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Abstract

Brain aging is associated with hypometabolism and associated global changes

in functional connectivity. Using fMRI, we show that network synchrony, a

collective property of brain activity, decreases with age. Applying quantitative

methods from statistical physics, we provide a generative (Ising) model for these

changes as a function of the average communication strength between brain re-

gions. In particular, we find healthy brains to be poised at a critical point of this

communication strength, enabling a balance between segregated (to functional

domains) and integrated (between domains) patterns of synchrony. However,

one characteristic of criticality is a high sensitivity to small changes. Thus,

minute weakening of pairwise communication between regions, as seen in the

aging brain, gives rise to qualitatively abrupt changes in synchrony. Finally,

by experimentally modulating metabolic activity in younger adults, we show

how metabolism alone–independent of other changes associated with aging–can

provide a mechanism for global changes in synchrony.
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1. Significance Statement1

The brain is a biological machine that utilizes chemical energy to process2

information. However, the mechanism by which the brain adapts to resource3

constraints is poorly understood. This is particularly relevant in the aging4

brain, for which the ability of neurons to utilize their primary energy source,5

glucose, is diminished. Here, we provide a data-driven quantitative model for6

how brain-wide activity patterns are controlled by resource availability. This7

model shows that the brain is poised at a critical point, past which even minute8

changes in glucose utilization cause communication across the brain to markedly9

re-configure. Together, our results suggest that the clinical trajectory of cog-10

nitive changes associated with aging is discontinuous and can be mediated by11

metabolism.12

2. Introduction13

One of the most fundamental questions in neuroscience is how the famil-14

iar patterns of collective, brain-wide activity arise from the properties of the15

constituent neurons and their networks. Here, we study how the brain’s global16

activity patterns change with age, and how those changes might arise from the17

reduced metabolic activity of the constituent regions.18

We draw on two types of experimental evidence. First, as established us-19

ing positron emission tomography (PET), older brains show reduced glucose20

metabolism [1, 2, 3]. Second,as established by functional magnetic resonance21

imaging (fMRI), aging is associated with weakened functional connectivity (FC),22

i.e. reduced communication (on average) between brain regions [4, 5, 6]. Com-23

bining both observations suggests that impaired glucose metabolism may un-24

derlie changes in FC [1, 7]. Further supporting this link are studies showing25

disruptions similar to those seen with aging in Type 2 diabetic subjects [8, 9].26

In healthy brains, resting-state brain activity (states during which subjects27

are not engaged in any explicit task) alternates between segregating computa-28

tions to localized functional domains and integrating this information across29
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these domains [7, 10, 11, 12, 13]. The metabolic cost of these activities increase30

in proportion to the number and length of functional connections between pairs31

of brain regions [14], making highly-connected (integrated) networks more ener-32

getically costly [10]. Moreover, connections with the highest cost are the first to33

weaken with age [6, 7, 15]. Thus, it has been hypothesized that declining glucose34

metabolism in older brains drives the loss of high-cost (integrated) functional35

activities [14]. Yet the relationship in aging brains, between energetic constraint36

at the level of individual brain regions and the apparent re-organization of the37

functional connectome, is still not well understood.38

Here, we develop a generative model that describes how the probability39

distribution of FC patterns transforms with changes in global variables (such as40

age and metabolic activity)[16]. The approach of choice to understand how these41

changes arise is statistical physics, which interprets the collective properties of42

complex systems in terms of individual interactions between the underlying43

parts [17]. In particular, we employ an Ising model [18, 19, 20] to describe44

how pairwise interactions between brain regions give rise to specific profiles of45

network synchrony, a time-dependent average of the activity over the entire46

brain [21, 22, 23]47

While the Ising model provides a general tool for describing the collective48

properties of complex systems, we adapt it to examine the specific relationship49

between brain aging and metabolic activity. To achieve this, we re-analyzed50

two fMRI datasets. The first is the lifespan Cam-CAN 3T fMRI resting state51

dataset of 636 individuals, ranging over ages 18-88 [24]. The second, in which52

we hold age constant in order to isolate the effects of metabolic activity alone,53

