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Abstract  

The dorsolateral prefrontal cortex (DLPFC) is composed of multiple anatomically-defined 
regions involved in higher-order cognitive processes, including working memory and 
selective attention. It is organized in an anterior-posterior global gradient, where 
posterior regions track changes in the environment, while anterior regions support 
abstract neural representations. However, whether the global gradient results from a 
smooth gradient that spans regions, or an overall trend emerging from the organized 
arrangement of functionally distinct regions is unknown. Here, we provide evidence to 
support the latter, by analyzing single-neuron activity along the DLPFC of non-human 
primates trained to perform a memory-guided saccade task with an interfering distractor. 
Additionally, we show that the posterior DLPFC plays a particularly important role in 
working memory, in sharp contrast with the lack of task-related responses in the anterior 
DLPFC. Our results validate the functional boundaries between anatomically-defined 
DLPFC regions and highlight the heterogeneity of functional properties across regions.  
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Introduction 

The realization that the cerebral cortex is parcellated into distinct interconnected brain 

regions is a cornerstone of our understanding of brain function. This idea was initially 
inspired by the observed segregation of cytoarchitectonic and functional properties 

across the cortical surface (Brodmann, 1909; Penfield and Jasper, 1954). Since then it 
has been further supported by multiple converging lines of evidence, including 

differences in anatomical and functional connectivity between regions (Glasser et al., 
2016; Thomas Yeo et al., 2011; Yeterian et al., 2012). These anatomical and functional 

differences are two sides of the same coin, as differences in anatomy, such as inputs to 
the region, outputs to other regions, within-region connectivity, and intrinsic neuronal 
properties mould the functional properties of a specific brain region (Zylberberg and 

Strowbridge, 2017). 
 

The dorsolateral prefrontal cortex (DLPFC, Figure 1A) has been parcellated into separate 

brain regions based on anatomical and functional properties (Kaping et al., 2011; 

Yeterian et al., 2012). It is involved in cognitive functions such as working memory, 
selective attention, and motor planning (Miller and Cohen, 2001). Substantial evidence 

supports the notion of a global functional gradient along the anterior-posterior axis of 
the DLPFC (Badre and D’Esposito, 2009, 2007; Koechlin et al., 2003; Petrides, 2005; 

Riley et al., 2018, 2017). This functional gradient appears to reflect a functional hierarchy, 
with anterior regions supporting more abstract neural representations and complex 

action rules, and posterior regions tracking moment-to-moment changes in the 
environment and the organism (Badre and D’Esposito, 2009; Constantinidis and Qi, 

2018). 
 

Such global functional gradients in the DLPFC could be the result of a smooth gradient 

of functional properties along the anterior-posterior axis (Figure 1B). If this were true, 

then the segregation of DLPFC into different regions would be misleading, as a smooth 

gradient would instead suggest that the DLPFC acts as a single functional region, 
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despite its heterogeneous anatomy. Alternatively, these global functional gradients could 
be the result of an overall trend that emerges from the organized arrangement of distinct 

areas, or an areal gradient (Figure 1C). If this were the case, then the segregation of 

DLPFC into different functional regions would be justified. 
 

 
Figure 1 | A global functional gradient can result from smooth or areal gradients 
along the anterior-posterior axis of the DLPFC. A, Schematic of the macaque brain, 
highlighting dorsal and ventral dorsolateral prefrontal regions (inset) with the posterior 
tip of the principal sulcus marked with a white circle (adapted from Petrides et al. 2012),  
A.S. and P.S. denote the arcuate sulcus and the principal sulcus., B, A smooth gradient 
of functional properties in the dorsal DLPFC, where a 1-segment linear model (black line) 
fits the data better than a 3-segment discontinuous piecewise model (grey lines), C, An 
areal gradient of functional properties in the dorsal DLPFC, where a 3-segment 
discontinuous piecewise model (black lines) fits the data better than a 1-segment linear 
model (gray line). Vertical dashed lines represent estimated anatomical boundaries 
between areas 8Ad, 9/46d, and 46d. Zero on the x-axis denotes the posterior tip of the 
principal sulcus. 
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On the one hand, a smooth gradient could be expected based on the observation of 
what appears to be a smooth functional gradient along its anterior-posterior axis (Riley 

et al., 2018, 2017), as well as the high mixture of selectivities observed across DLPFC 
areas, which lack a clear topography (Mante et al., 2013; Rao et al., 1997; Rigotti et al., 

2013). On the other hand, an areal gradient could be expected based on the observation 
of marked functional differences between DLPFC areas (Kaping et al., 2011), as well as 

the known anatomical differences between regions (Barbas, 2015; Markov et al., 2014; 
Petrides et al., 2012; Yeterian et al., 2012). Anatomically, the anterior-posterior axis of 

the DLPFC can be subdivided into three distinct areas - 8A, 9/46, and 46, from posterior 
to anterior - defined by specific cytoarchitectonic and connectivity patterns (Markov et 

al., 2014; Petrides et al., 2012; Yeterian et al., 2012). For example, area 9/46 receives 
input from the insula, while the adjacent area 46 does not (Yeterian et al., 2012). 

Furthermore, the principal sulcus appears to divide the regions into distinct dorsal and 
ventral portions with different connectivity patterns. For instance, the posterior cingulate 

cortex projects to the dorsal portion of these regions, while it does not project to their 
ventral portions (Yeterian et al., 2012). Such input differences may imply functional 

differences between these anatomically defined regions, and support an areal gradient 
across the DLPFC.  

 
Determining whether the anterior-posterior functional global gradient in DLPFC is the 
result of a smooth gradient or an areal gradient will help constrain models of the 

prefrontal cortex, guide electrode positioning in future studies, as well as contextualize 
the conclusions of prior studies.  

 
To assess whether the functional gradient across the DLPFC is the result of a smooth or 

an areal gradient, we recorded the activity of neurons in the DLPFC of two monkeys 
while they performed a working memory task that required ignoring a distractor shown 

mid-way through the delay period, i.e. between delays 1 and 2. We assessed the 
properties of single neurons as a function of their position along the anterior-posterior 

axis in individual monkeys. The physiological properties we explored included those 
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during the visual target and distractor presentation periods (proportion of target and 
distractor selective cells, response latency, receptive field size, the strength of 

selectivity, and the degree of distractor filtering), and during both delay periods (last 
500ms of a 1000ms delay; the proportion of target selective and nonlinear mixed 

selective cells during the delay, memory field sizes, and the strength of selectivity). We 
found that several of these measures had an anterior-posterior global gradient, and these 

were better explained by an areal gradient, rather than a smooth gradient. These results 
support the notion that global gradients are the result of the organized arrangement of 

distinct brain regions. To determine whether the different DLPFC regions perform 
different functions during the task, we analyzed the population level properties of the 

different functionally-defined areas. Specifically, we assessed regional information 
magnitude and stability across time of target and distractor location during correct and 

error trials. We observed that the posterior DLPFC plays a particularly important role in 
spatial working memory, in sharp contrast with the lack of task-related responses in the 

anterior DLPFC.  
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Results 
We recorded from the DLPFC of two adult macaque monkeys that were trained to 

perform a delayed saccade task with an intervening distractor (Figure 2A). The monkeys 

achieved a behavioral performance of ~75% correct trials (74% for Monkey A and 77% 
for Monkey B, across 4 recording sessions per monkey). Our analyses focused on 
physiological properties during the target and distractor presentation periods (300ms 

each; Figure 2A, red and green periods respectively), and the last 500ms of Delay 1 and 

Delay 2 periods (Figure 2A, yellow and orange periods respectively). We chose to 

analyze the last 500ms of the delay periods because we previously showed that the 

activity during the first ~500ms of the first delay had strong temporal dynamics, whereas 
the activity during the last 500ms was more stable (Parthasarathy et al., 2017).  

