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ABSTRACT 

Alternative polyadenylation (APA) causes widespread shortening or lengthening of the 3ʹ-

untranslated region (3ʹ-UTR) of genes across multiple cell types (dynamic APA). Bioinformatic 

tools have been developed to identify dynamic APA in single cell RNA-Seq (scRNA-Seq) data, 

but they suffer from low power and cannot identify APA genes specific to each cell type (cell-

type-specific APA) when multiple cell types are analyzed. To address these limitations, we 

develop a model-based method, scMAPA. scMAPA quantifies 3ʹ-UTR long and short isoforms 

without posing assumptions on the signal shape of input data, enabling a sensitive identification 

of APA genes. In human peripheral blood mono cellular data, this enhanced power identifies 

unique associations of dynamic APA with hematological processes, e.g. progenitor cell 

development. Further, scMAPA identifies APA genes specific to each cell type while controlling 
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confounders using a sophisticated statistical model. In mouse brain data, scMAPA identifies 

APA genes specific to each cell type and provides a novel implication of neuron-specific APA 

genes in the interaction between neurons and blood vessels. Altogether, scMAPA sheds novel 

insights into the function of cell-type-specific APA dynamics in complex tissues.  

Keywords: post-transcriptional regulation, alternative polyadenylation, single-cell RNA 

 

INTRODUCTION 

The majority of mammalian messenger RNAs contain multiple polyadenylation (pA) sites, such 

as proximal and distal, in their 3ʹ-untranslated region (3ʹ-UTR) 1,2. By transcribing with different 

pA sites, alternative polyadenylation (APA) produces distinct isoforms with different lengths of 

the 3ʹ-UTRs (long and short 3ʹ-UTR isoforms using distal and proximal pA sites, respectively). 

These APA events are involved in diverse physiological and pathological processes (reviewed in 
3). For example, global 3ʹ-UTR shortening events promote tumorigenesis by removing 

microRNA binding sites in certain types of cancer4–6. Notably, these events occur in tissue-

specific and cell-type-specific manners 1,7. To identify tissue-specific and cell-type-specific APA 

genes, single-cell RNA sequencing (scRNA-Seq) data provide an excellent resource, since 

scRNA-Seq data allow us to collect transcriptome of the same type of cells.  

In scRNA-Seq data, several tools have been developed to identify genes with APA events 

(APA genes), such as scDAPA8, Sierra 9 and scAPA10. However, they show several limitations 

to identify APA genes specific to each cell type (cell-type-specific APA genes). First, these 

methods are based on assumptions on the signal shape in input RNA-Seq data. For scAPA and 

Sierra, the assumptions are to differentiate signals from noises in their peak calling approaches. 

Since several scRNA-Seq utilize 3ʹ selection and enrichment steps in library construction, 

accumulation of the reads that originate from a common pA site forms a peak. To quantify the 

reads from the peaks, they assume a particular shape and length of the signal distribution. 

Likewise, scDAPA assumes the size of the window it uses to split gene regions to compare the 

difference of read coverage near 3ʹ end. Due to the assumptions, these methods are not 

guaranteed to identify APA events for the genes that do not hold the assumptions. Second, 

scDAPA and Sierra identify APA genes mainly between two cell clusters and are not directly 

applicable for scRNA-Seq data typically of more than two clusters. While scAPA is the only 

method to identify APA genes in more than two clusters, it still shows several limitations. First, 

to identify APA genes, scAPA statistically tests if the APA usage (the ratio of long and short 3ʹ-

UTR isoforms) of each gene is similar across cell clusters. However, it does not estimate 

significance in which cell clusters the genes undergo APA events, which direction (3ʹ-UTR 

shortening or lengthening), and to what degree the APA events occur for multiple cell types in a 

statistically consistent way. These identifications are essential if one is interested in identifying 

cell-type-specific functions of APA. Second, since scAPA employs a statistical test that 

explicitly stratifies the input samples (e.g. case vs. control), it cannot directly control 

confounding factors that would exist across the stratification. Confounding arises when cells are 

affected by factors that are not parts of the research hypothesis under investigation. Since 
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multiple factors affect the molecular dynamics of complex tissues, it is important to control 

confounders to study complex tissues. For example, since brain transcriptome is known to be 

specific to regions (e.g. cortex and dorsal midbrain) and cell types (e.g. neuron and astrocyte) 11–

13, one may need to control brain region as confounders depending on how brain cells are 

clustered and the research question. To address these limitations and identify cell-type-specific 

APA events, we developed a statistical method, scMAPA.  

 

RESULTS 

Alternative Polyadenylation identification across multiple cell clusters of single-cell RNA-

Seq data (scMAPA) 

For accurate APA gene identification, scMAPA quantifies 3ʹUTR long and short isoforms 

without posing assumptions on the signal shape of input scRNA-Seq data. While all current 

methods operate based on assumptions on the RNA-Seq signal shape, these assumptions are not 

guaranteed to hold for all genes. For example, in the scRNA-Seq data on Peripheral Blood 

Monocellular Cells (PBMC) of a healthy donor (10k in https://www.10xgenomics.com/), FLT3 

3ʹ tags form peaks with different shapes and lengths between pDC/HSPC and B/NK cells (S. Fig. 

1A), complicating the quantification process. To quantify the 3ʹUTR isoforms without such 

assumptions, we reasoned that each 3ʹ biased read represents the 3ʹ end part of a transcript. With 

this reasoning, we will pad each read along the 3'UTR region up to where the read ends (step 1 in 

Fig. 1, see Methods). This padding transforms each 3ʹ biased read to represent the full-length 

3ʹUTR of the transcript. Then, this transformation reveals different pA usage between 

pDC/HSPC and B/NK cells without an assumption on the signal shape (S. Fig. 1B). Further, this 

transformation allows us to use approaches developed for bulk RNA-Seq data, since most bulk 

RNA-Seq data represent the full-length 3ʹUTRs. Among multiple methods for bulk RNA-Seq 

data, we employ the approaches of DaPars14 due to the following reasons. First, DaPars 

maintains highest sensitivity and specificity compared to other methods in benchmark tests on 

biological and simulation data 15. Second, DaPars identifies APA genes without any assumption 

on the RNA-Seq signal density by determining 3'UTR isoforms such that the difference between 

the sum of the isoforms and the input RNA-Seq signal density is minimized (step 2 in Fig. 1). 

