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Abstract  27 

 28 

Bacteria are highly dynamic in marine environments, where they play key 29 

biogeochemical roles. Here, we tested how similar the niche of closely related marine 30 

bacteria is and what are the environmental parameters modulating their ecological 31 

responses in a coastal oligotrophic time series. We further explored how conserved the 32 

niche is at broader taxonomic levels. We found that, for certain genera, niche similarity 33 

decreases as nucleotide divergence increases between closely related amplicon 34 

sequence variants, a pattern compatible with selection of similar taxa through habitat 35 

filtering. Additionally, we observed evidence of niche partitioning within various genera 36 

shown by the distinct seasonal patterns of closely related taxa. At broader levels, we did 37 

not observe coherent seasonal trends at the class level, with the order and family ranks 38 

conditioned to the patterns that exist at the genus level. This study explores the 39 

coexistence of niche overlap and niche partitioning in a coastal marine environment.  40 

  41 
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Introduction  42 

Marine microbial communities are highly dynamic and variable over time, particularly in 43 

temperate coastal environments. Community structure changes on a daily, monthly and 44 

annual scale due to bottom-up factors such as resource availability (including inorganic 45 

nutrients and dissolved organic carbon), top-down biotic interactions and physical 46 

properties such as temperature or day length (Fuhrman et al., 2015). The combination 47 

of all these factors defines the ecological niches in which microbes grow and reproduce 48 

depending on the metabolic potential of each taxa. Given that microbes are key players 49 

in the functioning of the biosphere, understanding how taxa adapt to these conditions 50 

and respond to environmental changes is crucial (Falkowski, 2012).  51 

 52 

Our capability to study the composition of microbial communities has improved 53 

drastically during the last decades due to the DNA sequencing revolution. High 54 

throughput sequencing of the 16S rRNA gene has facilitated the assessment of microbial 55 

diversity in samples collected during global expeditions or from  long-term monitoring 56 

stations (Buttigieg et al., 2018; Logares et al., 2020; Sunagawa et al., 2015). Notably, 57 

microbial observatories have provided time series of several consecutive years, in a 58 

crucial effort to extract robust patterns of these microbial assemblages and their 59 

dynamics. Early studies using fingerprinting methods and clone libraries had already 60 

pointed out an effect of seasonality on the whole bacterioplankton community structure 61 

(Alonso-Sáez et al., 2007; Chow et al., 2013; Cram et al., 2015); these methods however 62 

only allowed to recover the most abundant taxa. The use of massive sequencing 63 

substantially increased the throughput, generating massive amounts of sequence data 64 

that were grouped into Operational Taxonomic Units (OTUs) through sequence 65 

clustering (usually at an arbitrary cutoff often established between 97 to 99%) helping 66 

to reduce data volume, which in turn compensated for possible sequencing errors 67 

(Callahan et al., 2017). Alongside sequencing technology improvements, new 68 

bioinformatic algorithms have increased the level of resolution at which we can analyze 69 

sequence data by allowing to work with amplicon sequence variants (ASVs), 70 

differentiating up to one nucleotide difference (Callahan et al., 2016). The delineation 71 

of sequence variants has shown how an OTU can contain variants with different 72 
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ecological behaviors likely representing different species or ecotypes (Callahan et al. 73 

2016). For example, Eren et al. (2013) showed how the method could differentiate 74 

between two SAR11 ecotypes with only two nucleotide differences of the 16S rRNA gene 75 

that displayed anti-correlated seasonal patterns. Likewise, Chafee M. et al. (2018) 76 

showed recurrent switching of ecotypes at single nucleotide resolution  during spring 77 

and summer phytoplankton blooms driven by temperature and substrate changes. In 78 

addition, studies focused on the potential association between photosynthetic 79 

picoeukaryotes and bacteria have shown how the use of ASVs has improved the 80 

association signal by identifying stronger correlations among them (Lambert et al., 2018; 81 

Needham et al., 2018).  82 

 83 

Hutchinson proposed that an ‘n-dimensional hypervolume’ could define the niche of a 84 

species: a set of conditions under which an organism can survive and reproduce, 85 

including both biotic and abiotic factors (Hutchinson, 1957). Bacteria have adapted to 86 

the different conditions present in the marine environment through processes of 87 

selection and speciation. If two taxa occupy identical niches, a taxon should eventually 88 

outcompete the other; yet in practice, many closely related taxa coexist (Cohan, 2017). 89 

The niche would be determined both by the homogeneous selection of traits to survive 90 

in a specific environment –e.g. resistance to high salinity, an example of habitat 91 

filtering– and the heterogeneous selection for other traits to reduce competition –i.e. 92 

niche partitioning– that would facilitate coexistence. In closely related taxa, their 93 

distribution can inform on whether two taxa display a similar realized niche –the abiotic 94 

conditions together with the interaction of biotic factors such as competition– or if 95 

ecotype differentiation occurred through niche partitioning. In this sense, time series of 96 

marine microbial observatories are useful for identifying taxa with similar realized 97 

niches through co-occurrence analyses with repeated sampling over time (Friedman & 98 

Alm, 2012).  Additionally, and while niches are commonly considered as features of 99 

species, we can extend the definition of the Hutchinsonian niche to broader taxonomical 100 

groups and evaluate the importance of the shared traits within each group and their 101 

responses to the environment (Tromas et al., 2018). Such an analysis at different 102 

taxonomical levels concur with studies that discuss the importance of the ‘phylogenetic 103 

scale’ (Ladau & Eloe-Fadrosh, 2019; Martiny et al., 2015) at which ecology operates. For 104 
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marine bacteria, it is unclear how niche similarity and the seasonal trends are distributed 105 

at wider taxonomic levels such as family, order or class. Yet, the methodology required 106 

to address these questions is nowadays available.   107 

 108 

Here, we used time series data from a coastal marine observatory in the NW 109 

Mediterranean to describe the long-term seasonal trends in bacterial community 110 

structure. First, we focused on determining niche similarity between ASVs within genera 111 

and later extended the comparison to broader taxonomic levels to answer (1) how many 112 

ASVs are seasonal and what is the temporal distribution of the relevant taxonomic 113 

groups, (2) how similar the niche between closely related ASVs within different marine 114 

genera is and what are the environmental parameters modulating their distinct 115 

ecological responses, and (3) how conserved the realized niche is as we move from 116 

genus to broader taxonomic levels (i.e., family, order and class).   117 

 118 

Results   119 

Environmental, ecological and taxonomic context. Surface water temperature at 120 

Blanes Bay varied seasonally, with minimal mean values in February (12.6°C) and 121 

maximal values in August (24.5°C, Supplementary Figure 1). Inorganic nutrients were 122 

higher during autumn and winter while Chlorophyll a reached the highest values (ca. 1 123 

mg·m-3) during the winter-spring period. A detailed description of the seasonality at 124 

Blanes Bay, including these and other environmental parameters, can be found in Gasol 125 

et al. (2016).  126 

 127 

In the 11 years of monthly data, we detected a total of 6,825 ASVs. The ASV distribution 128 

was compared both by occurrence (narrow, intermediate and broad) and abundance 129 