 
To examine gradients along the anterior-posterior axis, we first estimated the anterior-
posterior position (AP position) of each microelectrode (and hence neuron) from images 

taken during surgery (Figure 2B). The AP position of each neuron was calculated with 

reference to the posterior tip of the principal sulcus, where zero denotes the posterior 
tip of the principal sulcus, negative values represent locations posterior to the tip, and 
positive values represent locations anterior to the tip. We grouped electrodes into either 

the dorsal or ventral DLPFC  (dDLPFC and vDLPFC respectively) using the principal 
sulcus as the dividing line. We estimated the anatomical boundaries of each region 

(dorsal and ventral areas 8A, 9/46, 46) from a macaque MRI atlas (Frey et al., 

2011)(Figure 2C). Combining the AP positions of electrodes and the anatomical 

boundaries, we parcellated electrodes into dDLPFC and vDLPFC subregions, separately 

for each monkey (Figure 2D). We recorded a total of 320 neurons from the dDLPFC 

(comprising areas 8Ad, 9/46d, and 46d) and 169 from the vDLPFC (comprising areas 
8Av and 9/46v). Areas 9/46v and 46d contain data from only one monkey (Monkey 1). 
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Figure 2 | Overview of methods. A,  The monkeys performed a delayed-saccade task 
with distractor interference. The periods analyzed are shown in the colored horizontal 
bars, including target (red), distractor (green), and delay (yellow and orange) periods; B, 
We recorded from the dorsolateral prefrontal cortex of 2 macaque monkeys (Macaca 
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fascicularis) and estimated the anterior-posterior and dorso-ventral electrode positions 
from surgery images (not shown); C, We estimated native space anatomical parcellations 
using a neuroimaging atlas of M. fascicularis; D, Electrode positions in one monkey and 
anatomical parcellation boundaries (black dashed lines); E, To test whether the global 
gradient is the result of a smooth or an areal gradient across a range of functional 
measures, we tested whether a 1-segment or a 2-segment discontinuous piecewise 
model better described the data, separately for the dorsal and ventral DLPFC and 
separately for each monkey. At the top of each plot is shown the adjusted R2 of the 1- 
or 2-segment model fit (significant fits are highlighted with bold font and an asterisk). 
Regression lines are shown for the 1-segment model (left) and 2-segment model (right). 
The red vertical dashed line represents the estimated functional boundary between 8Ad 
and 9/46d for this measure, F, From the previous analysis, we derived functional 
parcellation boundaries (red dashed lines, black dashed lines are anatomical boundaries) 
and grouped neurons based on this functional parcellation map constructed for each 
monkey; G, Using the functional parcellations in F, we assessed population-level 
functional differences between regions using cross-temporal decoding analyses and 
measuring target information quantity (decoding performance) and stability across 
regions (neurons pooled across both monkeys). 

3.1 Functional organization of single neurons along the anterior-posterior axis 

First, we sought to test whether the functional properties of DLPFC neurons were 
organized as a global gradient along the anterior-posterior axis. For the dDLPFC and 

vDLPFC, we obtained physiological measures of single neurons and plotted them in the 
y-axis, and their anterior-posterior anatomical position was plotted in the x-axis, 

regardless of their dorso-ventral position within the region (Figure 2E). The data was 

spatially smoothed using a 0.5mm sliding window with 0.17mm overlap between 

windows (number of neurons per point for Monkey 1 = 1-56, mean = 11.9;  Monkey 2 = 

1-11, mean = 5.7; histogram of neuron counts per point in Figure 2 - figure supplement 

1).  

 
To assess whether there was a significant global gradient along the anterior-posterior 

axis we fitted a 1-segment linear model to the data (henceforth referred to as a 1-

segment model), separately for the dorsal and ventral DLPFC (Figure 2E, left; see full 

statistical flowchart in Figure 2 - figure supplement 2). We then compared its adjusted 
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R2 to a distribution of R2s obtained from models fit on data shuffled along the anterior-
posterior axis (1000 iterations). 1-segment models with adjusted R2 values that exceeded 

the 95th percentile of the shuffled distribution were considered to have significant global 
gradients. In the dDLPFC, out of the 13 functional measures assessed, 12 of them 

showed a global gradient in one or both monkeys (all measures except for the proportion 

of neurons with non-linear mixed selectivity) (Figure 3C-H and 4C-I, columns i and iii). 

In contrast, in the vDLPFC, out of the 13 functional measures assessed, only 2 of them 
(proportion of neurons with non-linear mixed selectivity, and selectivity index in Delay 1) 

showed a global gradient in monkey 1 (this could not be assessed in monkey 2, since 

we did not record from area 9/46v) (Figures 5C-H and 6E, H - column i).  

 
Then, we aimed to determine whether those functional measures that were organized as 

a global gradient were better explained by a smooth or an areal gradient. To this end, 
we carried out the following analysis.  

 
First, we fitted a 2-segment discontinuous piecewise linear model to the data (henceforth 

referred to as 2-segment model) (Ryan and Porth, 2007), where each ‘break’ 

corresponded to an estimated functional boundary (Figure 2E, right). The estimated 

functional boundaries were constrained by anatomical parcellations extracted from a 
macaque MRI atlas (Frey et al., 2011). Specifically, we allowed functional boundaries to 

deviate ±1.5mm from these anatomical boundaries to allow for inter-animal variations 
(Xu et al., 2018). This was done separately for the dDLPFC and vDLPFC, and for each 

monkey (Figure 2F). The goodness of fit of the 2-segment models was measured using 

the adjusted R2, which contains a penalty term for the increased number of parameters 

used in the piecewise models (Ryan and Porth, 2007). To assess the significance of a 2-
segment model’s fit in the same manner as above, we compared its adjusted R2 to a 

distribution of adjusted R2s obtained from models fit on data shuffled along the anterior-
posterior axis (1000 iterations). Models with adjusted R2 values that exceeded the 95th 

percentile of the shuffled distribution were considered significant. In the dDLPFC, out of 
the 11 functional measures that showed a global gradient, 7 of them showed a significant 
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2-segment fit (Figure 3C-H and 4C-I, columns ii and iv). On the other hand, in the 

vDLPFC only one of the two functional measures that showed a global gradient, the 

Delay 1 selectivity Index, showed a significant 2-segment model adjusted R2 (Figures 

6H). 

 

Second, for each adjusted R2 value obtained (both 1- and 2-segment), we calculated the 
probability of obtaining that value or higher, given the adjusted R2 of the alternative 

model. For example, in Monkey 1, the R2 of the 1-segment model fitted to the proportion 
of selective cells during the target presentation period was 0.22, which was significantly 

higher than chance (Figure 3Ci). The fit obtained with a 2-segment model was 0.50, 

which was also significantly higher than chance (Figure 3Cii). Given this data, we asked 

what was the probability of obtaining a 1-segment model fit with an R2 of 0.22 or higher,  
given a 2-segment surrogate dataset with a similar adjusted R2 as the 2-segment 

adjusted R2 of 0.50, and with a similar mean and standard deviation as the original data. 

This process was repeated for 1000 of such 2-segment surrogate datasets to create a 
distribution. The same procedure was followed for the 2-segment model fit with a 1-

segment surrogate dataset (with a similar R2 as the 1-segment fit, and a similar mean and 

standard deviation on the original data). For each model fit, we then obtained a model-

comparison p-value (pMC) by comparing the actual adjusted R2 with the adjusted R2 

distribution (see full statistical flowchart in Figure 2 - figure supplement 2). These 

model-comparison p-values are shown in Figures 3-6 below the adjusted R2 values. 

 
Third, we hypothesized that if the 1- or 2-segment model explains the data better than 

the other, its model-comparison p-value distribution would not be Gaussian (with a mean 
of 0.5), but rather it would have a distribution with a peak frequency biased towards zero 

(i.e. Weibull distribution biased towards 0). Thus, we used the Anderson-Darling test to 
assess whether either the 1-segment or 2-segment distribution followed a Weibull 

distribution with a bias towards 0. We included only measures with a significant global 
gradient, i.e. significant 1-segment fit versus noise.  As described in more detail below, 
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we found that the 2-segment model, but not the 1-segment model, is consistent with a 
Weibull distribution biased towards 0. Thus, the evidence supports the view that the 

global gradients observed are the result of areal gradients of functional properties 

(Figure 7).  

 

3.1.1 Global Gradients in the dDLPFC 

The following sections describe the global gradients of functional properties along the 

anterior-posterior axis during the stimuli and delay periods (Figures 3-4). Based on 

estimated anatomical parcellations, our electrodes spanned 3 regions of the dorsal 

DLPFC: 8Ad, 9/46d, and 46d (Figure 3B). 

 

3.1.1.1 Responses during stimuli presentation 
First, we analyzed response properties during the presentation of the stimuli (target and 

distractor), namely the proportion of cells selective to target or distractor locations, 
response latency, receptive field size, stimulus selectivity, and degree of distractor 

filtering (Figure 3C-H). 

 

The proportion of target selective cells was defined as the proportion of cells with a 

significant selectivity to the target location, during target presentation (ANOVA p-value 

< 0.05). In both monkeys, we found evidence for global gradients, such that the 

proportion of target selective cells decreased in more anterior regions (Figure 3Ci, iii). 

