
Neural network fast-classifies biological images using features selected after their
random-forests-importance to power smart microscopy.
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Abstract

Artificial intelligence is nowadays used for cell detection and classification in optical microscopy, during post-acquisition analysis.
The microscopes are now fully automated and next expected to be smart, to make acquisition decisions based on the images. It calls
for analysing them on the fly. Biology further imposes training on a reduced dataset due to cost and time to prepare the samples
and have the datasets annotated by experts. We propose here a real-time image processing, compliant with these specifications by
balancing accurate detection and execution performance. We characterised the images using a generic, high-dimensional feature
extractor. We then classified the images using machine learning for the sake of understanding the contribution of each feature in
decision and execution time. We found that the non-linear-classifier random forests outperformed Fisher’s linear discriminant. More
importantly, the most discriminant and time-consuming features could be excluded without any significant loss in accuracy, offering
a substantial gain in execution time. It suggests a feature-group redundancy likely related to the biology of the observed cells. We
offer a method to select fast and discriminant features. In our assay, a 79.6 ± 2.4 % accurate classification of a cell took 68.7 ± 3.5 ms
(mean ± SD, 5-fold cross-validation nested in 10 bootstrap repeats), corresponding to 14 cells per second, dispatched into 8 phases
of the cell cycle using 12 feature-groups and operating a consumer market ARM-based embedded system. Interestingly, a simple
neural network offered similar performances paving the way to faster training and classification, using parallel execution on a
general-purpose graphic processing unit. Finally, this strategy is also usable for deep neural networks paving the way to optimising
these algorithms for smart microscopy.

1. Introduction

The optical microscope, after centuries as an advanced op-
tical device, underwent significant evolutions during the last
decades to become the motorised system now controlled by
electronic signals. Its variegated modalities make it an unpar-
alleled tool to investigate the living (Nketia et al., 2017). Be-
yond academic research, it can automatically image samples in
large series, together with the appropriate robots, paving the
way to live-cell high content screening (HCS) based on pheno-
types (Esner et al., 2018; Peng, 2008; Sbalzarini, 2016; Chen
et al., 2018). However, the analysis of this data flood is per-
formed posteriorly to the acquisition, limiting the information
extracted (Singh et al., 2014). A smart microscope, able to mod-
ify the imaging strategy in real-time by analysing images on the
fly, is required to increase the number of images interesting for
the biological question (so-called qualified images)(Scherf and
Huisken, 2015). By autonomously acquiring rare objects and

elusive events, it will not only ease basic-research imaging by
saving fastidious searching and waiting for a cell of interest at
the right stage but also increase the content of interest in HCS
by selecting qualified images, up to become a standard tool
of precision medicine similarly to next-generation sequencing
(Hamilton et al., 2014; Leopold and Loscalzo, 2018; Klonoff,
2015; Djuric et al., 2017). The current systems that perform
imaging and analysis in tandem alternate acquiring images and
analysing them (Conrad et al., 2011; Tischer et al., 2014). We
recently achieved efficient microscope driving (Sizaire et al.,
2020; Roul et al., 2015) and here investigate how to perform
the real-time object’s classification to feedback to it.

Searching rare and brief events is a booming field beyond
the sole microscopy. They often carry significant information
about normal or abnormal processes in a broad range of ap-
plications (Ali et al., 2015; Kaushal et al., 2018). Radiolo-
gists use such algorithms to assist the medical-doctor diagno-
sis interactively, calling for reduced image processing delay
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(Chartrand et al., 2017). Along a line more demanding of real-
time processing, video can be processed to recognise the human
activities, in particular, risky or abnormal situations like intru-
sions or dangerous behaviours (Bobick and Davis, 2001; Zhang
et al., 2017; Sargano et al., 2017). Similarly, it can support de-
tecting and diagnosing faults in construction or process indus-
tries (Koch et al., 2015; Duchesne et al., 2012). These situations
may result in costly damages, human injuries and require rapid
detecting through real-time analysis. We here used a similar
approach to detect rare and transient events in living biological
samples.

Very archetypal to these events is the anaphase of cell di-
vision when the sister chromatids are separated to be equally
distributed to each daughter cell. In human cells, it lasts a
few minutes or less in contrast with a cycle of 15 to 30 hours
(the repetition time of mitosis) (Moran et al., 2010). Cell di-
vision has received strong attention in fundamental research as
its mechanisms are only partially known, as well as in applied
research in particular to develop cancer therapies (Manchado
et al., 2012; Florian and Mitchison, 2016; McIntosh, 2017;
Rieder and Khodjakov, 2003; Cireşan et al., 2013). Indeed,
the spindle assembly checkpoint (SAC) secures the transition to
anaphase by ensuring a correct attachment of the chromosomes,
essential to their equal partitioning to daughter cells. However,
this checkpoint may fail to detect errors or slip, paving the way
to cancer (Potapova and Gorbsky, 2017; Sivakumar and Gorb-
sky, 2015). Unfortunately, the current techniques to investigate
these phenomena are invasive, as blocking cultured (human)
cells for a few hours at the entry in mitosis by drugs similar
to antimitotic ones used in cancer therapies (Banfalvi, 2017).
Doing so lets most of the cells reach the threshold of mitosis
before the experimenter releases the block to observe all cells
undergoing mitosis in a synchronised fashion. Although instru-
mental, this technique is perturbative, and we propose here to
leap towards superseding it by detecting mitosis when they oc-
cur rather than triggering them artificially. Along an applied
line, targeting mitosis is a cornerstone to designing drugs used
in chemotherapy (Manchado et al., 2012). It implies the ability
to fast screen across a library of compounds and quickly assess
defect in mitosis and particularly deadlocked mitosis due to un-
satisfied SAC (McIntosh, 2017). Along a medical line, detect-
ing mitosis in patient tissues is classically used for diagnosis as
in breast cancer (Wang et al., 2014; Hamidinekoo et al., 2018;
Veta et al., 2015). Overall, it makes the automated detection of
early anaphasic cells a highly relevant application case.