(abundant, rare; see Material and Methods). Most of the them (91%) displayed a narrow 130 

distribution, occurring in less than 10% of the samples (Figure 1A, Table 1). Only 26 ASVs 131 

displayed a broad distribution (³75% occurrence), 3 of them always belonging to the 132 

rare fraction (i.e. <1%). Taxonomically, among the broad ASVs, 19 belonged to the 133 

Alphaproteobacteria, mostly to the orders Pelagibacterales (13 ASVs) and HIMB59 (4  134 
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135 
Figure 1: A) Distribution of the different ecological ASVs types (broad, narrow or intermediate, 136 

and conditionally rare taxa, CRT). The X axis indicates the occurrence (% of samples) and the Y 137 

axis corresponds to the mean relative abundance (%) over the time series. Dotted lines 138 

delimitate the distributions (in the label the numbers of ASVs of each type are displayed) and 139 

connect to a box indicating the number of ASVs for each distribution and a bar plot colored by 140 

taxonomy at the class rank. B) Alluvial plot showing the total relative abundance distribution of 141 

Blanes Bay taxa across different taxonomic ranks (class, order, family and genus). The height of 142 

the sections displays the relative abundance (indicated in the text; the total is 100%). The SILVA 143 

nomenclature is displayed in red next to the corresponding GTDB database nomenclature, used 144 

in the text in those cases in which there is no similarity in the names.   145 
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 147 
 148 

Table 1: Occurrence and median relative abundance for the ASVs in the Blanes Bay Microbial 149 

Observatory dataset. Distribution specifies the occurrence distribution: broad (³75% samples), 150 

narrow (<10% samples) and intermediate. The results are distributed between abundant (³1% 151 

in at least one sample) and rare ASVs. Count ASVs stands for the number of ASVs; Count CRT, 152 

the number of Conditionally Rare Taxa; seasonal ASVs, the count of seasonal ASVs (based in 153 

lomb scargle test, q £ 0.01, PN ³ 10); median occurrence, the % of samples in which the ASVs 154 

appears; total relative abundance of the group. 155 
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ASVs; former SAR11 clade V; See Supplementary Table 1 for the ASV taxonomic 167 

information and Supplementary Table 2 for the correspondence between GTDB and 168 

SILVA nomenclature). The 506 ASVs with intermediate occurrence (<75% and >10% 169 

occurrence) belonged taxonomically to 20 different classes. The dominant classes were 170 

the Alphaproteobacteria and Gammaproteobacteria (163 and 133 ASVs respectively) 171 

followed by Bacteroidia (106 ASVs), mostly the Flavobacteriales order (91 ASVs; Figure 172 

1A). The ASVs with a narrow distribution displayed a similar taxonomic composition. We 173 

also evaluated the ASVs that were rare but occasionally became abundant (Conditionally 174 

Rare Taxa, CRT, see Material and Methods) and found a total of 81 ASVs that met this 175 

criterion. Gammaproteobacteria (48 ASVs) and Alphaproteobacteria (13) were the most 176 

common CRTs, while the rest belonged to the Verrucomicrobiae and Bacteroidia classes 177 

(Figure 1B). 178 

 179 

Spring and summer displayed less alpha diversity than autumn and winter (α richness 180 

estimates = 197 vs 334 ASVs respectively, p < 0.01; Supplementary Figure 2). When 181 

checked at the month level, with January as intercept, we observed a significant 182 

decrease in richness starting in April (232 ASVs, p = 0.015) to regain higher values in 183 

October (316 ASVs, p = 0.87). Regarding beta diversity (i.e. community similarity), the 184 

seasons with the maximal dissimilarity were summer and winter (β Bray Curtis estimate 185 

= 0.48, standard error = 0.036), being autumn and spring the ones with the lowest 186 

difference (β estimate = 0.21, standard error = 0.047; Supplementary Figure 3), with 187 

similar ranges for all the other comparisons. 188 

 189 

ASV seasonality. A total of 297 ASVs displayed high seasonality (lomb scargle test q £ 190 

0.01, PN ³ 10) with different ranges of occurrence and season maxima. These seasonal 191 

ASVs represented on average 47% of the relative abundance, partitioned in 13 % of the 192 

abundance from ASVs exhibiting broad distribution, 34% of intermediate occurrence 193 

and 0.1% of narrow presence. In our study, significant peak normalized power values –194 

a statistic that measures how strong is the recurrence– ranged between 10 and 43.1. 195 

The highest values corresponded to ASVs with distributions that recurrently presented 196 

a peak in one specific season. Examples of this pattern are ASV122, ASV55 and ASV131, 197 

belonging to the Acidimicrobiia, Bacteroidia and Alphaproteobacteria classes 198 
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respectively (Supplementary Figure 4). These ASVs appeared mostly during winter and 199 

fall and were absent from spring and summer. Within the seasonal ASVs, we 200 

differentiated 3 significantly different clusters (Supplementary Figure 5). The first group, 201 

composed of 23 ASVs, includes most of the broadly distributed ASVs that peaked during 202 

summer and autumn. Taxonomically, this cluster was composed for the most part of 203 

ASVs from Cyanobiaceae and Flavobacteriaceae. The second cluster, with 30 ASVs, 204 

includes those ASVs that peaked during winter and spring, mainly Pelagibacteraceae 205 

ASVs. Interestingly, this cluster includes an understudied group, Marinisoma, that 206 

displayed a winter trend in all its seasonal ASVs (5 out of 9 ASVs). Finally, the last cluster 207 

was composed of 244 ASVs that presented a less clear seasonal trend likely due to their 208 

lower occurrence and relative abundance along the decade, with no dominance of any 209 

particular taxonomic group.  210 

 211 

Out of the 297 seasonal ASVs, we identified 131 ASVs that could be clustered into 42 212 

OTUs at 99% identity. We found examples of different behaviors within various genera. 213 

For example, Pelagibacter was represented by 20 different OTUs; 3 of them were 214 

composed of only seasonal ASVs, 6 OTUs contained both seasonal and non-seasonal 215 

ASVs, and 9 OTUs consisted only of non-seasonal ASVs. Similar trends were observed for 216 

other genera such as SAR86A and Luminiphilus. On the other hand, we found that niche 217 

partitioning was not common, with only 20% of the OTUs displaying seasonal ASVs with 218 

clear partition between seasons. In total, 8 ASVs displayed such behavior; that is, 219 

seasonal ASVs within 5 nucleotide differences, displaying relative abundances with 220 

opposed seasonal trends or with different temporal patterns (see some examples in 221 

Figure 2). Most of these patterns could be classified into either an almost complete 222 

temporal separation (e.g. ASV48 vs ASV30 within OTU30, affiliated to Puniceispirillales; 223 

