
1 
 

Modulation of the primary auditory thalamus when recognising 1 

speech with background noise  2 

Abbreviated Title: vMGB modulation for speech in noise recognition 3 

Paul Glad Mihai1,2, Nadja Tschentscher3, Katharina von Kriegstein1 4 

1Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01187 5 

Dresden, Germany 6 

2Max Planck Institute for Cognitive and Brain Sciences, 4103 Leipzig, Germany 7 

3Research Unit Biological Psychology, Department of Psychology, Ludwig-Maximilians-University Munich, 8 

80802 Munich, Germany 9 

Corresponding author: Katharina von Kriegstein, katharina.von_kriegstein @ tu-dresden.. de 10 

Number of pages: 49 11 

Number of figures: 6 12 

Number of tables: 1 13 

Number of words Abstract: 247 14 

Number of words Introduction: 649 15 

Number of words Discussion: 1475 16 

Conflict of Interest Statement: The authors declare no competing financial interests. 17 

Acknowledgements: The study was funded by the European Research Council ERC 18 
Consolidator Grant SENSOCOM (647051) and the Max Planck Society. 19 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2020. ; https://doi.org/10.1101/510164doi: bioRxiv preprint 

https://doi.org/10.1101/510164
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Abstract 20 

Recognising speech in background noise is a strenuous daily activity, yet most humans can 21 

master it. An explanation of how the human brain deals with such sensory uncertainty during 22 

speech recognition is to-date missing. Previous work has shown that recognition of speech 23 

without background noise involves modulation of the auditory thalamus (medial geniculate 24 

body, MGB): There are higher responses in left MGB for speech recognition tasks that require 25 

tracking of fast-varying stimulus properties in contrast to relatively constant stimulus 26 

properties (e.g., speaker identity tasks) despite the same stimulus input. Here we tested the 27 

hypotheses that (i) this task-dependent modulation for speech recognition increases in 28 

parallel with the sensory uncertainty in the speech signal, i.e., the amount of background 29 

noise and that (ii) this increase is present in the ventral MGB, which corresponds to the 30 

primary sensory part of the auditory thalamus. In accordance with our hypothesis, we 31 

show—by using ultra-high-resolution functional magnetic resonance imaging in human 32 

participants—that the task-dependent modulation of the left vMGB for speech is particularly 33 

strong when recognizing speech in noisy listening conditions in contrast to situations where 34 

the speech signal is clear. Exploratory analyses showed that this finding was specific to the 35 

left vMGB; it was not present in the right vMGB or the midbrain structure of the auditory 36 

pathway (left inferior colliculus, IC). The results imply that speech in noise recognition is 37 

supported by modifications at the level of the subcortical sensory pathway providing driving 38 

input to the auditory cortex.  39 

Significance Statement 40 
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Speech recognition in noisy environments is a challenging everyday task. One reason why 41 

humans can master this task is the recruitment of additional cognitive resources as reflected 42 

in recruitment of non-language cerebral cortex areas. Here, we show that also modulation in 43 

the primary sensory pathway is specifically involved in speech in noise recognition.  We 44 

found that the left primary sensory thalamus (ventral medial geniculate body, vMGB) is more 45 

involved when recognizing speech signals as opposed to a control task (speaker identity 46 

recognition) when heard in background noise vs. when the noise was absent. This finding 47 

implies that the brain optimises sensory processing in subcortical sensory pathway 48 

structures in a task-specific manner to deal with speech recognition in noisy environments.  49 

 50 

Author contributions: PGM: collected data, analysed data, interpreted results, wrote the 51 

manuscript, edited the manuscript. NT: conceptualised experiment, programmed 52 

experiment, edited the manuscript. KvK: conceptualised experiment, interpreted results, 53 

wrote the manuscript, edited the manuscript. 54 

1. Introduction 55 

Roaring engines, the hammering from a construction site, the chit-chat of many children in a 56 

classroom are just some examples of background noises which continuously accompany us. 57 

Nevertheless, humans have a remarkable ability to hear and understand the conversation 58 

partner, even under these severe listening conditions (Cherry, 1953) . 59 

 60 

Understanding speech in noise is a complex task that involves both sensory and cognitive 61 
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processes (Moore et al., 1985; Bregman, 1994; Best et al., 2007; Sayles and Winter, 2008; 62 

Shinn-Cunningham and Best, 2008; Song et al., 2010; Adank, 2012; Bronkhorst, 2015; Peelle, 63 

2018; Alavash et al., 2019). However, a more mechanistic explanation of why the human brain 64 

masters speech recognition in noise relatively well is missing. Such explanation could 65 

advance the understanding of difficulties with speech-in-noise perception in several clinical 66 

populations such as age-related hearing impairment (Schoof and Rosen, 2016), autism 67 

spectrum disorder (Alca ntara et al., 2004), auditory processing disorder (Iliadou et al., 2017), 68 

or developmental dyslexia (Chandrasekaran et al., 2009; Ziegler et al., 2009). Furthermore, a 69 

more mechanistic understanding of speech-in-noise recognition might also trigger new 70 

insight on why artificial speech recognition systems still have difficulties with noisy 71 

situations (Scharenborg, 2007; Gupta et al., 2016). 72 

 73 

One mechanistic account of brain function that attempts to explain how the human brain 74 

deals with uncertainty in the stimulus input is the Bayesian brain hypothesis. It assumes that 75 

the brain represents information probabilistically and uses an internal generative model and 76 

predictive coding for the most effective processing of sensory input (Knill and Pouget, 2004; 77 

Friston, 2005; Kiebel et al., 2008; Friston and Kiebel, 2009). Such type of processing has the 78 

potential to explain why the human brain is robust to sensory uncertainty, e.g., when 79 

recognising speech despite noise in the speech signal (Srinivasan et al., 1982; Knill and 80 

Pouget, 2004). Although predictive coding is often discussed in the context of cerebral cortex 81 

organization (Hesselmann et al., 2010; Shipp et al., 2013), it may also be a governing principle 82 

of the interactions between cerebral cortex and subcortical sensory pathway structures 83 
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(Mumford, 1992; von Kriegstein et al., 2008; Huang and Rao, 2011; Bastos et al., 2012; Adams 84 

et al., 2013; Seth and Friston, 2016).  85 

In humans, responses in the auditory sensory thalamus (medial geniculate body, MGB) are 86 

higher for speech tasks (that emphasise recognition of fast-varying speech properties) in 87 

contrast to control tasks (that require recognition of relatively constant properties of the 88 

speech signal, such as the speaker identity or the sound intensity level). This response 89 

difference holds even if the stimulus input is the same (von Kriegstein et al., 2008; Díaz et al., 90 

2012), indicating that the effect is dependent on the specific tasks. We will therefore call it 91 

task-dependent modulation in the following. The task-dependent modulation seems to be 92 

behaviourally relevant for speech recognition: performance level in auditory speech 93 

recognition positively correlates with the amount of task-dependent modulation in the MGB 94 

of the left hemisphere (von Kriegstein et al., 2008; Mihai et al., 2019). This behaviourally 95 

relevant task-dependent modulation was located in the ventral part of the MGB (vMGB), 96 

which is the primary subsection of the MGB (Mihai et al., 2019). These findings have been 97 

interpreted by extending the Bayesian brain hypothesis to cortico-subcortical interactions: 98 

cerebral cortex areas provide dynamic predictions about the incoming sensory input to the 99 

sensory thalamus to optimally encode the trajectory of the fast-varying and predictable 100 

speech input (von Kriegstein et al., 2008; Díaz et al., 2012). If this is the case, then the task-101 

dependent modulation of the vMGB should be especially strong when the fast dynamics of 102 

speech have to be recognised in conditions with high sensory uncertainty (Yu and Dayan, 103 