In Monkey 1 the global gradient was better explained by an areal gradient (pMC 1-seg=0.51, 

pMC 2-seg=0.03, Figure 3Ci, ii). Including area 46d in the analysis revealed a significant 

global gradient, such that the proportion of target selective cells decreased in more 

anterior regions (Figure 3 - figure supplement 1Ai). This global gradient was better 

explained by an areal gradient (pMC 1-v-2 seg=0.24, pMC 1-v-3 seg=0.16, pMC 2-v-1 seg<0.01, pMC 3-v-1 

seg=0.01, Figure 3 - figure supplement 1Ai-iii). In Monkey 2 it was inconclusive whether 

it was better explained by a smooth or an areal gradient (pMC 1-seg=0.10, pMC 2-seg=0.91, 

Figure 3Ciii, iv). 
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The proportion of distractor selective cells was defined as the proportion of cells with a 

significant selectivity to distractor location, during distractor presentation (ANOVA p-

value < 0.05). In Monkey 1 we found evidence for a global gradient, such that the 

proportion of distractor selective cells decreased in more anterior regions (Figure 3Di).  

However, it was inconclusive whether the global gradient was better explained by a 

smooth or an areal gradient as we were unable to generate 1-segment surrogate 

datasets that met our criterion (Figure 3Di, ii). In Monkey 2 we found no evidence for a 

global gradient (Figure 3Diii).  

 

Response latency was defined as the earliest responsive time-bin for each neuron’s 

preferred target location compared to baseline (-500ms to 0ms prior to target 
presentation, t-test p-value < 0.05). In Monkey 1 we found no evidence for a global 

gradient (Figure 3Ei). In Monkey 2 we also found evidence for a global gradient with 

longer latencies in more anterior regions but it was inconclusive whether it was better 

explained by a smooth or areal gradient (pMC 1-seg=0.33, pMC 2-seg=0.09, Figure 3Eiii, iv). 

 
The receptive field size was defined as the number of locations where activity during 

target presentation was higher than the baseline (-500ms to 0ms prior to target 
presentation, t-test p-value < 0.05). In Monkey 1, we found evidence for global gradients, 

such that receptive field sizes decreased in more anterior regions (Figure 3Fi). However, 

it was inconclusive whether the global gradient was better explained by a smooth or an 

areal gradient (pMC 1-seg=0.57, pMC 2-seg=0.74, Figure 3Fi, ii). Including area 46d in the 

analysis revealed a significant global gradient, such that the receptive field sizes 

decreased in more anterior regions (Figure 3 - figure supplement 1Di). Despite this, it 

was inconclusive whether the global gradient was better explained by a smooth or an 

areal gradient (pMC 1-v-2 seg=0.91, pMC 1-v-3 seg=1.00, pMC 2-v-1 seg=0.78, pMC 3-v-1 seg=0.79, Figure 

3 - figure supplement 1Di-iii). In Monkey 2 we found no evidence for a global gradient 

(Figure 3Fiii). 
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The stimulus selectivity index was defined as (max-min)/(max+min), where max is the 

average firing rate for the target location with the highest firing rate and min is the 

average firing rate for the target location with the lowest firing rate. In Monkey 1 we found 

no evidence of a global gradient (Figure 3Gi). In Monkey 2 we found evidence for a 

global gradient, with decreasing stimulus selectivity indices in more anterior regions, but 
it was inconclusive whether it was better explained by a smooth or an areal gradient (pMC 

1-seg=0.42, pMC 2-seg=0.34, Figure 3Giii, iv). 

 
Distractor filtering was defined as the ratio of mean activity evoked by the preferred 

target (maximum average firing rate) over the mean activity for a distractor in the same 
location. A value of 100 means that the target and distractor evoked the same activity, 

while a value higher than 100 means that the target evoked a larger response than the 
distractor (i.e., the distractor was filtered).  In Monkey 1 we found no evidence for a global 

gradient (Figure 3Hi). In Monkey 2 we found evidence for a global gradient, with 

decreased filtering in more anterior regions, and this global gradient was better explained 

by a smooth or areal gradient (pMC 1-seg=0.57, pMC 2-seg=4.5 × 10-2, Figure 3Hiii, iv).  
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Figure 3 | Analysis of anterior-posterior gradients in the dDLPFC during the stimuli 
presentation periods. A, Task design highlighting the target (red bar) and distractor 
(green bar) periods used in this figure. B, Dorsolateral prefrontal cortex, with color-coded 
regions that match the color-coded figures below in C-H (blue, red, and yellow denoting 
areas 8Ad, 9/46d, and 46d respectively). C-H, We fit 1- and 2-segment models spanning 
areas 8Ad and 9/46d (area 46d because was not included here because we did not 
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record from this region in Monkey 2, see Figure 3 - figure supplement 1 for plots that 
include area 46d). From left to right, the columns of plots depict the 1-segment model 
for Monkey 1, the 2-segment model for Monkey 1, the 1-segment model for Monkey 2, 
and the 2-segment model for Monkey 2. Model fits that are significant versus a shuffled 
baseline are denoted with an adjusted R2 in bold and asterisks (n.s. = not significant). 
For each monkey, we compared the model fits of the 1- and 2-segment models versus 
the alternative model. For instance, to compare a 1-segment model (Adj. R2=0.22) 
against the 2-segment model (Adj. R2=0.50),  we calculated the probability of obtaining 
a 1-segment model fit with an adj. R2 of 0.22, when fit on a surrogate dataset with a 2-
segment adjusted adj. R2 of 0.50, and with the same mean and standard deviation as 
the original data. The significance value of the model-comparison is shown in the plot. 
Note that the model comparison step was not conducted for distractor selectivity % for 
monkey 1, as it was not possible to generate surrogate datasets that met the desired 
criterion. 
 
3.1.1.2 Responses during the delay periods 

Next, we analyzed response properties during the delay periods, namely the proportion 

of selective cells, memory field sizes, and target selectivity (Figure 4).  

 

The proportion of Delay 1 selective cells was defined as the proportion of cells with a 

significant selectivity to the target location, during the last 500ms of the Delay 1 period 

(ANOVA p-value < 0.05). In Monkey 1 we found no evidence of a global gradient (Figure 

4Ci). In Monkey 2 we found evidence for a global gradient, with a decreasing proportion 

of Delay 1 selective cells in more anterior regions (Figure 4Ciii). However, it was 

inconclusive whether the global gradient was better explained by a smooth or an areal 

gradient (pMC 1-seg=0.45, pMC 2-seg=0.73, Figure 4Ciii, iv). 

 
The proportion of Delay 2 selective cells was defined as the proportion of cells with a 

significant selectivity to the target location, during the last 500ms of the Delay 2 period 

(ANOVA p-value < 0.05). In Monkey 1 we found no evidence for a global gradient (Figure 

4Di). Including area 46d in the analysis revealed a significant global gradient, such that 

the proportion of Delay 2 selective cells decreased in more anterior regions (Figure 4 - 

figure supplement 1Bi). However, it was inconclusive whether the global gradient was 
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better explained by a smooth or an areal gradient (pMC 1-v-2 seg=0.34, pMC 1-v-3 seg=0.48, pMC 

2-v-1 seg=0.10, pMC 3-v-1 seg=0.08, Figure 4 - figure supplement 1Bi-iii). In Monkey 2 we 

found a global gradient with a decreasing proportion of Delay 2 selective cells in more 

anterior regions (Figure 4Diii). However, it was inconclusive whether the global gradient 

was better explained by a smooth or an areal gradient (pMC 1-seg=0.66, pMC 2-seg=0.78, 

Figure 4Diii, iv). 

 
The proportion of nonlinear mixed-selective cells was defined as the proportion of cells 

with a significant interaction between target location and delay period (2-way ANOVA; 

factor-1: target location, factor-2: Delay 1 or Delay 2; interaction p-value < 0.05) 

(Parthasarathy et al., 2017). We found no evidence of global gradients in either monkey 

(Figure 4Ei, iii). 

 
Delay 1 field size was defined as the number of locations where activity during the last 

500ms of the Delay 1 period was higher than the baseline (-500ms to 0ms prior to target 
presentation, t-test p-value < 0.05). In Monkey 1 we found no evidence for a global 

gradient (Figure 4Fi). In Monkey 2, we found evidence for global gradients, with smaller 

Delay 1 field sizes in more anterior regions (Figure 4Fiii). However, it was inconclusive 

whether the global gradient was better explained by a smooth or an areal gradient (pMC 

1-seg=0.36, pMC 2-seg=0.22, Figure 4Fiii, iv).  