is the PAgB 7T fMRI within-subject experiment of 12 healthy young adults54

scanned while on glycolytic and ketogenic diets [25]. Ketone bodies decrease55

the relative free energy of ATP production by 27% as compared to glucose [26].56

This additional efficiency of ketone bodies as a metabolite, observed even in57

healthy subjects, has been shown to increase both cardiac efficiency [26] as well58

as brain activity [25].59

The significance of this work is three-fold. First, in contrast to the tools60
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commonly used to study fMRI networks, our approach provides a predictive61

mechanism for how FC patterns change, in qualitatively significant ways, as62

a function of the average interaction between brain regions [16]. Second, we63

establish a direct link between network synchrony and the relative frequencies of64

integrated (high-cost) and segregated (low-cost) brain activities [10, 14]. Finally,65

we illustrate a precise relationship between differences in FC over the lifespan66

as well as in response to changes in the brain’s access to energy.67

3. Methods68

3.1. Lifespan and metabolic neuroimaging datasets69

To identify how the collective features of fMRI change across the lifespan, we70

analyzed a large-scale 3T fMRI dataset: the Cambridge Centre for Ageing and71

Neuroscience stage II (Cam-CAN: ages 18-88, N = 636) [24]. The Cam-CAN72

study was designed to identify neural correlates of normal aging and provides73

a roughly uniform coverage of age groups, allowing comparison between groups74

as well as a wide array of behavioral measures. While the functional MRI imag-75

ing of Cam-CAN stage II included both task and resting state data, we used76

only resting state data, for which most regions of the brain have roughly similar77

statistical properties (see Supplementary Fig. 2). To relate these changes to en-78

ergy in the brain, we additionally analyzed 7T fMRI data from the Protecting79

the Aging Brain (PAgB) database [25]. In a within-subjects experiment, young80

healthy adults (N = 12, µage = 28± 6.73 years; 4 female) were scanned at81

resting state under two conditions: (1) glycolytic, following their standard diet,82

without fasting; and (2) ketogenic, following a high-fat, moderate-protein, low-83

carbohydrate (< 50 g/day) diet for one week, by which point all participants84

were in ketosis (> 0.6 mmol/L ketone blood concentration). For details on the85

glycolytic and ketogenic dietary regimes, as well as validation of their blood86

values and neurobiological effects as comparable to calorie-matched administra-87

tion of glucose and D-β-hydroxybuterate, see previous work [25]. Studies were88

approved by the Institutional Review Boards of Cambridge University and Mas-89

sachusetts General Hospital/Partners Healthcare, respectively; all participants90

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.04.17.047233doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047233
http://creativecommons.org/licenses/by-nc-nd/4.0/


provided informed consent.91

3.2. MRI acquisition92

The Cam-CAN lifespan dataset includes multiple imaging modalities (T193

and T2-weighted images, diffusion-weighted images, BOLD EPI images during94

tasks of three varying levels of cognitive demand, MEG images during two sep-95

arate cognitive loads and magnetisation-transfer images). Of these, the resting96

state BOLD EPI fMRI was the focus of our analysis (full dataset documentation97

at [24]). The Cam-CAN functional imaging was done at 3T field strength over 898

min 40 s. The neuroimaging experiments of Cam-CAN study were conducted in99

Cambridge, UK at the Medical Research Council Cognition and Brain Sciences100

Unit (MRC-CBSU). Specifics of the BOLD EPI imaging protocol included: TR101

= 1970 ms, TE = 30 ms, flip angle = 78◦, voxel size = 3×3×4.44 mm, slices =102

32, number of measurements = 261. The PAgB metabolic dataset was acquired103

at ultra-high-field (7T) field strength at the Athinoula A. Martinos Center for104

Biomedical Imaging. Imaging included whole brain BOLD, field map, and T1-105

weighted structural (MEMPRAGE) images. BOLD images were acquired using106

a protocol quantitatively optimized, using a dynamic phantom, for detection-107

sensitivity to resting state networks [27]: SMS slice acceleration factor = 5, R108

