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Abstract 
We present a database of cerebral PET FDG and anatomical MRI for 37 normal adult human subjects 
(CERMEP-IDB-MRXFDG).  
Thirty-nine participants underwent [18F]FDG PET/CT and MRI, resulting in [18F]FDG PET, T1 MPRAGE 
MRI, FLAIR MRI, and CT images. Two participants were excluded after visual quality control. We 
describe the acquisition parameters, the image processing pipeline and provide participants’ 
individual demographics (mean age 38 ± 11.5 years, range 23-65, 20 women). Volumetric analysis of 
the 37 T1 MRIs showed results in line with the literature. A leave-one-out assessment of the 37 FDG 
images using Statistical Parametric Mapping (SPM) yielded a low number of false positives after 
exclusion of artefacts.  
The database is stored in three different formats, following the BIDS common specification: 1) DICOM 
(data not processed), 2) NIFTI (multimodal images coregistered to PET subject space), 3) NIFTI 
normalized (images normalized to MNI space).  
Bona fide researchers can request access to the database via a short form. 
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Introduction 
 
Imaging databases are very useful to re-analyse data in a different context, to increase the number of 
subjects of a study, and to develop new methods. Imaging databases play a crucial role in numerous 
analysis methods that rely in the comparison between the data of a group or of an individual and a 
group of reference. This includes studies using a normative database for analysis and quantification 
purposes, machine learning approaches, multi-atlas techniques, and validation of image processing 
pipelines. Databases with different modalities per participant also allow approaches that derive 
“missing” modalities, e.g. creating pseudo-CTs for attenuation correction in PET-MR (Merida et al. 
2017; Burgos et al. 2014; Yaakub, McGinnity, Beck, et al. 2019; Ladefoged et al. 2019). 
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In the last years, an increasing number of neuroimaging databases has been made available. These 
databases generally consist of MR images (such as ADNI http://adni.loni.usc.edu, OASIS 
https://www.oasis-brains.org; for a review see (Coupé et al. 2017)). There is also a large database of 
PET from the Copenhagen group, CIMBI, containing mainly serotonine receptor PET and associated 
data (Knudsen et al. 2016). We are aware of very few datasets for [18F]fluorodeoxyglucose ([18F]FDG) 
PET imaging that have been published (Wei et al. 2018) or are available on request (Archambaud et 
al. 2013; Eusebio et al. 2012; Alzheimer’s Disease Neuroimaging Initiative, ADNI 
http://adni.loni.usc.edu).  
 
Acquisition of imaging data, such as MRI scanning and in particular PET imaging that requires the 
injection of a radiotracer, represents an important logistical and monetary cost. In addition, 
participants have to consent to data acquisition and dissemination, and many countries have 
restrictions on using ionising radiation in healthy controls, adding to difficulties in acquiring such 
databases. Database sharing thus contributes to reduce research costs and reduces radiation exposure 
of healthy controls. 
 
In order to make database sharing more efficient, the scientific community has implemented a 
database standardisation to organize and describe the data (Brain Imaging Data Structure (BIDS), 
https://bids.neuroimaging.io, (Gorgolewski et al. 2016)). In this work we introduce a multi-modal 
database of 37 healthy subjects constructed with MRI, CT and [18F]FDG PET images to BIDS standard. 
We have obtained ethical permission to share the data on request. 
 
 

Materials & Methods 
 
Recruitment and cohort characteristics 
 
All enrolled subjects provided written informed consent to participate in the study (EudraCT: 2014-
000610-56). The subjects were informed that their anonymized images could be used for 
methodological development and had been given the option to oppose this use of their data. The 
inclusion criteria were adult healthy subject and aged between 20 and 65 years. Exclusion criteria were 
(1) children and adults older than 65 years, (2) woman of childbearing potential without effective 
contraception, (3) history of neurological disorders, (4) any contraindication for MRI scanning, (5) 
active infectious disease. Thirty-nine subjects were included in the study. Each subject had a T1-
weighted MRI, a T2 fluid-attenuated inversion recovery (FLAIR) MRI and an [18F]FDG PET/CT brain scan. 
The subjects’ MR and PET images were visually reviewed by two neurologists for conspicuous brain 
abnormalities. Two subjects showing brain lesions on the MR images (one probable insular 
cavernoma, one cerebellar lesion with hyperintense signal in the FLAIR sequence suggesting possible 
inflammatory disease of the central nervous system) were excluded from the database.  
 