Figure 2) or restriction of the “temporal” niche (one of the ASVs is only present in a 224 

specific month or season although the other is also present; e.g. ASV285 vs ASV337 225 

within OTU243, affiliated to HIMB59).  In fact, seven out of 8 ASVs displayed the latter 226 

pattern of seasonal restriction.  227 

 228 

 229 

 230 
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 231 
Figure 2:  A) Examples of niche partitioning among closely related ASVs within the same OTU 232 

(99% clustering). The X axis presents the month and the Y axis presents the centered logarithm 233 

ratio abundance. A generalized additive model smooth is adjusted to the data points. B) 234 

Heatmaps presenting the nucleotide divergence between each of the ASVs (number of 235 

mismatches after alignment). Five nucleotide divergence equals to a median sequence identity 236 

of 98.8%. 237 
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Variability of niche preference within genera. Here, we define the ecological niche of a 238 

taxon as the set of conditions (biotic and abiotic factors) that fluctuate recurrently in 239 

this marine temperate coastal environment and that allow the growth of the organism 240 

or its persistence. Taxa display niche preferences, and hypothetically, closely related 241 

taxa should have similar niches (Cohan, 2017). A similar ecological niche in two taxa 242 

would be represented by the shared environmental conditions that vary over time. In 243 

the case that niche overlap exists, cooccurrence and covariance would point to niche 244 

similarity, and exclusion situations would indicate the opposite condition, i.e. niche 245 

partitioning. Our proxy to test for niche overlap among closely related taxa is the Rho 246 

measurement (proportional change between two taxa, see Material and Methods), that 247 

can be expressed as a function of the nucleotide divergence (number of nucleotide 248 

substitutions between two sequences after an alignment). A decrease in Rho with 249 

nucleotide distance means that the taxa decrease their covariance, and therefore 250 

behave less similarly as they become more phylogenetically distinct. 251 

  252 

Out of the 13 genera evaluated, we found that Pelagibacter (Alphaproteobacteria, 253 

SAR11 clade I), Pelagibacter_A (Alphaproteobacteria, SAR11 clade II) and SAR86A 254 

(Gammaproteobacteria, a subclade of SAR86) displayed a significant decrease in Rho 255 

proportionality with increasing nucleotide divergence (Figure 3; See Supplementary 256 

Table 3 for the regression statistics). The linear tendency between Rho and the 257 

nucleotide distance explained on average about 13% of the trend in Rho. The 258 

distributions within each genus were highly variable. The Pelagibacter genus displayed 259 

the highest number of ASVs (60) and the variation in the Rho score was likewise the 260 

highest, between 0.996 and 0.3. The Pelagibacter_A genus presented less ASVs (26) than 261 

Pelagibacter but a similar Rho distribution. The SAR86A had a smaller amount of 262 

variation along the nucleotide change, with a maximum Rho of 0.85. Besides the 3 263 

abovementioned genera, Luminiphilus (OM60/NOR5 clade) also displayed a negative 264 

tendency but the relationship was not statistically significant. The Synechococcus genus 265 

displayed similarly high proportionality values at low and high nucleotide distances, not 266 

showing a decreasing trend. Merging all the non-significant groups, the values did also 267 

not present a significant tendency (data not shown), suggesting that the decrease is 268 

specific of some groups.  269 
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 270 
 271 

Figure 3: Relationship between the proportionality of change (Rho, Y axis) and the nucleotide 272 

divergence (mismatches after alignment, X axis). Only genera with more than 3 ASVs at less than 273 

5 nucleotide divergence were evaluated. Lines represent the linear relationship between the 274 

two variables. The blue color indicates statistical significance. The p value and the R2 are 275 

displayed for the significant regressions. Bottom right: a graphical visualization of the different 276 

potential ecological patterns.  See Supplementary Table 2 for the correspondence between 277 

GTDB and SILVA nomenclature. 278 
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Environmental drivers of the observed niche differences within genera. Given the 285 

identified differences in the temporal niche (i.e. the time of the year when the organism 286 

develops) among closely related ASVs, we further evaluated how different 287 

environmental parameters influenced the observed distributions. For each ASV-288 

parameter pair we generated a model and estimated coefficient indicating how the ASV 289 

responded (increase or decrease in abundance, Figure 4, Supplementary Figure 6). A 290 

total of 245 response models between ASV abundances and environmental parameters 291 

out of the 603 possible were significant (FDR £ 0.05). About two-thirds of the models 292 

were polynomial with the rest being linear. Temperature, nitrite and nitrate 293 

concentrations were the parameters appearing most often in significant models, 294 

followed by the abundance of photosynthetic and heterotrophic nanoflagellates. The 295 

different bacterial genera displayed variability in the responses to the various 296 

parameters. Pelagibacter, AG-337-I02 (AEGEAN-169 marine group), D2472 (SAR86) and 297 

Luminiphilus genera had ASVs that responded cohesively, i.e. that displayed the same 298 

response sign to a given environmental variability for all their ASVs (Supplementary 299 

Figure 6). Most of these bacterial genera showed a negative relative abundance 300 

response to temperature and a positive relationship with the concentration of inorganic 301 

nitrogen compounds. The exception to this trend was Luminiphilus, with the opposite 302 

coefficient sign for all parameters tested. HIMB59 (former SAR11 clade V), 303 

Pelagibacter_A, SAR86A and Synechococcus showed differences within each genus, 304 

pointing to the existence of distinct ecotypes (Figure 4A). Temperature was a main 305 

factor determining these ecotype differences. Within SAR86A, two contrasting patterns 306 

could be observed; ASV34 and ASV63 (nucleotide divergence of 1; Supplementary Figure 307 

7) presented a positive relationship to temperature and a negative one to nitrate and 308 

chlorophyll a concentration, while ASV562, ASV270, ASV65 and ASV157 presented the 309 

opposite responses (these ASVs had nucleotide distances ranging from 1 to 9; Figure 310 

4A). In the case of Synechococcus, a similar trend was observed (ASV5 and ASV12 vs. 311 

ASV1 and ASV13, Figure 4) but the nucleotide distances do not hint to a possible 312 

explanation based on phylogenetic distance, a result coincident with that of the previous 313 

section in which no decrease in niche similarity for this group was observed (Figure 3). 314 

Pelagibacter_A also presented two ecotype-specific responses, with ASV6 and ASV10 (1 315 

nucleotide divergence) responding similarly, in contrast to the other significant ASVs  316 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423265doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423265
http://creativecommons.org/licenses/by-nc-nd/4.0/


 317 
Figure 4: A) Significant corncob models between ASVs from HIMB59, Pelagibacter, 318 

Pelagibacter_A, SAR86 and Synechococcus genera (rows) and various environmental parameters 319 

(columns). The coefficient estimate indicates positive or negative responses to the parameter 320 

and is shown with a 95% confidence interval. The color corresponds to the different ASV within 321 

a genus (only the top 8 more abundant ASVs are colored, the other ASVs are shown in grey). 322 

ASVs are ordered through a hierarchical clustering based on nucleotide divergence. B) 323 