 
Delay 2 field size was defined as the number of locations where activity during the last 

500ms of the Delay 2 period was higher than the baseline (-500ms to 0ms prior to target 

presentation, t-test p-value < 0.05). In Monkey 1 we found no evidence of a global 

gradient (Figure 4Gi). In Monkey 2 we found similar evidence for a global gradient, such 

that delay 2 field sizes decreased in more anterior regions (Figure 4Giii). But it was 

inconclusive whether the global gradient was better explained by a smooth or an areal 

gradient (pMC 1-seg=0.38, pMC 2-seg=0.39, Figure 4Giii, iv).  
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Delay 1 selectivity index was defined as (max-min)/(max+min), where max is the average 

firing rate for the target location with the highest firing rate during the last 500ms of Delay 
1 period, and min is the average firing rate for the target location with the lowest firing 

rate. In Monkey 1 we found no evidence for a global gradient (Figure 4Hi). In Monkey 2 

we found evidence for a global gradient, such that delay 1 selectivity index decreased in 

more anterior regions (Figure 4Hiii). This global gradient was better explained by an areal 

gradient (pMC 1-seg=0.57, pMC 2-seg=0.01, Figure 4Hiii). 

 

Delay 2 selectivity index was defined in the same manner as Delay 1 selectivity index, 

but for the last 500ms of Delay 2 period. In Monkey 1 we found no evidence of a global 

gradient (Figure 4Ii). In Monkey 2 we also found evidence for a global gradient, such that 

Delay 2 selectivity index became smaller in more anterior regions (Figure 4Iiii). This 

global gradient was better explained by an areal gradient (pMC 1-seg=0.50, pMC 2-seg<0.01, 

Figure 4Iiii). 

 
In summary, dorsal DLPFC regions consistently show evidence of global functional 

gradients along the anterior-posterior axis, such that anterior regions had less target 
information in both target and delay periods. Importantly, the direction of the gradients 

in both monkeys was consistent for all the functional measures assessed, lending strong 
support for the existence of these global gradients.  
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Figure 4 | Analysis of anterior-posterior gradients in the dDLPFC during the delay 
periods. A, Task design, with the analyzed period highlighted (delay periods). B, 
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Dorsolateral prefrontal cortex, with color-coded regions that match the color-coded 
figures below in C, i.e. blue, red and yellow denoting 8Ad, 9/46d, and 46d respectively. 
C-I,  We fit 1- and 2-segment gradients across the anterior-posterior axis of the dorsal 
DLPFC for delay period measures (area 46d because was not included here because we 
did not record from this region in Monkey 2, see Figure 4 - figure supplement 1 for 
plots that include area 46d). For a description of the plots see the legend of Figure 3C. 
 

 

3.1.2 Global Gradients in the vDLPFC  

Based on the estimated anatomical parcellation of the vDLPFC, our electrodes spanned 

2 regions in Monkey 1 (8Av and 9/46v) and only 1 region in Monkey 2 (8Av)(Figure 1A). 

The following sections describe the stimulus and delay period functional properties of 
these regions. Note that only Monkey 1’s data can be tested for global gradients because 

Monkey 2 has electrodes in area 8Av only. Nevertheless, the model fits for Monkey 2 are 
included for visual comparison. 

 
3.1.2.1 Responses during the stimulus period 

We characterized the same functional properties during the target and distractor period 

in the vDLPFC as those we used to characterize the dDLPFC (Figure 5).  

 

Unlike in the dorsal DLPFC, where Monkey 1 showed global gradients in 3 out of the 7 
functional measures, and Monkey 2 showed global gradients in 5 out of the 7 functional 

measures, in the ventral DLPFC of Monkey 1 we found no evidence of a global gradient 

in any of the functional measures assessed (Figure 5G). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.12.16.423034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.16.423034
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

 
Figure 5 | Analysis of anterior-posterior gradients in vDLPFC during the stimuli 
presentation periods. A, Task design, with the analyzed period highlighted (target 
period). B, Dorsolateral prefrontal cortex, with color-coded regions that match the color-
coded figures below in C, i.e. purple and green denoting 8Av and 9/46v respectively. C,  
We fit 1- and 2-segment gradients across the anterior-posterior axis of the ventral 
DLPFC for target period measures, with the two leftmost columns (displaying the 1-
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segment and 2-segment model fits) belonging to monkey 1 and the two rightmost to 
monkey 2. For a description of the plots see the legend of Figure 3C. 
 
3.1.2.2 Responses during the delay period 

We characterized the same functional properties during the delay periods in the vDLPFC 

as those we used to characterize the dDLPFC (Figure 6).  

 

We found global gradients in Monkey 1 in the proportion of nonlinear mixed selective 

cells, and the Delay 1 selectivity index (Figure 6E, H). The proportion of nonlinear mixed-

selective cells decreased in more anterior regions (Figure 6Ei). But it was inconclusive 

whether the global gradient was better explained by a smooth or an areal gradient in 

Monkey 1 (pMC 1-seg=0.18, pMC 2-seg=0.68, Figure 6Ei, ii). The Delay 1 selectivity index 

increased in more anterior regions (Figure 6H), and this global gradient was better 

explained by an areal gradient (pMC 1-seg=0.32, pMC 2-seg=0.03, Figure 6Hii). 

 

In summary, evidence for the existence of global gradients in the ventral DLPFC regions 
is less reliable than in the dorsal regions. However, the data originates from a single 

monkey, so we are unable to make a strong claim about the presence or absence of 
gradients in these ventral regions.  
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Figure 6 | Analysis of anterior-posterior gradients in vDLPFC during the delay 
periods. A, Task design, with the analyzed period highlighted (delay period). B, 
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Dorsolateral prefrontal cortex, with color-coded regions that match the color-coded 
figures below in C, i.e. purple and green denoting 8Av and 9/46v respectively. C,  We fit 
1- and 2-segment gradients across the anterior-posterior axis of the ventral DLPFC for 
delay period measures, with the two leftmost columns (displaying the 1-segment and 2-
segment model fits) belonging to monkey 1 and the two rightmost to monkey 2. For a 
description of the plots see the legend of Figure 3C-I.  
 
 
3.1.2 Global gradients are better explained by areal gradients 

The previous analyses revealed that a number of functional measures were better 
explained by a 2-segment model than a 1-segment model (pMC 2-seg < 0.05, and pMC 1-seg > 

0.05). Here we asked whether this trend was true across measures, by analyzing the pMC 

distribution across all functional measures with a significant global gradient (Figure 7). If 

the 1-segment model describes the data well across the functional measures, then the 
pMC 1-seg distribution should be biased towards 0, whereas if it does not describe the data 

well, the pMC 1-seg distribution should follow a normal distribution. Similarly for the 2-

segment model.  
 

To determine whether the 1- or 2-segment model describes the data better, we used the 
Anderson-Darling test (AD-test) to determine whether their pMC distributions follow a 

Weibull distribution with a bias towards 0, or a normal distribution (Figure 7 - figure 

supplement 1). For the AD-test a p-value > 0.05 means that we cannot reject the 

hypothesis that the data has the tested distribution, while a p-value < 0.05 means that 

we can reject that hypothesis. We carried out all tests using 3 sets of parameters for 
each Weibull/normal distribution to allow for flexibility in fitting to the pMC distribution 

(λ=0.25, 0.50 or 0.75; σ=0.10, 0.15 or 0.30; λ=Weibull scale parameter, σ=normal 
standard deviation parameter). 

 
We found that neither the 1-segment nor the 2-segment data had a normal distribution 

with μ=0.50 (σ=0.10, 0.15, 0.30; AD test, all p<0.05). Hence we tested if normal 

distributions centered on the respective means of the data described either distribution 
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(μ fixed at each data distribution’s mean, μ1-seg=0.36, μ2-seg=0.45, μ=normal mean 

parameter, see Figure 7 - figure supplement 1). Similarly, we tested if Weibull 

distributions biased towards 0 described either distribution (k fixed at k=0.50, k=Weibull 

shape parameter, see Figure 7 - figure supplement 1).  

 

We found that we cannot reject the hypothesis that the 1-segment model has a normal 

distribution (μ=0.45, σ=0.15, p1seg, normal=0.45, AD-stat1seg, normal=0.34, Figure 7 blue 

distribution), whereas we can reject the hypothesis that the 2-segment model has a 

normal distribution (μ=0.36, σ=0.15, p2seg, normal<5 × 10-4, AD-stat2seg, normal=8.11, Figure 7 

red distribution). On the other hand, we can reject the hypothesis that the 1-segment 

model has a Weibull distribution biased towards zero (k=0.50, λ=0.50, p1seg, Weibull<5 × 10-

4, AD-stat1seg, Weibull=3.54, Figure 7 blue distribution), whereas we cannot reject the 

hypothesis that the 2-segment model has a Weibull distribution biased towards zero 

(k=0.50, λ=0.50, p2seg, Weibull=0.10, AD-stat2seg, Weibull=0.62, Figure 7 red distribution). 