MRI acquisition and reconstruction 
 
MRI sequences were obtained on a Siemens Sonata 1.5 T scanner. Three-dimensional anatomical T1-
weighted sequences (MPRAGE) were acquired in sagittal orientation (TR 2400 ms, TE 3.55 ms, 
inversion time 1000 ms, flip angle 8°). The images were reconstructed into a 160 x 192 x 192 matrix 
with voxel dimensions of 1.2 x 1.2 x 1.2 mm3 (axial field of view 230.4 mm). Sagittal Fluid-Attenuated 
Inversion Recovery (FLAIR, Hajnal et al. 1993) images (TR 6000 ms, TE 354 ms, Inversion time 2200 ms, 
flip angle 180°) were acquired with a 176 x 196 x 256 matrix and a voxel size of 1.2 x 1.2 x 1.2 mm3 
(axial field of view 307.2 mm). 
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PET and CT acquisition and reconstruction 
 
PET and CT data were acquired on a Siemens Biograph mCT64. During the uptake period, participants 
were instructed to rest with their eyes closed and without auditory stimulation. PET data acquisition 
started 50 min after the injection of 122.30 ± 21.29 MBq of [18F]FDG (individual doses are provided in 
the demographics table) and lasted 10 min. PET images were reconstructed using 3D ordinary Poisson-
ordered subsets expectation maximization (OP-OSEM 3D), incorporating the system point spread 
function and time of flight, and using 12 iterations and 21 subsets (Siemens’ “HD reconstruction”). 
Data correction (normalization, attenuation and scatter correction) was fully integrated within the 
reconstruction process. Gaussian post-reconstruction 3D filtering (FWHM = 4 mm isotropic) was 
applied to all PET images. Reconstructions were performed with a zoom of 2 yielding a voxel size of 
2.04 x 2.04 x 2.03 mm3 in a matrix of 200 x 200 x 109 voxels (axial field of view 221.27 mm). Low-dose 
CT images for attenuation correction were acquired with a tube voltage of 100 keV and reconstructed 
in a 512×512×233 matrix with a voxel size of 0.6 x 0.6 x 1.5 mm3 (axial field of view 349.5 mm). 
 
Processing pipeline 
 
Data anonymisation and pre-processing 
Data anonymisation was performed on the DICOM files using the gdcmanon function 
(http://gdcm.sourceforge.net/html/gdcmanon.html). DICOM files were converted to NIFTI format 
with dcm2niix software (https://github.com/rordenlab/dcm2nii).  
The background of CT images was cleaned in order to remove the scanner table and other objects 
such as the pillow included in the background of the image. For this, a binary mask of the head of the 
subject was automatically generated following a procedure described in (Merida et al 2015) using 
tools from the FSL (Version 6.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and NiftySeg 
(http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftySeg) suites. Finally, the binary mask was applied to 
the CT image. 
 
Coregistration 
As first step, the origin of each NIFTI image was set to the matrix centre. Then, CT, T1 MRI and FLAIR 
MRI images were coregistered to the [18F]FDG PET image using the Coregister & Estimate function 
from the SPM 12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 
 
Spatial normalisation 
All images were normalized to MNI space through the tissue classification into grey and white matter 
probability maps of the T1 image. For that, individual subject’s deformation fields were calculated by 
the Segment function of SPM 12,(Ashburner and Friston 2005) from the T1 images previously 
coregistered to the PET image (but not resliced to preserve native resolution). Transformations for MR 
to PET space coregistration and PET to MNI space normalisation were concatenated and applied at 
once to avoid an intermediate resampling of the MRI data. All normalized images were resampled at 
1x1x1 mm using 4th degree B-spline interpolation. 
 
Intensity normalisation 
Reconstructed PET images were normalized by the subjects’ weight and injected dose to obtain 
Standard Uptake Value (SUV) images (radioactivity concentration [kBq/cm3] / (dose [kBq] / weight 
[kg])). In addition, reconstructed PET images were normalized by each subject’s mean activity within 
the intracranial volume (ICV) mask provided by SPM12 to obtain Standard Uptake Value ratio (SUVr).  
 
Regional analysis  
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The T1 MR images were anatomically segmented into 83 regions using the Hammers_mith maximum 
probability atlas n30r83, which is based on the mutli-atlas fusion of 30 manually delineated MRIs of 
healthy young adults (Hammers et al. 2003; Gousias et al. 2008), available at http://brain-
development.org. The atlas was wrapped to each individual MRI space via the inverse transformation 
of the deformation fields from subject’s space to the MNI space computed at the spatial normalisation 
step. Grey matter and white matter probability maps obtained with the Segment function were 
thresholded at 0.5 and combined with the 83-ROI anatomical segmentation in order to separate their 
grey and white matter parts, expect for pure white matter regions like the corpus callosum, and pure 
grey matter regions like the basal ganglia.  
 
Mean regional SUV and SUVr were extracted in a selection of grey matter anatomical regions of the 
Hammers_mith segmentation.  
 