 To call cell-type-specific APA genes based on the quantification, scMAPA builds a 

statistical model (step 3 in Fig. 1). This statistical model brings up three advantages over current 

methods. First, scMAPA identifies APA genes across multiple cell clusters (multi-cluster) of 

scRNA-Seq data. Between scMAPA and scAPA, the only methods for multi-cluster setting, our 

simulation experiments and biological data analyses show that scMAPA successfully transfers 

the sensitivity of DaPars approach validated in bulk RNA-Seq data 15. Second, it identifies cell 

clusters in which the APA genes show distinct APA patterns with statistical significance (step 4 

in Fig. 1). Although this is critical to study the impact of APA events for each cell type, no 

current methods provide a direct and solid statistical technique. Third, it provides flexibility to 

consider not only cell types but also potential confounders, such as tissue type, age, or sex. 
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Although considering confounders is critical in identifying APA genes from complex tissues, no 

current methods provide this function.  

 

scMAPA identifies true APA events with an enhanced statistical power 

To compare statistical power of scMAPA with scAPA, the only other method developed for 

multiple cell clusters, we developed a novel simulation platform. This platform simulates 3ʹ-UTR 

long and short isoforms of APA and non-APA genes by generating the isoform proportions and 

the gene expressions in reference to a biological data. In our simulation, we set as our reference 

data the mouse brain scRNA-Seq data consisting of five main cell types (neurons, astrocytes, 

immune cells, oligodendrocytes and vascular) that are sampled from mouse cortex and dorsal 

midbrain regions 16. On the data, we ran both scMAPA and scAPA and identified APA and non-

APA genes by intersecting their results (step 1 in Fig. 2A, see Methods). In the APA and non-

APA genes, we evaluated the proportion of the long and short isoforms (step 2 in Fig. 2A) and 

calculated the standard deviation (SD) of the proportions across the five cell clusters. We will 

refer to this SD as 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 (step 3 in Fig. 2A). We found that the APA genes have significantly 

higher 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 (p-value < 2.2×10-16) than the non-APA genes (0.127 vs. 0.009 on average, S. 

Fig. 2A), indicating that the APA genes have wider distributions of the 3ʹ-UTR isoform 

proportions across the clusters than non-APA genes. In reference to these 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values, we 

generated the isoform proportions for 500 APA and 4,500 non-APA genes across 5 clusters, each 

of 600 cells. For the APA genes, we randomly generated the 3ʹ-UTR isoform proportions across 

the 5 clusters based on a single 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 value ranging from 0.06 to 0.18 (step 4 in Fig. 2A). 

For non-APA genes, we fixed 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 to be 0.009 in generating the 3ʹ-UTR isoform 

proportions. Equally for APA and non-APA genes, we simulated the gene expression in Splatter 
17 by determining the parameters in reference to the mouse brain data (step 5 in Fig. 2A). The 

gene expressions are then divided into 3ʹ-UTR long and short isoform abundances based on the 

3ʹ-UTR isoform proportions simulated (step 6 in Fig. 2A). On these simulated isoform 

abundances of APA and non-APA genes, we ran the statistical component of scAPA and 

scMAPA, which is Pearson’s χ2 and Regression + LRT (likelihood ratio test), respectively. 

Across all 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values simulated for APA genes (ranging from 0.06 to 0.18), the statistical 

component of scMAPA consistently identifies more true APA genes than that of scAPA (Fig. 

2B). Since both methods perform equally good at identifying true non-APA genes (Fig. 2C), 

scMAPA outperforms scAPA overall.  

While the above simulation fixed the number of APA and non-APA genes and the cell 

cluster sizes, we then ran other simulations by varying the number of APA and non-APA genes 

and the cell cluster size while fixing 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for APA and non-APA genes (to 0.127 and 

0.09, respectively). With 500 (10% of the total genes) true APA genes, the statistical component 

of scMAPA consistently outperforms that of scAPA in terms of sensitivity (Fig. 2D) in all three 

cluster size distributions with a slight loss of specificity (Fig. 2E). This trend holds true with 250 

and 1,000 true APA genes simulated (S. Fig. 2 B, C, D, E).  
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scMAPA identification is accurate while consistent with other methods 

Further, we evaluated scMAPA’s accuracy using biological data in comparison to other APA 

detection methods, scDAPA, scAPA and Sierra. In the three PBMC data sets with different 

numbers of cells (also known as 5k and 10k data representing the number of cells), we defined 

different numbers of cell clusters (8 and 13 clusters respectively) based on Seurat’s graph-based 

clustering 18 and annotated their cell types based on established marker genes 19 (see Methods, S. 

Table 1). First, scMAPA identifies the highest proportion of the pA sites in proximity to the 

known pA sites annotated in PolyASite 2.020 across different degrees of proximity (Fig. 3A for 

10k and S. Fig. 3A for 5k). scDAPA was not included in this comparison, because it does not 

return results that are compatible for the comparison, such as pA peaks, sites, or intervals. 

Second, scMAPA results substantially overlap with the results of the other methods. To assess 

the overlap, we identified significant APA genes across the cell clusters in scMAPA and scAPA. 