Variations of the σ and λ parameters led to rejections of all the hypotheses (1-segment, 

normal: μ=0.45, σ=0.10, p1seg, normal=0.02, AD-stat1seg, normal=0.87; μ=0.45, σ=0.30, p1seg, 

normal=1.2 × 10-3, AD-stat1seg, normal=1.29; 1-segment, Weibull: k=0.50, λ=0.25, p1seg, Weibull<5 

× 10-4, AD-stat1seg, Weibull=4.39; k=0.50, λ=0.75, p1seg, Weibull<5 × 10-4, AD-stat1seg, Weibull=2.87; 

2-segment, normal: μ=0.36, σ=0.10, p2seg, normal<5 × 10-4, AD-stat2seg, normal=20.97; μ=0.36, 

σ=0.30, p2seg, normal<7.8 × 10-3, AD-stat2seg, normal=0.99; 2-segment, Weibull: k=0.50, λ=0.25, 

p2seg, Weibul<5 × 10-4, AD-stat2seg, Weibull=1.45; k=0.50, λ=0.75, p2seg, Weibull=0.01, AD-stat2seg, 

Weibull=0.95). These results support the notion that the 2-segment model, which supports 
an areal gradient of functional properties, better explains the global gradients observed 

along the dDLPFC (Figure 7). 
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Figure 7 | An areal gradient better describes the global gradient across the 
dDLPFC. Data distributions of model-comparison p-values for the 1-segment (blue bars) 
and 2-segment (red bars) models (overlap at 0.3 and 0.4 shown as purple bars), medians 
shown in the dashed lines in the respective colors. The Anderson-Darling test (AD-test) 
p-values are shown for testing whether the distributions can be described by a normal 
(μ1-seg=0.45, μ2-seg=0. 36, σ=0.15) or a Weibull (k=0.50, λ=0.50) distribution (colored 
according to the colors of the 1-segment and 2-segment data distributions). Note that 
the Weibull distribution models for the 1-segment and 2-segment distributions are 
identical but are slightly displaced horizontally for visualization purposes. Medians are 
denoted with a dashed line. 
 

3.2 Population-level functional differences along the anterior-posterior axis 
To assess whether the five different DLPFC regions exhibit functional differences at the 
population level, we assigned neurons to regions based on the functional parcellation 

boundaries derived from the single-neuron gradient analyses performed on all recorded 

regions, includes areas 46d and 9/46v recorded from Monkey 1 only (Figure 2G, Figure 

3 - figure supplement 1, Figure 4 - figure supplement 1). Boundaries were defined as 

the median of all significant functional measures that display a functional boundary 

between both regions (see Methods, neuron counts per region are available in Figure 8 

- table supplement 1). We used the estimated boundaries across all measures with 

significant 2-segment fits to determine the functional parcellations (including 3-segment 
models fitted with 46d). This gave the following breaks for Monkey 1: 8Ad-to-9/46d (2.90, 
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shift +0.10), 9/46d-to-46d (9.50, shift +0.00), 8Av-to-9/46v (3.00, shift +0.20). For 
Monkey 2, 8Av-to-9/46v (1.90, shift -0.90).  
 
 
To assess the information content at the population level, we used linear discriminant 

analysis to create cross-temporal decoding plots, where the y-axis shows the time bins 
used to train the decoders, and the x-axis shows the time bins used to test the decoders 

(Figure 8A). For constructing the decoders we used 100ms time bins with 50ms overlap. 

Here, we use the term “information” to refer to the classification performance of the 

decoders. In each plot, we decoded the target or distractor location, separately for 

correct trials and error trials (Figures 8-10). Using these plots, we assessed three 

aspects of the information contained in each region: 1) information quantity within a 
period, 2) code stability within a period and 3) code stability across periods. For target 

and distractor presentation periods, we analyzed the first two measures. For delays 1 
and 2, we analyzed all three measures. 

 
To compare information quantity and stability across regions we matched the number of 

locations decoded and the numbers of cells used in each region (nlocations=4, nneurons=28). 
As area 46d had the minimum number of neurons, we used all 28 neurons in area 46d 

(lowest number of neurons across regions, Figure 8 - table supplement 1), and 

randomly subsampled 28 neurons for other regions per decoding iteration (n=1000). 

Since errors were not homogeneously distributed across target locations, we carried out 
all decoding analyses on the 4 (of 8) target locations that contained a sufficient number 

of errors (minimum of 6 error trials per session per location) to enable meaningful 
decoding results in error trials (meanerror trials=71, rangeerror trials=34-113).  
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3.2.1 Target information quantity and stability 

 

 

Figure 8 | Decoding of the target location. A, Cross temporal decoding of 4 target 
locations for 5 DLPFC subregions, B, Information quantity during target presentation 
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period, quantified as the performance along the diagonal of the target presentation 
period, C, Information quantity during Delay 1 and Delay 2 periods (average of both 
delays), quantified as the performance along the diagonal of D11 and D22, D, Within-
period code stability during the target presentation period, quantified as the ratio of the 
average performance during target presentation period (without the diagonal), to the 
diagonal, E, Within-period code stability during the delay periods, quantified as the ratio 
of the performance during the delay period (D11 and D12, without the diagonal), to the 
diagonal (average of both delays), F, Across-delay code stability, quantified as the ratio 
of decoding performance of D11 to D12 (train in Delay 1, test in Delay 2), and D22 to D21  
(average of both ratios). 
 

From the cross-temporal decoding plots (Figure 8A) we first calculated the information 

quantity, which was the average decoding performance of the 300ms of the target 

presentation period (Figure 8B), or the last 500ms of Delay 1 and Delay 2 (Figure 8D, 

see the same plot but with delay 1 and 2 separated in Figure 8 - figure supplement 1), 

of a time-specific decoder (the diagonal of the plot). We averaged across both delays as 

they were not significantly different from each other (the 2.5th to 97.5th percentile of the 
distributions of Delay 1 and Delay 2 values overlapped).  

 
During the target presentation period, we found significant target information in posterior 
regions in both dorsal and ventral DLPFC (8Ad, 9/46d, 8Av). The information significantly 

decreased in anterior regions (Figure 8B). Decoding was at chance in the most anterior 

portion of the dDLPFC, area 46d, and the most anterior portion of the vDLPFC, area 

9/46v (Figure 8B). 

 
During the delay periods, we found significant target information in posterior regions in 

both dorsal and ventral DLPFC (8Ad, 9/46d, 8Av, 9/46v). In the vDLPFC regions we saw 
a lower decoding performance in the more anterior region, area 9/46v, however, this 

trend was not observed in the dDLPFC (Figure 8C). Decoding was at chance in the most 

anterior portion of the dDLPFC, area 46d (Figure 8C). We also found that the ventral 

area 8Av had significantly higher information than any other region analyzed (Figure 8C). 
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We then calculated the within-period code stability, defined as the ratio of the ‘square’ 
(without the ‘diagonal’) to the ‘diagonal’ of the 300ms of the target presentation period 

(Figure 8D), or the last 500ms of Delay 1 (D11) and Delay 2 (D22) periods (Figure 8E). 

We averaged across both delays as they were not significantly different from each other 
(95th percentile overlap test, p<0.01). A stable code would lead to a ratio close to 1, 

whereas a dynamic code would lead to a ratio close to 0 (i.e. time-varying code). During 
the target presentation period, we found a dynamic code in areas 8Ad and 8Av only 

(Figure 8D). However, these dynamic codes were not significantly more dynamic than 

the codes found in more anterior regions (Figure 8D). During the delay periods, we found 

that all regions have stable within-delay codes, as their ratios were not significantly 

different from 1 (Figure 8E).  

 
Finally, we calculated the across-delay code stability. A lack of across-delay code 

stability is referred to as code-morphing (Parthasarathy et al., 2017). Code-morphing is 
present when the neuronal code in Delay 1 can be used to predict the target location in 

Delay 1 but cannot be used to predict the target location in Delay 2, and vice versa. To 
calculate the across-delay code stability, we calculated the ratio between the 

performance of a decoder trained and tested in the last 500ms of Delay 1 (D11 ‘square’, 

Figure 8A), and a decoder trained in Delay 1 but tested in Delay 2 (D12 ‘square’, Figure 

8A), i.e. D11/D12. We did the same for Delay 2, i.e. D22/D21. A code that is perfectly 

stable across delays (i.e. that does not morph) would lead to a Delay 1 and Delay 2 code-

morphing value of 1 (i.e. D11=D12 and D22=D21), while a code that morphs would have 
a value larger than 1 for both Delay 1 and Delay 2 (i.e. D11>D12 and D22>D21). We 

found code-morphing in all regions except for area 46d (likely due to the low information 
content present in 46d in the first place). Along the anterior-posterior axis, we observed 

a significant increase in code-morphing from the posterior 8Av to the anterior region 

9/46v (Figure 8F). 
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3.2.3 Distractor information quantity and stability 

We previously showed that posterior regions of the dDLPFC have a higher proportion of 
cells selective to the distractor location and also a higher proportion of cells that filter 

the distractor (Figure 3D, H). To determine how these single-neuron properties relate to 

information about distractor location at the population level, we trained the decoder to 

predict the location of the distractor, rather than the target (Figure 9).  