Generalized additive model fits between the ASV centered logarithm ratio abundances and the 324 

parameter value distribution for the significant ASVs in the upper plot. Panels and ASV colors 325 

shown as in the upper plot. PNF: Phototrophic nanoflagelates; HNF: Heterotrophic 326 

nanoflagelates. 327 
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within the genus (Figure 4). Finally, the different ASVs belonging to HIMB59 (former 328 

SAR11 clade V) presented multiple responses, pointing to a differentiated ecotype 329 

distribution.  330 

 331 

Seasonality at broad taxonomical levels. Having delineated how the ASVs behave 332 

seasonally and what are the drivers of the differences within each genus, we tested 333 

whether synchronized responses at higher taxonomic levels exist. Theoretically, 334 

cohesiveness should decrease from the genus to higher taxonomic ranks. We randomly 335 

aggregated 80% of the ASVs at the genus, family, order and class levels to test how this 336 

seasonal statistic was distributed. We only considered Alphaproteobacteria, 337 

Gammaproteobacteria and Bacteroidia since these were the classes with enough 338 

representation down to the genus rank (only levels with >10 ASVs were considered). 339 

When we analyzed the general distribution across ranks, we found that the class rank 340 

was mostly non-seasonal (98.9% PN values, p < 0.01, PN < 10; Figure 5). Both the order 341 

and family ranks displayed a similar distribution with ~50% of the results being seasonal, 342 

while this value increased up to ~60% at the genus rank. These distributions were 343 

different for each class, with Alphaproteobacteria presenting a clear bimodality while 344 

Gammaproteobacteria presented values evenly distributed across the PN statistic 345 

(Figure 5). By checking each level separately, the bulk Alphaproteobacteria class 346 

distribution (Supplementary Figure 8, PN mean = 5.3) could be linked directly to that of 347 

the Pelagibacterales order, since this was the most abundant group (Supplementary 348 

Figure 8B) and appeared as non-seasonal (PN mean = 5.7, Supplementary Figure 8A). 349 

Observing the other prevalent orders (Rhodobacterales, Puniceispirillales –SAR116 350 

clade– and HIMB59), the seasonality statistic was quite robust when randomly removing 351 

different ASVs (Supplementary Figure 8). Puniceispirillales for example appeared mostly 352 

during summer. This observation was different for the Gammaproteobacteria orders 353 

(Supplementary Figure 9A), with SAR86 and Pseudomonadales orders close to the 354 

seasonality threshold resulting in half of the randomizations as non-seasonal. Moreover, 355 

for the Pseudomonadales order, we observed that it was composed of various families, 356 

each with different seasonality (Supplementary Figure 9B). The Bacteroidia class only 357 

showed seasonality at the genus level for UBA7446, a new unknown genus within the 358 

family Flavobacteriaceae (Supplementary Figure 10). Thus, we observed that the  359 
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360 
Figure 5: Density distribution of the peak normalized power statistic (as proxy for seasonality) 361 

for each rank level in the Alphaproteobacteria, Gammaproteobacteria and Bacteroidia classes. 362 

The red line indicates the used threshold for seasonality (q £ 0.01 and PN ³ 10). 363 
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distributions at the order level were diametrically different, with Alphaproteobacteria 377 

including orders that were seasonal, Gammaproteobacteria orders presenting a peak in 378 

the limit of seasonality and all orders of Bacteroidia presenting a non-seasonal trend. 379 

Nevertheless, in most groups the family and genus ranks presented similar seasonal 380 

trends to those displayed by the order they belonged to.  381 

 382 

Discussion  383 

We explored how the bacterial community is structured seasonally at fine taxonomical 384 

levels and whether the structure is maintained at broader levels through long-term 385 

sampling and amplicon sequencing in a temperate marine coastal environment. 386 

Specifically, we wanted to understand how closely related ASVs respond to the 387 

environmental conditions that appear recurrently in the site. Overall, our results show 388 

that around half of the total community relative abundance shows seasonality at the 389 

ASV level. Within genus, we show how niche similarity decreases with increasing 390 

nucleotide divergence for at least 3 genera, while other trends were observed in other 391 

groups. We then checked how various environmental parameters define the niche for 392 

the components of various genera. Finally, we analyzed how the patterns of seasonality 393 

aggregate at the broader taxonomic ranks, showing that, in our dataset, the class levels 394 

were non-seasonal and that the other ranks tested (i.e. order and family) present a 395 

variety of trends.   396 

 397 

Before further considerations, a methodological limitation must be discussed. The use 398 

of amplicon marker gene has its limitations for the delineation of biological units 399 

(VanInsberghe et al., 2020). The use of hypervariable regions of the 16S rRNA gene –in 400 

this case the V3-V4 regions– entails problems regarding the level of taxonomic 401 

resolution that can be determined. In fact, VanInsberghe et al. (2020) showed that for 402 

Vibrio sp. only 7 out of 14 species were distinguishable with 100% full length 16S rRNA 403 

gene sequence, implying that a shorter region would be even less informative. The 404 

power of the 16S rRNA gene to resolve closely related taxa changes for different 405 

bacterial clades, but in general, various studies have shown that the variable regions 406 

have a poor resolution for full species delineation (Johnson et al., 2019; VanInsberghe 407 
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et al., 2020). Nevertheless, despite the abovementioned limitations, amplicon marker 408 

gene sequencing still represents the fastest and most comprehensive approach for 409 

studying ecological patterns through identifying robust trends in large datasets. To stay 410 

on the conservative side in our interpretations, we set the genus level as the one for 411 

which we can assign patterns with some certainty. 412 

 413 

Contrasting environmental conditions throughout the year. The environmental 414 

parameters displayed a clear seasonal pattern, with the highest rates of change between 415 

the summer and winter periods, and the bacterial community mirrored these changes 416 

as observed in alpha and beta diversities. The patterns of alpha and beta diversity were 417 

studied before at our study site but in much shorter surveys (1-2 years; Alonso-Sáez et 418 

al. 2007; Mestre et al. 2017). The analysis of eleven years of data unveiled that the 419 

highest differences in community structure occur between summer and winter, and the 420 

highest variability is found in spring and winter, which could be related to the 421 

idiosyncratic phytoplankton blooms that occur during these periods, with differing 422 

intensity over the decade (Nunes et al. 2018; see also PNF in Supplementary Figure 1).   423 

 424 

In the nearby long-term microbial station SOLA (Banyuls-sur-Mer), a seven-year 425 

seasonal study was performed comparing the bacterial, eukaryotic and archaeal 426 

community through ASV delineation (Lambert et al., 2018). The number of ASVs in the 427 

bacterial community was similar to that observed in this study (6825 ASVs in this study 428 

vs 6242 at SOLA) and a similar community composition was observed, for e.g.  both 429 

Pelagibacteraceae and Synechococcales dominated the communities (Figure 1, Lambert 430 

et al. 2018), with Pelagibacter, Pelagibacter_A and Synechococcus_C being the most 431 

prevalent organisms. However, some differences were detected; a relevant  group in 432 

our study was the HIMB59 order, initially considered part of the SAR11 clade V (Martijn 433 

et al., 2018; Viklund et al., 2013), which was remarkably  absent in the SOLA study 434 