Also, since scDAPA and Sierra identify APA genes only between cell cluster pairs, we combined 

the pairwise significant APA genes in each method separately. After controlling FDR on the 

combined APA genes, we called APA genes if they are significant in any of the pairwise 

identifications. While scMAPA identifies an intermediate number of APA genes between 

scDAPA and Sierra/scAPA (10k in Fig. 3B and 5k in S. Fig. 3B), more than half of the 

scMAPA’s findings are found in other methods (59.9% for 10k and 51.9% for 5k). While 

scMAPA is the only method of ‘change-point’ approach based on the padding of 3ʹ biased reads 

(step 1 in Fig. 1C), the number of APA genes identified by scMAPA and its high overlaps with 

other methods validate the use of scMAPA. Further, we focused our comparison on scMAPA 

and scAPA. In the 10k PBMC data, scMAPA and scAPA identifies 3,465 and 325 significant 

APA genes respectively, with 109 found in common. To test whether 3,356 APA genes unique to 

scMAPA are due to its high statistical power or high false positive, we inspected 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 value 

of the APA genes identified by scMAPA and scAPA, separately. Their identification results 

differ largely in the range of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values (Fig. 3D) where scMAPA is more sensitive in our 

simulation study (Fig. 2A), suggesting scMAPA’s high statistical power. Altogether, the results 

suggest that scMAPA identification is accurate and sensitive while consistent with other 

methods, although it employs a novel approach than other methods.  

 

scMAPA identification is robust, facilitating the understanding of APA dynamics 

We further studied robustness of scMAPA in comparison to the other methods. First, we checked 

the overlap of APA genes across different cell numbers of the PBMC data (10k, 5k, and 1k, Fig. 

3C and S. Fig. 3C). To test the overlap with more variability, we added the 1k data in this 

analysis. scMAPA identifies 1,651 APA genes in all three data sets, which is 40.1% of the total 

number of APA genes identified in any of the data sets (4,059). Since the cell types are similar 

across the data sets (S. Table 1) and represent healthy adults, the APA genes are expected to 

overlap across the data. On the other hand, scAPA, scDAPA, and Sierra identify less than 20% 

of the total APA genes in all three data (18.9% (82/435), 11.6% (719/6,192), 16.9% (668/3,953), 

S. Fig. 3C), suggesting that scMAPA identification is most robust to the data size. Second, we 

sampled different numbers of cell clusters from the 13 clusters of the 10k data and evaluated how 
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many APA genes identified in the 13 clusters scMAPA can recover with different numbers of 

clusters. Based on 20 random combinations of each cluster size (5, 7, 9, and 11), scMAPA 

performance does not depend much on the number of clusters. For example, when 5 clusters 

were sampled, 70.4% of all the APA genes were identified (S. Fig. 3D). Further, scMAPA 

retrieves more of the APA genes identified in the 13 clusters as more clusters are sampled. 

To demonstrate biological implications brought by the accurate and robust scMAPA 

identification, we ran Ingenuity Pathway Analysis (IPA) on 1,432 APA genes identified only by 

scMAPA that are not identified by any other methods (S. Table 2, Fig. 3B). Manual inspection 

of the genes demonstrated a different usage of pA sites across the clusters. For example, as FLT3 

clearly showed a different usage of pA sites across the clusters (S. Fig. 1 A, B), it is included in 

the 1,432 scMAPA-unique APA genes. Further, GATA2 also showed different pA usages across 

the clusters and is included in the 1,432 scMAPA APA genes (S. Fig. 1 C, D). Interestingly, 

GATA2 was polyadenylated in the scRNA-Seq data of bone marrow mononuclear cell from 

acute myeloid leukemia patients21. Due to the developmental relationship between bone marrow 

and peripheral blood, GATA2 can undergo APA events also in the PBMC using similar 

molecular mechanisms. Collectively, the 1,432 APA genes are significantly enriched (B-H p-

value < 0.05) for multiple IPA Disease & Function terms with implication for hematology 

developmental processes, including 9 with keyword “hemato” or “blood” (Fig. 3E). As 

“hemato” terms refer to diverse developmental processes of hematopoietic progenitor cells, 

previous reports on the role of APA in the hematopoietic stem cell differentiation22 supports the 

use of scMAPA. Altogether, scMAPA enables accurate and robust identification of dynamic 

APA in complex tissues.  

 

scMAPA identifies APA genes specific to cell types 

To demonstrate how scMAPA further identifies APA genes specific to each cell type (cell-type-

specific APA genes) in complex tissues, we analyzed the mouse brain scRNA-Seq data 16 that 

defined five cell types with large sample size: neurons, astrocytes, immune cells, 

oligodendrocytes and vascular (see Methods). Across the five cell types, scMAPA identified 

3,223 significant APA genes (S. Table 3) which do not overlap much (1,048) with 2,494 genes 

scAPA identified as APA genes (Fig. 4A). The IPA analysis shows that the APA genes 

identified by both scMAPA and scAPA and uniquely by scMAPA are enriched for the IPA terms 

with keyword “neurology”, while scAPA-unique APA genes are not enriched for any of the 

terms (Fig. 4B, S. Table 4). Expression analysis further validates the functional implication of 

scMAPA APA genes. Globally, when 3,223 differentially expressed genes are calculated based 

on Seurat package, 1,018 of them are the scMAPA APA genes, showing a significant overlap (p-

value < 2.2e-16 by hypergeometric test). This result is consistent with the potential effect of APA 

on differential expression that previous studies discussed14,23. Previous studies discussed that 3ʹ-

UTR shortening removes microRNA (miRNA) binding sites on the 3ʹ-UTR and thus evade 

miRNA-mediated repression and 3ʹ-UTR lengthening adds miRNA binding sites and thus 

enhance miRNA-mediated repression. We checked that our overlap is not because the scMAPA 

identification is biased toward highly expressed genes, as the p-values of the scMAPA APA 
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genes are not strongly correlated with their average CPM values (𝑅2=0.08). Thus, scMAPA 

identifies APA genes that are potentially functional not biased by high expression. Altogether, 

our analysis reaffirms that scMAPA identifies functional APA events in the scRNA-Seq data.  