= 2 acceleration in the primary phase encoding direction (48 reference lines)109

and online GRAPPA image reconstruction, TR = 802 ms, TE = 20 ms, flip110

angle = 33◦, voxel size = 2× 2× 1.5 mm, slices = 85, number of measurements111

= 740 in each resting state session, for a total acquisition time of 10 minutes.112

Field map images were acquired using the following parameters: TR = 723 ms,113

TE1 = 4.60 ms, TE2 = 5.62 ms, flip angle = 36◦, voxel size = 1.7 × 1.7 × 1.5114

mm, slices = 89, for a total acquisition time of 3 min 14 s. The whole-brain115

T1-weighted structural volumes were acquired using a conventional multi-echo116

MPRAGE (MEMPRAGE) sequence with 1 mm isotropic voxel size and four117

echoes with the following protocol parameters: TE1 = 1.61 ms, TE2 = 3.47118

ms, TE3 = 5.33 ms, TE4 = 7.19 ms, TR = 2530 ms, flip angle = 7◦, with R =119

2 acceleration in the primary phase encoding direction (32 reference lines) and120
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online GRAPPA image reconstruction, for a total volume acquisition time of 6121

min 3 s.122

3.3. MRI pre-processing123

Lifespan dataset pre-processing was conducted in the FMRIB Software Li-124

brary (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and FreeSurfer125

(https://surfer.nmr.mgh.harvard.edu/): anatomical images were skull-stripped126

using FreeSurfer and co-registered to Montreal Neurological Institute (MNI)127

templates and mean functional images using FLIRT (part of FSL). Functional128

images were motion and fieldmap-corrected (using MCFLIRT and epidewarp),129

brain-extracted (using BET), and co-registered to MNI templates using trans-130

formations learned through the anatomical image. Motion parameter as well as131

tissue segmentation-extracted white-matter and CSF confounds (using FAST)132

were regressed out at ROI-level time series extraction stage using nilearn package133

(https://nilearn.github.io) [28]. Metabolic dataset pre-processing used Statisti-134

cal Parametric Mapping 12135

(SPM12; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used as in136

our previous studies conducted at the same acquisition parameters [29], [25].137

Anatomical images (MEMPRAGE) were normalized to MNI templates using138

unified segmentation and registration. Images of each individual participant139

were realigned to account for head movements, and fieldmap-corrected (using140

epidewarp.fsl) for geometric distortions caused by the magnetic field inhomo-141

geneity. Following normalization, structural images were probabilistically seg-142

mented into three tissues: grey matter, white matter, and cerebral spinal fluid.143

We did not apply spatial smoothing or global signal regression to pre-processing144

of either dataset. For all datasets, voxelwise data were parceled into the Willard145

498 functional regions of interest (ROI) [30] corresponding entirely to grey mat-146

ter voxels.147

3.4. Ising model148

Here we use the principle of maximum entropy [18, 20, 23] to build the149

minimally biased probability distribution of N binary (+1 or −1) node weights,150
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{v̂i} satisfying fixed constraints on the mean (0) and variance, V ar(s) of the151

global property, s({v̂i}) = N−1
∑N
i=1 v̂i (synchrony). This is given by [23]:152

P ({v̂i}) = Z−1eN
2λs({v̂i})2 (1)

where Z is the partition function and normalizes the distribution. λ represents153

the average node-to-node interaction strength and is the basic mechanistic quan-154

tity of our model (Fig. 1a, left). Small values of λ describe networks in which155

interactions between nodes are weak and in which the node weights are inde-156

pendent of each other. In contrast, large values of λ describe networks in which157

interactions between nodes are strong and node activities are highly correlated158