Beyond these applications, both fundamental and applied
cell microscopy would need an approach to detect rare and
short events to instruct the microscope some specific acquisi-
tion conditions. Such a system should exhibit three main spec-
ifications: perform fast enough to achieve real-time detection;
being adaptive to a wide variety of problems (cell types, la-
bellings or events of interest, e.g.) without re-programming or
re-optimising; achieve this adapting (training) over a reduced
exemplar dataset. While some dedicated image processings al-
low post-processing of the data and identification of the hits in
high content screening (Wollmann et al., 2017; Fillbrunn et al.,
2017; McQuin et al., 2018), each application resulted from a

dedicated development. Furthermore, suitable performance of-
ten requires a detailed and long optimisation of the specific
program. In particular, algorithms were developed to classify
mitotic cells in distinct stages, along time and in live samples
(Harder et al., 2009; Held et al., 2010; Conrad et al., 2011).
These classifiers may, however, turn to be too slow for real-
time since we aimed to acquire and classify images on the fly
concurrently. Furthermore, these algorithms are specialised to
a given biological situation while we aim at developing a single
software adapted to a broad range of applications, i.e. generic.
These latter approaches had used to result in poor classifica-
tion as they involved one or a few generic features (Sbalzarini,
2016). In the last decades, the emergence of machine learning
has been a real game-changer and allowed both generic and ac-
curate analysis, and paved the way to new experiments (Moen
et al., 2019; Nagao et al., 2020; Singh et al., 2014; Sommer and
Gerlich, 2013; Sbalzarini, 2016; Nketia et al., 2017). Along
that line, we here used a wide variety of features found in the
library WND-CHARM (Orlov et al., 2008). Key to perform ac-
curate and fast detecting was to select a subset of these features
and combine them into an efficient discriminator. It enabled
to optimise the code once and for all, without editing it again.
The specifics of the application were encoded into a statisti-
cal model. Machine learning approaches addressed this need
and could be trained easily to each application through a nu-
merical optimising onto a set of labelled images. In contrast to
deep learning, it enabled to identify important features and even
manually manipulate their selected subset to improve execution
time. We then embedded this classifier and adapted it to the
case through its training to ensure real-time execution, paving
the way to the autonomous microscope (Balluet et al., 2020).
In this article, we proposed a strategy to optimise the selec-
tion of features of interest under the constraint of both accurate
classification and fast performing. It implies to select features
both quick to execute and discriminant. Amazingly, we found
that highly discriminant features could be excluded, provided
enough other features were available, without any loss in clas-
sification accuracy and with a strong gain in execution time on
an ARM embedded system.

2. Materials and methods

2.1. Image database

We built a first image database (termed CellCognition) from
the CellCognition (Held et al., 2010) software demonstration
images. It is composed of wide-field fluorescence time-lapses
of human Hela Kyoto cells, expressing histone H2B and α-
tubulin markers, which revealed the chromosomes and the mi-
crotubules respectively. Images are acquired at three different
positions with a 20x dry objective and taken with a time inter-
val of 4.6 min. Each field contained 206 images of 1392× 1040
pixels, including multiple cells. The corresponding annotations
classified the cells between 8 classes, including the six mitotic
phases and indicated the centre of the object(Held et al., 2010).
We built a database of 71 × 71 pixels vignettes corresponding
to classified cells extracted from the fields. Cells exemplary of
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each class are presented in Fig. 1a. We removed multiple in-
stances of the same cell appearing at different stages and thus in
distinct classes. We also discarded randomly chosen vignettes
to equilibrate the dataset. We obtained 159 vignettes altogether,
specifically 20 per class, except apoptosis showing 19 vignettes.
This low number of cells was in line with our application in cell
biology since large training sets are not achievable for experi-
mental reasons.

To demonstrate that our classification method is generic, we
used a second database, termed mitocheck. It is based on the
class definitions published in (Neumann et al., 2010). With re-
spect to this paper, we significantly increased the number of
samples in each class. In addition, we added a second arte-
fact class ”Focus”. For annotation, we preselected experiments
that showed phenotypes according to the analysis in (Neumann
et al., 2010), and we manually annotated individual nuclei in
these movies without looking at the initial classification. For
the dynamic phenotypes, such as prometaphase and metaphase,
we sometimes used the time information to decide, in accor-
dance to the procedure in (Neumann et al., 2010). In total, we
annotated 5151 nuclei. It was composed of wide-field fluores-
cence time-lapses of Hela Kyoto cells, expressing chromatin
GFP marker but no α-tubulin, acquired with a 10x dry objective
on Olympus ScanR. Several mitotic phases and defect pheno-
types were observed. After equilibration, we obtained 1100 vi-
gnettes of 64 × 64 pixels dispatched up into 11 classes (100 per
class) (see Fig. 1b).

2.2. Features extraction

WND-CHARM is a multi-purpose image classifier devel-
oped in C++, generating a high-dimension features-vector and
using Weighted Neighbour Distances for classification (Orlov
et al., 2008). We used it to extract edges and objects statis-
tics, multi-scale histograms, four first moments on images sub-
division, polynomial decompositions (Chebyshev, Chebyshev-
Fourier and Zernike), texture information (Haralick, Tamura
and Gabor textures) and Radon transform statistics. In a first
step, a transform like Fourier or wavelet could be applied to the
raw vignettes to produce a so-called feature precursor, which is
an image (Fig. 2c, right), on which statistics are extracted (Fig.
2c, left). Technically speaking, we gather in these statistics
some computations that could involve the image (Otsu thresh-
olding for Otsu object statistics case, e.g.) before computing
scalar values as statistics (the bright segmented region area in
Otsu statistics, e.g.). All features were scalar and were gathered
in a 1025-valued vector. Importantly, we performed some opti-
misation of the WND-CHARM library to reduce its execution
time.

