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Abstract:   

Microglia interact with neurons to facilitate synapse plasticity; however, signal transducers 

between microglia and neuron remain unknown. Here, using in vitro organotypic hippocampal 

slice cultures and transient MCAO in genetically-engineered mice in vivo, we report that at 24 h 

post-ischemia microglia release BDNF to downregulate glutamatergic and GABAergic synapses 

within the peri-infarct area. Analysis of the CA1 hippocampal formation in vitro shows that 

proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold 

stability through p75NTR and TrkB receptors respectively. Post-MCAO, we report that in the peri-

infarct area and in the corresponding contralateral hemisphere similar neuroplasticity occur 

through microglia activation and gephyrin phosphorylation at Ser268, Ser270 in vivo. Targeted 

deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point-mutations 

protect against ischemic brain damage, neuroinflamation and synapse downregulation normally 

seen post-MCAO. Collectively, we report that gephyrin phosphorylation and microglia derived 

BDNF faciliate synapse plasticity after transient ischemia.   
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Introduction: 

Ischemic stroke is a leading cause of death and long-term disability worldwide. The annual 

mortality rate of 5.5 million is further compounded by high morbidity as up to 50% survivors are 

chronically disabled 1.Therapeutic approaches to CNS ischemia developed in the laboratory have 

focused on mechanisms contributing to ischemic damage, namely excitotoxicity, oxidative stress 

and inflammation 2,3. Unfortunately to date clinical trails targeting glutamate receptors 4, GABA 

receptors 5, calcium channels 6, sodium channels 7and free radicals 8have all failed. The lack of 

treatment options is directly related to our poor understanding of the possible mechanisms 

underlying the disease. As the brain has developed inherent mechanism(s) for self-preservation; 

gaining insights into these protective measures may thus provide a way forward to counteract 

ischemic brain injury.  

Typically, rapid cell death occurs in the ischemic core but intriguingly neurons in the peri-

infarct area, a region with constrained blood flow and partially preserves energy metabolism, 

survive. Within the peri infarct the propagating neuronal depolarization in combination with 

impairment of glia function causes an increased extracellular concentration of ions and 

neurotransmitters resulting in neuronal functional perturbations 9. This is accompanied by 

reductions in both excitatory dendritic spines 10 and GABAergic synapses 11. Interestingly, the 

neurotrophin brain-derived neurotrophic factor (BDNF) can decrease cell death and ischemic core 

volume leading to improvement of neurological outcome after experimental stroke either upon 

overexpression in vivo using genetic methods 12 or upon exogenous application 13. 

Correspondingly, inhibition of BDNF exacerbates ischemic damage 14.  

Under physiological conditions, glutamatergic neurotransmission induces BDNF 

expression 15. BDNF is expressed as a proprotein, proBDNF, and is subsequently processed to its 
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mature form mBDNF 16. proBDNF preferentially binds to the low-affinity nerve growth factor 

receptor p75NTR and negatively regulates dendritic spine stability through Rho GTPases, Rho/Rac1 

activation 17. mBDNF signals through the neurotrophin receptor tyrosine kinase B (TrkB) to 

enhance excitatory neurotransmission 18. mBDNF can also bind to p75NTR receptors, albeit with 

much lower affinity 19. At inhibitory GABAergic synapses, mBDNF induces the internalization of 

GABAA receptors 20 and downregulation of the main inhibitory synapse scaffolding protein 

gephyrin 21, thereby reducing GABAergic transmission in principal cells.  

Ischemia also activates inflammatory pathways that subsequently recruit leukocytes to the 

injured area of the brain 22. Immune cells contribute to both neuroprotection and programmed cell 

death 23, suggesting that the temporal window of inflammation might determine cell survival or 

death. The immune response signalling events must be counteracted to mitigate tissue damage and 

re-establish homeostasis. Microglia the resident immune cells in the central nervous system (CNS) 

are the primary responders during defense. They clear cellular debris as part of the tissue repair 

and wound healing processes 24,25. In recent years, microglia have also been shown to play an 

essential role in synapse pruning during postnatal brain development 26. Microglia activation can 

be triggered by acute insult, causing process elongation and increased expression of marker 

proteins like IBA1 and CD11b 27. Microglial activation can protect the brain, albeit the precise 

cellular and molecular mechanisms for microglia influenced neuroprotection remain unclear. 

Microglia processes can directly sense synaptic activity 28, and can regulate neuronal calcium load 

and functional connectivity through neuronal mitochondrial function and P2Y12 receptor 

activation on contacting microglia 29. Subsequent inflammation induced by lipopolysaccharide 

(LPS) activates downstream calcium-calmodulin-dependent kinase (CaMKIV), cyclic AMP 
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response element binding protein (CREB) phosphorylation and BDNF protein increase facilitate 

neuron survival after cortical injury 30.   