(Fig. 1a, right). A given value of synchrony s may be obtained in many159

different ways; i.e., it is degenerate (Fig. 1b). In other words, since there160

are
(

N
N(1+s)/2

)
different ways to have s = N−1

∑
i v̂i, we find that the total161

probability P (s) of different synchronies is:162

P ({v̂i}) = Z−1
(

N

N(1 + s)/2

)
eN

2λs({v̂i})2 (2)

Therefore, when λ is small, P (s) is determined by the degeneracy and low syn-163

chrony is most probable. Conversely, when λ is large, P (s) is determined by the164

interactions between nodes and high synchrony is most probable. In particular,165

as λ is varied, the relative importance of each of these terms changes. As can be166

seen in Fig. 1c, this causes P (s) to change from a bimodal (left) to a unimodal167

(right) distribution. The critical point, λc, is the value of λ where this shift168

happens (i.e. when these two contributions are balanced). Using the standard169

approximation of the binomial coefficients, P (s) becomes:170

171

P (s) ≈ Z−1
(
N

N/2

)
e[λ−

1
2N ]s2 (3)

Conceptually, when λ < λc, P(s) opens downwards like a Gaussian; s = 0172

is most probable. However, when λ > λc, P (s) opens upwards and large values173

of s (both positive and negative) are probable. When N = 498 (the number of174

regions), we find that this critical point is λc = 1
2N = 1.004 × 10−3, coinciding175

with the observed transition between unimodal and bimodal synchrony (Fig.176
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Figure 1 The Ising model predicts network probabilities from interactions between its nodes.
(a) The Ising model maps binary variables onto a fully-connected network (left). Each variable
(i = 1,2,. . . N) is a node with binary weight v̂i (represented by the colors red and blue), and
each pair of nodes is connected by an edge with weight λ. Here we show the example of N = 3.
The value of λ (> 0) describes the average interaction strength between nodes; the larger λ is,
the more likely the unknown value of v̂3 is to be similar to its neighbors (right). (b,c) The
probability of each network is determined by its synchrony (s). (b) Multiple graphs give the
same value of synchrony. Since there are 3 ways to have 1 blue node and 2 red nodes, there
are 3 different graphs that give s = 1/3 (red minus blue divided by N = 3). This degeneracy
effectively triples the probability of s = 1/3. (c) The probability distribution of s given by the
Ising model is a function of λ and degeneracy. When λ (interaction) is large, the probability
that |s| = 1 is large (left). But, when λ is small, degeneracy wins out and the probability
that |s| = 1/3 is large (right).

1c). To simplify our analysis, now refer to the rescaled interaction Λ: Λ =177

(λ− λc)/λc.178
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3.5. fMRI binarization179

In order to access the time-dependent network properties of our data, we180

first binarize the fMRI time series. This method simplifies time series while pre-181

serving their functional connectivity (FC) patterns. In particular, the Pearson182

correlation ρ(X,Y ) is widely used to estimate FC between arbitrary pairs of183

variables (X,Y ):184

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

. (4)

Here variables (X and Y for example) are the nodes of a graph and ρ is the185

weight of the edge between them. However, these connection strengths often186

change over time [31]. Thus, we calculate ρ over each pair of successive time187

points, reducing Eq. 4 to:188

ρ∗(X,Y, t) =
∆X(t)∆Y (t)√

(∆X(t))2(∆Y (t))2
= X̂(t)Ŷ (t)

BDM(X, t) = X̂(t) (5)

where X̂ and Ŷ are the signs of the time derivatives of X and Y respectively189

and the time-dependent correlation, ρ∗, is their product. This procedure takes190

our original time series X(t) and produces a simplified, binarized time series191

X̂(t) (Binarized Derivative Method, BDM). By computing these binarized val-192

ues for long periods of time, we can ask questions about how the probabilities193

of different sequences (in time) and patterns (over regions) change with dif-194

ferent conditions (such as with age and diet). As validation of this method,195

we find that this simplified representation preserves fMRI FC patterns across196

time (Supplementary Fig. 1a) and for different subjects (Supplementary Fig.197

1b). This approach has two key advantages over previous methods [31, 32].198

First, it simplifies complex, many-variable interactions in terms of dynamical199

patterns of binary (+1 and −1) variables. Second, it is naturally compatible200

with Ising-like models, which have been shown to be powerful tools in isolating201

latent relationships within networks of neurons [20, 23].202
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3.6. Model fitting203