On the 3,223 scMAPA APA genes with functional implications, we further investigated 

which cell clusters the genes undergo APA events in which direction and to which degree. For 

each APA gene, this investigation estimates the coefficients representing the degree and the 

direction of APA events for each cluster (see Methods). Running hierarchical clustering on the 

scMAPA coefficients (Fig. 4C), we found that immune cells and neuron cells are most 

distinguished from the other cell types. This result is in line with the previous finding of scAPA 

that they are most different in the APA pattern 24. Further, scMAPA revealed a large number of 

genes characterized with cell-type-specific 3ʹ-UTR shortening and lengthening (Fig. 4D). 

Neuron cells are characterized with 3ʹ-UTR lengthening, which is consistent with previous 

findings of the dominance of 3ʹ-UTR lengthening in neuron cells 25–28. By running IPA on them, 

we found that significantly enriched terms (B-H p-value < 0.05, S. Table 5) are related to the 

cell-type-specific biological function. For example, 438 neuron-specific APA genes are enriched 

for 11 IPA Disease and Bio Functions terms with keyword “blood” and “blood vessel”, such as 

Proliferation/Survival of blood cells and Area/Size of blood vessel, while other cells do not show 

as strong enrichment (Fig. 4E) with the terms. Neuron and blood cells interact to allow ready 

exchange of nutrients and waste products, enabling the high metabolic activity of the brain 

despite its limited intrinsic energy storage29. Although this interaction is believed to play critical 

function in maintaining the operational condition of brains, little is known as to how this highly 

dynamic process is tightly regulated. With the neuron-specific APA genes, APA is expected to 

contribute to the dynamic and tight regulation. Together with a general independence between 

the expression level and the scMAPA coefficients across all clusters (-0.003 in Spearman’s ρ on 

average across the five cell types. S. Fig. 4), scMAPA’s gene-cluster-level identification 

suggests dynamic APA as an additional layer for complex gene regulation mechanism. 

 

scMAPA controls confounding factors  

To demonstrate how scMAPA controls confounding factors and why it is critical in the APA 

analysis, we first split the mouse brain scRNA-Seq data by both cell type (neurons, immune 

cells, astrocytes, oligos, and vascular cells) and brain region (cortex and midbrain dorsal) 

information. Since the cell types and the brain regions are not perfectly matched (S. Fig. 5A, B), 

we quantified 3ʹ-UTR long and short isoforms in each combination using scMAPA. With the 

quantified isoforms for 10 scRNA-Seq data from the combinations (5 cell types ×2 brain 

regions), we set scMAPA in two different runs. In the first run, we set only the cell type 

information as covariates, identifying 2,793 APA genes (Fig. 5A, S. Table 6). In the second run, 

we set the cell type information as covariates and brain region information as confounders, 

identifying 2,715 APA genes (S. Table 6). Since the second run with the confounder would not 

identify genes whose APA usage is associated with brain regions, 113 genes included only in the 

first set would be associated with brain-region-specific function. To test if the 113 brain-region-

specific APA genes indeed play roles specific to brain regions, we first mapped their homologs 
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in human and checked the Genotype-Tissue Expression (GTEx)30 human samples that 

upregulated the homologs compared to other human samples (see Methods). Since the 

upregulated genes represent those playing roles in the samples, we hypothesized that the 

homologs are upregulated mainly in brain samples, especially brain cortex samples. To test our 

hypothesis, we ranked GTEx samples based on the overlap between the upregulated genes and 

the homolog genes using a database that curates the up- and down-regulated genes for each 

GTEx sample, Enrichr 31. When Enrichr evaluates the overlap by combining p-value and odds 

ratio (Combined Score in Enrichr), the homologs are more up-regulated in GTEx brain samples 

than in non-brain (T-test statistic=22.7, p-value=6.57e-105, Fig. 5B). Further, they are more up-

regulated in GTEx brain cortex samples than brain non-cortex samples (T-test statistic=5.08, p-

value=5.86e-7, Fig. 5C), demonstrating their brain region specificity. It is important to note that 

the homologs are not as significantly down-regulated both in brain vs. non-brain (T-test 

statistic=-6.5, p-value=8.4e-11, S. Fig. 5A) and in brain cortex vs. brain non-cortex samples (T-

test statistic=-1.0, p-value=0.29, S. Fig. 5B). To further analyze the implication in brain-region-

specific functions, we ran Ingenuity Pathway Analysis (IPA) upstream regulator analysis 

separately on the 113 genes and on 2,715 other genes that are identified by the second run (2,680 

found by both and 35 by only the second run, S. Table 7). The result shows that the common 

upstream regulators for the 113 genes are indeed implied for brain-region-specific functions. For 

example, IL1B, LRRC4, and TREX1 are three of the most significant upstream regulators of the 

113 genes. All three genes are expressed specifically in the cortex region32–34. Also, they are 

known to be heavily involved in brain development where their abnormal regulations are 

associated to neurological diseases 32–34. Since this mouse brain data was collected from brain 

regions including cortex, APA events on the 113 genes would help understand how those 

upstream genes affect the APA events of the 113 genes for brain development. Altogether, 

scMAPA facilitates unbiased analyses by explicitly addressing confounders in the model.  

 

DISCUSSION 

In this work, we developed scMAPA that identifies APA genes in two novel ways. First, while 

all current methods operate with assumptions on the shape of input scRNA-Seq data, scMAPA 

quantifies 3ʹ-UTR long and short isoforms without posing such assumptions, enabling an 

accurate and robust identification of APA genes. scMAPA outperforms existing methods in 

identifying APA genes in various simulation (Fig. 2) and the PBMC data (Fig. 3). Especially, it 

is important to note that scMAPA makes point estimates for the pA sites. Although point 

estimations are more directly relevant than interval estimations for further analyses, e.g. 

conducting omics analyses and designing experiments, point estimation methods are generally 

disadvantageous in checking the distance with the annotated pA sites (Fig. 3A and S. Fig. 3A), 

because point estimation returns a single point to calculate the proximity while interval 

estimation returns two points (start and end of the interval). Still, scMAPA outperforms the 

interval estimation results of Sierra and scAPA, while the interval estimation results are better 

than point estimation results of Sierra and scAPA. Further, 1,432 APA genes identified in the 

PBMC data only by scMAPA, not by scAPA, scDAPA, or Sierra, suggest that the intricate 
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developmental process of hematopoietic progenitor cells may involve APA events in line with 

previous reports on the role of APA in the hematopoietic stem cell differentiation22. As the 

second novelty, it identifies APA genes specific to each cell type while controlling confounders 

using a sophisticated statistical model, enhancing interpretability of the APA genes. This novel 

analytical layer further elucidates cell-type-specific function of APA in the mouse brain data 

(Fig. 4 and Fig. 5). For example, 438 APA genes unique to neuron cells suggest its potential role 

for the interaction between neurons and blood vessels, which is critical to maintain the 

operational condition of brains.  