2.3. Estimating the computing time of features extraction

To estimate the computing time of a single WND-CHARM
feature, we computed it over the single-cell vignettes ob-
tained for instance from CellCognition database, running on an
NVIDIA Jetson AGX Xavier embedded system. We then aver-
aged the results over the vignettes of all the dataset. In partic-
ular, we ensured that the execution was sequential on the CPU
of the embedded system, without using parallelism. When it
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Figure 1: Datasets used during numerical experiments. (a) Exemplar vi-
gnettes upon 71 × 71 pixels cropping images from the CellCognition database.
(b) Exemplar vignettes similarly cropped and extracted from the mitocheck
database. Class names were abbreviated and written in black font, while the full
name appears in grey. They correspond either to cell division phases or specific
defects: cells whose nucleus display an elongated, polylobed or grapefruit-like
shape, and nuclei reminiscent of apoptotic cells, binucleated ones (usually fol-
lowing a cytokinesis defect) or cells having an issue in aligning the chromo-
somes during metaphase, usually due to lagging chromosomes or multipolar
spindles. A scale bar indicates 10 µm in the first frame, and all vignettes within
a dataset are on the same scale.

comes to estimating the computing time of multiple features,
we noticed that the features were not independent. Indeed, for
a given group of features, they all correspond to statistics com-
puted on the same feature precursor. This latter was either the
raw image or a transform computed from it. Several image-
transforms could be composed together successively (Fig. 2c).
Notably, the major part of computing time was spent in getting
such feature precursors. We thus considered that features were
computed by group deriving from the same-precursor. We thus
summed up the execution times of all of them within a group,
to get the group execution-time. For instance, in the case of
the features based on the Haralick texture, the feature-precursor
computation took 90% to 99% of the whole computing time
(Fig. 2a).
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Figure 2: Feature-groups execution time and Fisher’s score. (a) Execution
time summed up over feature groups, estimated on an NVIDIA Jetson AGX
Xavier embedded system, and (b) the corresponding Fisher’s score averaged
over the same feature groups (see Methods, §2.3 and §2.4). (c) (left) Depicts
the feature groups by statistics, computed over (right) various feature precur-
sors, i.e. the raw image or its transform. Red bars highlight the feature groups
displaying an execution time greater than 20 ms. A red line depicts this thresh-
old time in panel (a). Feature-group labels written with colour depict the ones
kept for assay using Fisher’s linear discriminant (see §3.2), specifically the pur-
ple and dark blue when considering all feature-groups and the dark and light
blue when excluding computationally intensive groups. . When excluding com-
putationally intensive features, the blue ones are also used to complement to 7
groups. CellCognition dataset was used (see Methods §2.1).

2.4. Estimating the fisher score of features and feature-groups

The contribution of a feature to the classification was esti-
mated using Fisher’s score (Orlov et al., 2008; Bishop, 2006).
For the feature groups as defined above (see §2.3), we averaged
the score of the features over the whole group. Because various
statistics within a group might display different scores, such an
averaging strategy will favour groups with a majority of well-
discriminant features.

3. Results

3.1. Classifying based on a single feature was not accurate
enough.

We set to automatise the microscope by processing images
on-the-fly and feeding back to the microcontroller that drove the
microscope and its attached devices. To ensure real-time pro-
cessing, we embedded the processing on a microcontroller as it
was designed to execute only one or a few dedicated functions,
with real-time constraints, by opposition to a general-purpose
computer. It is widely used in fields requiring real-time ap-
plications and machine learning algorithms are now available
on these platforms. To support the development, we classified
mitotic images within 8 classes using the CellCognition exam-
ple set (Held et al., 2010; CellCognition, 2010) (see Methods
§2.1) and in particular detected the transition from metaphase
to anaphase. We reckoned that the choice of the features could
be essential for performance and precision. Therefore, we used
the WND-CHARM framework that encompassed a large vari-
ety of features (Orlov et al., 2008). First, aiming at fast pro-
cessing, we asked whether a single feature could be sufficient.
We computed Fisher’s score of each feature (see Methods §2.4)
and found that the most discriminant one was the area of the
segmented image with an Otsu static threshold (Otsu, 1979).
The area of Otsu object was highly efficient to discriminate in-
terphase from mitosis. However, this feature was unable to cor-
rectly detect anaphase onset since it was mostly sensitive to the
surface of the bright objects (Fig. S1) It called for a multi-
feature approach.

3.2. Selecting an optimal set of feature-groups using Fisher’s
linear discriminant.

Computing all the features offered by the WND-CHARM li-
brary for a 71 × 71 vignette on the ARM microcontroller, was
too computationally intensive for several features (Fig. 2a),
thus incompatible with real-time analysis. We foresaw that a
small number of features could be combined into a discrimi-
nant score, sufficient to discriminate the different mitotic stages.
To do so, we opted for a machine learning approach, to help
to delineate important features, rather than a deep learning ap-
proach. Such an a priori choice appeared the most fitted to our
lack of large training set and need for fast computation. In-
deed, deep-learning-network convolutional layers are compu-
tationally intensive, and while optimisation strategies are avail-
able for embedded instances like pruning or quantisation (Jacob
et al., 2018; Molchanov et al., 2016), it requires a large train-
ing set. We first opted for a linear machine-learning algorithm,
specifically the Fisher’s linear discriminant (Fisher, 1936; Duda
and Hart, 1973). Indeed such a kernel method, because linear,
promised short execution times and was successful in similar
problems (Muller et al., 2001; Belhumeur et al., 1997; Liyang
et al., 2005; Chiang et al., 2000).

We tested Fisher’s linear-discriminant classification using the
CellCognition dataset (see Methods §2.1), in particular, 80% of
the vignettes for training and 20% for testing through a k-fold
cross-validation process (k = 5). We ranked the feature groups
by decreasing Fisher’s score (see Methods 2.4). To avoid over-
fitting, we limited the number of features considered to less than
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the number of training images. We included the feature-groups
in descending fisher score up to that limit. It led to the 7 feature-
groups (named in purple and dark blue Fig. 2b) (Shaikhina
et al., 2015; Kourou et al., 2015; Foster et al., 2014). To find
an optimal number of features, we further pruned the feature
groups by removing the least discriminant one iteratively until
it harmed the overall classification. In further details, we as-
sessed the quality of the classification through the area under
the ROC curves (AUC) averaged over the eight classes of our
dataset, a classical metric in machine learning (Fawcett, 2006).
We measured the maximum AUC when removing the groups
and conserved as many groups as needed so that the AUC is not
decreased by more than 0.005 from this maximum. It could be
achieved without re-training, taking advantage of the linearity
(Fig. 3a). Such a reduction of the feature-groups number, be-
yond performance consideration, is essential to cope with the
scarcity of labelled images, a commonplace in microscopy for
biology and medicine. We obtained the best classification by
considering only 2 groups, namely Gabor textures and Haralick
calculated from Wavelet transform ones (Fig. 2b, Fig. 3a, red
curve and arrowhead). While the classification could be satis-
factory with a global accuracy of 78.0% (Fig. 3c and 3d), the
execution time, 890 ms, was incompatible with the on-the-fly
classification (Fig. 3b).