We then fit the Ising model to our data (Fig. 2). First, we took the fMRI204

signal vi(t) for each region i and time t and binarized it using BDM. The model205

assumes that all nodes have, on average, similar FC strengths. We tested this206

assumption by computing the total (over all pairs) FC for each region, and we207

used the subject-averaged (over all diets and ages) FC matrix as our reference208

(Supplementary Fig. 2). From these signals, we found that most nodes are209

primarily positively correlated, while a few nodes were primarily negatively cor-210

related with other nodes. For the latter, we flipped (v̂i → −v̂i) for these regions211

only in order to satisfy the assumptions of our Ising model (Supplementary Fig.212

2). For each subject, we then computed the time-dependent synchrony s(t) (each213

TR is a time point) using the binarized fMRI signals from all (498) regions of the214

brain. We then took the histogram of s(t) for each subject to get a distribution215

P (s), giving the variation in synchrony per individual. This was then used to216

obtain Λ by fitting P (s) to the Ising model Eq. 2. This fit is expressed by the217

Bayesian posterior distribution P (Λ|Data), which captures the relative quality218

of of our model. We use a uniform (unbiased) prior distribution of Λ; thus the219

posterior is computed directly from the likelihood function L(Λ|Data) of our220

Ising model Eq. 2. In practice, we will summarize this posterior by its peak221

(the maximum likelihood estimate) and its width (error bars). As fMRI signals222

are auto-correlated, the data (s(t)) are not fully independent. To compensate223

for this effect, we consider conservative (0.01 likelihood ratio) error bars for Λ.224
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Figure 2 How we obtain the Ising model parameter Λ from fMRI data. [1] shows the fMRI
signal vi(t) from the ith brain region (out of 498), as a function of time t. [2] We binarize it,
to give v̂i(t). [3] The binarized signals are then averaged over all brain regions, giving that
individual’s time-dependent synchrony s(t). [4] We then histogram into P (s) the different
s values over time [4], to express the variations in an individual’s synchrony levels. [5] We
then find the value of Λ that best fits P (s) for each individual. P (Λ|Data) expresses the
Bayesian posterior probability (with a uniform prior distribution over Λ) that our data P (s)
was generated from an Ising model (Eq. 2) with relative interaction strength Λ.

4. Results225

To interpret our fMRI data, we developed a generative biophysical approach226

based on a network Ising model [19, 20]. Widely used in physics, the Ising model227

describes how pairwise interactions among microscopic, binary (±1) elements228

give rise to macroscopic behaviors, including correlations ([19], Fig. 1). In229

other words, the Ising model allows us to describe time-dependent variability230

(probabilities) of different brain states for each subject.231

We are particularly interested in the collective (i.e. regionally-averaged)232

properties of brain activity. In general, collective properties can often be de-233

scribed using mean-field models, where every component of interest is approx-234

imated as being connected to every other component with the same strength235

[23, 33]. Here the collective property of interest is the observed network syn-236

chrony, s, or the average activity across the 498 Willard Atlas brain regions237

measured in fMRI experiments [30, 23]. The probability distribution of dif-238

ferent synchronies can then be described by a mean-field Ising model, with a239
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single average interaction strength (assumed positive) between all pairs of brain240

regions (see Supplementary Figs. 2 and 3 for further justification). To explore241

this model, we find the value of the interaction strength, Λ, that best fits the242

experimentally observed synchrony values for each subject (Fig. 2). Thus, each243

value of s corresponds to the degree of consensus of a particular network pro-244

duced by the best-fitting Ising model [23]. As further validation for our model,245

we find that the Ising model, regardless of age and diet, correctly captures the246

kurtosis of P (s), a higher-order feature that cannot be generally predicted from247