With the improved accuracy/robustness and enhanced interpretability mentioned above, 

scMAPA is extendible in the following directions. First, scMAPA assumes two types of 3ʹ-UTR 

isoforms, short and long that use proximal and distal pA sites respectively. It also assumes no pA 

sites on the introns. With recent works reporting genes with more than two 3ʹ-UTR isoforms20 

and pA sites on the introns3, we will extend scMAPA to model such cases. Second, since we 

transform 3ʹ-biased reads to represent full-length 3ʹUTR of the transcripts, this transformation 

allows to use other established methods developed for bulk RNA-Seq data that work for full-

length transcripts, such as APATrap35, TAPAS36, and DaPars14. Third, in the same sense, 

scMAPA is directly amenable for other scRNA-Seq data that are not 3ʹtag-based (e.g. Smart-

seq237). scMAPA is also applicable for bulk RNA-Seq data sets that are collected from multiple 

biological conditions. 

Altogether, we developed a statistical method to identify APA genes in the multi-cluster 

setting. With high sensitivity and interpretability, scMAPA allows to understand cell-type-

specific function of APA events, which is essential to shed novel insights into the function of 

dynamic APA in complex tissues. 

 

METHODS 

Processing data sets 

PBMC data. Aligned BAM file were downloaded from the 10X genomics repository 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). According to the data 

description of 10X, 1K and 10K data were generated from same materials. 5K data was 

generated from different cells. PCR duplicates were removed using UMI-tools 1.0.0 with “--

method=unique --extract-umi-method=tag --umi-tag=UB --cell-tag=CB”. Cell clustering was 

performed using R package Seurat 3.1.418. We filtered to keep cells with more than 1000 UMI 

counts and 500 genes expressed. Cells with more than 15% UMI counts from mitochondrial 

genes were filtered out. Then, raw data was normalized by regressing against UMI count, 

mitochondrial mapping percentage, and ribosome genes mapping percentage using SCTransform 

function. We ran PCA analysis and took top 20 principle components as input to FindNeighbors 

function. Finally, FindClusters function was run with resolution set to 0.2 to identify cell 

communities. Cell types were annotated by matching the expression pattern of well-known 

marker genes for PBMC 19. 
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Mouse brain data. Aligned BAM file and clustering result of cortex and midbrain dorsal from 

two donors were downloaded from 16. PCR duplicates were removed using UMI-tools same 

parameters used for PBMC data. To keep consistent with analysis performed by scAPA, we 

included only neurons, immune cells, astrocytes, oligos, and vascular cells in our analysis. 

Differential expression analysis was performed by FindAllMarkers function of Seurat package 

with min.pct set to 0.25 and all other parameters as default.  

Mouse human homology data. It is downloaded from Vertebrate homology database in the 

Mouse Genome Informatics (MGI) (http://www.informatics.jax.org/homology.shtml). 

scMAPA algorithm 

Filtering polyadenylation (pA) sites. 

To make sure only genes with strong APA signal among multiple cell types are identified, we 

first filter out genes in which only 1 PA site is detected in less than 3 cell types. Then, for each 

gene, we calculate the CPM for long and short isoforms separately and average over all cell 

types. Only genes with average CPM larger than 10 for both long and short isoforms are kept. In 

addition to gene-wise filtering, we also apply cell-wise filtering on passed genes to let only cell 

types with at least 20 raw counts enter the model fitting step. This ensures the coefficients 

estimation would not be biased by cell types with extreme low counts.  

Transformation of 3ʹ biased scRNA-Seq Data. 

For optimization-free APA identification, we transform scRNA-Seq data that utilize 3ʹ selection 

and/or enrichment techniques in library construction (e.g. Drop-Seq, CEL-Seq, and 10x 

Genomics). Due to the 3ʹ selection/enrichment, the reads are distributed toward 3ʹ parts of the 

transcripts. To make the data compatible for the methods developed for bulk RNA-Seq data 

where the read coverage is distributed across the whole 3ʹUTRs, we pad each read along the 

3'UTR region until the end based on the 3ʹUTR definition estimated by DaPars2.  

Estimation of PA sites and abundance of long/short isoforms. 

For this step, we redesigned multiple modules of DaPars238, a widely used method estimating 

significance of dynamic APA events in the bulk-RNA Seq data. Since it was originally designed 

to compare between two conditions, such as case and control 14, we extended this module to 

solve the following optimization problem as follows.  

(𝑤𝑘𝐿
∗ , 𝑤𝑘𝑆

∗ , 𝑃𝑘
∗) = argmin

𝑤𝑘𝐿
∗ ,𝑤𝑘𝑆

∗ ≥0,1<𝑃𝑘<𝐿
|| 𝑅𝑘𝑖 − (𝑤𝑘𝐿𝐼𝑘𝐿 + 𝑤𝑘𝑆𝐼𝑘𝑃)||2

2  

where 𝑤𝑘𝐿 and 𝑤𝑘𝑆 are the transcript abundances of long and short 3ʹ-UTR isoforms for cell 

cluster 𝑘, respectively. 𝑅𝑘𝑖 = [𝑅𝑘𝑖1, … , 𝑅𝑘𝑖𝑗, … , 𝑅𝑘𝑖𝐿]
𝑇
is the corresponding read coverage at 

single-nucleotide resolution normalized by total sequencing depth. L is the length of the longest 

3ʹ-UTR length from annotation, 𝑃𝑘 is the length of alternative proximal 3ʹ-UTR to be estimated, 

𝐼𝑘𝐿 is an indicator function with L times of 1, and𝐼𝑘𝑃 has 𝑃𝑘 times of 1 and 𝐿 − 𝑃𝑘 times of 0. We 

solve this equation using quadratic programming 39 as was done in DaPars. 
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Statistically detecting APA events. 