Leave-one-out SPM analysis on [18F]FDG images 
 
Leave-one-out ANCOVA was performed on SPM12 in order to compare each subject (healthy control) 
of the database to the others.  
For the statistical analysis, PET images were smoothed with a Gaussian filter at 8mm FWHM. We used 
age and the global mean calculated within the intracranial volume mask as covariates. Two different 
contrasts were explored: Hyper-metabolism, i.e. activity of one subject > activity of the remaining 
subjects in the database, and hypo-metabolism, i.e. activity of one subject < activity of the remaining 
subjects in the database. Significant differences where defined at p < 0.05 FWE at the cluster level. 
 
The database outliers were assessed with three criteria, for both hypometabolism and 
hypermetabolism. 

- Subject-level: number of subjects with significant differences / total number of subjects in the 
database x 100 

- Cluster-level: total number of significant clusters across all subjects / average number of 
resolution elements (resells) in the mask x 100  

- Voxel-level: total number of voxels among the significant clusters across all subjects / number 
of voxels in the SPM mask x 100 

 
 

Results 
 
Database IDB-MRXFDG 
 
The final database consists of 37 participants (17 male / 20 female, mean age ± SD, 38.11 ± 11.36 
years; range, 23-65 years). Each participant has [18F]FDG PET, T1 MRI, FLAIR MRI, and CT images. An 
example of coregistered T1, FLAIR, CT and [18F]FDG PET images in the subject space are shown in Figure 
1 and the same images in normalized space are shown in Figure 2.  
Table 1 summarizes the demographic information for each participant: subject ID, acquisition date, 
age of the participant at the time of the imaging session, sex, weight, size, injected dose of [18F]FDG, 
handedness and a comment if any hypersignal was observed on the FLAIR MRI. 
 
The database is available in three different formats, following the BIDS common specification:  

- DICOM (data not processed) 
- NIFTI (multimodal images coregistered to PET subject space) 
- NIFTI normalized (images normalized to MNI space) 
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Table 2 lists the regional volumes obtained via the Hammers_mith maximum probability atlas. 
Coefficients of variation were as expected, without obvious outliers. The structure sizes were also in 
line with expectations (Hammers et al. 2003; Gousias et al. 2008). 
 

 
Figure 1: Example of coregistered T1 MRI, FLAIR MRI, CT and [18F]FDG PET images (sagittal plane) for one subject of the 

database 
 

 
Figure 2: Example of normalized T1 MRI, FLAIR MRI, CT and [18F]FDG PET images (sagittal plane) in MNI space, for one 

subject of the database 
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Table 1: Demographics table 

  

Subject ID Birth date
 (year) Age Sex Weight

 (kg)
Size 
(cm)

Injected Dose
 (MBq)