correlations alone (Supplementary Fig. 3).248

Ising models are useful in understanding how changes in smaller-scale prop-249

erties (such as the interactions between brain regions) can give rise to abrupt250

and qualitatively distinct collective phenomena at larger scales. Much like water251

at its boiling point, which discontinuously changes from liquid to vapor, these252

changes occur at an intermediate value of the interaction strength, called the253

critical point. Here we use Λ to denote the deviation from the critical interaction254

strength (Λ = 0) of the Ising model. Figure 3 illustrates how the distribution255

of synchronies (with example brain networks shown for comparison) changes as256

a function of Λ, from unimodal (low synchrony, s = 0, blue) when Λ < 0 to257

bimodal (high synchrony, s = ±1, orange) when Λ > 0. While both low and258

high synchrony networks are equally likely at the critical point (Fig. 3, red,259

Λ = 0), small changes in Λ lead to large, abrupt changes in this balance.260

261
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Synchrony (s)
Λ

Probability

1

–1
0

–0.1

0.2
0.1

0.0

Figure 3 The Ising model applied to brain synchrony. Shown is the probability distribution of
different values of synchrony (s) for different values of the dimensionless quantity Λ, reflecting
the distance of the actual interaction strength, λ from the critical point λc: Λ = (λ− λc)/λc.
For Λ < 0 (weak interactions), there is a single unimodal population having a peak at s = 0
(blue line). For Λ > 0 (strong interactions), the population is bimodal, with a peaks at s� 0
and s � 0 (orange line). Above each peak is an example network; nodes are brain regions
and colors are states (red +1, blue −1). Λ = 0 defines the critical point, where s = 0 changes
from a minimum to a maximum and P(s) rapidly changes (red line). At the critical point,
low and high synchrony networks are equally probable.
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To establish the relationship between synchrony and the occupation proba-262

bilities of specific functional networks, we separately computed the inter-subject263

average FC matrices during periods of low and high synchrony. During peri-264

ods of low synchrony, functional connections are found to be sparse, favoring265

connections between local (segregated) networks of regions (Fig. 4a, Seg). In266

contrast, high synchrony networks are typified by dense connections (integrated)267

between multiple functional domains across the brain (Fig. 4b, Int) [10]. Con-268

sequently, just as with synchrony (Fig. 3), different values of Λ change the269

relative time spent in segregated (PSeg) and integrated (PInt) networks (Fig.270

4c, R2 > 0.9, sigmoidal fit not shown, each colored marker is a subject), inde-271

pendent of age or diet. The time spent in each pattern was computed as the272

similarity of each subject’s FC to the extracted patterns, Int and Seg. When273

Λ < 0, low synchronies (i.e. segregated networks) occur more frequently, while274

the opposite holds when Λ > 0. In both cases, this balance rapidly shifts at the275

critical point, Λ = 0.276

277
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(a) (b)

(c)

Seg Int

Figure 4 Λ controls the balance between segregated (low s) and integrated (high s) networks.
(a,b) Inter-subject average functional connectivity (Pearson Correlation) during low (a) and
high (b) synchrony, visualized using the BrainNet Viewer showing the top 10 % of connections
[34]. (a) Low synchrony (s = 0) reflects segregation (Seg). (b) High synchrony (|s| > 1/2)
reflects integration (Int). (c) The fraction of time each subject (each data point and their
specific value of Λ) spends in integrated (PInt, orange) and segregated (PSeg , blue) networks.
Time spent was calculated from a bivariate regression of the functional connectivity (here over
all s, from each subject) with the patterns, Seg and Int. Λ < 0 corresponds to large PSeg

and small PInt while Λ > 0 corresponds to the opposite. The cross-over in (c) occurs at the
critical point, Λ = 0.