In order to model the relationship between long/short isoform identified above and the given cell 

types, we build logistic regression for each gene with log-odds of the event that transcript uses 

distal polyA site (having long isoform) as the outcome and cell types as predictors using 

weighted effect coding scheme. When scRNA-Seq data were collected from multiple samples or 

individuals, scMAPA can be easily extended to control the effect of unmatched confounding 

factors by adding them into the regression model: 

ℓ = ln
𝑝

1 − 𝑝
= 𝛽0 + ∑ 𝛽𝑖 ∗ 𝐶𝑖

𝑛−1

𝑖

+ ∑ 𝛽𝑗 ∗ 𝑉𝑗

𝑚

𝑗

 

where 
𝑝

1−𝑝
 is the odds of transcript having long isoform. 𝛽𝑖 and 𝐶𝑖 denote the coefficients and the 

binary indicator of each cell type, respectively. 𝑛 is the number of cell types. Since one cell type 

needs to be chosen as reference for model fitting, scMAPA fits the model twice to get the 

estimates of coefficients for all cell types. 𝑉𝑗 and 𝛽𝑗 denote the sample-specific binary 

confounding variables (e.g. clinical variable) and their coefficients, respectively. 𝑚 is the 

number of confounding factors.  

When there is no confounding factor, the likelihood ratio test (LRT) between cell type only 

model and null model is conducted to test the unadjusted effect of cell type, which is equivalent 

to the likelihood ratio chi-squared test of independence between long/short isoforms and cell 

types. With the existence of confounding variables, LRT between full model and confounding 

variables only model is conducted to test the adjusted effect of cell type. P-values from all tests 

are further adjusted by the Benjamini–Hochberg procedure to control the false-discovery rate 

(FDR) at 5%. In addition, to ensure there is a significant change in effect size, odds ratio of each 

cell type against grand mean of all included cell types is calculated. There should be at least one 

cell type whose odds ratio is greater than 0.25 for a gene to be called as APA gene. 

Currently, scMAPA inherits DaPars’ focus to identify up to 2 peaks in the 3ʹ-UTRs. However, 

our logistic model for step 2 can be easily extended to detect >2 peaks if employing other 

quantifiers that can consider >2 pA sites. For example, when only 2 peaks are detected for a 

gene, a binary logistic regression model would be fitted. However, when more than 2 peaks are 

detected for a gene, a multinomial logistic regression model would be fitted. To the best of our 

knowledge, since the only current tool that detects >2 peaks is scAPA, multinomial logistic 

regression mode is only compatible with the peak detection result of scAPA. LRT test is used to 

estimate the significance of APA among multiple peaks and cell types similarly.  

Identification of cluster-specific 3ʹ-UTR dynamics. 

For the genes where significant APA dynamics is detected, scMAPA further analyses which cell 

type significantly contributes to the APA in which direction within each gene. By using weighted 

effect coding scheme, each coefficient in the logistic regression can be interpreted as a 

measurement of deviation from the grand mean of all cells. This grand mean is not the mean of 

all cell type means, rather it is the estimate of the proportion of long isoforms of all cells for each 
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gene. So, the unbalanced cell population sizes, which are common in scRNA-Seq would not 

affect the accuracy of estimation.  

We use the following two criteria to determine the cluster-specific significant 3ʹ-UTR dynamics:  

First, given coefficients estimated from logistic regression, we use the Wald test to determine the 

p-value of each coefficient. P-values among all genes with significant APA of the same cell type 

are further adjusted by FDR. Then, the absolute coefficient must be greater than ln (2), 

corresponding to a 2-fold change in odds ratio. 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≥ ln (2) would be considered as 3ʹ-

UTR lengthening and 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ≤ −ln (2) would be considered as 3ʹ-UTR shortening. 

However, users can define a different cutoff value than ln (2) for 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 with respect to 

the stringency they want to set on the identification.  

 

Simulation 

First, we used Splatter, a widely known scRNA-Seq simulator, to simulate the cell-level count 

matrix, which acts as the base of synthetic data. Splatter was trained by unfiltered mouse brain 

data and set to generate count matrices containing 5000 genes and 3000 cells. The matrix then 

collapsed to 5 columns, representing the total count of 5 cell groups. We call this 5000 × 5 

matrix as cluster-level count matrix.  

From the analyses of PBMC and mouse brain data, we found that the standard deviation of PDUI 

(percentage of distal polyA site usage, which is equivalent to the proportion of long isoforms) of 

each gene could act as a classifier of APA gene and non-APA gene. Based on that, the standard 

deviation of PDUI for APA genes in synthetic data is estimated by calculating the mean of 

standard deviations of PDUI from APA genes detected by both scMAPA and scAPA from 

mouse brain data. Similarly, the standard deviation of PDUI for non-APA genes was estimated 

by calculating the mean of standard deviations of PDUI from genes identified as non-APA by 

both scMAPA and scAPA. With the estimated standard deviations, a PDUI matrix with the same 

size (5000 × 5) as the cluster-level count matrices was generated. Each row of the PDUI matrix 

has a standard deviation equal to either estimated standard deviation for the APA gene or non-