2005; Feldman and Friston, 2010; Díaz et al., 2012; Van de Cruys et al., 2014), for example 104 

when the incoming signal is disturbed (Yu and Dayan, 2005; Friston and Kiebel, 2009; 105 
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Feldman and Friston, 2010; Gordon et al., 2017). In the present study we tested this 106 

hypothesis.  107 

2. Materials and Methods 108 

2.1 Study overview 109 

Presentation of speech in background noise is an ecologically valid way to increase 110 

uncertainty about the speech input (Chandrasekaran and Kraus, 2010a). We, therefore, 111 

tested, whether the task-dependent modulation of the left vMGB for speech is higher when 112 

the speech stimuli are embedded in a noisy as opposed to a clear background. We used ultra-113 

high field functional magnetic resonance imaging (fMRI) at 7 T and a design that has been 114 

shown to elicit task-dependent modulation of the MGB in previous studies (von Kriegstein et 115 

al., 2008; Díaz et al., 2012). We complemented the design by a noise factor: the speech stimuli 116 

(i.e., vowel-consonant-vowel syllables) were presented with and without background noise 117 

(Figure 1). The experiment was a 2 × 2 factorial design with the factors task (speech task, 118 

speaker task) and noise (noise, clear). To test our hypothesis, we performed a task × noise 119 

interaction analysis with the prediction that the task-dependent modulation of the left vMGB 120 

increases with decreasing signal-to-noise ratios (i.e., increasing uncertainty about the speech 121 

sounds). We focused on the left vMGB for two reasons. First, its response showed behavioural 122 

relevance for speech recognition in previous studies (von Kriegstein et al., 2008; Mihai et al., 123 

2019). Second, developmental dyslexia – a condition that is often associated with speech-in-124 

noise recognition difficulties (Chandrasekaran et al., 2009; Ziegler et al., 2009) – has been 125 

associated with reduced task-dependent modulation of the left MGB in comparison to 126 
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controls (Díaz et al., 2012) as well as decreased connections between left MGB and left 127 

auditory association cortex (Tschentscher et al., 2019).  128 

In addition to testing our main hypothesis, the design also allowed the exploration of the role 129 

of the inferior colliculus (IC) – the midbrain station of the auditory sensory pathway – in 130 

speech-in-noise recognition. 131 

2.2 Participants 132 

The Ethics committee of the Medical Faculty, University of Leipzig, Germany, approved the 133 

study. We recruited 17 participants (mean age 27.7, SD 2.5 years, 10 female; 15 of these 134 

participated in a previous study: Mihai et al., 2019) from the database of the Max Planck 135 

Institute for Human Cognitive and Brain Sciences (MPI-CBS), Leipzig, Germany. The sample 136 

size was based on the amount of data acquisition time allocated by the MPI-CBS directorial 137 

board to the study. The participants were right-handed (as assessed by the Edinburgh 138 

Handedness Inventory (Oldfield 1971)), and native German speakers. Participants provided 139 

written informed consent. None of the participants reported a history of psychiatric or 140 

neurological disorders, hearing difficulties, or current use of psychoactive medications. 141 

Normal hearing abilities were confirmed with pure tone audiometry (250 Hz to 8000 Hz; 142 

Madsen Micromate 304, GN Otometrics, Denmark) with a threshold equal to and below 25 143 

dB). To exclude possible undiagnosed developmental dyslexics, we tested the participant’s 144 

reading speed and reading comprehension using the German LGVT: 6-12 test (Schneider et 145 

al., 2007). The cut-off for both reading scores was set to those levels mentioned in the test 146 

instructions as the “lower average and above” performance range (i.e., 26% - 100% of the 147 

calculated population distribution). None of the participants performed below the cut off 148 
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performance (mean 68.7%, SD 20.6%, lowest mean score: 36%). In addition, participants 149 

were tested on rapid automatized naming (RAN) of letters, numbers, and objects (Denckla 150 

and Rudel, 1976). The time required to name letters and numbers predicts reading ability 151 

and is longer in developmental dyslexics compared with typical readers, whereas the time to 152 

name objects is not a reliable predictor of reading ability in adults (Semrud-Clikeman et al., 153 

2000). Participants scored well within the range of control participants for letters (mean 154 

17.25, SD 2.52 s), numbers (mean 16.79, SD 2.63 s), and objects (mean 29.65, SD 4.47 s), 155 

based on results from a previous study (Díaz et al., 2012, letters: 16.09, SD 2.60; numbers: 156 

16.49, SD 2.35; objects: 30.84, SD 5.85; age of participants was also comparable 23.5, SD 2.8 157 

years ). Furthermore, none of the participants exhibited a clinically relevant number of traits 158 

associated with autism spectrum disorder as assessed by the Autism Spectrum Quotient [AQ; 159 

mean: 15.9, SD 4.1; cut-off: 32-50; (Baron-Cohen et al., 2001)]. We tested AQ as autism can 160 

be associated with difficulties in speech-in-noise perception (Alcántara et al., 2004; Groen et 161 

al., 2009). Participants received monetary compensation for participating in the study. 162 

2.2 Stimuli 163 

We recorded 79 different vowel-consonant-vowel (VCV) syllables with an average duration 164 

of 784 ms, SD 67 ms. These recordings constitute a subsample from those used in (Mihai et 165 

al., 2019). These were spoken by one male voice (age 29 years), recorded with a video camera 166 

(Canon Legria HFS10, Canon, Japan) and a Røde NTG-1 microphone (Røde Microphones, 167 

Silverwater, NSW, Australia) connected to a pre-amplifier (TubeMP Project Series, Applied 168 

Research and Technology, Rochester, NY, USA) in a sound-attenuated room. The sampling 169 

rate was 48 kHz at 16 bit. Auditory stimuli were cut and flanked by Hamming windows of 15 170 
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ms at the beginning and end, converted to mono, and root-mean-square equalised using 171 

Python 3.6 (Python Software Foundation, www.python.org). The 79 auditory files were 172 

resynthesized with TANDEM-STRAIGHT (Banno et al., 2007) to create three different 173 

speakers: 79 auditory files with a vocal tract length (VTL) of 17 cm and glottal pulse rate 174 

(GPR) of 100 Hz, 79 with VTL of 16 cm and GPR of 150 Hz, and 79 with VTL of 14 cm and GPR 175 

of 300 Hz. This procedure resulted in 237 different auditory stimuli. The parameter choice 176 

(VTL and GPR) was motivated by the fact that a VTL difference of 25% and a GPR difference 177 

of 45% suffices for listeners to hear different speaker identities (Gaudrain et al., 2009a; 178 

Kreitewolf et al., 2014). Additionally, we conducted pilot experiments (12 pilot participants 179 

which did not participate in the main experiment) in order to fine-tune the combination of 180 

VTL and GPR that resulted in a balanced behavioural accuracy score between the speech and 181 

speaker tasks. The pilot experiments were conducted outside the MRI-machine, but included 182 

continuous recordings of MRI-gradient noise to simulate a real MRI-environment. 183 

We embedded the 237 stimuli in background noise to create the stimuli for the condition 184 

with background noise. The background noise consisted of normally distributed random 185 

(white) noise filtered with a speech-shaped envelope. We calculated the envelope from the 186 

sum of all VCV stimuli presented in the experiment. We used speech-shaped noise as it has a 187 

stronger masking effect than stationary random non-speech noise (Carhart et al., 1975). 188 

Before each experimental run, the noise was computed and added to the stimuli included in 189 

the run with a signal-to-noise ratio (SNR) of 2 dB. The SNR choice was based on a pilot study 190 

that showed a performance decrease of at least 5% but no greater than 15% between the 191 

clear and noise condition. In the pilot study, we started at an SNR of -10 dB and increased this 192 
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value until we converged on an SNR of 2 dB. Calculations were performed in Matlab 8.6 (The 193 

Mathworks Inc., Natick, MA, USA) on Ubuntu Linux 16.04 (Canonical Ltd., London, UK). 194 

2.3 Procedure 195 

We conceived the experiment as a 2 × 2 factorial design. The first factor was task (speech, 196 

speaker) similar to previous experiments that reported task-dependent modulation of the 197 

MGB (von Kriegstein et al., 2008; Díaz et al., 2012; Mihai et al., 2019). The second factor was 198 

background noise (clear, noise, Figure 1). Participants listened to blocks of auditory VCV 199 

syllables and were asked to perform the two types of tasks: the speech task and the speaker 200 

task. In the speech task, participants reported via button press whether the current syllable 201 

was different from the previous one (1-back task). In the speaker task, participants reported 202 

via button press whether the current speaker was different from the previous one. The blocks 203 

had either syllables with background noise (noise condition) or without background noise 204 