Changes in FC with both age and diet can be described by changes in the278

region-region interaction strength Λ. In particular, we find that Λ significantly279

decreases with age (p = 1.7 × 10−38, N = 636, Fig. 5a), suggesting that ag-280

ing is associated with a marked shift from integrated towards more segregated281

network activities. But, upon switching from a lower-energy glycolytic to a282

higher-energy ketogenic diet, Λ increases (p = 1.2 × 10−3, N = 12, Fig. 5b)283

by about 25% to 50% of the decrease seen over the entire lifespan. Thus, by284

toggling the relative frequencies of segregated and integrated networks, Λ re-285

flects an average cost of functional activity and, as suggested by our metabolic286

experiment, the amount of energy available to the brain. Thus one way the287

brain may conserve energy when this amount of energy available is decreased,288

such as through aging, is by decreasing Λ.289

290
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p = 1.7 × 10−38 p = 1.2 × 10−3

5339 816725

Λ

Ages

Figure 5 Λ significantly decreases with age (a, p = 1.7× 10−38) and increases on the higher-
energy, ketogenic diet (b, p = 1.2 × 10−3). (a) Each point (as well as the orange curve
connecting them) reflects the median best-fit Λ values for each (of 5) equal width (14 years)
age groups. Error bars represent the upper and lower quartiles. We used a Spearman-rank
Permutation test (N = 636, ρ(634) = −0.48) to test significance of the nonlinear relationship
between Λ and age. (b) Change in Λ for each subject (N = 12, W = 3) when switching from
a lower-energy glucose (glycolytic, Gly) to higher-energy ketone (Ket) metabolism. Error
bars reflect a 0.01 likelihood ratio confidence interval. A Wilcoxon 1-sided signed rank test
(N = 12) was used to test if ketones significantly increased Λ.

But why would a small change in Λ lead to the dramatic changes in FC seen291

in older age? Precisely because young healthy brains are poised at the critical292

point (Λ = 0), very small changes in the interaction strength between regions293

lead to a sharp transition in the ratio of integrated to segregated networks294

[19, 20]. Figure 6 expresses this in terms of the probability distribution of295

s, now viewed from the top-down. Here younger brains (green, age 25 ± 7)296

are near the critical point (black), allowing them to access both high and low297

synchrony networks. But as Λ (a proxy for energy availability, [14]) decreases,298

such as observed in older brains (yellow, age 81± 7), the probabilities of higher299

synchrony networks quickly fall to 0.300
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Synchrony (s)

Λ

−0.1

0.1

0.0
Crit

Young
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Energy
Availability Aging

Figure 6 Younger brains are poised at a critical point; this is disrupted by decreasing energy
availability. Shown is the probability distribution of synchrony (s) vs Λ, viewed from the
top-down. At the critical point (Λ = 0, black), peak synchrony (indicated by a white line)
changes from low (s = 0) towards high (s < 0 and s > 0) values. Near this transition, such as
seen in younger brains (Age 25 ± 7, N = 85, green), both low and high synchrony networks
can be accessed. Reducing energy availability causes Λ (through associated decreases in FC,
[14]) to decrease. Older brains (Age 81± 7, N = 121, yellow) have smaller Λ and only access
low synchrony networks. The plotted triangles correspond to the Λ values centered at ages 25
(Young) and 81 (Old) (Fig. 5).
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5. Discussion301

Our results suggest that the principal functional changes associated with302

aging, in terms of network synchrony, are controlled by an average interaction303

strength (Λ) between pairs of brain regions. Crucially, unlike graph theoretic304

features normally used to describe such data[16], Λ encodes how the aging brain305

rewires. We have also shown that Λ governs a trade-off between low-cost, seg-306

regated and high-cost, integrated activity patterns. Furthermore, as suggested307

by our findings, we hypothesize that Λ is decreased in older brains to com-308

pensate for glucose hypometabolism. But, because younger brains are poised309

near a critical point, this compensation results in sharp changes in functional310

connectivity.311

It is important to note that aging and ketosis each exerts independent sys-312

temic effects that need to be considered in interpreting the results. For exam-313

ple, older subjects often have cardiovascular changes that affect neurovascular314