(Lambert et al., 2018; Salter et al., 2015). This result could be either the reflect of a 435 

different taxonomic assignation or related to primer biases. In fact, this group has been 436 

assigned a variety of names and phylogenetic positions;  the MAGs within the HIMB59 437 

order were identical at the 16S rRNA level with what was previously described as the 438 

AEGEAN-169 marine group, which is present in surface and deep waters in a variety of 439 
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coastal sites (Alonso-Sáez et al., 2007; Cram et al., 2015), while in the SILVA classification 440 

AEGEAN-169 appears within the Rhodospirillales order. Martijn et al. (2018), however, 441 

concluded that the HIMB59 and other relevant MAGs conform a separate clade neither 442 

within the Pelagibacterales nor the Rhodospirillales, in agreement with the Genome 443 

Taxonomy Database assignation used here. Previous studies may have pooled HIMB59 444 

into groups other than SAR11 clade V, hiding its presence. Another difference was the 445 

presence of SAR11 clade IV, not detected in our study but present in SOLA. Other 446 

relevant groups present in this study at Blanes Bay were Candidatus Actinomarina, a 447 

group within class Acidimicrobiia with small cells (Ghai et al., 2013), Glaciecola and 448 

HIMB11 (Roseobacter clade), all of them representing ³1% of the total relative 449 

abundance. 450 

 451 

Half of the total community is seasonal. Determining seasonality is not trivial, as it 452 

implies to take a binary decision for a trait that is likely continuous in a gradient rather 453 

than into two states. In our analysis, we found a total of 297 seasonal ASVs (34% of the 454 

evaluated ASVs, which made up a total of 47% of the sequences). A lower value was 455 

observed by Giner et al. (2019) in a 10-year study of microbial eukaryotes at the Blanes 456 

Bay (13-19% of the OTUs depending on the analyzed size fraction, and ca. 40% of the 457 

sequences). Besides the distinct nature of prokaryotes and eukaryotes, this disparity 458 

could be explained by the differences in the data analysis, since Giner et al. (2019) used 459 

99% clustering OTUs instead of ASVs and quantified recurrence using a metric developed 460 

of their own. Nevertheless, the number of seasonal ASVs we observed in bacteria 461 

triplicates the results found by Lambert et al. (2018) (89 ASVs), and the total relative 462 

abundance of seasonal organisms was also higher in our study compared to that 463 

observed at the SOLA station (47% vs 31.3%). Since we followed identical statistical 464 

methodologies and there is relatively high similarity between the environmental 465 

parameters and the number of ASVs, the observed differences were somehow 466 

surprising. A possible explanation could be related to the amplicon resolution, since for 467 

bacteria, Lambert et al. (2018) reported sequencing problems for the reverse 468 

complement pairs of Illumina sequencing (R2), analyzing thus 300 nucleotides instead 469 

of 490 as in here. Yet, this could explain a coarser taxonomy but not the changes in the 470 

total relative abundances of seasonal ASVs. The length of the time series was similar (7 471 
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years vs 11 years) and the sampling scheme, with biweekly sampling, could result to a 472 

certain degree in the disparities observed. Another explanation could derive from the 473 

presence of more irregular river discharges in the Banyuls basin, affecting the recurrence 474 

of the community through more variable salinity levels (Guizien et al., 2007).  In any 475 

case, further studies would be needed to find a possible explanation for this discrepancy.  476 

 477 

The seasonal patterns observed in our time series varied between different taxonomic 478 

groups (Supplementary Figure 5). Pelagibacter_A (SAR11 clade II) did not present 479 

seasonal ASVs. This result contrasts with what was observed in the Bermuda Atlantic 480 

Time series (BATS), in which this group is present mostly during spring (Giovannoni, 481 

2017). On the other hand, AG-337-I02 (order HIMB59) peaked during winter, coinciding 482 

with what was observed at BATS (using SAR11 clade V as the group nomenclature). 483 

Nevertheless, the biogeochemical setting, physical forcing and other environmental 484 

factors that could control the temporal dynamics at BATS (Steinberg et al., 2001) are 485 

quite different from those of the coastal NW Mediterranean. Besides, HIMB114 (SAR11 486 

clade III) in our study presented peak abundances during summer, a result also observed 487 

in Banyuls-sur-Mer (Salter et al., 2015). Overall, the observed differences in seasonal 488 

patterns among different sites point to the need of a deeper exploration of the niche of 489 

these groups, to investigate whether these differences have an ecological meaning or 490 

are due to methodological aspects.  491 

  492 

Niche similarity decreases with genetic distance. A clear trend between niche similarity 493 

and nucleotide divergence was detected for Pelagibacter, Pelagibacter_A and SAR86A. 494 

All these groups (i.e. SAR11 clade I and II) are known to contain many species with 495 

streamlined genomes and oligotrophic lifestyles (Dupont et al., 2012; Giovannoni, 496 

2017). The pattern observed within these groups is consistent with habitat filtering 497 

(selection), in which similar niches are occupied by the same or genetically similar taxa. 498 

This pattern has already been observed in other environments (Horner-Devine & 499 

Bohannan, 2006; Tromas et al., 2018) and, interestingly, in our study we only observed 500 

it for groups with small genomes, which could be more affected by niche specialization. 501 

It is in fact unclear if closely related taxa compete. The evolution and diversification of 502 

traits between closely related taxa would allow their coexistence maintaining 503 
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simultaneously the same realized niche (Martiny et al. 2015) as it was observed in our 504 

study for certain taxa. Trait diversification could arise from horizontal gene transfer 505 

events creating a larger pangenome for the different ecotypes. This in fact has been 506 

shown for Pelagibacter, from which the distinct genomes conforming its pangenome 507 

present differences in accessory genes between ecotypes with a 99.4% 16S rRNA gene 508 

identity (which corresponds to ~3 nucleotide divergences in our study;  Delmont et al. 509 

2019). Actually, we only detected a niche similarity pattern for Pelagibacter, 510 

Pelagibacter_A and SAR86A. Yet, we could have missed it for other genera due to lack 511 

of statistical power associated with sequencing depth. Thus, in order to determine if the 512 

niche similarity pattern is a common trait for all genera, we aggregated the non-513 

significant values of all other genera detected in our study (details not shown) resulting 514 

in a non-significant pattern, and therefore, based on our data, we cannot conclude that 515 

this is a common pattern for marine bacteria. Nevertheless, we were able to describe 516 

how niche preference changes in relation to phylogenetic distance for three relevant 517 

marine groups. To dig further into the patterns of other groups, deeper sequencing or 518 

the sequencing of a larger 16SrRNA gene fragment is needed in order to improve the 519 

resolution and the number of variants obtained (Callahan et al., 2019, 2020).  520 

 521 

When we checked how the individual ASVs responded to the measured environmental 522 

variables, we found two types of responses at the genus level: groups where all the ASVs 523 

displayed a similar response, such as Pelagibacter, AG-337-I02 (AEGEAN-169), D2472 524 