APA gene. This is achieved by centering 5 randomly selected numbers from standard normal 

distribution to 0. Then multiply the desired standard deviation to these centered numbers and add 

them to the desired mean. The mean of each row was randomly picked from 0.05 to 0.95. Since 

the estimated 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values are averaged to 0.127 and 0.009 for the APA and the non-APA 

genes respectively, we generated simulation data with 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 for APA genes in a range 

centered on 0.13 while fixing that for non-APAs at 0.009. The rows representing true APA genes 

were randomly selected. Then, each number in the cluster-level count matrix is divided into the 

count of long isoforms and the count of short isoforms by multiplying and PDUI matrix or (1-

PDUI matrix), respectively. Finally, Pearson’s chi-squared test (scAPA), logistic regression 

model + LRT (scMAPA) could be applied to assess the performance of these three methods. For 

each repeat of simulation, PDUI matrix is regenerated but cluster-level count matrix keeps same 

for the sake of computational burden. Every simulation design was repeated 100 times to derive 

summarized statistics.  
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To examine the impact of experimental design on statistical power to detect significant APA 

genes, we assess the performance of scMAPA and scAPA in the following aspects: 1) To test the 

impact of unbalanced cell populations, the proportion of 5 cell types in the synthetic cell-level 

count matrices were set to three scenarios with different distribution of cell type populations: 

(20%, 20%, 20%, 20%, 20%), (30%, 17.5%, 17.5%, 17.5%, 17.5%), and (50%, 12.5%, 12.5%, 

12.5%, 12.5%). 2) To test the impact of the proportion of true APA genes, we set three levels of 

true APA proportions, 5%, 10%, and 20%. 3) To test the impact of the extent of APA dynamics, 

instead of using mean of standard deviations, we set the standard deviations of true APA genes 

in the simulated PDUI matrix to 15 equally spaced sequence of numbers between the first 

quartile and the third quartile of standard deviations estimated from APA genes in mouse brain 

data. In total, there were 9 scenarios, corresponding to 9 combinations of factors 1) and 2). When 

testing factor 3), we chose balanced cell type proportion (0.2, 0.2, 0.2, 0.2, 0.2) and 10% true 

APA genes.  

Assessing accuracy of PA site estimation 

To assess the PA site/ peak interval prediction accuracy, we used peak lists or PA site list from 

scMAPA, scAPA, and Sierra on PBMC data. The estimation accuracy is measured by the 

percentage of the predicted peaks or PA sites overlapped with PA sites annotated in PolyASite 

2.0. Since it is meaningless to find the overlap between two point estimates, we expanded the 

point position from annotation database to an interval by manually adding a distance ranging 

from 10 bp to 150 bp in a 10 bp increment to both sides of the annotated PA sites. scMAPA 

gives point estimate of PA site as predicted proximal PA site and Sierra gives two point 

estimates as fit max position and max position. To make the comparison more comprehensive, 

we calculated the midpoint of peak interval as the pseudo point estimate of scAPA. The point 

estimates from these methods are considered as supported by annotation database if the point 

position falls in the annotated interval (annotated PA site ± distance). For peak intervals 

estimated by scAPA and Sierra, as long as there is 1 bp overlap between the estimated interval 

and the annotated interval (either start or end of estimated interval falls in annotated PA site ± 

distance), the estimate would be considered as supported by annotation database. Then, the 

percentage supported by annotation is calculated as number of PA sites or peak intervals 

supported by annotation database divided by total peaks detected for each method.  

 

Running scDAPA, scAPA and Sierra 

Sierra and scDAPA were run with default parameters. scAPA was ran with default parameters 

and intronic regions omitted. The genes with CPM less than 10 were filtered out. We want to 

point out that scAPA employs chisq.test function in R to estimate the significance of dynamic 

PA sites usage among multiple clusters. This potentially makes the identification of scAPA much 

conservative than other tools in the multi-cluster setting since it does not allow any cell type to 

have 0 count, as R’s chisq.test would return NA as p-value if there is 0 presented in the count 

table. However, it is common to observe that a few cell types would not express certain genes in 
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scRNA-Seq, especially when the whole cell population is split to more than 5 clusters (cell 

types), which is typical for complex biological systems.  
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Figure 1. Schematic illustration of scMAPA. Bars represent the estimated abundance of 3ʹ-UTR 

shortening (left) and lengthening (right) isoforms in each cluster-bulk data. The black bars on the 

bottom represent the grand mean of all long/short isoforms across the clusters. 

Figure 2. Performance assessment using simulated data. (A). Illustration of the simulation 

process. With fixed number of true APA events (500 out of 5000) and uniform distribution of 

cell cluster size (600 cells in each cell type), (B) sensitivity and (C) specificity were plotted 

against varying degree of standard deviation (SD) of PDUI values across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) for 

true APA genes. With fixed number of true APA events (500) and SD values (0.127 for true 

APA genes and 0.009 for non-APA genes), (D) sensitivity and (E) specificity in scenarios with 

different distributions of cell cluster size: (20%, 20%, 20%, 20%, 20%) for scenario a, (30%, 

17.5%, 17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 12.5%, 12.5%) for c. 

Figure 3. Performance assessment of scMAPA and scAPA using PBMC data. (A) Percentage of 

pA sites each method identified in the 10k data that are in proximity to known pA sites annotated 

in PolyASite 2.0 by the distance defining the proximity. (B) Upset plot showing diverse overlaps 

among APA genes in the 10k data identified by four methods, scAPA, Sierra, scMAPA and 

scDAPA. Barplot on top shows the number of genes corresponding to the set combination 

indicated below. Black bars correspond to the sets involving scMAPA results. Colored horizontal 

bars represent (C). Venn diagram of significant APA genes detected by scMAPA across 10k, 5k, 

and 1k data. (D) Frequency polygon plot shows the distribution of standard deviations (SD) of 

PDUI values across clusters (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) for significant APA genes. (E) Bar plot shows that the 

significant APA genes identified by scMAPA is significantly enriched with “hemato”-related 

“Disease & Function” IPA terms. The blue bar represents the -log10(B-H p values) from the 

enrichment tests.  