Mean activity in 
ICV mask 

(MBq)
Handedness

sub-0001 1980 35 F 81 163 149 6911 R

sub-0002 1957 58 F 66 160 102 5781 R

sub-0003 1979 36 M 88 174 144 5980 R

sub-0004 1963 51 M 72 - 124 6551 R

sub-0005 1981 33 M 110 180 147 4925 R

sub-0006 1974 41 M 76 176 119 5590 R

sub-0007 1975 40 F 60 170 118 8271 R

sub-0008 1988 27 F 53 - 95 6889 R

sub-0009 1986 28 F 66 - 135 7974 R

sub-0010 1971 43 M 117 170 168 6137 R

sub-0011 1988 27 F 53 161 99 6944 R

sub-0012 1990 24 F 63 168 123 7911 R

sub-0013 1988 27 M 74 178 135 7798 R

sub-0014 (*) 1964 50 F 55 157 94 2574 R

sub-0015 1981 34 M 62 170 109 6032 R

sub-0016 (*) 1949 65 F 70 170 108 4849 R

sub-0017 1958 56 M 89 185 140 5539 L

sub-0018 1969 45 M 71 168 132 4444 R

sub-0019 1989 25 F 61 161 109 7755 R

sub-0020 1973 42 M 72 185 135 6966 L

sub-0021 1990 25 M 63 178 110 3119 R

sub-0022 1990 25 M 72 178 133 7075 R

sub-0023 1974 41 F 54 168 99 5970 R

sub-0024 1976 39 M 118 199 167 6528 R

sub-0025 (*) 1967 48 F 83 168 149 5811 R

sub-0026 1988 27 F 70 - 134 7656 R

sub-0027 1963 52 F 57 - 107 6647 R

sub-0028 1969 46 F 53 173 95 5481 L

sub-0029 1991 23 M 80 178 136 7824 R

sub-0030 1989 25 M 72 175 124 7384 R

sub-0031 1979 35 F 58 - 112 6621 R

sub-0032 1981 34 M 80 178 136 7011 R

sub-0033 1955 60 F 48 159 95 6151 R

sub-0034 1984 31 F 58 166 106 6119 L

sub-0035 1969 46 F 48 167 96 6066 R

sub-0036 1982 33 M 79 180 149 7253 R

sub-0037 1981 33 F 47 163 92 7355 R

Mean 38.11 70.24 171.81 122 6375

SD 11.49 17.37 9.11 21 1276

Min 23 48 157 94 2574

Max 65 118 199 168 8271

(*)  
sub-0014 : Hyperintense FLAIR signals in  white matter (corona radiata) suggesting benign age related white matter hyperintensities 

(WMHs) 

sub-0016 : Hyperintense FLAIR signals in white matter (corona radiata and frontal subcortical structures) suggesting benign age 

related white matter hyperintensities 

sub-0025 : Hyperintense FLAIR signals in white matter (corona radiata and frontal subcortical structures) suggesting benign age 

related white matter hyperintensities

For those 3 subjects, the location and MRI changes observed in FLAIR sequences are typical findings of WMHs with diffuse areas of 

high signal intensity (hence, “hyperintense”) on T2-weighted or FLAIR sequences. Those WMHs are typically interpreted as a 

surrogate of cerebral small vessel disease. Due to the high prevalence of those MRI changes in asymptomatic subjects above 50 

years, the PET images of those subjects were included in the database.
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Regional analysis 
Table 2: Regional volumes in native space (in cm3). Each paired region is composed of left and right sub-regions. The short 
names are expanded in Table A3 in the Appendix. 

 
 

Structure name Structure name 

Mean ± SD Mean ± SD Mean ± SD Mean ± SD
Temporal Lobe Occipital Lobe
Hippocampus_r 2.37 ± 0.28 - OL_rest_lat_l 21.95 ± 2.40 18.27 ± 2.83
Hippocampus_l 2.11 ± 0.26 - OL_rest_lat_r 22.42 ± 2.54 19.36 ± 3.19
Amygdala_r 1.43 ± 0.17 - OL_ling_G_l 7.56 ± 0.93 3.94 ± 0.70
Amygdala_l 1.52 ± 0.18 - OL_ling_G_r 8.16 ± 0.91 3.97 ± 0.79
Ant_TL_med_r 5.48 ± 0.64 1.24 ± 0.28 OL_cuneus_l 5.31 ± 0.66 3.34 ± 0.61
Ant_TL_med_l 5.27 ± 0.61 1.22 ± 0.26 OL_cuneus_r 5.72 ± 0.70 3.09 ± 0.67
Ant_TL_inf_lat_r 2.77 ± 0.39 0.55 ± 0.19
Ant_TL_inf_lat_l 2.58 ± 0.41 0.49 ± 0.17 Parietal Lobe
G_paraH_amb_r 3.15 ± 0.37 0.98 ± 0.13 PL_rest_l 21.37 ± 2.52 16.01 ± 2.40
G_paraH_amb_l 3.27 ± 0.42 0.99 ± 0.18 PL_rest_r 21.25 ± 2.48 15.95 ± 2.28
G_sup_temp_cent_r 7.62 ± 0.93 5.33 ± 0.79 PL_postce_G_l 11.69 ± 1.58 14.69 ± 1.96
G_sup_temp_cent_l 7.64 ± 0.96 5.26 ± 0.80 PL_postce_G_r 10.80 ± 1.43 13.82 ± 1.76
G_tem_midin_r 11.24 ± 1.33 5.95 ± 0.95 PL_sup_pa_G_l 19.50 ± 2.10 17.65 ± 2.75
G_tem_midin_l 10.78 ± 1.30 5.87 ± 1.03 PL_sup_pa_G_r 20.51 ± 2.15 18.42 ± 3.05
G_occtem_la_r 3.42 ± 0.39 0.92 ± 0.24
G_occtem_la_l 3.41 ± 0.41 0.94 ± 0.24 Central Structures
PosteriorTL_l 26.41 ± 3.01 17.13 ± 2.44 CaudateNucl_l 4.24 ± 0.52 -
PosteriorTL_r 27.52 ± 3.05 17.48 ± 2.39 CaudateNucl_r 4.33 ± 0.54 -
G_sup_temp_ant_l 3.28 ± 0.42 0.67 ± 0.19 NuclAccumb_l 0.36 ± 0.05 -
G_sup_temp_ant_r 3.19 ± 0.39 0.62 ± 0.17 NuclAccumb_r 0.30 ± 0.04 -