We noticed that the most discriminant feature-groups dis-
played a score neatly larger compared to the others (Fig. 2b).
However, the two most discriminant groups used for optimal
classification were too computationally intensive for our appli-
cation. We reckoned that they could be removed, keeping a
reasonable classification accuracy. In a broader take, we cen-
sored all the feature groups, which required more than 20 ms
to be computed (Fig. 2a, red line). We again considered 7
feature-groups only to prevent overfitting (named in ligh and
dark blue Fig. 2b). We then selected a subset of the groups,
by excluding the least discriminant ones, as explained above.
We obtained the best classification using 3 feature groups (Fig.
3a, blue curve): multi-scale histograms calculated from raw vi-
gnettes, multi-scale histograms from Wavelet transform of the
vignettes and Tamura textures from Wavelet transform. How-
ever, while the transition from metaphase to anaphase was still
correctly detected, the confusion matrix and the ROC curves,
on early and late mitotic phases, showed a clear degradation
of the classification (compare Fig. 3ef with Fig. 3cd). Over-
all, the accuracy read 52.2% and class-averaged AUC 0.842
for the three-groups case, compared to 78% and 0.954, respec-
tively, for the two-groups case including the computationally-
intensive features. Using three non-computationally-intensive
feature-groups only partially compensated the lack of the two
most-discriminant groups and resulted in classification so inac-
curate that it could not fit our applicative needs. However and
importantly, the feature extraction took only 9 ms in the three-
groups case, compared to 890 ms in the two-groups one, in line
with embedded on-the-fly processing.

Overall, using multiple feature-groups in classification
needed a tedious balance between accuracy and execution time,
unworkable by a linear machine learning approach. However,
we observed a partial redundancy of the features in distinct
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Figure 3: Classification using Fisher’s linear discriminant. (a) Area Under
Curve (AUC) averaged over the classes and (b) execution time for extracting the
feature-groups included in the classification, both versus the number of feature-
groups used in classification, including (red curve) all available features or (blue
curve) only groups with an execution time below 20 ms (not computationally in-
tensive). Arrowheads of the corresponding colour depict their optimal number
(see §3.2). (c) and (e) report the corresponding confusion matrix for these two-
groups (Gabor textures and Haralick over wavelet transform ones), and three-
groups (multi-scale histograms over raw vignettes, multi-scale histograms over
wavelet transform, and Tamura textures over wavelet transform) optimal cases,
respectively, and (d) and (f) are the corresponding ROC curves. Class names
are abbreviated after Fig. 1a. We used the 5-fold cross-validation over the
CellCognition dataset (see Methods §2.1).

groups. Importantly, we noticed that the classifying itself took
a negligible time, provided that the features were already com-
puted. It called for using non linear classification method to
combine the features at the expense of computing time.

3.3. Revealing the feature-groups redundancy using random
forests.

We pursued searching for a feature-group subset, fast enough
to be used in our real-time application and using a non-linear
classifier. We set to use a decision-tree based method as it copes
well with the large number of features coupled to the reduced
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training dataset. We specifically chose the random forests algo-
rithm (Tuv et al., 2009; Breiman, 2001). It is a machine learning
algorithm based on an ensemble of decision trees, that further-
more internally selects the most discriminant features, in line
with our goal to use a subset of feature groups. Compared to
other non-linear methods, random forests, by this selection pro-
cess, better avoids over-fitting problems. Practically, we trained
300 decision trees using curvature test to select the best split
predictor (Loh and Shih, 1997), and we validated this model
using k-fold cross-validation with k = 5. We empirically de-
termined the number of trees, measuring that more than 300
trees would not improve the classification accuracy (Fig. S2).
We first performed the classification using all the 1025 features,
and the algorithm training converged. The global accuracy read
81.8% and AUC 0.974, which is slightly better compared to
Fisher’s linear discriminant. All the classes were recovered at
least as accurately or better by the random forests (Fig. S3).
This encouraging result confirmed the suitability of the random
forests to our problem. However, extracting all the features
from the image remained too computationally intensive for our
application.
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Figure 4: Random forests using all the 1025 features was trained and tested
over 20% of the dataset, and we retrieved the importance of each feature-group
(see main text). Red bars highlight the feature groups displaying an execution
time greater than 20 ms. The execution times are reported in Fig. 2a. The
feature groups are described in Fig. 2c.

The random forests offer a mechanism to assess the impor-
tance of each feature in the decision (Breiman, 2001). In a nut-
shell, it corresponds to the difference of the rate of misclassifi-
cation of the ”out-of-bag” samples (i.e. the labelled images not
used for training a given tree because of the internal bootstrap
mechanism), when randomly shuffling the values of a given fea-
ture. Hence, the importance of features is directly related to
the performed classification, in contrast to Fisher’s discriminant
criterion used above. We summarised the feature importances
as previously, by taking the average over their values within a
group. We then averaged over the five forests generated in the
k-fold validation process (Fig. 4).

We aimed to perform a fast and precise classification, thus
as for the Fisher’s linear discriminant, we removed the least
important feature groups and computed the random-forests im-
portances again over the training vignettes and averaged over 5-
fold cross-validation. Unlike the case of Fisher’s discriminant,
the approach was iterative, requiring a re-training upon each
change of the feature-group subset. The classification quality,
measured by the mean AUC, decreased when using less than
8 groups (Fig. 5a, red curve). These 8 groups represented
147 features out of 1025. The global accuracy obtained with
8 groups was 75.5% and the mean AUC 0.970, so very close to
the results obtained with all features, suggesting that we could
reduce the execution time by excluding features, without de-
creasing the classification quality (Fig. S4).

When it came to applying random forests to on-the-fly clas-
sification, we yet noticed that some computationally intensive
feature-groups (red in Fig. 4) displayed large importance like
Gabor-on-raw-image and Haralick-on-wavelet-transform tex-
tures. On the ground of the trend obtained using Fisher’s lin-
ear discriminant, we excluded the groups, which execution time
was greater than 20 ms. We then iteratively removed the least-
important features until it degraded the classification (Fig. 5a,
blue curve). It showed an optimum with 12 feature groups (264
features out of 1025). In that latter case, AUC read 0.977 and
global accuracy 83.6%, which was again very similar to the case
using all 1025 features. We also obtained similar confusion ma-
trix and the ROC curves (Fig. 5cd) but the execution time was
considerably reduced (divided by more than 50). This result
validated the feasibility of our embedded classification by re-
ducing the number of features and censoring the computation-
ally intensive ones (Fig. 5b).