coupling[35] and thus, by extension, the blood oxygen level dependent (BOLD)315

response measured by fMRI. Likewise, ketosis has systemic effects, such as di-316

uresis and thus lowered blood pressure, as well as reduced cellular need for317

oxygen, all of which also could theoretically affect BOLD. However, there are318

several reasons to suspect that these alternative mechanisms are not the sole319

causal influence of shifts in Λ. First, to minimize the primary cause of neu-320

rovascular confounds, the lifespan dataset specifically excluded individuals with321

cardiovascular disease, including cerebral ischeaemia [36]. Moreover, while the322

impact of arteriosclerosis in reducing the dynamic range of BOLD could reduce323

signal/noise and therefore reduce the strength of measured connections over-324

all, it would not discriminate between integrated versus segregated networks325

and the transitions between them. Second, shifts in λ were observed not only326

in the aging dataset, but also in the dietary dataset, the latter of which in-327

cluded only younger individuals and thus eliminated systemic aging effects as328

a variable. Third, systemic (non-metabolic) effects of ketosis, such as reduced329

cerebral blood pressure and reduced need for oxygen, should decrease BOLD ac-330
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tivation, while we have previously shown ketosis to increase BOLD activation,331

both in our dietary dataset as well as an independent dataset in which ketosis332

was achieved by administering exogenous D-β-hydroxybuterate[25]. Neverthe-333

less, dissociating metabolic from more systemic influences of aging and ketosis334

is one important direction for our future research.335

The metabolic cost of connectivity is known to reflect both signaling along336

axons as well as between synapses. As such, Λ may reflect the average synaptic337

connectivity across the brain, as suggested by recent evidence linking global338

resting state fMRI fluctuations to synaptic activity [21]. Indeed, synaptic con-339

nections weaken with age [37, 38] and are particularly vulnerable to metabolic340

disruptions [39, 40, 41, 42]. However, the fact that age was associated with a341

reduced probability of integrated activities (with longer connections) in favor342

of segregated activities (with shorter connections) suggests that the metabolic343

cost of axon conductance may also play a key role. Long-range connections344

are known to be disproportionately diminished not only with age [15] but also345

epilepsy [43], the latter of which commonly shows improvement with ketosis.346

That brains at their presumed peak of functionality should be poised so close347

to a critical point of synchrony may reflect an evolutionary selective advantage.348

Criticality is not only a widely-observed feature of neural activity[44, 45, 46],349

but also enables the broadest range of functional patterns while also achieving350

maximum sensitivity to external drivers (e.g. sensory stimuli) [19, 47]. Some351

recent work suggests that signatures resembling criticality may be generic fea-352

tures of systems with many unobserved variables [48]. However, if this were the353

case, one would find these signatures in both younger and older brains, which354

is not consistent with our findings.355

In conclusion, the Ising model provides a data-driven generative model for356

how the brain adapts to resource constraints, such as progressive glucose hy-357

pometabolism in aging brains. By simply shifting the balance between integra-358

tion and segregation away from the critical point, the brain is able to modu-359

late its fuel efficiency without the need to invest in new synaptic connections360

[7, 14]. Thus toggling Λ reflects an optimal strategy for the brain, enabling361
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the smoothest adaptation for the smallest energetic cost. At the same time,362

the brain’s protective strategy in conserving energy may produce discontinuous363

trajectories for cognitive changes associated with aging, both in terms of di-364

minished sensitivity to sensory stimuli (as predicted by shifts from criticality)365

as well as cognitive processing associated with flexibility in switching between366

both segregated and integrated networks.367
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Data and code availability368

Lifespan fMRI data are publicly available from Cam-CAN [24]. Metabolic369

fMRI data are located at Data Archive for the Brain Initiative (DABI:370

https://dabi.loni.usc.edu/explore/project/42) in the Protecting the Aging Brain371

(PAgB), Project 1926781 repository. Additional details (including links to cus-372

tom MATLAB and Python codes used in the processing and analyses of data)373

can be found at http://www.lcneuro.org/software-and-instrumentation.374
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