(clear condition).  205 
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 206 

Figure 1. Design and trial structure of the experiment. In the speech task, listeners performed a 207 
one-back syllable task. They pressed a button whenever there was a change in syllable in 208 
contrast to the immediately preceding one, independent of speaker change. The speaker task 209 
used precisely the same stimulus material and trial structure. The task was to press a button 210 
when there was a change in speaker identity in contrast to the immediately preceding one, 211 
independent of syllable change. The speakers’ voices were resynthesized from the recordings of 212 
one speaker’s voice to only differ in constant speaker individuating features (i.e., the vocal tract 213 
length and the fundamental frequency of the voice). This ensured that the speaker task could 214 
not be done on dynamic speaker individuating features (e.g., idiosyncrasies in pronunciations of 215 
phonemes). An initial task instruction screen informed participants about which task to 216 
perform. Participants heard stimuli either with concomitant speech-shaped noise (noise 217 
condition) or without background noise (clear condition). Thus the experiment had four 218 
conditions: speech task/noise, speaker task/noise, speech task/clear, speaker task/clear. 219 
Stimuli in the speech and speaker tasks were precisely identical.  220 

 221 

Task instructions were presented for two seconds before each block and consisted of white 222 

written words on a black background (German words “Silbe” for syllable indicating the 223 

speech task, and “Person” for person indicating the speaker task). After the instruction, the 224 

block of syllables started (Figure 1). Each block contained twelve stimuli. Each stimulus had 225 

a duration of approximately 784 ms, and the stimulus presentation was followed by 400 ms 226 
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of silence. Within one block both syllables and speakers changed at least twice, with a 227 

theoretical maximum of nine changes. The theoretical maximum was derived from random 228 

sampling of seven instances from three possible change types: no change, speech change, 229 

speaker change, and change of speech and speaker. The average length of a block was 15.80 230 

seconds, SD 0.52 seconds. The presentation of the stimuli was randomized and balanced with 231 

regard to the amount of speaker identity and syllable changes within a block. The same block 232 

containing speaker identity changes also contained syllable changes. These blocks were 233 

repeated, once with the instruction to perform the speaker identity task and the other time 234 

to perform the speech task. This procedure ensured that subjects heard exactly the same 235 

stimuli while performing the two different tasks. 236 

The experiment was divided into four runs. The first three runs had a duration of 12:56 min 237 

and included 40 blocks: 10 for each of the four conditions (speech task/noise, speaker 238 

task/noise, speech task/clear, speaker task/clear). A fourth run had a duration of 6:32 min 239 

and included 20 blocks (5 for each of the four conditions). For two participants, only the first 240 

three runs were recorded due to time constraints. Participants could rest for one minute 241 

between runs. 242 

 243 

Participants were familiarised with the three speakers’ voices to ensure that they could 244 

perform the speaker-identity task of the main experiment. The speaker familiarisation took 245 

place 30 minutes before the fMRI experiment. It consisted of a presentation of the speakers 246 

and a test phase. In the presentation phase, the speakers were presented in six blocks, each 247 

containing nine pseudo-randomly chosen VCV stimuli from the 237 total. Each block 248 
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contained one speaker-identity only. Participants were alerted to the onset of a new speaker 249 

identity block by the presentation of white words on a black screen indicating speaker 1, 250 

speaker 2, or speaker 3. Participants listened to the voices with the instruction to memorise 251 

the speaker’s voice. In the following test phase participants were presented with four blocks 252 

of nine trials that each contained randomly chosen syllable pairs spoken by the three 253 

speakers. The syllable pairs could be from the same or a different speaker. We asked 254 

participants to indicate whether the speakers of the two syllables were the same by pressing 255 

keypad buttons “1” for yes and “2” for no. Participants received visual feedback for correct 256 

(the green flashing German word for correct: “Richtig”) and incorrect (the red flashing 257 

German word for incorrect: “Falsch”) answers. The speaker familiarisation consisted of three 258 

2:50 min runs (each run contained one presentation and one test phase). If participants 259 

scored below 80% on the last run, they performed an additional run until they scored above 260 

80%. All participants exceeded the 80% cut-off value. 261 

The experiments were programmed in the Matlab Psychophysics Toolbox [Psychtoolbox-262 

3, www.psychtoolbox.com (Brainard, 1997)] running on Matlab 8.6 (The Mathworks Inc., 263 

Natick, MA, USA) on Ubuntu Linux 16.04 (Canonical Ltd., London, UK). The sound was 264 

delivered through a MrConfon amplifier and headphones (manufactured 2008; MrConfon 265 

GmbH, Magdeburg, Germany). 266 

2.4 Data Acquisition and Processing 267 

MRI data were acquired using a Siemens Magnetom 7 T scanner (Siemens AG, Erlangen, 268 

Germany) with an 8-channel head coil. We convened on the 8-channel coil, due to its 269 

spaciousness which allowed the use of higher quality headphones (manufactured 2008; 270 
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MrConfon GmbH, Magdeburg, Germany). Functional MRI data were acquired using echo-271 

planar imaging (EPI) sequences. We used partial brain coverage with 30 slices. The volume 272 

was oriented in parallel to the superior temporal gyrus such that the slices encompassed the 273 

MGB, the inferior colliculi (IC), and the Heschl’s gyrus. 274 

The EPI sequences had the following acquisition parameters: TR = 1600 ms, TE = 19 ms, flip 275 

angle 65°, GRAPPA (Griswold et al., 2002) with acceleration factor 2, 33% phase 276 

oversampling, matrix size 88, field of view (FoV) of 132 mm x 132 mm, phase partial Fourier 277 

6/8, voxel size 1.5 mm isotropic resolution, interleaved acquisition, anterior to posterior 278 

phase-encode direction. The first three runs consisted of 485 volumes (12:56 min), and the 279 

fourth run consisted of 245 volumes (6:32 min). During functional MRI data acquisition, we 280 

also acquired physiological values (heart rate, and respiration rate) using a BIOPAC MP150 281 

system (BIOPAC Systems Inc., Goleta, CA, USA).  282 

To address geometric distortions in EPI images we recorded gradient echo based field maps 283 

which had the following acquisition parameters: TR = 1500 ms, TE1 = 6.00 ms, TE2 = 7.02 284 

ms, flip angle 60°, 0% phase oversampling, matrix size 100, FoV 220 mm x 220 mm, phase 285 

partial Fourier off, voxel size 2.2 mm isotropic resolution, interleaved acquisition, anterior to 286 

posterior phase-encode direction. Resulting images from field map recordings were two 287 

magnitude images and one phase difference image. 288 

Structural images were recorded using an MP2RAGE (Marques et al., 2010) T1 protocol: 700 289 

µm isotropic resolution, TE = 2.45ms, TR = 5000 ms, TI1 = 900 ms, TI2 = 2750 ms, flip angle 290 

1 = 5°, flip angle 2 = 3°, FoV 224 mm × 224 mm, GRAPPA acceleration factor 2, duration 10:57 291 

min. 292 
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2.5 Behavioural Data Analysis 293 

Button presses (hits, misses) were binomially distributed, and were thus modeled using a 294 

binomial logistic regression which predicts the probability of correct button presses based 295 

on four independent variables (speech task/noise, speaker task/noise, speech task/clear, 296 

speaker task/clear) in a Bayesian framework (McElreath, 2018). 297 

To pool over participants and runs we modelled the correlation between intercepts and 298 

slopes. For the model implementation and data analysis, we used PyMC3 3.5 (Salvatier et al., 299 

2016), a probabilistic programming package for Python 3.6. We sampled with a No-U-Turn 300 

Sampler (Hoffman and Gelman, 2014) with four parallel chains. Per chain, we had 5,000 301 

samples with 5,000 as warm-up. The data entering the model was mean centered by 302 

subtracting the mean and dividing by two standard deviations (Gelman and Hill, 2006). This 303 

transformation does not change the fit of the linear model and the coefficients are 304 

interpretable in comparison to the mean of the data. The reason behind this transformation 305 

is the faster and more accurate convergence of the Markov Chain sampling (McElreath, 306 