Putamen_l 4.92 ± 0.57 -
Posterior Fossa Putamen_r 4.76 ± 0.54 -
Cerebellum_r 44.49 ± 5.10 12.34 ± 1.63 Thalamus_l 7.41 ± 0.87 -
Cerebellum_l 44.36 ± 5.13 12.39 ± 1.63 Thalamus_r 7.25 ± 0.86 -
Brainstem 23.05 ± 2.82 - Pallidum_l 1.30 ± 0.16 -

Pallidum_r 1.31 ± 0.16 -
Frontal Lobe Corp_Callosum 20.83 ± 2.54 -
FL_mid_fr_G_l 23.21 ± 3.01 24.36 ± 3.67 S_nigra_l 0.32 ± 0.04 -
FL_mid_fr_G_r 23.59 ± 2.95 24.52 ± 3.57 S_nigra_r 0.32 ± 0.04 -
FL_precen_G_l 13.11 ± 1.76 18.47 ± 2.32
FL_precen_G_r 13.04 ± 1.84 18.55 ± 2.37 Ventricles
FL_OFC_AOG_l 3.87 ± 0.51 1.45 ± 0.39 BodyVentricle_r 7.31 ± 1.01 -
FL_OFC_AOG_r 3.89 ± 0.51 1.45 ± 0.35 BodyVentricle_l 7.98 ± 1.01 -
FL_inf_fr_G_l 10.63 ± 1.34 5.96 ± 1.12 TemporaHorn_r 0.63 ± 0.08 -
FL_inf_fr_G_r 10.15 ± 1.24 5.50 ± 1.05 TemporaHorn_l 0.49 ± 0.06 -
FL_sup_fr_G_l 27.15 ± 3.58 20.00 ± 3.10 ThirdVentricl 0.94 ± 0.13 -
FL_sup_fr_G_r 27.33 ± 3.63 19.71 ± 3.12
FL_OFC_MOG_l 3.95 ± 0.53 1.83 ± 0.37 Insula and Cingulate gyri
FL_OFC_MOG_r 3.93 ± 0.48 1.63 ± 0.30 Insula_l 15.42 ± 1.77 -
FL_OFC_LOG_l 2.13 ± 0.31 0.92 ± 0.22 Insula_r 15.37 ± 1.79 -
FL_OFC_LOG_r 2.39 ± 0.37 0.91 ± 0.24 G_cing_ant_sup_l 5.56 ± 0.74 1.66 ± 0.43
FL_OFC_POG_l 3.14 ± 0.41 1.34 ± 0.28 G_cing_ant_sup_r 5.29 ± 0.69 1.67 ± 0.40
FL_OFC_POG_r 3.27 ± 0.38 1.20 ± 0.27 G_cing_post_l 5.07 ± 0.67 2.52 ± 0.46
FL_strai_G_l 2.69 ± 0.34 0.60 ± 0.13 G_cing_post_r 4.95 ± 0.60 2.36 ± 0.43
FL_strai_G_r 2.88 ± 0.34 0.77 ± 0.20
Subgen_antCing_l 0.78 ± 0.13 0.59 ± 0.10
Subgen_antCing_r 0.69 ± 0.13 0.54 ± 0.10
Subcall_area_l 0.21 ± 0.04 0.02 ± 0.01
Subcall_area_r 0.18 ± 0.03 0.02 ± 0.01
Presubgen_antCing_l 0.76 ± 0.11 0.11 ± 0.05
Presubgen_antCing_r 0.50 ± 0.07 0.08 ± 0.05

Grey matter White matter Grey matter White matter
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Figure 3 and Figure 4 show boxplots of mean regional SUV and SUVr respectively, extracted in a 
selection of grey matter anatomical regions, for all subjects in the database. Each region is composed 
of left and right sub-regions. Mean regional SUV values were 5.36 ± 1.32, range 1.35 - 8.54 (Figure 3). 
Three subjects in the database had lower SUV values (between 1.35 to 3).  
 

 
Figure 3: Boxplot of regional SUV for all subjects in the database. Centre lines correspond to medians, boxes to interquartile 

ranges, and whiskers to robust ranges. Outliers are represented as dots. Each dot represents a participant for unpaired 
regions and a participant’s right or left SUV value for paired regions. 

 

The distribution of SUVr values (Figure 4) remains very similar to the distribution of SUV values (1.49 
mean ± 0.26 SD, range 0.85 - 2.22), except that the dispersion is reduced and the outlier values from 
the three participants with unusually low SUVs are regularized. 
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Figure 4: Boxplot pf regional activity normalized by mean activity in ICV mask (SPM) for all subjects in the database. Centre 
lines correspond to medians, boxes to interquartile ranges, and whiskers to robust ranges. Outliers are represented as dots. 
 