 

During the distractor presentation period, we found significant distractor information in 
posterior regions in both dorsal and ventral DLPFC (8Ad, 8Av). The information in 

posterior regions was not significantly different from that found in anterior regions 

(Figure 9B). Decoding was at chance in the most anterior portions of the dDLPFC, areas 

9/46d, and 46d, and the most anterior portion of the vDLPFC, area 9/46v (Figure 9B). 

 

During the Delay 2 period, we found that none of the regions contained significant 

distractor information (Figure 9D). 

 

During the distractor presentation period, we found a dynamic code in area 8Av (Figure 

9C). However, this dynamic code was not significantly more dynamic than the codes 

found in other regions (Figure 9C).  
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Figure 9 | Decoding of the distractor location.  A, Cross temporal decoding for 5 
subregions, B, Information quantity in Delay 2 for the above regions C,  Information 
stability in Delay 2 for the above regions. The period for comparing correct and error 
trials was defined as the last 500ms of Delay 2. D, Within-period code stability during 
the distractor presentation period, quantified as the ratio of the average performance 
during the distractor presentation period (without the diagonal), to the diagonal. 
 
 
3.2.4 Information quantity and stability in error trials 

To assess the behavioral relevance of the activity of different regions, we calculated the 
decoding performance in error trials and compared it with the decoding performance in 

correct trials (Figure 10A). Error trials are those in which the monkey waited for the go-
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cue to respond, but responded to an incorrect location, or failed to initiate a response 
within 1 second. Behavioral relevance would be reflected as a significant difference 

between the decoding performance of correct and error trials.  
 

The only region to show a difference in information between correct and error trials was 
area 8Av, which had less target information in error trials during the Delay 2 period 

(Figure 10E). None of the regions showed significant differences in the target period or 

the Delay 1 period information, nor in code stability (Figure 10, Figure 10 - figure 

supplement 1). Furthermore, none of the regions showed a difference between correct 

and error trials in the encoding of distractor information, suggesting that errors were not 

driven by increased distraction (Figure 10 - figure supplement 2).  
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Figure 10 | Decoding of the target location in correct vs error trials. A, Cross 
temporal decoding for 5 subregions in error trials, B, Same as A, but shows the difference 
between correct and error trials, C-E, Information quantity in the target period, delay 1 
(white stripe) and delay 2 (grey stripe) for the above regions in correct (red) and error 
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(blue) trials, F-G,  Information stability in target period, delay 1 (white stripe) and delay 2 
(grey stripe) for the above regions. 

Discussion 

Here we show that the functional gradient in the DLPFC is the result of functionally-

distinct areas organized as a gradient, rather than a smooth gradient of functional 
properties along the anterior-posterior axis. We showed this by analyzing the response 

properties of single neurons along the anterior-posterior axis (Figures 3-6), and further 

dissected the differences between regions at the population level (Figures 8-10).  

4.1 Global functional gradients are the result of functionally-distinct areas 
organized as a gradient 
Previous studies have described the existence of global functional gradients in the 
DLPFC (Riley et al., 2018, 2017). In line with this, we found global functional gradients, 

including posterior to anterior decreases in selectivity and memory field sizes during 
stimulus and delay periods, distractor filtering, and mixed selectivity, and increases in 

latencies. While it is challenging to match our microelectrode positions to those reported 
in the relevant studies by Riley and colleagues, we estimate that our recording electrodes 

in both the dDLPFC and vDLPFC fall within what they refer to as the “dorsal DLPFC” (i.e. 
regions dorsal to the principal sulcus, as well as the ventral lip of the principal sulcus). 

With that consideration, the global gradients we report here are largely consistent with 
those reported previously (Riley et al., 2018, 2017). 

 
However, we extend these studies by showing that these global gradients are the result 
of functionally-distinct areas organized as a gradient, rather than a smooth gradient of 

functional properties. To our knowledge, ours is the first study to explicitly assess 
whether the functional heterogeneity observed at the cellular level in the DLPFC can be 

better explained by a smooth gradient of functional properties, or by functionally-distinct 
areas organized as a gradient. Our results support the latter interpretation. 
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4.2 A prominent role of posterior DLPFC in the maintenance of spatial working 
memory information 
The following lines of evidence suggest that the posterior DLPFC regions play a special 
role in the maintenance of spatial working memory information. We found that area 8Av 

had more target information than other regions (Figure 8). Area 8Av was the only region 

that showed differences in decoding performance between correct and error trials, 

having a lower decoding performance in error trials during Delay 2 (Figure 10). Area 8Av 

also has the greatest proportion of nonlinear mixed selective cells of the regions 

recorded (Figure 8 - figure supplement 3). This observation is consistent with a 

previous study that showed that optogenetic inactivation of the frontal eye fields (which 

is the posterior aspect of what we categorized here as area 8A) during the delay period 
of a memory-guided saccade task leads to a decrease in task performance (Acker et al., 

2016). Overall, these results suggest that among DLPFC regions, posterior regions, and 
in particular area 8Av, play a special role in the maintenance of spatial working memory 

information.  

4.2 A prominent lack of involvement of anterior dDLPFC in the maintenance of 
spatial working memory information 
An unexpected observation was the almost absolute absence of target information in 

the most anterior region analyzed (area 46d). In this region, very few cells were selective 

(Figure 3, Figure 3 - figure supplement 1, Figure 4, Figure 4 - figure supplement 1), 

and we could not decode target information above chance (Figure 8, Figure 8 - figure 

supplement 1 and 2). This observation suggests that spatial memory processing is 

restricted to the posterior DLPFC, without the involvement of anterior regions. 

4.3 Code stability 
The within-delay information stability, which is the ratio of the off-diagonal ‘square’ to 

the ‘diagonal’ in the last 500ms of each delay, was close to 1 across all regions (Figure 

9C). This suggests that there is strong stability of the code within delay periods across 

the DLPFC. On the other hand, the across-delay stability, which is a measure of how 
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generalizable is the memory code across delays, was lower in the vDLFPC, and in 

particular in the anterior region 9/46v (Figure 9D). This observation may be explained by 

the higher proportion of nonlinear mixed selectivity cells in vDLPFC compared to 

dDLPFC (Monkey 1: meandDLPFC = 7.4%, meanvDLPFC = 36.5%, zvDLPFC>dDLPFC = 5.79, 
pvDLPFC>dDLPFC = 6.86 × 10-9, 2-tailed Mann-Whitney U test; Monkey 2: meandDLPFC = 21.6%, 

meanvDLPFC = 53.6%, zvDLPFC>dDLPFC = 3.76, pvDLPFC>dDLPFC=1.73 × 10-4, 2-tailed Mann-Whitney 

U test, Figure 8 - figure supplement 3), since non-linear mixed selectivity plays a large 

role in code-morphing in the DLPFC (Parthasarathy et al., 2017). 

4.4 Conclusion 
Overall, our results support the notion that functionally-dissociable areas in the DLPFC 

are organized along the anterior-posterior axis in a functional gradient. This type of 
organization has been observed in other brain systems, such as the visual system, where 

individual regions (V1, V2, V4, IT), which are anatomically and functionally distinct from 
each other, are arranged along an anterior-posterior functional gradient, with more 

anterior regions having larger receptive fields and more complex response selectivities 
(Freud et al., 2017; Hubel and Wiesel, 1959; Lerner, 2001; O’Rawe and Leung, 2020; 

Tsao et al., 2006). The ability to record large numbers of neurons simultaneously across 
multiple brain regions in behaving animals provides an important resource for systems 

neuroscience research (Dotson et al., 2018; Mitz et al., 2017). Crucially, our results 
underscore the importance of respecting the functional boundaries between regions 

when analyzing these large datasets, since it is common practice to group cells from 
multiple regions for analyses (Bartolo et al., 2020; Parthasarathy et al., 2019, 2017; Tang 

et al., 2020). These results will also be important for researchers using artificial neural 
networks to model cognitive processes, since a single “prefrontal module”, usually 
modelled as a randomly-connected recurrent neural network or as a bump-attractor 

network, may not reflect functional distinctions and complex interactions between 
different prefrontal areas (Mante et al., 2013; Parthasarathy et al., 2019; Tang et al., 2020; 

Wimmer et al., 2014; Yang et al., 2019).  
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Methods 

5.1 Animals and single-unit recordings 
We used two male adult macaques (Macaca fascicularis) in the experiments: Monkey 1 

(age 4) and Monkey 2 (age 6). All animal procedures were approved by and conducted 
in compliance with the standards of the Agri-Food and Veterinary Authority of Singapore 

and the Singapore Health Services Institutional Animal Care and Use Committee 
(SingHealth IACUC #2012/SHS/757). Procedures also conformed to the 

recommendations described in Guidelines for the Care and Use of Mammals in 
Neuroscience and Behavioral Research (Van Sluyters and Obernier, 2003). We first 

implanted a titanium head-post (Crist Instruments, MD, USA), followed by intracortical 
microelectrode arrays (MicroProbes, MD, USA) in the left frontal cortex. In Monkey 1, we 
implanted 6 arrays of 16 electrodes, 1 array of 32 electrodes, and 2 arrays of 32 

electrodes for a total of 192 electrodes. In Monkey 2, we implanted 1 array of 16 
electrodes, 2 arrays of 32 electrodes, and 2 arrays of 16 electrodes in the cortex for a 

total of 112 electrodes. For additional details on the surgery refer to Parthasarathy et al., 
2017 (Parthasarathy et al., 2017). 