2018).  307 

There were the following effects of interest: main effects (clear - noise, speech task - speaker 308 

task), the interaction (speech task/ noise - speaker task/ noise) - (speech task/ clear - 309 

speaker task/ clear), simple main effects (speech task/ noise - speaker task/ noise, speech 310 

task/ clear - speaker task/ clear). For the effects of interest, we calculated means from the 311 

posterior distributions and 95% highest posterior density intervals (HDP). The HPD is the 312 

probability that the mean lies within the interval (Gelman et al., 2013; McElreath, 2018), this 313 

means that we are 95% sure the mean lies within the specified interval bounds. If the 314 
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posterior probability distribution of odds ratios does not strongly overlap one (i.e., the HPD 315 

excludes one), then it is assumed that there is a detectable difference between 316 

conditions (Bunce and McElreath, 2017; McElreath, 2018). 317 

 318 

The predictors included in the behavioural data model were: task (xS:1 = speech task, 0 = 319 

speaker task), and background noise (xN: 1 = noise, 0 = clear). We also included the two-way 320 

interaction of task and noise condition. Because data were collected across participants and 321 

runs, we included random effects for both of these in the logistic model. Furthermore, since 322 

~11% of the data exhibited ceiling effects (i.e., some participants scored at the highest 323 

possible level) which would result in underestimated means and standard deviations (Uttl, 324 

2005), we treated these data as right-censored and modeled them using a Potential 325 

class (Lauritzen et al., 1990; Jordan, 1998) as implemented in PyMC3. This method integrates 326 

the censored values using the log of the complementary normal cumulative distribution 327 

function (Gelman et al., 2013; McElreath, 2018). In essence, we sampled twice, once for the 328 

observed values without the censored data points, and once for the censored values only. The 329 

model is described below. 330 

 331 

 332 

𝐿𝑖,𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑝𝑖,𝑗) 333 

𝑝𝑖,𝑗 = {
𝑝𝑖,𝑗

∗ , for 𝑝𝑖,𝑗
∗ < 𝑐

𝑐, for 𝑝𝑖,𝑗
∗ ≥ 𝑐

 334 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗
∗ ) = 𝐴𝑖,𝑗 + 𝐵𝑆,𝑖,𝑗𝑥𝑆 + 𝐵𝑁,𝑖,𝑗𝑥𝑁 + 𝐵𝑆𝑁,𝑖,𝑗𝑥𝑆𝑥𝑁 , for 𝑖 = 1, . . . , 𝐼; 𝑗 = 1, . . . , 𝐽 335 
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𝐴𝑖,𝑗 = 𝛼 + 𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛼𝑟𝑢𝑛[𝑗] 336 

𝐵𝑆,𝑖,𝑗 = 𝛽𝑆 + 𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑆,𝑟𝑢𝑛[𝑗] 337 

𝐵𝑁,𝑖,𝑗 = 𝛽𝑁 + 𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑁,𝑟𝑢𝑛[𝑗] 338 

𝐵𝑆𝑁,𝑖,𝑗 = 𝛽𝑆𝑁 + 𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] + 𝛽𝑆𝑁,𝑟𝑢𝑛[𝑗] 339 

[
 
 
 

𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
 
 
 

∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 340 

[

𝛼𝑟𝑢𝑛

𝛽𝑆,𝑟𝑢𝑛

𝛽𝑁,𝑟𝑢𝑛

𝛽𝑆𝑁,𝑟𝑢𝑛

] ∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆𝑟𝑢𝑛) 341 

𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅𝑠𝑢𝑏𝑗𝑒𝑐𝑡

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 342 

𝑆𝑟𝑢𝑛 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅𝑟𝑢𝑛

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 343 

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 344 

𝛽𝑆 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 345 

𝛽𝑁 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 346 

𝛽𝑆𝑁 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,5) 347 

(𝜎𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡, 𝜎𝑟𝑢𝑛) ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 348 
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𝜎𝑐𝑜𝑟𝑟,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 349 

𝜎𝑐𝑜𝑟𝑟,𝑟𝑢𝑛 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 350 

𝑅𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 351 

𝑅𝑟𝑢𝑛 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟,𝑟𝑢𝑛) 352 

I represents the participants and J the runs. The model is compartmentalized into sub-models 353 

for the intercepts and slopes. 𝐴𝑖,𝑗  is the sub-model for the intercept for observations 𝑖, 𝑗. 354 

Similarly, 𝐵𝑆,𝑖,𝑗,  𝐵𝑁,𝑖,𝑗 , and 𝐵𝑆𝑁,𝑖,𝑗 are the sub-models for the speech task – speaker task slope, 355 

clear-noise slope and the interaction slope, respectively; 𝑆𝑠𝑢𝑏𝑗𝑒𝑐𝑡/𝑆𝑟𝑢𝑛 are the covariance 356 

matrices for participant/run. 𝑅𝑠𝑢𝑏𝑗𝑒𝑐𝑡/𝑅𝑟𝑢𝑛 are the priors for the correlation matrices 357 

modelled as LKJ probability densities (Lewandowski et al., 2009). Weakly informative priors 358 

for the intercept ( 𝛼) and additional coefficients (e.g., 𝛽𝑆), random effects for participant and 359 

run (𝛽𝑆,𝑠𝑢𝑏𝑗𝑒𝑐𝑡,  𝛽𝑆,𝑟𝑢𝑛), and multivariate priors for participants and runs identify the model 360 

by constraining the position of 𝑝𝑖,𝑗 to reasonable values. Here we used normal distributions 361 

as priors. Furthermore, 𝑝𝑖,𝑗 is defined as the ramp function equal to the proportion of hits 362 

when these are known and below the ceiling (c), and set to the ceiling if they are equal to or 363 

greater than the ceiling c. 364 

We additionally analyzed the reaction times, similarly to the model described above but 365 

without consideration of ceiling effects as they are non-existent. Posterior distributions were 366 

computed for each condition, and we computed main effects and the interaction between 367 

task and noise. If the posterior probability distribution of the difference scores and the 368 
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interaction does not strongly overlap zero  (i.e., the HPD excludes zero), then it is assumed 369 

that there is a detectable difference (Bunce and McElreath, 2017; McElreath, 2018). 370 

 371 

2.6 Functional MRI Data Analysis 372 

2.6.1 Preprocessing of fMRI data 373 

The MP2RAGE images were first segmented using SPM’s segment function (SPM 12, version 374 

12.6906, Wellcome Trust Centre for Human Neuroimaging, UCL, UK, 375 

http://www.fil.ion.ucl.ac.uk/spm) running on Matlab 8.6 (The Mathworks Inc., Natick, MA, 376 

USA) in Ubuntu Linux 16.04 (Canonical Ltd., London, UK). The resulting grey and white 377 

matter segmentations were summed and binarised to remove voxels that contain air, scalp, 378 

skull and cerebrospinal fluid from structural images using the ImCalc function of SPM. 379 

We used the template image created for a previous study (Mihai et al., 2019) using structural 380 

MP2RAGE images from the 28 participants of that study. We chose this template since 15 381 

participants in the current study are included in this image, and the vMGB mask (described 382 

below) is in the same space as the template image. The choice of this common template 383 

reduces warping artefacts, which would be introduced with a different template, as both the 384 

vMGB mask and the functional data of the present study would need to be warped to a 385 

common space.  The template was created and registered to MNI space with ANTs (Avants et 386 

al., 2008) and the MNI152 template provided by FSL 5.0.8 (Smith et al., 2004). All MP2RAGE 387 

images were preprocessed with Freesurfer (Fischl et al., 2004; Han and Fischl, 2007) using 388 
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the recon-all command to obtain boundaries between grey and white matter, which were 389 

later used in the functional to structural registration step. 390 

Preprocessing and statistical analyses pipelines were coded in nipype 1.1.2 (Gorgolewski et 391 

al., 2011). Head motion and susceptibility distortion by movement interaction of functional 392 

runs were corrected using the Realign and Unwarp method (Andersson et al., 2001) in SPM 393 

12. This step also makes use of a voxel displacement map (VDM), which addresses the 394 

problem of geometric distortions in EPI caused by magnetic field inhomogeneity. The VDM 395 

was calculated using field map recordings, which provided the absolute value and the phase 396 

difference image files, using the FieldMap Toolbox (Jezzard and Balaban, 1995) of SPM 12. 397 