Normalizing with the ICV mean value thus acts as an efficient way for regularizing the SUV 
distribution leaving the inter-regional variability intact. 

 
Leave-one-out SPM analysis 
 
Results for the leave-one-out analysis of [18F]FDG PET are reported in Table 2. 
 
At the subject-level, 5/37 (13.5%) of the participants had any significant increases in [18F]FDG uptake 
(hypermetabolism) relative to the other 36 participants. Any significant decreases (hypometabolism) 
was found for 11/37 (29.7%) of the participants. 
At the cluster-level, significant changes were found in at most 5.21% of resolution elements, and at 
the voxel-level, in at most 0.32% of voxels. 
 

Table 2: % of abnormality in the database. Cluster-level and voxel-level results are reported at p < 0.05 FWE. The 
denominator for subject-level is the total number of participants; the denominator for the cluster-level is the average 

number of resolution elements in the mask; the denominator for the voxel-level is the number of voxels in the SPM mask. 
See Methods for details. 

Contrast Subject-level Cluster-level Voxel-level 
Hypermetabolism 13.5% (n=5)  0.93% 0.03% 
Hypometabolism 29.7% (n=11) 5.21% 0.32% 

 
All abnormalities in controls compared with controls are by definition false positives. We examined all 
16 and present our findings in the Appendix (Table A1 and Table A2). Virtually all false positives had 
an anatomical or artefactual explanation. 
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Discussion 
 
A new database of 37 healthy subjects including T1 and FLAIR MRI, CT, and [18F]FDG PET images, called 
IDB-MRXFDG, has been created.  
 
The age range has been selected to reflect the ages of participants in cognitive and clinical research 
studies at the CERMEP imaging centre, encompassing amongst others epilepsy, movement disorders, 
multiple sclerosis and disorders of consciousness and will align with the research priorities of many 
similar centres. 
 
We performed quality control of all images visually and by screening for volumetric and regional SUV 
abnormalities. Three subjects had unusually low SUVs; this may be due to imperfect observation of 
the need for fasting ahead of the scan. We show that a simple global normalisation procedure removes 
the resulting outliers (Figure 4); depending on the application more sophisticated intra-scan 
normalisation procedures are conceivable (Yakushev et al. 2009, 2008). We also performed SPM leave-
one-out studies for [18F]FDG. The relatively high false-positive rates per subject are explained by the 
existence of significant clusters of small size (from 1 to 95 voxels). Areas of apparent hypermetabolism 
were either at the edge of the brain or at the bottom of a particularly deep sulcus (see appendix, Table 
A1); areas of apparent hypometabolism (Table A2) were clearly linked to the participant’s anatomy, 
typically to a wide sulcus or fissure (7/11 cases). The other 4 cases were extracerebral or at the edge 
of the brain, probably linked to imperfect normalisation. We believe none would have been 
considered abnormal had they been seen in an analysis comparing one research subject with a 
particular condition against a group of controls. When testing the normality of the database at the 
cluster and voxel-level, the expected threshold of 5% of abnormality or lower was found for both 
hyper- and hypo-metabolism. The database therefore appears suitable for voxel-based [18F]FDG PET 
analysis with a ≤5% risk of Type 1 error. 
 
The IDB-MRXFDG database could be used in many different applications such as the statistical 
comparison of a patient (or group of patients) to a database of healthy subjects, automatic 
quantitative analyses, and more generally methodology development in neuroimaging. 
 
