:1900117 regulation	of	execution	phase	of	apoptosis
GO:0097190 apoptotic	signaling	pathway

d

Genes down-regulated in INR-As

Supplementary Fig. 2
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