Outlier runs were detected using ArtifactDetect (composite threshold of translation and 398 

rotation: 1; intensity Z-threshold: 3; global threshold: 8; 399 

https://www.nitrc.org/projects/artifact_detect/). Coregistration matrices for realigned 400 

functional runs per participant were computed based on each participant’s structural image 401 

using Freesurfer’s BBregister function (register mean EPI image to T1). We used a whole-402 

brain EPI volume as an intermediate file in the coregistration step to avoid registration 403 

problems due to the limited FoV of the functional runs. Warping using coregistration 404 

matrices (after conversion to the ITK coordinate system) and resampling to 1 mm isovoxel 405 

was performed using ANTs. Before model creation, we smoothed the data in SPM12 using a 406 

1 mm kernel at full-width half-maximum. 407 

2.6.2  Physiological data 408 

Physiological data (heart rate and respiration rate) were processed by the PhysIO Toolbox 409 

(Kasper et al., 2017) to obtain Fourier expansions of each, in order to enter these into the 410 
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design matrix (see section 2.6.3 Testing our hypothesis in the left vMGB). Since heartbeats 411 

and respiration result in undesired cortical and subcortical artefacts, regressing these out 412 

increases the specificity of fMRI responses to the task of interest (Kasper et al., 2017). These 413 

artefacts occur in abundance around the thalamus (Kasper et al., 2017). 414 

2.6.3 Testing our hypothesis in the left vMGB 415 

Models were set up in SPM 12 using the native space data for each participant. We modelled 416 

five conditions of interest: speech task/noise, speaker task/noise, speech task/clear, speaker 417 

task/clear, and task instruction. Onset times and durations were used to create boxcar 418 

functions, which were convolved with the hemodynamic response function (HRF) provided 419 

by SPM 12. The design matrix also included the following nuisance regressors: three cardiac, 420 

four respiratory, and a cardiac × respiratory interaction regressor. We additionally entered 421 

the outlier regressors from the ArtifactDetect step. 422 

Parameter estimates were computed for each condition at the first level using restricted 423 

maximum likelihood (REML) as implemented in SPM 12. Parameter estimates for each of the 424 

four conditions of interest (speech task/noise, speaker task/noise, speech task/clear, 425 

speaker task/clear) were registered to the MNI structural template using a two-step 426 

registration in ANTs. First, a quick registration was performed on the whole head using rigid, 427 

affine and diffeomorphic transformations (using Symmetric Normalization, SyN), and the 428 

mutual information similarity metric. Second, the high-quality registration was confined to  429 
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 430 

Figure 2. Location of the left MGB masks. (A) The mean structural image across participants (n 431 

= 33) in MNI space. The red squares denote the approximate location of the left MGB and 432 

encompass the zoomed in view in B. (B) Closeup of the left vMGB (yellow). The tonotopic 433 

gradient two is shown in cyan. Panels correspond to sagittal, coronal, and axial slices (P: 434 

posterior, A: anterior, S: superior, I: inferior, L: left, R: right). 435 

the volume that was covered by the 30 slices of the EPI images. These volumes include the 436 

IC, MGB, and primary and secondary auditory cortices. This step used affine and SyN 437 

transformations and mean squares and neighbourhood cross-correlation similarity 438 
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measures. We performed the registration to MNI space by linearly interpolating the contrast 439 

images using the composite transforms from the high-quality registration. 440 

We extracted parameter estimates for each of the four conditions of interest per participant, 441 

averaged over all voxels from the region of interest, i.e., the left vMGB. To locate the left vMGB, 442 

we used the mask from (Mihai et al., 2019), which included 15 of the 17 participants of the 443 

present study (Figure 2).  444 

We analysed the extracted parameter estimates in a Bayesian framework (McElreath, 2018). 445 

The data entering the model was mean centered by subtracting the mean and dividing by two 446 

standard deviations (Gelman and Hill, 2006). This transformation does not change the fit of 447 

the linear model and the coefficients are interpretable in comparison to the mean of the data. 448 

The reason behind this transformation is the faster and more accurate convergence of the 449 

Markov Chain sampling (McElreath, 2018). The model was implemented in PyMC3 with a No-450 

U-Turn Sampler with four parallel chains. Per chain, we sampled posterior distributions 451 

which had 5000 samples with 5000 as warm-up. The predictors included in the model were: 452 

task (xS: 1 = speech task, 0 = speaker task), and background noise (xN: 1 = noise, 0 = clear). 453 

We also included the two-way interaction of task and noise condition. Because data were 454 

collected across participants, it was reasonable to include random effects. To pool over 455 

participants, we modelled the correlation between intercepts and slopes over participants. 456 

The interaction model is described below. 457 

 458 

 459 

𝐿𝑖 ∼ 𝑇(𝜇𝑖, 𝜈, 𝜆) 460 
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𝜇𝑖 = 𝐴𝑖 + 𝐵𝑆,𝑖𝑥𝑆 + 𝐵𝑁,𝑖𝑥𝑁 + 𝐵𝑆𝑁,𝑖𝑥𝑆𝑥𝑁 , for 𝑖 = 1, . . . , 𝐼 461 

𝐴𝑖 = 𝛼 + 𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 462 

𝐵𝑆,𝑖 = 𝛽𝑆 + 𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 463 

𝐵𝑁,𝑖 = 𝛽𝑁 + 𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 464 

𝐵𝑆𝑁,𝑖 = 𝛽𝑆𝑁 + 𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡[𝑖] 465 

[
 
 
 

𝛼𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡

𝛽𝑆𝑁,𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡]
 
 
 

∼ 𝑀𝑉𝑁𝑜𝑟𝑚𝑎𝑙 ([

𝛼
𝛽𝑆

𝛽𝑁

𝛽𝑆𝑁

] , 𝑆) 466 

𝑆 =

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

𝑅

[
 
 
 
𝜎𝛼 0 0 0
0 𝜎𝛽𝑆

0 0

0 0 𝜎𝛽𝑁
0

0 0 0 𝜎𝛽𝑆𝑁]
 
 
 

 467 

𝛼 ∼ 𝑇(0,1,3) 468 

𝛽𝑆 ∼ 𝑇(0,1,3) 469 

𝛽𝑁 ∼ 𝑇(0,1,3) 470 

𝛽𝑆𝑁 ∼ 𝑇(0,1,3) 471 

(𝜎𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 472 

𝜎𝑐𝑜𝑟𝑟 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(1) 473 

𝑅 ∼ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(4, 𝜎𝑐𝑜𝑟𝑟) 474 

𝜈 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(1/29) + 1 475 
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𝜎 ∼ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(2) 476 

𝜆 = 𝜎−2 477 

I represents the participants. The model is compartmentalized into sub-models for the 478 

intercepts and slopes. 𝐴𝑖  is the sub-model for the intercept for observations 𝑖. 479 

Similarly, 𝐵𝑆,𝑖,  𝐵𝑁,𝑖, and 𝐵𝑆𝑁,𝑖 are the sub-models for the speech task -speaker task slope, 480 

clear-noise slope and the interaction slope, respectively; 𝑆 is the covariance matrix and 𝑅 is 481 

the prior for the correlation matrix modelled as an LKJ probability density (Lewandowski et 482 

al., 2009). Weakly informative priors for the intercept ( 𝛼) and additional coefficients 483 

(e.g., 𝛽𝑆), random effects for participant (𝛽𝑆,𝑠𝑢𝑏𝑗𝑒𝑐𝑡), and multivariate priors for participants 484 

identify the model by constraining the position of 𝜇𝑖 to reasonable values.  Here we used 485 

Student’s-T distributions as priors. 486 

From the model output, we calculated posterior distributions for each condition of interest 487 