(SAR86) and Luminiphilus, and groups with ASVs presenting niche differentiation, such 525 

as Synechococcus and SAR86A. The groups presenting the same patterns varied in the 526 

response; in the case of Pelagibacter, there was a clear distinction between the seasonal 527 

ecotypes and the ones appearing all year round (e.g. in Figure 4, the Pelagibacter 528 

dendrogram presents two clusters). The genera with distinct responses showed ecotype 529 

differentiation through niche partitioning processes. As an example, Synechococcus 530 

included ASVs with a positive response to temperature and other parameters, and ASVs 531 

with the opposite trend. Between the Synechococcus, ASV1 and ASV5, there were only 532 

3-nucleotide divergence (99.26% identity), but the niche was clearly partitioned 533 

(Supplementary Figure 11). Since Synechococcus is one of the best known picoplankton 534 

groups, we checked the taxonomy at a finer resolution using a picocyanobacterial-535 
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specific database (Garczarek et al., 2020). In particular, ASV5 presented a 100% identity 536 

match with strain PROS-9-1, belonging to clade Ib, found in cold or temperate waters 537 

(Farrant et al., 2016). ASV1, on the other hand, resulted in a 100% match with members 538 

from multiple clades (clade I, II and III). This multiple match is an example of the 539 

problems with the limited power of the 16S rRNA gene V3-V4 region to resolve species 540 

(Johnson et al., 2019), with multiple clades possibly conforming the same ASVs, which 541 

could be an explanation to the dominant whole-year abundance of this variant. In our 542 

long-term dataset, we found that the peaks of ASV5 correspond to the recurrent yet 543 

temporall restricted Synechococcus bloom observed during spring with flow cytometry 544 

(Supplementary Figure 11). Summing up, these results illustrate the diversity of 545 

ecological trends within each genus. Pelagibacter ASVs presented similar ecological 546 

patterns, while other groups such as SAR86, HIMB59 and Synechococcus_C presented a 547 

clear ecotype differentiation. These within-genera differences would be hidden using 548 

clustering thresholds or working directly with the aggregation at the OTU 99% or genus 549 

level. Instead, our threshold-free analyses allowed to differentiate the responses at the 550 

ASV level, showing how there are taxa within the same genus presenting differentiated 551 

seasonality patterns even among closely related ASVs.  552 

 553 

Lack of seasonality at the class level. It has been hypothesized that bacteria from the 554 

same genus, family, order or even class could share ecological traits and respond 555 

similarly to environmental changes (Martiny et al., 2015; Philippot et al., 2010). In fact, 556 

it is unclear whether phylogenetic ranks are ecologically cohesive, and if true, to what 557 

rank this cohesiveness is maintained (Philippot et al., 2010). These ecological traits could 558 

be clearly determined by phylogenetic history, as is the case of particle versus free living 559 

lifestyle observed in deep ocean waters (Salazar et al., 2015). In the case of surface 560 

coastal waters, the periodic changes in environmental conditions should promote 561 

recurrent niches. We checked how seasonality was taxonomically clustered through 562 

testing the peak normalized power (PN) and its significance at various phylogenetic 563 

levels. By randomly aggregating the ASVs at different ranks, broad patterns of 564 

abundance could emerge coming from cohesive seasonal responses. When we tested 565 

whether this was true, we observed: a) groups that were always non-seasonal, b) groups 566 

with mixed responses with both seasonal and non-seasonal members, and c) groups 567 
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that were always seasonal. The non-seasonal groups arise either from lack of seasonality 568 

signal or from multiple unsynchronized seasonal signals that generated a random and 569 

weak global signal. This was the case of the analyzed class rank levels, with all the results 570 

being non-seasonal (Figure 5). This seasonality and recurrence was opposite to that 571 

observed in the English Channel, with the Alphaproteobacteria and 572 

Gammaproteobacteria classes presenting a high autocorrelation and, therefore, a 573 

strong seasonal pattern (Faust et al., 2015; Gilbert et al., 2012). A possible explanation 574 

to these differences is that the English Channel presents much higher annual variability 575 

and a higher temperature range than Blanes Bay, therefore likely producing stronger 576 

habitat filtering. Bimodal distributions (seasonal and non-seasonal results) originate in 577 

groups containing ASVs that have strong seasonal trends and other non-seasonal ASVs, 578 

as is the case for Rhodobacterales and Pseudomonadales, copiotrophic groups 579 

occupying many different ecologic niches. Rhodobacteraceae, for example, includes 580 

ASVs with seasonality peaks in every season (Supplementary Figure 5). Finally, the 581 

seasonal groups were composed mostly by seasonal ASVs with most or all of them 582 

sharing the same time of the peak. The groups with all ASVs being seasonal could 583 

present more constrained optimal conditions of growth than the groups that appear 584 

randomly or all year-round. Examples of this behavior are the Puniceispirillales (SAR116 585 

clade), a group harboring proteorhodopsin (Lee et al., 2019) and with most of the ASVs 586 

being seasonal and peaking during summer (Lee et al., 2019). Metagenomic and 587 

genome-centric approaches as well as physiological experimentation with available 588 

isolates would help shedding some light on the traits that determine the niche for these 589 

cohesive groups and the differences with other more diverse groups.  590 

 591 

Conclusions 592 

The use of long-term time series and fine resolution of biological units allowed to 593 

compare within-genus ecological distributions. Specifically, we could prove that for 594 

certain genera niche similarity decreased with nucleotide divergence, indicating that 595 

multiple variants coexist due to habitat filtering processes. Additionally, through 596 

modeling of the differential abundance with a variety of environmental parameters, we 597 

unveiled some cases of niche partitioning resulting in different ecotypes producing 598 
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blooms at different seasons. Finally, the analysis of different seasonality distributions 599 

for each phylogenetic rank (class, order, family, genus) indicated that the class rank was 600 

always non-seasonal for the groups analyzed, and thus ecologically non-coherent. This 601 

study sheds light into the niche specialization of various of the predominant genera in 602 

marine coastal microbial communities.   603 

 604 

Material and methods  605 

Location and sample collection. Samples were collected from the Blanes Bay Microbial 606 

Observatory, a station located in the NW Mediterranean sea about 1 km offshore over 607 

a water column of 20 m depth (41º40’N, 2º48’E;  Gasol et al. 2016). Sampling was 608 

conducted monthly over 11 years, from January 2003 to December 2013. Water 609 

temperature and salinity were measured in situ with a conductivity, temperature and 610 

depth probe, and light penetration was estimated using a Secchi disk. Surface seawater 611 

was pre-filtered through a 200 μm nylon mesh, transported to the laboratory under dim 612 

light in 20 L plastic carboys, and processed within 2 h. Chlorophyll a concentration was 613 

measured on GF/F filters extracted with acetone and processed by fluorometry (Yentsch 614 