We then took a closer look at the feature importance when
reducing the number of features, to get clues of this compensat-
ing mechanism. We compared the importance of the 12 feature-
groups used in the optimised classification, with the importance
of the same groups upon classifying over all the features (Fig.
5e). We observed that the importance of these groups increased.
It is suggestive of redundancy of the features, at least in their
significance for the present classification if not in general. No-
tably, it was proposed that the random forests spread the impor-
tance among the redundant features. As expected, compensa-
tion of removed redundant features similar to what we observed
was seen in other studies (Tuv et al., 2009; Zhao et al., 2019).
We here took advantage of this ability of random forests to en-
sure fast execution on an embedded system, compatible with
real-time classification in an automated microscope.

We reckoned that these results represented one particular in-
stance of database equilibration (see §2.1). To test how general
was our approach, we used bootstrap to randomly split data into
balanced datasets, however without replacement (no duplicated
image). We performed ten bootstrap iterations. Within each of
them, we performed a 5-fold validation and repeated the optimi-
sation process as described above, excluding computationally
intensive feature-groups. On average, 12 feature-groups were
the optimal balance between performance and accuracy (pre-
cisely 11.6 ± 2.4, mean ± standard deviation), as found previ-
ously, although variations of a few units were observed. We
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Figure 5: Random-forests classification using a subset of feature-groups.
(a) Area Under Curve (AUC) averaged over the classes and (b) execution time
for extracting the feature-groups included in the classification, both versus the
number of feature-groups used in classification, including (red curve) all avail-
able features or (blue curve) only feature groups with an execution time below
20 ms (not computationally intensive). Arrowheads of the corresponding colour
depict their optimal number (see §3.3). (c) Random forests importance (blue)
in the twelve-groups case, optimal when excluding computationally intensive
feature-groups, and (brown) the all-feature-case (non optimised, reported Fig.
4 and S3). We averaged over the 5-fold cross-validation and used the CellCog-
nition dataset (see Methods §2.1). (d) The confusion matrix and (e) the ROC
curves averaged, using the 5-fold cross-validation in the twelve-feature-groups
optimal case without computationally intensive feature-groups in the optimal
case using the CellCognition dataset (see §2.1). Class names are abbreviated
after Fig. 1a.

observed a 79.6 ± 2.4 % accurate classification lasting overall
(feature extracting and vignette classification) 68.7 ± 3.5 ms.
Furthermore, the variations of classification accuracy and to-
tal execution time between bootstrap-iterations were reduced
(Fig. S5). However, the execution time varied mildly between
each iteration of the bootstrap, in particular, because the se-
lected feature-groups changed marginally in each bootstrap it-

eration. Indeed, we observed that 11 feature-groups are present
in all these instances, while 1 is drawn in four other groups
(black and blue text, Tab. 1). The low difference between boot-
strap iterations showed the reproducibility of our method when
different training subsets are used.

Feature groups In n boot-
strap iter. Feature groups In n boot-

strap iter.

EdgeS(im) 10 MsH(ChT(im)) 10
MsH(WT(im)) 10 MsH(im) 10

ObjS(im) 10 TamT(ChT(FT(im))) 10
TamT(ChT(im)) 10 TamT(FT(im)) 10
TamT(WT(im)) 10 TamT(im) 10
ZerP(FT(im)) 10
HarT(FT(im)) 5 MsH(ChT(FT(im))) 3
MsH(FT(im)) 1 ZerP(im) 1

Table 1: Bootstrapping random forests optimal feature-groups-number
classification over the CellCognition dataset. (black) 11/12 groups were al-
ways present in the 10 bootstrap iterations while (blue) the last group was taken
among four other groups. The feature groups appearing only in the optimal
cases using this dataset compared to mitocheck one were italicised (Tab. 2).
The feature groups are described in Fig. 2c.

To further confirm this result, we repeated the approach us-
ing the second dataset mitocheck (see §2.1). In this case, im-
ages were classified between 11 classes, with 100 vignettes per
class. We followed the same method as above and performed
a k-fold validation process (k = 5) followed by ten bootstrap
iterations, randomly spliting data into balanced datasets, how-
ever without replacement (no duplicated image). Eight feature
groups, excluding the ones which execution time exceed 20 ms,
were enough to achieve an optimal classification (Fig. 6ab). All
classes were correctly recovered (Fig. 6cd). The feature-groups
finally used in classification vary in the different instances of
the bootstrap as with the CellCognition dataset without con-
siderably impacting the execution time and the classification
quality (Fig. 6). Interestingly, the selected feature-groups are
mostly the same as with mitocheck dataset (compare Tab. 2
and 2). Overall, it confirmed the robustness of the above pro-
cedure used to embed image processing. Interestingly, most of
the feature-groups were conserved, suggesting some possible
generalisation.

Feature groups In n boot-
strap iter. Feature groups In n boot-

strap iter.

MsH(ChT(im) 10 MsH(im) 10
MsH(WT(im)) 10 ObjS(im) 10
TamT(ChT(im)) 10 TamT(WT(im)) 10
MsH(WT(FT(im))) 6 HarT(FT(im)) 4
MsH(ChT(FT(im))) 4 MsH(FT(im)) 4
TamT(WT(FT(im))) 2

Table 2: Bootstrapping random forests optimal feature-groups-number
classification over the mitocheck dataset. (black) 6/8 groups were always
present in the 10 bootstrap iterations while (blue) the two other groups were
taken among five other groups. The feature groups appearing only in the op-
timal cases using this dataset compared to CellCognition one, were italicised
(Tab. 1). The feature groups are described in Fig. 2c.
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Figure 6: Bootstrapping optimised random forests over mitocheck dataset.
(a) The Area Under Curve (AUC) was averaged over the classes, and (b) exe-
cution time for extracting the feature-groups included in classification was as-
sessed (dependent of the selected feature-groups mildly variable between boot-
strap iterations, see §3.3). Both quantities are plotted versus the number of
feature-groups used in classification and were computed in the 5-fold cross-
validation repeats. This approach was repeated 10 times in the bootstrap ap-
proach, where the vignettes included in the balanced dataset were selected dif-
ferently (see Methods §2.1). We thus obtained the standard deviations reported
by the error bars. Arrowheads depict the 8 feature groups optimal case. (c) The
confusion matrix and (d) the ROC curves over the 5-fold cross-validation in a
single bootstrap iteration.