(speech task/noise, speaker task/ noise, speech task/clear, speaker task/clear). Posterior 488 

distributions, in comparison to point estimates, have the advantage of quantifying 489 

uncertainty about each parameter. We summarised each posterior distribution using the 490 

mean as a point estimate (posterior mean) together with a 95% highest posterior density 491 

interval (HPD). The HPD is the probability that the mean lies within the interval (Gelman et 492 

al., 2013; McElreath, 2018), e.g., we are 95% sure the mean lies within the specified interval 493 

bounds. We computed the following contrasts of interest: interaction (speech task/noise – 494 

speaker task/noise) – (speech task/clear – speaker task/clear); simple main effects (speech 495 

task/noise – speaker task/noise), (speech task/clear – speaker task/clear); main effect of 496 

task (speech task – speaker task).  Differences between conditions were converted to effect 497 
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sizes [Hedges g* (Hedges and Olkin, 1985)]. Hedges g*, like Cohen’s d (Cohen, 1988), is a 498 

population parameter that computes the difference in means between two variables 499 

normalised by the pooled standard deviation with the benefit of correcting for small sample 500 

sizes. Based on Cohen (1988), we interpreted effect sizes on a spectrum ranging from small 501 

(g* ≈ 0.2), to medium (g* ≈ 0.5), to large (g* ≈ 0.8), and beyond. If the HPD did not overlap 502 

zero, we considered this to be a robust effect (Bunce and McElreath, 2017; McElreath, 2018). 503 

However, we caution readers that if the HPD includes zero, it does not mean that the effect is 504 

missing (Amrhein et al., 2019). Instead, we quantify and interpret the magnitude (by the 505 

point estimate) and its uncertainty (by the HPD) provided by the data and our assumptions 506 

(Anderson, 2019). 507 

2.6.4 Analyses of the left inferior colliculus  508 

The study design and acquisition parameters also allowed us to explore the involvement of 509 

the IC in speech-in-noise recognition (for a rationale of these exploratory analyses see 510 

results, section 3.2.2). To analyse the task × noise interaction and the main effect of task in 511 

the bilateral IC we used the same analysis procedures as described for the left vMGB (see 512 

section 2.6.3 Testing our hypothesis in the left vMGB). As region of interest, we used the IC 513 

masks described in (Mihai et al., 2019) and limited them to the tonotopic parts of the IC, i.e., 514 

the central nucleus (Figure 3), which corresponds to the primary auditory pathway (Davis, 515 

2005). We will call it  516 
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 517 

Figure 3. Tonotopy gradients in the inferior colliculi. The colored parts show one slice of the 518 

mean tonotopic map across participants in the left and right IC in coronal view (S: superior, I: 519 

inferior, L: left, R: right). Individual tonotopies showed high varuability (results not shown). The 520 

mean tonotopy revealed a gradient from low frequencies in lateral locations to high frequencies 521 

in medial locations (Mihai et al., 2019). The maps were used to construct a region of interest for 522 

the central nucleus of the IC (cIC).  523 

 524 

cIC in the following. Furthermore, we performed a Pearson’s correlation calculation to 525 

analyse the correlation (speech - speaker task correlated with speech accuracy score) in the 526 

left cIC. The motivation for this test was based on similar correlations (i.e., speech – control 527 

task correlated with speech accuracy score) found in two previous experiments in  the left 528 

cIC (von Kriegstein et al., 2008 experiment 1 and 2) (for further details see results, section 529 

3.2.2). 530 
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3. Results 531 

3.1 Behavioural results 532 

3.1.1 Accuracy  533 

Participants performed well above chance level in all four conditions (> 82% correct; Table 534 

1; Figure 4A).  535 

Table 1. The proportion of hits for each of the four conditions in the experiment. HDP: highest 536 
posterior density interval. 537 

 Speech task/ 

Noise 

Speaker task/ 

Noise 

Speech task/ 

Clear 

Speaker task/ 

Clear 

Hit rate 

[95% HPD] 

0.82 [0.62, 0.95] 0.87 [0.74, 0.96] 0.92 [0.83, 0.98] 0.90 [0.81, 0.97] 

 538 

Performing the tasks with background noise was more difficult than the conditions without 539 

background noise for both the speech and the speaker task (Figure 4B, for details on 540 

statistics, see figure and legend). The rate of hits in the speech task was the same as in the 541 

speaker task (Figure 4C). There was a detectable interaction between task and noise (Figure 542 

4D/E), but simple main effects (i.e., speech task/noise - speaker task/noise (Figure 4F) and 543 

speech task/clear - speaker task/clear (Figure 4G)) were not present. We also observed 544 

ceiling effects in 11% of the cases, which were modeled accordingly (Materials and Methods, 545 

section 2.5).  546 

 547 
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 548 

 549 

 550 

 551 

Figure 4. Behavioural results. We performed a binomial logistic regression to compute the rate 552 

of hits and misses in each condition because behavioural data were binomially distributed. For 553 

this reason, results are reported in log odds and odds ratios. The results showed a detectable 554 

main effect of noise and interaction between noise and task. There was no main effect of task, 555 
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and no detectable simple main effects (speech task/noise - speaker task/noise; speech 556 

task/clear - speaker task/clear). A. Log odds of hits and misses for each condition. The grey dots 557 

indicate mean responses for individual participants, the red dots and accompanying numbers 558 

denote the posterior mean per condition, and the dark red lines demarcate the 95% highest 559 

posterior density interval (HPD). The rate of hits compared to misses is plotted on a log scale to 560 

allow for a linear representation. B. Mean odds ratio for the clear and noise conditions. The odds 561 

of hits in the clear condition were on average twice as high as in the noise condition (the mean 562 

odds ratio was 1.978 [1.076, 2.957]). The HPD excluded 1 and indicated a detectable difference 563 

between conditions: No difference would be assumed if the odds ratio was 1 (50/50 chance or 564 

1:1 ratio; Chen, 2003).  C. Mean odds ratio for the speech task - speaker task conditions. The 565 

mean odds ratio was ~1 indicating no difference between the speech and speaker task 566 

conditions. D. Visualization of the interaction (task × noise) as a comparison of slopes with 95% 567 

HPD. E. The ratio of odds ratios of the simple main effects speech task/noise - speaker task/noise 568 

and speech task/clear - speaker task/clear. The mean and 95% HPD was 0.557 [0.306, 0.844]. 569 

The HPD excluded 1 indicating an interaction effect. F. Mean odds ratio for the simple main 570 

effect speech task/noise - speaker task/noise. The rate of hits in the speech task/noise condition 571 

was on average ~1/3 lower than the rate of hits in the speaker task/noise condition; however, 572 

the HPD strongly overlapped 1 indicating that there was no difference between conditions. G. 573 

Mean odds ratio for the simple main effect speech task/clear - speaker task/clear. The rate of 574 

hits in the speech task/clear condition was on average ~1/3 higher than the rate of hits in the 575 

speaker task/clear condition; however, the HPD strongly overlapped 1 indicating that there was 576 

no detectable difference between conditions.   577 

 578 
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 579 

Figure 5. Reaction times results. A. Mean centered reaction times for each condition. The blue 580 

lines indicate individual average reaction times, the black line denotes the estimated reaction 581 

time per condition averaged over participants and runs, the grey shaded area denotes the 582 

95% highest posterior density interval (HPD). B. Mean reaction time difference between the 583 

Speech and Speaker task. On average, participants took 0.166 [0.114, 0.222] s longer to react 584 

in the Speech than to the Speaker task.  C. Mean reaction time difference between the Noise 585 

and the Clear condition. On average, participants took 0.059 [0.010, 0.113] s longer to react 586 

during the Noise vs. Clear condition. There was no task x noise interaction. 587 

3.1.2 Reaction times 588 

The reaction times analysis showed that for the speech task participants required on average 589 

0.166 [0.114, 0.222] s longer to react than for the speaker task (Figure 5). This effect is 590 

explained by the fact that VCV syllables had constant vowels and only the consonants 591 

changed within one block. Therefore, listeners had to wait for the consonant to detect a 592 

change. Whereas, for the speaker identitiy task the glottal pulse rate is the strongest cue, and 593 

is immediately decoded (Gaudrain et al., 2009b). The difference in reaction times between 594 

the noise and clear condition was on average 0.059 [0.010, 0.113] s. This difference showed 595 

that the noise condition required a minimal amount of extra processing time, yet this 596 
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difference was on average very small. Lastly, the task x noise interaction was on average 597 

0.022 s with the HPD overlapping zero ([-0.028, 0.076] s), which is not a meaningful effect. 598 

3.2 fMRI Results 599 

3.2.1 The task-dependent modulation of left vMGB was increased for recognizing 600 

speech-in-noise in contrast to the clear speech condition 601 

We localised the left vMGB based on an independent functional localizer (Figure 6B). 602 