& Menzel, 1963). The concentrations of inorganic nutrients (NO3
-, NO2

-, NH4
+, PO4

3-, 615 

SiO2) were determined spectrophotometrically using an Alliance Evolution II 616 

autoanalyzer (Grasshoff et al., 1983). The abundances of picocyanobacteria, 617 

heterotrophic bacteria and photosynthetic pico- and nanoeukaryotes were determined 618 

by flow cytometry as described elsewhere (Gasol & Morán, 2016). Additionally, the 619 

abundance of photosynthetic and heterotrophic flagellates of different size ranges were 620 

measured by epifluorescence microscopy of filtrates on 0.6 µm polycarbonate filters 621 

stained with 4ʹ,6-diamidino-2-phenylindole. Microbial biomass was collected by filtering 622 

about 4 L of seawater using a peristaltic pump sequentially through a 20 μm nylon mesh 623 

(to remove large eukaryotes), a 3 μm pore-size 47 mm polycarbonate filter and a 0.2 μm 624 

pore-size Sterivex unit (Millipore). 625 

DNA extraction, PCR amplification and sequencing. DNA was extracted from the 626 

Sterivex unit with lysozyme, proteinase K and sodium dodecyl sulfate, and a standard 627 

phenol-chloroform-isoamyl alcohol protocol as described in Massana et al. (1997). The 628 
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DNA analyzed here corresponds to the 0.2 to 3 µm fraction of bacterioplankton. 629 

Extracted DNA was purified and concentrated in an Amicon 100 (Millipore) and 630 

quantified in a NanoDrop-1000 spectrophotometer (Thermo Scientific). DNA was stored 631 

at -80ºC and an aliquot from each sample was sent for sequencing to the Research and 632 

Testing Laboratory (Lubbock, TX, USA; http://rtlgenomics.com/). Primers 341F (5’-633 

CCTACGGGNGGCWGCAG-3’, Herlemann et al. 2011) and 806RB (5’-634 

GGACTACNVGGGTWTCTAAT-3’, Apprill et al. 2015) were used to amplify the V3-V4 635 

regions of the 16S rRNA gene. A total of 131 samples were successfully sequenced and 636 

used in subsequent analyses.  637 

Sequence processing. DADA2 v1.12 was used to differentiate the partial 16S rRNA gene 638 

amplicon sequence variants (ASVs) and to remove chimeras (parameters: maxN = 0, 639 

maxEE = 2,4, trunclen = 230,225; Callahan et al., 2016). Previously, spurious sequences 640 

and primers were trimmed using cutadapt v.1.16 (default values; M. Martin 2011). 641 

Taxonomic assignment of the ASVs was performed with IDTAXA from DECIPHER v2.14 642 

package (40 confidence, Wright 2016) against the Genome Taxonomy Database (GTDB) 643 

r89 (Parks et al., 2018). IDTAXA reduces over classification, since most contemporary 644 

taxonomical databases are far from comprehensive and often lead to the 645 

misclassification of new groups. The GTDB has the advantage that it incorporates new 646 

data from metagenomic assembled genomes (MAGs) and generates phylogenies based 647 

on 120 single copy genes, resulting in a more robust phylogenetic tree than that created 648 

using only a single marker gene. Additionally, SILVA r138 taxonomy was used for 649 

nomenclature correspondence (Quast et al. 2013; see the correspondence between 650 

databases in Supplementary Table 2). The use of GTDB allowed an increase of 651 

assignation at the genus level (14.6% more sequences reaching the genus rank 652 

assignation) and the differentiation of new groups (e.g. D2472 genus within SAR86). 653 

Furthermore, the ASVs assigned to Synechococcus were checked against the Cyanorak 654 

database v2.1  (Garczarek et al., 2020) through 100% BLAST matches. ASVs classified as 655 

Mitochondria or Chloroplast were removed. The ASV sequences were also clustered into 656 

OTUs (Operational Taxonomic Units) at 97 and 99% identity in order to compare 657 

seasonal patterns at different similarity levels. Clustering was performed aligning all 658 

sequences, calculating a nucleotide distance matrix and identifying the clusters through 659 
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the complete linkage method –maximum nucleotide distance between pairs of ASVs– 660 

using the DECIPHER package (Wright, 2016). This nucleotide distance matrix was also 661 

used to calculate the nucleotide divergence between ASVs.  662 

Community data analyses. We performed all analyses with the R v3.5 language (R Core 663 

Team, 2014). To process the data, we used the phyloseq v1.26 and tidyverse v1.3 664 

packages (McMurdie & Holmes, 2013; Wickham et al., 2019) and ggplot2 v3.2 for all 665 

visualizations (Wickham, 2016).  666 

 667 

We defined abundant taxa as those above a 1% relative abundance in at least one 668 

sample as in Campbell et al. (2011). On the contrary, an ASV always below that cutoff 669 

was considered permanently rare. From both abundance groups, we defined three 670 

categories of ASVs based on their occurrence: broad (>75% occurrence), intermediate 671 

(>10% and <75% samples) and narrow (<10% samples) distributions, as termed by 672 

Chafee et al. (2018). The abundant ASVs were further tested as Conditionally Rare Taxa 673 

(CRT) –taxa typically in low abundance that occasionally become prevalent (bimodality 674 

=0.9, relative abundance threshold ³0.5%)–  following the description of Shade et al., 675 

(2014). The protocols test if each ASV follows a bimodal abundance distribution and if 676 

the values are above a minimum abundance threshold.  677 

 678 

To estimate alpha diversity and beta diversity we used the breakaway v4.6 and divnet 679 

v0.34 packages respectively (A. Willis et al., 2017; A. D. Willis & Martin, 2020). These 680 

approaches avoid common pitfalls from applying classical ecology indexes (i.e. Chao1, 681 

Shannon, etc.) to microbiome data, which do not consider characteristics such as the 682 

influence of library size and compositionality.  683 

Seasonality data analysis. For seasonal analyses, the data was considered both at the 684 

month and season level, using for the latter the astronomical season definition as a 685 

delineation. To test whether each of the ASVs displayed seasonality –that is, recurrent 686 

changes over time– we used the lomb scargle periodogram (LSP) as implemented in the 687 

lomb package v1.2 (Ruf, 1999). This specific method accounts for unevenly sampled 688 

signals, a typical problem with long-term analyses. The method has already been used 689 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423265doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423265
http://creativecommons.org/licenses/by-nc-nd/4.0/


for testing the seasonality of marine microbial communities (see Lambert et al., 2018). 690 

Briefly, the LSP determines the spectrum of frequencies (the different sine waves with 691 

periods, for example half a year or one year) composing the dataset. Afterwards, 692 

through data randomizations, it tests whether the observed periods could occur by 693 

chance through a random distribution (q £ 0.01, FDR correction). For each ASV, we 694 

obtained the density distribution for each of the periods (a periodogram) and the peak 695 

normalized power (PN). The distribution shows which is the most recurrent period and 696 

the PN value measures the strength of this period. We followed the same criteria than 697 

Lambert et al., (2018) considering the results as seasonal only if PN was above 10 and q 698 