The inclusion of [18F]FDG PET in IDB-MRXFDG is particularly important. While there are now many MR 
databases covering, with varying density, the human lifespan as reviewed in (Coupé et al. 2017) , we 
are aware of very few [18F]FDG PET databases. Wei et al. (Wei et al. 2018) scanned 78 healthy subjects 
aged 3-78 years on a PET/CT scanner; it is not clear whether this database is available on request, and 
there is no mention of MRI. The Marseille database (used e.g. in (Eusebio et al. 2012)) contains data 
from 60 healthy adults aged 21-78; [18F]FDG PET, T1 weighted MRI, and CT data are available by 
arrangement. A rare paediatric database (Archambaud et al. 2013) contains 24 datasets of participants 
aged 4.5-17.9 years (mean ± SD 10.06 ±3.1 years) and may be shared on request. These are “pseudo-
controls” derived from epilepsy patients, selected from among a total of 71 children as the subgroup 
with both a normal visual analysis and a normal SPM analysis derived iteratively. They have been 
scanned on a traditional PET scanner with transmission-based attenuation correction which makes 
comparison with PET/CT data difficult (Sousa et al. 2020); no MRI is available. A large database 
available on request is the Alzheimer’s Disease Neuroimaging Initiative, ADNI 
(http://adni.loni.usc.edu/about/) which comprises over 300 healthy control [18F]FDG PET datasets; 
however, participants are aged 55-90 and therefore more suited to dementia research but outside the 
typical age range used for studies in normal cognition or epilepsy, one of the main clinical indications 
for clinical brain FDG PET. Similar concerns about the age of participants apply to those databases 
from the world-wide ADNI (WW-ADNI) networks that do contain FDG, as for example the Japan ADNI 
(J-ADNI; age 60-84) (Iwatsubo et al. 2018). 
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Examples of database uses for work in MR include the voxel-wise comparison of a patient with a 
control group to detect abnormalities from T1 images via voxel-based morphometry (Ashburner and 
Friston 2000; Richardson et al. 1997) and its variants that use T1 derivatives like grey-white matter 
junction images (Antel et al. 2002; Huppertz et al. 2005) for the detection of specific pathologies like 
Focal Cortical Dysplasia. FLAIR as a sequence highly sensitive to pathology has similarly been used at 
the single-subject level in comparison to control groups (e.g. (Focke et al. 2008; Huppertz et al. 2011)). 
Another group of examples is the region-wise comparison of the size of cerebral structures between 
groups or between individuals and a control group (e.g. (Heckemann et al. 2011; Hammers et al. 2007; 
Sapey-Triomphe et al. 2015; Klein-Koerkamp et al. 2014)). Importantly, such work has been 
successfully undertaken with control groups scanned on a different scanner (e.g. (Cross et al. 2013; 
Yaakub et al. 2020) ), and IDB-MRXFDG could be used to increase the size of control groups. 
 
Since PET-CT scanners rapidly displaced PET-only scanners in the early 2000s, low-dose CT has been 
coupled to brain [18F]FDG PET for estimation of tissue density and attenuation correction. With the 
advent of commercial PET-MR scanners since 2011, there has been no direct way of measuring 
electron density in the head, and alternative approaches have had to be found. Synthesis of “pseudo-
CTs” via atlas approaches (Burgos et al. 2014; Merida et al. 2017) is a successful approach that 
performs well overall (Ladefoged et al. 2017) but requires pairs of MR and CT images to achieve the 
synthesis. IDB-MRXFDG has already been used for such approaches (Merida et al. 2015).  
 
The latter application of databases – MR-based attenuation based on MR-CT pairs – is one domain 
where Deep Learning methods, notably with Convolutional Neuronal Networks, have recently become 
very successful (Ladefoged et al. 2020; Yaakub, McGinnity, Beck, et al. 2019). However, they often 
require substantially larger training datasets or priors than multi-atlas methods, in the case of MR-
based attenuation recently estimated at 100-400 pairs, with an influence of MR heterogeneity 
(Ladefoged et al. 2020). More widespread availability of databases will further Deep Learning 
approaches, particularly when multiple modalities are available per subject, allowing e.g. synthesis of 
missing modalities (Yaakub, McGinnity, Clough, et al. 2019) . 
 
 

Data sharing 
 
We have obtained Ethical permission to make the database available on request for bona fide 
research. Please email (merida@cermep.fr) for a short access form, detailing which format you require 
(DICOM format, NIFTI in subject’s space and NIFIT in normalized space, following BIDS common 
specification). Your request will then be considered by the access committee. If found in line with 
permitted use (i.e. bona fide research) a licence will be issued and the requested database transferred 
securely. 
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Appendix 
Table A1: Individual thresholded T-maps (p < 0.05 FWE) for participants showing significant increases in [18F]FDG uptake 
(hypermetabolism) relative to the other 36 participants (false positives). The analysis consisted in a leave-one-out ANCOVA 
performed on SPM12 (see Methods for details).  For each case, we provide an anatomical or artefactual explanation. 
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Table A2: Individual thresholded T-maps (p < 0.05 FWE) for participants showing significant decreases in [18F]FDG uptake 
(hypometabolism) relative to the other 36 participants (false positives). The analysis consisted in a leave-one-out ANCOVA 
performed on SPM12 (see Methods for details).  For each case, we provide an anatomical or artefactual explanation. 
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Table A3: Abbreviation list of the 83 regions used in the ROI evaluation based on the Hammers_mith atlases (www.brain-
development.org / Hammers et al. 2003, Gousias et al. 2008) 