Following our hypothesis, there was increased BOLD response for the task × noise interaction 603 

[(speech task/noise - speaker task/noise) - (speech task/clear - speaker task/clear)] in the 604 

left vMGB (Figure 6A/B). The interaction effect had a mean large effect size ranging across 605 

participants from a small effect to a very large effect (g*=2.549 [0.211, 5.066]; Figure 6C and 606 

D). The 95% HPD of the interaction effect excluded 0, indicating that this was a robust effect 607 

(Bunce and McElreath, 2017; McElreath, 2018). Simple main effect analyses showed that the 608 

direction of the interaction was as expected. The speech task/noise condition yielded higher 609 

left vMGB responses in contrast to the speaker task/noise condition, ranging from a medium 610 

to a very large effect across participants (g* = 1.104 [0.407, 1.798]; Figure 6E). Conversely, 611 

the left vMGB response difference between the speech task and speaker task in the clear 612 

condition had a small effect size (g* = 0.243 [-0.366, 0.854]; Figure 6F), ranging from a 613 

negative medium effect to a positive large effect across participants, and the HPD overlapped 614 

0. 615 

 616 
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 617 

Figure 6. fMRI results. A. The mean T1 structural image across participants in MNI space. Red 618 

rectangles denote the approximate location of the left MGB and encompass the zoomed-in views 619 

in B. Letters indicate anatomical terms of location: A, anterior; P, posterior; S, superior; I, 620 

inferior; L, left; R, right. Panels A and B share the same orientation across columns; i.e., from left 621 

to right: sagittal, coronal, and axial. B. Statistical parametric map of the interaction (yellow-622 

red colour code): (speech task/noise - speaker task/noise) - (speech task/clear - speaker 623 

task/clear) overlaid on the mean structural T1 image. Crosshairs point to MNI coordinate (-11, 624 

-28, -6). The white outline shows the boundary of the vMGB mask; the green boundary delineates 625 

the non-tonotopic parts of the MGB. C. Parameter estimates (mean-centred) within the vMGB 626 

mask. Open circles denote parameter estimates of the speech task condition; filled circles denote 627 

parameter estimates of the speaker task condition. Dashed black line: the relationship between 628 

noise condition (noise, clear) and parameter estimates in the speech task. Solid black line: the 629 
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relationship between noise condition (noise, clear) and parameter estimates in the speaker task. 630 

The shaded grey area shows the 95% HPD. D-F Bayesian Analysis of the parameter estimates. 631 

D. The effect size of the interaction: the effect size for the interaction effect was very large (2.549 632 

[0.211, 5.066]) and the HPD excluded zero (indicated by the dashed vertical line). E. Simple main 633 

effect: speech task/noise – speaker task/noise. The mean effect size was large (1.104 [0.407, 634 

1.798]). The HPD excluded zero. F. Simple main effect: speech task/clear – speaker task/clear. 635 

The mean effect size was small (0.243 [-0.366, 0.854]). The HPD contained zero. 636 

 637 

The results showed that the task-dependent modulation of the left vMGB for the speech task 638 

was increased when participants recognised speech − speaker identity in background noise 639 

in contrast to speech − speaker identity without background noise (task × noise interaction). 640 

This finding cannot be explained by differences in stimulus input as the same stimulus 641 

material was used for the speech and the speaker task. The results are also unlikely due to 642 

differences in task difficulty between conditions, as the behavioural results showed no 643 

detectable differences in performance for the simple main effects.  644 

We did not have a specific hypothesis on the right vMGB, as there is currently no indication 645 

that the task-dependent modulation in this region is behavioural relevant (von Kriegstein et 646 

al., 2008; Mihai et al., 2019) or dysfunctional in disorders associated with speech-in-noise 647 

processing difficulties (Díaz et al., 2012; Tschentscher et al., 2019). Exploring the 648 

interaction in the right vMGB revealed no interaction effect as the HPD strongly overlapped 649 

zero (g* = -0.544 [-3.093, 2.459]).  650 
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3.2.2 Exploratory analyses on the central nucleus of the inferior colliculus (cIC) 651 

In exploratory analyses, we investigated the bilateral cIC involvement during speech 652 

processing. The reason for these exploratory analyses were studies using auditory brainstem 653 

responses (ABR) during passive listening to speech sounds that have shown that the quality 654 

of speech sound representation (i.e., as measured by the frequency following response, FFR) 655 

explains inter-individual variability in speech-in-noise recognition abilities (Chandrasekaran 656 

et al., 2009; Song et al., 2010; Schoof and Rosen, 2016; Selinger et al., 2016). These findings 657 

indicated that there might be subcortical nuclei beyond the MGB that are involved in speech-658 

in-noise perception, potentially also sources in the auditory brainstem, particularly the IC 659 

(Chandrasekaran and Kraus, 2010b). Four previous fMRI experiments, however, have shown 660 

that there is no significant task-dependent modulation (i.e., higher BOLD responses for a 661 

speech in contrast to a control task on the same stimuli) of the inferior colliculus (von 662 

Kriegstein et al., 2008; Díaz et al., 2012; Mihai et al., 2019). Two of them showed a significant 663 

positive correlation between the amount of BOLD response difference between a speech and 664 

a control task in the left IC and the speech recognition performance across participants (von 665 

Kriegstein et al., 2008, experiment 1 and 2), but the others did not.  Thus the role of the IC in 666 

speech recognition and speech-in-noise recognition is to date unclear. In the present data, 667 

there was a small effect of task in the left cIC (speech - speaker, left g*=0.309 [-0.286, 0.902] 668 

and right g*= 0.126 [-0.393, 0.646], however, the HPD overlapped zero. The task × noise 669 

interaction contained no explanatory power (left: g*=0.049 [-0.103, 0.202], right: g*=-0.010 670 

[-0.136, 0.111]) and introduced overfitting. We, therefore, excluded it from the model, and 671 

the reported results were computed from the model without an interaction term. 672 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2020. ; https://doi.org/10.1101/510164doi: bioRxiv preprint 

https://doi.org/10.1101/510164
http://creativecommons.org/licenses/by-nc/4.0/


36 
 

The correlation between the task-dependent modulation (i.e., speech - speaker task contrast) 673 

and the speech recognition scores across participants in the left cIC was not significant in the 674 

current study (r=0.44, p=0.074, Figure 7).  675 

 676 

Figure 7. A Correlation analysis between the parameter estimates of the contrast Speech – 677 

Speaker task in the left cIC and the proportion of hits in the speech task. B Correlation analysis 678 

between the parameter estimates of the contrast speech/clear – speaker/clear task in the left 679 

cIC and the proportion of hits in the speech/clear task. Most data points are close to the ceiling 680 

on the right of the behavioural score. For both correlations, the degrees of freedom were 16. 681 

 682 

 683 
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4. Discussion 684 

We showed that the task-dependent modulation for speech of the left hemispheric primary 685 

sensory thalamus (vMGB) is particularly strong when recognising speech in noisy listening 686 

conditions in contrast to conditions where the speech signal is clear. This finding confirmed 687 

our a priori hypothesis which was based on explaining speech-in-noise recognition and 688 

sensory thalamus function within a Bayesian brain framework. Exploratory analyses showed 689 

that there was no influence of noise on the responses for the contrast between speech and 690 

speaker task in the right vMGB, or in the auditory midbrain, i.e., the central nuclei of the 691 

inferior colliculi (cIC).  692 

Bayesian approaches to brain function propose that the brain uses internal dynamic models 693 

to predict the trajectory of the sensory input (Knill and Pouget, 2004; Friston, 2005; Kiebel 694 

et al., 2008; Friston and Kiebel, 2009).  Thus, slower dynamics of the internal dynamic model 695 

(e.g., syllable and word representations) could be encoded by auditory cerebral cortex 696 

areas (Giraud et al., 2000; Davis and Johnsrude, 2007; Hickok and Poeppel, 2007; Wang et al., 697 

2008; Mattys et al., 2012; Price, 2012), and provide predictions about the faster dynamics of 698 

the input arriving at lower levels of the anatomic hierarchy (Kiebel et al., 2008; von 699 