5.2 Recording techniques 
Neural signals were acquired using a 128-channel and a 256-channel Plexon OmniPlex 

system (Plexon Inc, TX) at a sampling rate of 40 kHz. Wide-band signals were band-pass 
filtered between 250 and 10,000 Hz. Subsequently, spikes were detected using an 

automated Hidden Markov-Model-based algorithm for each channel (Herbst et al., 
2008). Eye positions were obtained with an infrared-based eye-tracking device from SR 

Research Ltd. (Eyelink 1000 Plus). The behavioral task was designed on a standalone 
PC (stimulus PC) using the Psychophysics Toolbox in MATLAB (Mathworks, 

MA)(Brainard, 1997). To align the neural and behavioral activity (trial epochs and eye 
data) for downstream data analysis, we employed strobe words denoting trial epochs 

and performance (rewarded or failure) during the trial. These strobe words were 
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generated on the stimulus PC and sent to the Plexon and Eyelink computers via the 
parallel port. 

5.3 Task 
Each trial started with a mandatory period (500ms) during which the animal fixated on a 
white circle at the center of the screen. While continuing to fixate, the animal was 
presented with a target (a red square) for 300ms at any one of eight locations in a 3 × 3 

grid. The center square of the 3 × 3 grid contained the fixation spot and was not used. 
The presentation of the target was followed by a delay of 1,000ms, during which the 

animal was expected to maintain fixation on the white circle at the center. At the end of 
this delay, a distractor (a green square) was presented for 300ms at any one of the seven 

locations (other than where the target was presented). This was again followed by a delay 
of 1,000ms. At the end of the second delay, the animal was given a go-cue (the 

disappearance of the fixation spot) to make a saccade towards the target location 
presented earlier in the trial. Saccades to the target location within 150 ms and continued 

fixation at the saccade location for 200ms was considered a correct trial. An illustration 

of the task is shown in Figure 1A. Because of a behavioral bias in one of the animals, 

the target was presented in only seven of the eight target locations in that animal (we 
excluded the location at the bottom-right). 

5.4 Estimation of electrode positions 
We calculated the anterior-posterior location of each electrode using photos taken 

during the implantation surgeries. We used the electrode arrays, which have a fixed size, 
to convert pixels to millimeters. The posterior tip of the principal sulcus was used as the 

reference, such that positive values denote more anterior positions, and negative values 

denote more posterior positions (Figure 1A).  

5.5 Estimation of anatomical parcellations for each monkey 
We estimated the anatomical boundaries of each region from a magnetic resonance 

imaging atlas of the cynomolgus monkey brain in native millimeter space (Frey et al., 
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2011). The anatomical boundaries identified from the atlas had the following values: 8Ad-
9/46d (2.8mm), 9/46d-46d (9.5mm), 8Av-9/46v (3.0mm), 9/46V-46v (9.7mm). 

5.6 Calculating functional measures per electrode 
To determine if a neuron was selective during the target, distractor, and/or delay periods, 
we averaged the spike count across the entire period (target period: 0-0.3s; delay 1: 0.3-
1.3s; distractor: 1.3-1.6s; delay 2: 1.6-2.6s) and run a 1-way ANOVA across locations 

(threshold of p<0.05).  

 
To calculate response latencies, we identified the earliest responsive bin for the preferred 

location for each neuron across the entire trial in 100ms bins with 50ms overlap 
(significantly above the pre-stimulus baseline of -300ms to 0ms; t-test, p<0.05). If there 

were no preferred locations, we identified the earliest responsive bin across all locations.  

 
To calculate receptive field size and memory field sizes, we counted the number of target 

locations where activity during the period analyzed (target, Delay 1 or Delay 2) was 
significantly different from the pre-stimulus baseline (-300ms to 0ms).  
 

To calculate selectivity indices during the target presentation or delay periods, we 
calculated the index as (max-min)/(max+min), where max is the average firing rate for the 

target location with the highest firing rate and min is the corresponding location with the 

lowest firing rate (min).  
 

To calculate distractor filtering, we obtained the ratio between the average firing rate for 
the preferred location during the target presentation period, to the firing rate for the same 

distractor location during the distractor presentation period. 
 

To determine if a neuron had non-linear mixed selectivity we measured the average 
activity of the last 500ms of Delay 1 and Delay 2, and carried out a 2-way ANOVA, using 

target location, and epoch (Delay 1 or Delay 2) as the two factors. Neurons that showed 
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a significant interaction term (with a threshold of p<0.05) were considered non-linear 

mixed selective.  

5.7 Fitting the linear (1-segment) and piecewise (2- and 3-segment) models 
For each of the 13 functional measures assessed, single neuron data was first smoothed 
along the AP-axis using a 0.5mm window, with 0.17mm overlap (i.e. 1/3 of window size). 

To describe the trend along the anterior-posterior axis, we first fitted a 1-segment, 2-
segment, and 3-segment (only applicable in Monkey 1) robust linear regression model 

to the smoothed dataset to reduce the bias from outlier datapoints (MATLAB function 
fitlm(), with the ‘Robust’ parameter set to ‘on’. This robust linear fitting uses the default 

‘bisquare’ weighting function). To quantify the goodness-of-fit of a given functional 
measure, we calculated an adjusted R2 for the linear fit of the actual dataset, which 

penalizes the number of parameters used in the model, and thus penalizes the increasing 
number of segments fitted per model: 

 
Adjusted R2 = 1-((1- R2)*(n-1))/(n-k-1) 

 
where R2 is the R2 calculated using the robust regression, n is the number of data points 

used for model fitting, and k is the number of independent regressors of the fitted model 

(the number of variables in the model)(Cohen et al., 2003). 

 
For the 2-segment models, we first defined the possible break locations, which were 

±1.5mm from the estimated anatomical boundaries (between areas 8Ad-9/46d, and 8Av-
9/46v). This ±1.5mm area was subdivided into 30 non-overlapping 0.1mm steps, and we 

fitted a line to the left and right of these breaks using robust linear regression. We 
imposed that all lines require at least 3 data points to be included in the analysis. Out of 
the 30 models, the model with the lowest root mean squared error (RMSE) was 

considered to be optimal, and thus its break location was used as the functional 
boundary for that functional measure. For the 3-segment models with two breakpoints 

(only for Monkey 1‘s dDLPFC), the procedure was identical, except that both breaks 
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were fit sequentially from posterior to anterior. For instance, we first identified the break 
between 8Ad and 9/46d), and we then identified the second break between 9/46d and 

46d. If two models were tied with similar breakpoints (e.g. both at the boundary between 
8Ad and 9/46d), we picked the model with the breakpoint closest to the estimated 

anatomical boundary. The 2- and 3-segment plots in the figures use the best breakpoints 
identified in this manner. 

 
Note that some of the functional measures could not be calculated for all cells (i.e. 

distractor filtering, which only used cells with significant target selectivity). As such, for 
all 13 functional measures, we only used the subset of cells for which all measures could 

be calculated (569 out of 632). This preserves the number of data points used for 
gradient fitting and avoids a bias from varying numbers of datapoints per measure. 