Figure 4. Gene-level and gene-cluster-level identification using mouse brain data. (A) Venn 

diagram of significant APA genes detected by scMAPA and scAPA. (B) Enrichment analysis of 

the APA genes uniquely detected by scMAPA (green) and scAPA (red), and those commonly 

detected by both (yellow) (C) Heatmap of coefficients of cell type-specific APA genes. 

Coefficients were estimated in logistic regression model. (D) Bar plot shows the number of 3ʹ-

UTR lengthening and shortening detected in each cell type. (E) Bar plot shows the enrichment (-

log10(B-H p-value)) of brain cell-type-specific APA genes (blue for astrocyte, orange for 

immune, green for oligos, red for vascular, and violet for neurons).  

Figure 5. (A) Venn diagrams show the significant APA identification by scMAPA before and 

after adjusting for the brain region. Pink and violet diagrams show the APA genes identified with 

and without the adjustment, respectively. (B) Significance of overlap between the 113 brain-

region-specific APA genes and the up-regulated genes in GTEx samples whether they are from 

brain (red) or not (green). A higher overlap significance indicates a more significant overlap, 

calculated by Enrichr.  (C) Significance of overlap between the 113 genes and the up-regulated 

genes in GTEx brain samples whether they are from cortex (red) or not (green).  

Supplemental Figure 1. Signal density of 10k PBMC scRNA-Seq reads mapped onto 3ʹ-UTR of 

GATA2 (A) and FLT3 (B) in terms of original 3ʹ tag-based (top panel) or of padded reads (C) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2020. ; https://doi.org/10.1101/2020.07.30.229096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229096
http://creativecommons.org/licenses/by-nc-nd/4.0/


and (D) respectively, for selected clusters for presentation purpose. While the genomic 

coordinates are shared between A and C, B and D, the blue arrows indicate the polyA site 

annotated in polyASite database (v. 2.0). Red arrow indicates the proximal polyA site predicted 

by DaPars. (E) Algorithm overview of bioinformatic tools and statistical methods to identify 

dynamic APAs in scRNA-Seq data 

Supplemental Figure 2. Performance assessment of significance estimation methods using 

simulated data. (A) shows the frequency of standard deviations (SD) of PDUI values across 

clusters from mouse brain data. Genes identified as significant APA genes by both scMAPA and 

scAPA were considered as APA genes. Genes identified as non-significant APA genes by both 

methods were considered as non-APA genes. (B) to (E) show the performance assessment using 

simulated data. With fixed number of true APA events (250) and SD values (0.1268 for true 

APA genes and 0.009190 for non-APA genes), box plots in (B) and (C) show the sensitivity and 

specificity in scenarios with different distributions of cell type populations: (20%, 20%, 20%, 

20%, 20%) for scenario a, (30%, 17.5%, 17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 12.5%, 

12.5%, 12.5%) for c. Box plots in (D) and (E) show the sensitivity and specificity with the 

number of true APA events set to 1,000 and all other factors remain same. 

Supplemental Figure 3. (A) Percentage of pA sites each method identified in the 5k data that 

are in proximity to known pA sites annotated in PolyASite 2.0 by the distance defining the 

proximity. (B) Upset plot showing diverse overlaps among APA genes in the 5k data identified 

by four methods, scAPA, Sierra, scMAPA and scDAPA. Barplot on top shows the number of 

genes corresponding to the set combination indicated below. Black bars correspond to the sets 

involving scMAPA results. Colored horizontal bars represent the total number of APA genes 

identified by each method. (C). Venn diagram of significant APA genes across 10k, 5k, and 1k 

data detected by scAPA, scDAPA, and Sierra, respectively. (D) Boxplot representing the number 

of APA genes identified by scMAPA by the number of clusters sampled from the 13 clusters of 

the 10k data.  

Supplemental Figure 4. (A) Heatmaps of log(CPM+1) of all cell type-specific APA genes 

shown in Fig 4.D. (B)-(F) Scatter plots show the correlation pattern between APA dynamic and 

expression of genes in Fig 4.C by cell type. X-axis represents coefficients shown in Fig 4.C, Y-

axis represents log(CPM+1) shown in Fig S3.A. (B) shows the pattern for Astrocytes, (C) for 

Immune, (D) for Neurons, (E) for Oligos, (F) for Vascular cells.  

Supplemental Figure 5. tSNE plot showing the cell type (A) and brain region (B) of the mouse 

brain scRNA-Seq data. (C) Significance of overlap between the 2,575 APA genes that are not 

specific to brain regions and the up-regulated genes in GTEx samples whether they are from 

brain (red) or not (green). A higher overlap significance indicates a more significant overlap, 

calculated by Enrichr. (D) Significance of overlap between the 2,575 genes and the up-regulated 

genes in GTEx brain samples whether they are from cortex (red) or not (green). 
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S. Table 1. Cell type annotation based on marker genes curated in CellMarker19 for 10k, 5k, and 

1k in the PBMC data. 

S. Table 2. Detailed information of APA genes detected by scMAPA, scAPA, scDAPA, and 

Sierra on the PBMC data including Ingenuity Pathway Analysis (IPA) analysis result. 

S. Table 3. scMAPA estimation result for cell-type-specific APA genes on the mouse brain data.  

S. Table 4. Result of IPA comparison analysis on the “Disease & Function” terms enriched for 

APA genes identified uniquely by scAPA, scMAPA and commonly by both on the mouse brain 

data (1,446, 2,175, and 1,048 respectively).  

S. Table 5. Result of IPA comparison analysis on the “Disease & Function” terms enriched for 

APA genes identified uniquely in astrocyte, immune, oligos, vascular, and neuron cells.  

S. Table 6. scMAPA estimates on the input data that are split by cell type and brain region either 

with brain region as a confounder or not.  

S. Table 7. IPA upstream regulator analysis result (enrichment p-value) on 113 and 2,715 APA 

genes that are supposed to be brain-region-specific and non-specific, respectively.  
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