Kriegstein et al., 2008). In this view, dynamic predictions modulate the response properties 700 

of the first-order sensory thalamus to optimise the early stages of speech recognition (Mihai 701 

et al., 2019). In speech processing, such a mechanism might be especially useful as the signal 702 

includes rapid dynamics, that are predictable (e.g., due to co-articulation or learned 703 

statistical regularities in words) (Saffran, 2003). In addition, speech often has to be computed 704 

online under conditions of (sensory) uncertainty. Uncertainty refers to the limiting reliability 705 
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of sensory information about the world (Knill and Pouget, 2004). Examples include the 706 

density of hair cells in the cochlea that limit frequency resolution, the neural noise-induced 707 

at different processing stages, or – as was the case in the current study – background 708 

environmental noise that surrounds the stimulus of interest. An internal generative model 709 

about the fast sensory dynamics (Knill and Pouget, 2004; Friston, 2005; Kiebel et al., 2008; 710 

Friston and Kiebel, 2009) of speech could lead to enhanced stimulus representation in the 711 

subcortical sensory pathway and by that provides improved signal quality to the auditory 712 

cortex. Such a mechanism would result in more efficient processing when taxing conditions, 713 

such as background noise, confront the perceptual system. The interaction between task and 714 

noise in the left vMGB is in congruence with such a mechanism. It shows that the task-715 

dependent modulation of the left vMGB is increased in a situation with high sensory 716 

uncertainty in contrast to the situation with lower sensory uncertainty. Although the results 717 

are in accordance with the Bayesian brain hypothesis, the study was not meant to test 718 

directly whether predicticve coding is used in the auditory pathway. To test this it would be 719 

necessary to manipulate predictability of the stimuli (Tabas et al., 2020).  720 

Both the speech task and the speaker task required attention to the stimuli. Attention can 721 

interact to provide a better decoding of the stimuli we choose to attend to (Schröger et al., 722 

2015), and can optimize predictions of incoming signals (Smout et al., 2019) resulting in a 723 

top-down and bottom up signal integration (Gordon et al., 2019). Attention can be formulated 724 

in a predictive coding account (Ransom et al., 2017), for example, it could result in increased 725 

precision on the prediction. It is to date an open question whether the task-dependent 726 

modulation observed for speech recognition in the present and previous studies in sensory 727 

thalamic nuclei (von Kriegstein et al., 2008; Díaz et al., 2012, 2018; Mihai et al., 2019) operate 728 
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through the same mechanisms as attentional modulation (O’Connor et al., 2002; Schneider 729 

and Kastner, 2009; Schneider, 2011; Ling et al., 2015) 730 

Speech-in-noise recognition abilities are thought to rely (i) on additional cognitive resources 731 

(reviewed in Peelle, 2018) and (ii) on the fidelity of speech sound representation in 732 

brainstem nuclei, as measured by auditory brainstem response recordings (reviewed in 733 

Anderson and Kraus, 2010). For example, studies investigating speech-in-noise recognition 734 

at the level of the cerebral cortex found networks that include areas pertaining to linguistic, 735 

attentional, working memory, and motor planning (Salvi et al., 2002; Scott et al., 2004; Bishop 736 

and Miller, 2008; Wong et al., 2008). These results suggested that during speech recognition 737 

in challenging listening conditions additional cerebral cortex regions are recruited that likely 738 

complement the processing of sound in the core speech network  (reviewed in Peelle, 2018). 739 

The present study showed that besides the additional cerebral cortex region recruitment, a 740 

specific part of the sensory pathway is also modulated during speech-in-noise recognition: 741 

the left vMGB.  742 

Auditory brainstem response (ABR) recordings during passive listening to speech sounds 743 

have shown that the quality of speech sound representation (i.e., as measured by the 744 

frequency following response, FFR) explains inter-individual variability in speech-in-noise 745 

recognition abilities (Chandrasekaran et al., 2009; Song et al., 2010; Schoof and Rosen, 2016; 746 

Selinger et al., 2016) and can be modulated by attention to speech in situations with two 747 

competing speech streams (Forte et al., 2017). It is difficult to directly relate the results of 748 

these FFR studies on participants with varying speech-in-noise recognition abilities 749 

(Chandrasekaran et al., 2009; Song et al., 2010; Schoof and Rosen, 2016; Selinger et al., 2016) 750 

to the studies on task-dependent modulation of structures in the subcortical sensory 751 
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pathway (von Kriegstein et al., 2008; Díaz et al., 2012; Mihai et al., 2019): they involve very 752 

different measurement modalities and the FFR studies focus mostly on speech-in-noise 753 

perception in passive listening designs. One major candidate for the FFR source is the inferior 754 

colliculus. Particularly for speech, the FFR, as recorded by EEG, seems to be dominated by 755 

brainstem and auditory nerve sources (reviewed in Chandrasekaran et al., 2014; Bidelman, 756 

2018). The results of the present study, however, do not provide evidence for a specific 757 

involvement of the inferior colliculus when recognising speech-in-noise. The choice of 758 

syllables for the speech task emphasises predictions at the phonetic level. One possibility is 759 

that task-dependent modulation of the left MGB in conditions with high sensory uncertainty, 760 

might be particularly relevant for such processing at the phonetic level as the MGB might be 761 

optimised for this type of fast-varing information (Giraud et al., 2000; von Kriegstein et al., 762 

2008). Whether the inferior colliculus might play a different role in speech-in-noise 763 

processing is an open question. 764 

We speculate that the task-dependent vMGB modulation might be a result of feedback from 765 

cerebral cortex areas. The strength of the feedback could be enhanced when speech has to be 766 

recognised in background noise. The task-dependent feedback may emanate directly from 767 

primary auditory or association cortices, or indirectly via other structures such as the 768 

reticular nucleus with its inhibitory connections to the MGB (Rouiller and de Ribaupierre, 769 

1985). Feedback cortico-thalamic projections from layer 6 in A1 to the vMGB, but also from 770 

association cortices such as the motion-sensitive planum temporale (Tschentscher et al., 771 

2019), may modulate information ascending through the lemniscal pathway, rather than 772 

convey information to the vMGB (Llano and Sherman, 2008; Lee, 2013).  773 
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Difficulties in understanding speech-in-noise accompany developmental disorders like 774 

autism spectrum disorder, developmental dyslexia, and auditory processing 775 

disorders (Alcántara et al., 2004; Chandrasekaran et al., 2009; Wong et al., 2009; Ziegler et 776 

al., 2009; Bellis and Bellis, 2015; Schoof and Rosen, 2016; Schelinski and Kriegstein, 2019). 777 

In the case of developmental dyslexia, previous studies have found that developmental 778 

dyslexics do not have the same amount of task-dependent modulation of the left MGB for 779 

speech recognition as controls (Díaz et al., 2012) and also do not display the same context-780 

sensitivity of brainstem responses to speech sounds as typical readers (Chandrasekaran et 781 

al., 2009). In addition, diffusion-weighted imaging studies have found reduced structural 782 

connections between the MGB and cerebral cortex (i.e., the motion-sensitive planum 783 

temporale) of the left hemisphere in developmental dyslexics compared to controls (see 784 

Müller-Axt et al., 2017 for similar findings in the visual modality; Tschentscher et al., 2019). 785 

These altered structures might account for the difficulties in understanding speech-in-noise 786 

in developmental dyslexia. Consider distinguishing speech sounds like “dad” and “had” in a 787 

busy marketplace. For typically developed individuals, vMGB responses might be modulated 788 

to optimally encode the subtle but predictable spectrotemporal cues that enable the explicit 789 

recognition of speech sounds. This modulation would enhance speech recognition. For 790 

developmental dyslexics, however, this vMGB modulation may be impaired and may explain 791 

their difficulty with speech perception in noise (Boets et al., 2007; Ziegler et al., 2009; Díaz et 792 

al., 2012).  793 

In conclusion, the results presented here suggest that the left vMGB is particularly involved 794 

in decoding speech as opposed to identifying the speaker if there is background noise. This 795 

enhancement may be due to top-down processes that act upon subcortical sensory 796 
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structures, such as the primary auditory thalamus, to better predict dynamic incoming 797 

signals in conditions with high sensory uncertainty.   798 
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