In the perspective of classifying vignettes on-the-fly, we had
focused on the feature-extraction time by analogy to Fisher’s
linear discriminant, where this task took the vast majority of
the execution time and where classification execution time was
insignificant. Therefore, we had only embedded the feature
extraction up to now to assess these times when using the
random forests. We here reevaluated whether random forests
might take significant time as it used decision trees. To do
so, we ran the random forests classification on the embedded
system using the RTrees module using the OpenCV library (It-
seez, 2015). For the sake of simplicity, in a proof-of-concept
perspective, we trained the algorithm using OpenCV on the
embedded system. However, one could train on a general-
purpose computer and embed only the classification. We then
assessed the classification performance using 32 test vignettes
(20% of the whole CellCognition dataset) in the optimal twelve-
feature-groups case, excluding computationally intensive ones.
With 300 trees, the execution time to classify these vignettes
read 89 ± 20 µs (mean ± standard deviation), extrapolated to
27 ± 6 ms for a 300 cells picture. It should be compared to fea-
ture extraction over the same picture, lasting 21.6 s. Because
feature extraction is performed independently on each vignette,
this latter time could be scaled down by parallelising the fea-
tures extraction since the NVIDIA Jetson AGX Xavier that we
used here had 8 CPU cores. Finally, segmenting the image on
one CPU core to extract the vignettes took a not noticeable time,
about 132 ± 5 ms (mean ± standard deviation) for the whole
picture, in comparison to features extracting. In any cases, the
classification itself took a lightweight time compared to the fea-
ture extraction.

To conclude, we showed that using a non-linear method al-
lowed us to find a much better time-performance compromise
than the linear method, to both ensure fast and accurate classi-
fication. Therefore, we could envision using our feature-group
optimised random forests together with the WND-CHARM fea-
tures to enslave microscope driving to image classification.

3.4. Neural-network classification also benefits from feature-
groups redundancy.

Deep learning is the current paradigm in biological images
analysis (Nagao et al., 2020; Moen et al., 2019). We won-
dered whether the proposed approach discarding highly dis-
criminant features for the sake of rapidity keeping accuracy
could be used in that context. We addressed this question in
two steps firstly using a neural network as classifier and sec-
ondly extracting the features through the convolutional layers
of a deep network classifier. Furthermore, fundamental re-
search applications are more demanding about performances,
requiring faster cycle time. Indeed, when it comes to studying
mitotic events like metaphase-anaphase transition, the dynam-
ics of the components are on the scale of the second or even
the tenth of a second (Elting et al., 2018). To reach such fast
processing, we could speed up the feature extraction through
GPU-parallelisation, although it was out of the scope of the
present paper. In such a context, the time spent in the classi-
fication itself became as well important. However, because of
the high usage of conditional structures in such decision-tree-

8

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 18, 2020. ; https://doi.org/10.1101/2020.11.10.376988doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.10.376988


0 0.4 0.8 1
False positive rate

0

0.4

0.8

1

Tr
ue

 p
os

iti
ve

 ra
te

interphase
prophase
prometaphase
metaphase
early anaphase
late anaphase
telophase
apoptotic

(d)

inter pro
prometa

meta
earlyana

lateana telo apo

Predicted Class

inter

pro

prometa

meta

earlyana

lateana

telo

apo

Tr
ue

 C
la

ss

1

2

1

2

1

1

1 1

1

2

2

2

1

1

1

1

2

1

2

1

18

18

15

16

18

16

17

14

(c)

(b)

0

100

0 10 20
Number of feature groups

30

In
cl

ud
ed

 fe
at

ur
e-

gr
ou

ps
 e

xt
ra

ct
io

n
tim

e 
(m

s)

0.7

0.9

(a)

Av
er

ag
ed

 A
re

a
U

nd
er

 R
O

C
-c

ur
ve

s 1

Figure 7: Bootstrapping optimised neural network over CellCognition
dataset. (a) The Area Under Curve (AUC) was averaged over the classes, and
(b) execution time for extracting the feature-groups included in the classifica-
tion was assessed. Both quantities are plotted versus the number of feature-
groups used in classification and were computed in the 5-fold cross-validation
repeats. This approach was repeated 20 times in the bootstrap approach, where
the vignettes included in the balanced dataset were selected differently (see
Methods §2.1). We thus obtained the standard deviations reported by the er-
ror bars. Arrowheads depict the fiveteen-feature-groups optimal case. (c) The
confusion matrix and (d) the ROC curves over the 5-fold cross-validation in a
single bootstrap iteration. It is noteworthy that no error bar can be computed
on execution time as the features are always ranked in the same order of impor-
tance (see main text §3.4).

based methods, parallelising the random forests appeared diffi-
cult. We reckoned that we could use neural-network-based ma-
chine learning over the selected feature-groups. However, this
method is more prone to overfitting (Tuv et al., 2009; Bolón-
Canedo et al., 2012). In our case, this issue is worsened when
the number of features is large, when they are non-independent,
correlated or poorly informative as observed in our case. We,
therefore, kept using the random forests to select the optimal
feature groups, while we used the neural network in ”produc-
tion context” to perform classification.

We trained a one-hidden-layer network with 64 neurons, us-
ing the gradient descent backpropagation algorithm with an
adaptative learning rate starting from 0.01, a momentum of 0.1
and a mean squared error (MSE) loss function. To avoid over-
fitting, an L2 regularisation parameter was added to the loss
function with a 0.1 ratio. These training parameters have been
experimentally determined. The dataset was divided into three
parts: training (70%), validation (20%) and test (10%). The
validation subset was used to stop training when the neural net-
work started to overfit. As previously done, we used bootstrap
to randomly split the whole data into a balanced dataset (see
§2.1), however without replacement (no duplicated image). We
performed twenty bootstrap iterations. Within each of them,
we used k-fold cross-validation, with k = 10. For each instance
of the k-fold process, the weights and biases of the networks
were initialised to the same values. As previously, we tested
the optimal number of feature-groups while excluding the most
computationally intensive ones and assuming that group impor-
tances were ranked in the same order as in the case of random
forests. The optimal classification was found with 15 feature
groups and showed comparable accuracy with random forests
(Fig. 7cd), reading an AUC of 0.979 and global accuracy of
83.0 %. However, the quality was more variable than with Ran-
dom forests (Fig. 7a) across the twenty bootstrap iterations. In
a broader take, it validated the possibility to use a simple neu-
ral network with equal classification quality despite the small
training set and a large number of features.