Abbreviation Complete name 
Hippocampus_r Hippocampus (right) 
Hippocampus_l Hippocampus (left) 
Amygdala_r Amygdala (right) 
Amygdala_l Amygdala (left) 
Ant_TL_med_r Anterior temporal lobe, medial part (right) 
Ant_TL_med_l Anterior temporal lobe, medial part (left) 
Ant_TL_inf_lat_r Anterior temporal lobe, lateral part excluding superior temporal gyrus (right) 
Ant_TL_inf_lat_l Anterior temporal lobe, lateral part excluding superior temporal gyrus (left) 
G_paraH_amb_r Parahippocampal and ambient gyri (right) 
G_paraH_amb_l Parahippocampal and ambient gyri (left) 
G_s_t_cent_r Superior temporal gyrus, central part (right) 
G_s_t_cent_l Superior temporal gyrus, central part (left) 
G_tem_midin_r Middle and inferior temporal gyrus (right) 
G_tem_midin_l Middle and inferior temporal gyrus (left) 
G_occtem_la_r Fusiform (lateral occipitotemporal) gyrus (right) 
G_occtem_la_l Fusiform (lateral occipitotemporal) gyrus (left) 
Cerebellum_r Cerebellum (right) 
Cerebellum_l Cerebellum (left) 
Brainstem Brainstem 
Insula_l Insula (left) 
Insula_r Insula (right) 
OL_rest_lat_l Lateral remainder of occipital lobe (left) 
OL_rest_lat_r Lateral remainder of occipital lobe (right) 
G_cing_a_s_l Cingulate gyrus, anterior part (left) 
G_cing_a_s_r Cingulate gyrus, anterior part (right) 
G_cing_p_l Gyrus cinguli, posterior part (left) 
G_cing_p_r Gyrus cinguli, posterior part (right) 
FL_mid_fr_G_l Middlle frontal gyrus (left) 
FL_mid_fr_G_r Middlle frontal gyrus (right) 
PosteriorTL_l Posterior temporal lobe (left) 
PosteriorTL_r Posterior temporal lobe (right) 
PL_rest_l Inferiolateral remainder of parietal lobe (left) 
PL_rest_r Inferiolateral remainder of parietal lobe (right) 
CaudateNucl_l Caudate nucleus (left) 
CaudateNucl_r Caudate nucleus (right) 
NuclAccumb_l Nucleus accumbens (left) 
NuclAccumb_r Nucleus accumbens (right) 
Putamen_l Putamen (left) 
Putamen_r Putamen (right) 
Thalamus_l Thalamus (left) 
Thalamus_r Thalamus (right) 
Pallidum_l Pallidum (left) 
Pallidum_r Pallidum (right) 
Corp_Callosum Corpus callosum 
LatVent_excl_TH_r Lateral ventricle (excluding temporal horn) (right) 
LatVent_excl_TH_l Lateral ventricle (excluding temporal horn) (left) 
BodyVentricle_r Lateral ventricle, body of right ventricle 
BodyVentricle_l Lateral ventricle, body of left ventricle 
ThirdVentricl Third ventricle 
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FL_precen_G_l Precentral gyrus (left) 
FL_precen_G_r Precentral gyrus (right) 
FL_strai_G_l Straight gyrus (left) 
FL_strai_G_r Straight gyrus (right) 
FL_OFC_AOG_l Anterior orbital gyrus (left) 
FL_OFC_AOG_r Anterior orbital gyrus (right) 
FL_i_fr_G_l Inferior frontal gyrus (left) 
FL_i_fr_G_r Inferior frontal gyrus (right) 
FL_s_fr_G_l Superior frontal gyrus (left) 
FL_s_fr_G_r Superior frontal gyrus (right) 
PL_postce_G_l Postcentral gyrus (left) 
PL_postce_G_r Postcentral gyrus (right) 
PL_s_pa_G_l Superior parietal gyrus (left) 
PL_s_pa_G_r Superior parietal gyrus (right) 
OL_ling_G_l Lingual gyrus (left) 
OL_ling_G_r Lingual gyrus (right) 
OL_cuneus_l Cuneus (left) 
OL_cuneus_r Cuneus (right) 
FL_OFC_MOG_l Medial orbital gyrus (left) 
FL_OFC_MOG_r Medial orbital gyrus (right) 
FL_OFC_LOG_l Lateral orbital gyrus (left) 
FL_OFC_LOG_r Lateral orbital gyrus (right) 
FL_OFC_POG_l Posterior orbital gyrus (left) 
FL_OFC_POG_r Posterior orbital gyrus (right) 
S_nigra_l Substantia nigra (left) 
S_nigra_r Substantia nigra (right) 
Subgen_antCing_l Subgenual frontal cortex (left) 
Subgen_antCing_r Subgenual frontal cortex (right) 
Subcall_area_l Subcallosal area (left) 
Subcall_area_r Subcallosal area (right) 
Presubgen_antCing_l Pre-subgenual frontal cortex (left) 
Presubgen_antCing_r Pre-subgenual frontal cortex (right) 
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