£ 0.01 (Lambert et al., 2018). We only examined ASVs present in at least 5% of the 699 

dataset (i.e. in at least 7 samples), resulting in 873 ASVs (corresponding to 94% of the 700 

total read relative abundance). In addition to the ASV level, we evaluated the seasonality 701 

at the class, order, family and genus taxonomic ranks. For a specific rank level (e.g. class 702 

Alphaproteobacteria), 80% of the ASVs conforming the group were chosen randomly, 703 

aggregated, and the LSP calculated. This process was repeated 300 times to obtain a 704 

distribution and observe how it compared to the LSP value without excluding any ASV. 705 

Out of the 29 classes present in the dataset, only the Alphaproteobacteria, 706 

Gammaproteobacteria and Bacteroidia could be evaluated since these are the classes 707 

that presented more than one order, family and genus ranks with at least 10 ASVs.   708 

 709 

Further, we tested how the ASVs clustered based on the seasonal abundance patterns. 710 

We checked the number of possible clusters through the gap statistic from the cluster 711 

v2.1 package, since the expected number of clusters is unknown beforehand (Tibshirani 712 

et al., 2001). This approach tries to find the optimal k number of clusters by evaluating 713 

the drop of change between the normalized intra-clusters sum of squares distances (a 714 

measure of the compactness of the cluster, see Chapter 5 in Holmes and Huber, 2019). 715 

Once determined, we clustered the data through hierarchical clustering.  716 

 717 

To visually compare the trend of the various seasonal ASVs, each one was fitted through 718 

a generalized additive model (GAM, mgcv v1.8 package, Hastie and Tibshirani 1986).  A 719 

GAM is a generalized linear model in which the response variable depends linearly on 720 

various unknown smooth functions of some predictor variables. This method can fit 721 
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polynomic responses without losing statistical relevance. The centered logarithm ratio 722 

values (pseudocount of 1) were fitted along the variable ‘day of the year’, allowing a 723 

smoothing parameter with 12 knots (the maximum number of curves to fit, being 12 for 724 

the number of months per year, Pedersen et al. 2019). Given the nature of the data 725 

(January evolves towards December and then the year starts again), a cyclic cubic spline 726 

condition was used to merge the start and end of the monthly distribution.  727 

 728 

Analyses of niche preference and environmental drivers.  To examine how taxa within 729 

genus covary and, therefore, share a realized ecological niche, we used the propr v4.2 730 

package (Quinn et al., 2017). This package was created to avoid the common pitfalls of 731 

compositional data analyzing correlation-like measurements. This particularity of our 732 

data creates many spurious correlations between the different taxa in which we cannot 733 

predict the true direction of change (i.e. in a community containing taxa A, B, C, is taxa 734 

A increasing or are taxa B and C decreasing? With relative abundances there is no 735 

distinction; see Gloor et al., 2017). A solution to this problem is to work with ratios 736 

instead of relative abundance. These ratios are usually obtained between the 737 

abundance of the taxon of interest and the geometric mean of all taxa for a specific 738 

sample (centered logarithm ratio, CLR). Then for all the ratios of taxa A and taxa B we 739 

measure the proportionality of change (Rho), which indicates how similar the 740 

abundance changes across many samples are. Two vectors (x and y) completely 741 

proportional (Rho=1) would present a variance of 0 for the ratio. The measure therefore 742 

presents similar properties to the correlation measurement (see Lovell et al. 2015 for a 743 

detailed explanation). The Rho statistic results were filtered with a final estimate of 5% 744 

of false discovery rate (FDR). Within each genus, we compared the Rho value between 745 

pairs of ASVs –acting as a proxy of niche similarity– against the nucleotide divergence 746 

among ASVs to see if there were trends in niche relatedness. A linear model was used 747 

to test which genera presented significant relationships (p < 0.05) between nucleotide 748 

divergence and Rho. We analyzed the genera with at least 10 closely related ASVs (at a 749 

maximum of 5 nucleotide divergence) which resulted in a total of 8 genera (out of 93). 750 

For most of these groups, using the V3 and V4 hypervariable regions of the 16S rRNA, 5 751 

nucleotide divergence equals to a median sequence identity of 98.8% between two 752 
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pairs.  This nucleotide distance is the threshold that we use for considering two ASVs as 753 

closely related. 754 

 755 

Finally, we tested which measured environmental parameters drive the patterns among 756 

closely related taxa. From the suite of measured variables, we selected temperature, 757 

total chlorophyll a concentration, inorganic nutrient concentrations, and the abundance 758 

of photosynthetic nanoflagellates (PNF) and heterotrophic nanoflagellates (HNF). 759 

Parameter selection was performed based on the expected relevance in modulating the 760 

ASV response (bottom up and top down processes) and also considering the number of 761 

missing values in the dataset. Multicollinearity between the parameters was tested 762 

using the HH v3.1 package (Heiberger, 2020). The variables presented a mean variance 763 

inflation factor (VIF) of 2. Only values of VIF exceeding 5 are considered as evidence of 764 

collinearity. To model the association we used the corncob v0.1 package (B. D. Martin et 765 

al., 2020), modeling each ASV across the different parameters and considering the 766 

values with an FDR £  5% as significant. Afterwards, a display of the results was created 767 

with the GAM approach. The GAMs were applied to the data previously normalized 768 

through the centered logarithm ratio, using the geometric mean of the sample as 769 

denominator in the ratio (after adding a pseudocount of 1). Phosphate and nitrate 770 

concentrations, and the abundance of photosynthetic nanoflagellates displayed outliers 771 

in their distributions. The models were run with and without these values, generating 772 

similar results, and therefore we kept the outliers (details not shown). 773 

 774 

Reproducibility. The code for sequence data preprocessing, statistical analyses and 775 

visualization is available in the following repository: 776 

https://github.com/adriaaulaICM/bbmo_niche_sea. Sequence data have been 777 

deposited in the European Nucleotide Archive under project number PRJEB38773.  778 
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Supplementary Table legends  1104 

Supplementary Table 1: Taxonomy and occurrence distribution of each individual ASV. 1105 

ASV name, taxonomy (from domain to genus), presence (abundant or rare), distribution 1106 

(broad, intermediate or narrow), Conditionally Rare taxa (CRT) and ASV seasonality.  1107 

 1108 

Supplementary Table 2: Correspondence between the GTDB and SILVA genus 1109 

nomenclature.  The first two columns correspond to the genus, family and order from 1110 

the GTDB r89, and the next two provide the same information in SILVA DB r138. N. 1111 

seasonal indicates the number of seasonal ASVs from the total of ASVs tested. Finally, 1112 

the column “General Information Genus” provides useful information behind some of 1113 

the changes in the nomenclature.  1114 

 1115 

Supplementary Table 3: Linear regression coefficients for each genus between Rho 1116 

proportionality values and nucleotide divergence. Df, degrees of freedom; logLik, log 1117 

likelihood; AIC, Akaike Information Criterion; BIC Bayesian Information Criterion; 1118 

deviance; df.residual, residual degrees of freedom; pval.term, p values of the coefficient; 1119 

R.square.  1120 
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