We embedded our neural network using activation functions
provided by the OpenCV library. As in the case of random
forests, after proper training, we executed the classification
of 32 test vignettes. The execution time read 92 ± 15 µs. It
could be extrapolated to 28 ± 4 ms for an image containing 300
cells. It has to be compared to the time taken by the random
forests to perform a similar task, 27 ± 6 ms. The neural net-
work performed similarly to the random forests when run on
CPU. However, it could be further accelerated in the specific
case of the neural network using GPU parallelisation. These
times remained small compared to the ones needed for feature
extraction §(see 3.3). Notably, neural networks used more fea-
tures groups to perform classification with similar quality than
random forests (15 versus 12), which can diminish neural net-
works interest for execution-time optimisation (Fig. 7b). Con-
versely, Random forests were much slower than the neural net-
work to be trained: training 300 decision trees using Random
forests with 127 samples (80 % of the whole dataset) and 264
features (the 12 best feature-groups) took 21 s on Matlab using
one CPU while training our neural network needed between 1 s
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to 6 s. The need for random forests to rank feature-groups by
importance for each new category of images mitigated this ad-
vantage of the neural networks. Overall, the neural networks
are more promising, but feature extraction will have to be par-
allelised to realise this pledge.

3.5. Features extracted through a convolutional neural network
also show redundancy.

We finally assessed whether the observed redundancy of bio-
logical images could be used to discard discriminant features in
a deep neural network context. To do so, we built a simple con-
volutional neural network, including 3 convolutional layers sep-
arated by relu activation layers and trained it on the CellCogni-
tion images. We retrieved the outputs of the last layer before the
fully-connected one and used them as pseudo-features. They
are 5184, and we classified them using a 1000-trees random
forests algorithm, to avoid over-fitting issues. We again per-
formed 5-fold cross-validation followed by ten bootstrap itera-
tions, randomly splitting data into balanced datasets, however
without replacement (no duplicated image). We first included
all the pseudo-features and iteratively reduced the number of
feature by discarding the less important ones. We obtained
an optimal classification with 88 ± 48 pseudo-features (mean ±
standard deviation) (Fig. 8a, red curve). Fixing the number of
pseudo-features to that number, we observed a larger variability
of the pseudo-features included in the set among the bootstrap
iterations. We might attribute it to observing single pseudo-
features rather than groups; grouping would require a detailed
analysis of the network out of the scope of this study. Consis-
tently, among 275 pseudo-features appearing in one optimal set
at least out of the ten bootstrap iterations, 18 are present in all
sets and 71 in half of them at least. Overall, the optimal classifi-
cation showed comparable accuracy with random forests, read-
ing an averaged AUC of 0.948 ± 0.006 and global accuracy of
72 ± 2 %.

We then tested whether the compensating mechanism pre-
viously observed was applicable here. We thus suppressed the
100 most discriminant pseudo-features, i.e. reported as the most
important by the random forests and selected in the optimal
pseudo-feature set in at least 4/10 bootstrap iterations above.
We repeated a similar analysis and obtained an optimal classi-
fication with 108 ± 124 pseudo-features (Fig. 8a, blue curve).
Fixing the set to 108 pseudo-features, we observed an equiva-
lent variability of the used pseudo-features as the case with all
pseudo-features included: among 303 pseudo-features appear-
ing in one optimal set at least out of the ten bootstrap itera-
tions, 22 are present in all sets and 91 in half of them at least.
The optimal classification displayed an accuracy similar to the
case with all pseudo-features or with an optimal set among them
not discarding important ones (Fig. 8a, compare red and blue
curve tails and optimal pseudo-feature number marked by the
arrowheads). In further details, we found an averaged AUC
of 0.945 ± 0.005 and global accuracy of 71 ± 2 %; the class-
wise precisions were similar to the one obtained by classifying
WND-CHARM features with random forests (Fig. 8bc). We
concluded that pseudo-features based on deep-neural-networks
convolutional layers were also redundant, allowing the most
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Figure 8: Random forests classification extracting pseudo-features through
a convolutional neural network and optimising the pseudo-feature number
over the CellCognition dataset. (a) Area Under Curve (AUC) averaged over the
classes versus the number of pseudo-features used in classification, including
(red curve) all available pseudo-features or (blue curve) discarding the 100 most
significant ones. Arrowheads of the corresponding colour depict their optimal
number. (b) The confusion matrix and (c) the ROC curves averaged over the
5-fold cross-validation and ten bootstrap iterations, randomly splitting data into
balanced datasets without duplicates (see §2.1).
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discriminant ones to be discarded. It proves that such a network
could be pruned for the sake of computing time disregarding
the importance of the nodes in classification.

4. Discussion and conclusion

In this study, we proposed a method to embed and execute
cell-image classification in real-time as an essential module to
create a smart microscope used for cell biology at large. In
line with the reduced number of images available for training,
a peculiar trait of our envisioned application, we used an ex-
isting general-purpose image feature extractor coupled with a
machine learning algorithm. We analysed the contribution in
the classifying decision of each feature, grouped by the image
transforms from which they are computed. We took advantage
of the machine learning algorithm that was able to report the
feature importances. Doing so, we selected a subset of features
best discriminating the various mitotic phases. Interestingly,
censoring the most computationally intensive features did not
degrade the classification upon re-training and selecting a new
feature-subset. We could obtain excellent accuracy, suitable for
the targeted application, by using a non-linear Machine Lean-
ing method, combined with high execution performance on an
embedded system to ensure analysis on-the-fly. In our exam-
ple, we could classify about 14 cells per second into 8 phases
of the cell cycle, with an accuracy greater than 80% using Ran-
dom forests classification. Using the almost the same subset of
features, we can train a small neural network and reach similar
performances benefiting of a classifier easy to embed and opti-
mise on GPU. Importantly, this approach is transferable to deep
learning network commonly used nowadays.