5.8 Testing for the presence of global gradients 
To assess whether there was a global gradient along the anterior-posterior axis, we 

tested whether the adjusted R2 of the 1-segment fit was significant compared to a 
shuffled distribution of adjusted R2. Specifically, we obtained a shuffled distribution by 

shuffling the dataset (post-smoothing) along the AP-axis and fitting the same robust 
linear model to these shuffled datasets for 1000-iterations. If the adjusted R2  of the actual 

fit was larger than the 95th percentile of the shuffled distribution we considered it 
significant and determined that a global gradient was present (displayed in figures as an 

adjusted R2  in bold font above the 1-segment models). This was done separately for the 
dDLPFC and vDLPFC, and independently for each monkey. We corrected for multiple 

comparisons with the FDR Benjamini–Hochberg method, separately for the dDLPFC and 
vDLPFC of each monkey as they were analyzed for gradients independently. 
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5.8 Testing for whether the data was better described by a smooth gradient or an 
areal gradient 
To test whether the 1-segment model (which would support the smooth gradient 
hypothesis) fitted the data better than the 2-seg model (which would support the areal 

gradient hypothesis), we compared the 1-segment model’s adjusted R2 to a null 
distribution of 1-segment adjusted R2s generated from surrogate datasets (1000 

iterations). These surrogate datasets had mean and variance within 30% of the actual 
data, and, importantly, had a 2-segment adjusted R2 within a fixed 20% of the actual 2-

seg model fit (see full statistical flowchart in Figure 2 – figure supplement 2). Note that 

as it was challenging to generate 2-segment surrogate datasets for the nonlinear mixed 
selectivity % in the vDLPFC of Monkey 1 according to the criterion above, so we relaxed 

the criterion for this specific measure in the vDLPFC for Monkey 1. Namely, this 2-
segment surrogate dataset had mean and variance within 100% of the actual data, and 

a 2-segment adjusted R2 within a fixed 60% of the actual 2-seg model fit. The distribution 
of 1-segment adjusted R2s obtained from this surrogate dataset represents a null 

distribution of what would be expected by chance given a dataset with that specific 2-
segment model fit. If the actual 1-segment model fit exceeded the 95th percentile of the 

null distribution, we concluded that the 1-segment model fitted the data better than the 
2-segment model. To test whether the 2-segment model fitted the data better than the 

1-seg model, we followed a similar procedure, except that the surrogate data matched 
the 1-segment adjusted R2, and the null distribution was a 2-segment adjusted R2 

distribution. A similar procedure was used to compare the 1-segment and 3-segment 
models, and 3-segment and 1-segment models.  

 
Next, for all the functional measures with a significant global gradient, we tested if the 

distributions of 1-segment and 2-segment model-comparison p-values followed a 

Weibull distribution biased towards zero using the Anderson-Darling test (see Figure 7). 

To this end, we tested 2 alternative hypotheses: (1) that the 1- or 2-segment distributions 

follow a Weibull distribution biased towards zero, or (2) that the 1- or 2-segment 
distributions follow a normal distribution with μ being equal to the mean of each 
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distribution. The logic of this analysis is that if the global gradients are better explained 
by an areal gradient (i.e. are better fitted by a 2-segment distribution) we expect to see 

the model-comparison p-values of the 2-segment distribution following a Weibull 

distribution biased towards zero, but not the normal distribution described above. 
Similarly, if the global gradients are better explained by a smooth gradient (i.e. are better 

fitted by a 1-segment distribution) we expect to see the model-comparison p-values of 

the 1-segment distribution following a Weibull distribution biased towards zero, but not 
a normal distribution. 

5.9 Estimation of functional parcellations for each monkey 
To identify the functional parcellation boundaries for each animal, we collated the 

boundaries obtained from all the models that showed a significant 2- or 3-segment fit. 
The median of all these points was the final estimated functional boundary for those 

regions. Each monkey’s final estimated parcellation map was used to split neurons into 
regions depending on their electrode positions. These neurons were then used in the 

population decoding analyses.  

5.11 Cross-temporal decoding analysis 
We pooled all neurons per region (using the functional boundaries) and subsampled to 
the minimum number of neurons across regions (n=28, minimum in area 46d). We used 

data at each time point (100ms bins with 50ms overlap) to train a decoder using Linear 
Discriminant Analysis (LDA, MATLAB function classify()). We tested the decoder on data 
from all 100ms time bins in the trial, as described in Parthasarathy et al. 2017 

(Parthasarathy et al., 2017). When decoding data in the full space, we denoised the 
training and testing data using principal components analysis (PCA) at every time point 

by reconstructing the data with the top n principal components that explained at least 

90% of the variance. The target locations were predicted by training and testing the 
decoder on datasets from equivalent time points. The performance of the decoder, a 

measure of the information about the target location in the population activity, was 
computed at each timepoint as a percentage of test trials in which the target location 
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was predicted correctly. This process was repeated 1,000 times, with different subsets 
of correct trials used to constitute the training and test sets. We used 1500 trials for the 

training set and 100 trials for the test set, for both the correct and error trial analyses. For 

the supplementary decoding analysis which featured only Monkey 1’s neurons (Figure 

8 – figure supplement 2), the only deviation from the above protocol is that we used all 

neurons in each region for that monkey. 

5.12 Data and code availability statement 
The code package and data needed to perform the analyses used in the paper are 
available at https://github.com/PK-HQ/gradient-dlpfc. 
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Figure supplements 

 
Figure 2 – figure supplement 1 | Histogram of frequency by neuron count per data 
point. A, Monkey 1, B, Monkey 2. 
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Figure 2 – figure supplement 2 | Statistical flowchart for determining the best fitting 
model for data. Diagram showing the flow of statistical tests used to test whether there 
is a global gradient and, if there is a global gradient, whether a smooth or areal gradient 
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explains this global gradient better (bottom). A, Functional measure along the anterior-
posterior axis, B, Testing the whether there was a significant global gradient, C, 
Generating 1-segment and 2-segment surrogate datasets, D, Obtaining the comparison-
distribution of adjusted R2, and the comparison-distribution p-value (pMC) for the model 
tested, E, To test if data is skewed towards pMC=0, we fit normal and Weibull models to 
the data, F, Interpret the normal and Weibull fits of the 1-segment and 2-segment data.  
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Figure 3 - figure supplement 1 | Target period gradient fits but with all 3 segments 
fit for Monkey 1. Same as Figure 3, but with the area 46d datapoints included in model 
fitting.  
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Figure 4 - figure supplement 1 | Delay period gradient fits but with all 3 segments 
fit for Monkey 1. Same as Figure 4, but with the area 46d datapoints included in model 
fitting. 
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Figure 7 - figure supplement 1 | normal and Weibull distributions used for the Anderson 
Darling test of 1-segment and 2-segment data. Model parameters for each line are 
shown in the figure legend. k=Weibull shape parameter, λ=Weibull scale parameter, 
μ=normal mean parameter, σ=normal standard deviation parameter. 
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Region Subregion Monkey 1 Monkey 2 

Dorsal 
DLPFC 

46d 28 0 

9/46d 72 52 

8Ad 146 22 

Ventral 
DLPFC 

9/46v 50 0 

8Av 7 112 

 
Figure 8 - table supplement 1 | Recorded neurons per region. The number of neurons 
recorded in each region for each monkey. 
 

 

 
Figure 8 - figure supplement 1 | Regional differences in Delay 1 and 2 target 
information quantity and stability in correct trials. A, Information quantity in delays 1 
and 2 for the above regions, B,  Information stability in delays 1 and 2 for the above 
regions 
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Figure 8 - figure supplement 2 | Decoding of 4 target locations for Monkey 1 only, 
with all neurons included per region. Since only Monkey 1 contributes neurons to area 
46d, the lack of information in this area may be due to a lack of target information across 
regions in this monkey. To assess this possibility, we tested whether target information 
could be decoded from Monkey 1. The figure shows that all regions contain target 
information, except for areas 9/46d and 46d. The value in brackets beside the region 
names is the number of neurons used for decoding, which is also the total neurons 
recorded in Monkey 1 in that region. A, Decoding target location in correct trials, B, 
Decoding in error trials.  
 
 

 
 
Figure 8 - figure supplement 3 | Proportion of nonlinear mixed selective cell 
proportions per region for each monkey. Only regions with recorded cells are shown 
for each animal.  
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Figure 10 - figure supplement 1 | Regional differences in Delay 1 and 2 target 
information quantity and stability in error trials. A, Information quantity in target 
period for the above regions, B, Information quantity in delays 1 and 2, C, Information 
stability in target period, D, Information stability in delays 1 and 2, E, Code stability 
across delays 1 and 2, F, Code stability across both delays 1 and 2 combined, in correct 
and error trials. 
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Figure 10 - figure supplement 2 | Differences in distractor information quantity and 
stability is not behaviorally relevant. A, Information quantity in the distractor 
presentation period for the above regions, B,  Information quantity in Delay 2, C 
Information stability in Delay 2. 
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