Why suppressing the most discriminative features, for the
sake of the execution time, did not degrade the classification
accuracy? The various features, despite they belong to different
groups and use a distinct strategy, are likely redundant. How-
ever, the quantity redundant to a censored feature is a non-linear
combination of the available features as suggested by the bet-
ter accuracy achieved when using a non-linear method. The
replacing features are thus non-intuitive and likely not easily
accessible by direct programming, outside of statistical mod-
elling. Indeed, a large set of features as the one offered by
WND-CHARM are expected to be redundant, and the use of
decision trees appears well appropriate to decrease this redun-
dancy (Tuv et al., 2009; Bolón-Canedo et al., 2012). Beyond
this aspect, biological processes might also correlate some fea-
tures independent mathematically-speaking. For instance, in
the context of deep learning and larger image datasets, Nagao
and co-authors found that additional markers on top of chromo-
somes did not improve the classification between the mitotic
phases (Nagao et al., 2020). Indeed, the mitotic-phase changes
involve numerous modifications of the sub-cellular structures,
all under the control of the cell cycle regulation. It translates
into various feature evolutions (Pollard and Earnshaw, 2002).
Along a similar line, measuring the mitotic spindle – the essen-
tial structure tasked to dispatch the chromosomes to daughter
cells correctly – suggested that various features are correlated
(Farhadifar et al., 2016). Similarly, we recently analysed the

mitotic-spindle length and found that only three components,
out of a principal component analysis, are enough to account for
95% of inter-individual variability across more than 100 condi-
tions obtained by involved protein depletion (Y. Le Cunff et al.,
data to be published). Overall, the variegated appearances of the
sub-cellular structures as revealed by fluorescence microscopy
are under the control of one or a few master regulators. Such
a biological-originated correlation, modelled by our machine
learning approach, further supports our strategy of reducing re-
dundant features. While we investigated it on cell division, a
similar situation likely happens in other cell-biology processes.

The proposed methodology was developed keeping in mind
that it should apply to small datasets, a constraint in application
to biomedical science (Shaikhina et al., 2015; Kourou et al.,
2015; Foster et al., 2014). Indeed, images are long to be pro-
duced and annotated. Furthermore, in the case of biological
research, each experiment corresponds to a particular dataset:
training with images from a distinct experiment (labelling other
structures, e.g.) appears a poor option. As a result, only small
datasets are available for training. This is a constraint shared
with all experimental sciences and engineering, leading to re-
duce the number of degrees of freedom in the model, i.e. the
number of used features and nodes in neural network (Feng
et al., 2019; Pasupa and Sunhem, 2016; Shaikhina et al., 2015;
Foster et al., 2014). The major risk is overtraining, leading the
statistical model to learn details of the training set, failing to
extract the general aspects, and in fine causing low accuracy on
real-data classification (testing). This is also why we opted here
for the decision-tree forests and in particular, random forests,
known to cope well with this issue at the first place(Breiman,
2001; Azar and El-Metwally, 2012). Once this model is cor-
rectly trained, it helps to select features. Indeed, reducing the
number of features, discarding the poorly-informative ones, not
only improves the execution time but also limits the risk of
overfitting in an approach similar to classical dropout technique
used in deep learning (Srivastava et al., 2014; Borisov et al.,
2006). In conclusion, our approach offers both a feature selec-
tion strategy enabling to decide the balance between execution
time and accuracy directly, but also enables to use a neural net-
work in a second time, when in the production set-up.

We obtained the presented results using machine learning.
We also showed that the removal of the most significant pseudo-
features of a deep neural network, i.e. the nodes of the last layer
before the fully connected one, does not preclude an accurate
classification. On this ground, one can now envision using deep
learning, in particular, pruning the networks as we know that an
optimal number of features could be found (Molchanov et al.,
2016). It will also benefit from the nowadays standard GPU ac-
celeration of convolutional networks. The proposed method, by
enabling accurate classification under the constraint of real-time
execution, paves the way towards smart microscopy. This novel
instrument, beyond making feasible experiments on rare and
brief phenomena, will extend the HCS towards High Through-
put Experimenting: beyond the bare observation of the sam-
ple, it will enable deeper imaging and in the future photo-
perturbations. For example, this will enable to challenge the
effect of drugs by investigating much more intimate processes
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of the cell. Finally and in a shorter term, medicine and biology
are currently restricted to analyse data a posteriori, requiring
to acquire a huge amount of images to sort them afterwards
because most of them are information-scarce. The smart mi-
croscopy promises a more parsimonious approach.
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Figure S1: Classification using a single feature (Otsu-segmented-region
area) resulted in a poor confusion matrix. Class names are abbreviated after
Fig. 1a. CellCognition dataset was used (see Methods §2.1).
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was used (see Methods §2.1).
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Figure S3: Random forests using all the 1025 features was trained and tested
over 20% of the dataset to get (a) the confusion matrix and (b) the ROC curves
over the 5-fold cross-validation using the CellCognition dataset (see Methods
§2.1). Class names are abbreviated after Fig. 1a.
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Figure S4: Random forests with computationally intensive features opti-
mised by removing low importance feature groups. The algorithm was trained
and tested over 20% of the dataset to get (a) the confusion matrix and (b) the
ROC curves over the 5-fold cross-validation using the CellCognition dataset
(see Methods §2.1). Class names are abbreviated after Fig. 1a.
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Figure S5: Bootstrapping the random forests optimised with only non-
computationally-intensive feature-groups. (a) The Area Under Curve (AUC)
was averaged over the classes, and (b) execution time for extracting the feature-
groups included in the classification was assessed. Both quantities are plotted
versus the number of feature-groups used in classification and were computed
in the 5-fold cross-validation repeats. This approach was repeated 10 times in
the bootstrap approach, where the vignettes included in the balanced dataset
were selected differently from the CellCognition (see Methods §2.1). We thus
obtained the standard deviations reported by the error bars. Fig. 5ab report re-
sults in the same conditions for a single bootstrap iteration. Arrowheads depict
the 12 feature groups optimal case.
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