It has been reported that BDNF administered either intravenously 13, with viral vectors 12, 

or by addition of the bioactive high-affinity TrkB agonist, 7,8-dihydroxyflavone, can protect 

neurons from apoptosis and decrease infarct volumes in animal models of stroke 31. These findings 

suggest that elevated BDNF is beneficial for recovery after stroke. However, the mechanisms 

underlying the beneficial effect of BDNF post-ischemia remain unclear. Here, we set out to assess 

the physiological mechanism(s) that are triggered upon ischemic brain damage to enable tissue 

repair and neural network reorganization. Using organotypic hippocampal slice cultures and the 

oxygen-glucose deprivation (OGD) cellular model of ischemia, we report that within the first 90 

min post-ischemia, proBDNF via p75NTR disrupts glutamatergic, and mBDNF via TrkB disrupts 

GABAergic neurotransmission. We found that ERK1/2 and GSK3β pathways downstream of 

TrkB phosphorylate gephyrin at Ser 268 and Ser 270 residues resulting in GABAergic synapse 

loss. Using transient middle cerebral artery occlusion (MCAO) in wildtype and genetically-

engineered mice, we uncover a central role for BDNF derived from microglia in influencing 

gephyrin phosphorylation downstream of TrkB receptor signaling. Using pharmacological 

depletion of microglia, CRISPR/Cas9 generated GphnS268A/S270A mutant mouse, and Bdnf 

gene deletion from microglia, we consistently demonstrate reduced microglial activation and 

enhanced synapse preservation at 24 h post MCAO. Collectively, these observations unravel 

microglia derived BDNF as the signal transducer linking microglia and neurons, to activate 

ERK1/2 and GSK3 β pathways to influence glutamatergic and GABAergic synapse integrity 

through gephyrin phosphorylation.    
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Results: 

OGD causes glutamatergic and GABAergic synapse downregulation  

To understand the mechanisms of BDNF action in ischemia we started with an in vitro model of 

ischemia, OGD, in organotypic hippocampal slice cultures obtained from transgenic mice that 

express myristoylated GFP in a subset of CA1 pyramidal neurons 32 and studied synaptic changes 

in the CA1 area after OGD (4 min) and recovery at 90 min and 24 h. First, we confirmed that we 

had induced hypoxia with OGD by measuring hypoxia-inducible factor 1 α (HIF1α) expression 33 

and found 1.5-fold increase in HIF1α expression in area CA1 90 min after OGD (Suppl. Fig. 1a, 

b). We then determined glutamatergic synapse alterations after OGD by measuring changes in 

dendritic spines 34. We observed an overall significant reduction in spine density on CA1 

pyramidal neurons at both 90 min and 24 h following OGD compared to control cultures (Fig. 1a, 

b; Supp. Fig. 1b). The mushroom and long-thin subtype of spines were particularly affected (Fig. 

1b).  

Next, we evaluated OGD-induced changes at GABAergic synapses in area CA1 at 90 min 

and 24 h following OGD. We immunolabeled for inhibitory presynaptic VGAT and postsynaptic 

inhibitory scaffolding protein gephyrin. We found a significant overall downregulation in gephyrin 

cluster density 90 min following OGD compared to control (Fig. 1c-e) in the Stratum Radiatum. 

However, after 24 h gephyrin cluster density remained significantly reduced, while cluster volume 

had recovered to baseline (Suppl. Fig. 1b´-b´´) similar to untreated cells.  

 To determine whether these morphological changes were accompanied by a functional 

deficit, we recorded AMPA-mediated miniature excitatory postsynaptic currents (mEPSCs) from 

CA1 pyramidal neurons within 24 h after OGD (Fig. 1f-f’). We found that the input resistance and 

resting membrane potential of CA1 hippocampal pyramidal cells in OGD and sister untreated cells 
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were similar, suggesting that OGD does not impact receptor open probability or intracellular 

chloride concentration. However, we found a significant decrease in the mEPSC amplitude in 

OGD-treated slices compared to control (Fig. 1f). Similarly, the inter-event-interval (IEI) of 

mEPSC of OGD cells were increased compared to control (Fig. 1f’). Taken together, dendritic 

spine loss is mirrored by functional loss of excitatory synapses 24 h after OGD. Subsequently, to 

determine whether inhibitory circuitry was also affected we recorded GABAA-mediated miniature 

inhibitory postsynaptic current (mIPSC) within 24 h of OGD induction. mIPSC analysis showed 

no observable changes in the amplitude of mIPSC after OGD compared to control slices (Fig. 1g). 

However, a significant increase in the IEI in OGD-treated slices was observed (Fig. 1g’). These 

functional data recapitulate the morphological observations that inhibitory synapse loss after OGD 

does not recover, but total GABAARs at synaptic sites within the existing synapses recover at 24 

h after OGD.   

 

Scavenging BDNF after OGD using TrkB-Fc rescues OGD-induced synapse deficit 

As BDNF is upregulated after ischemia 35,36, we assessed whether BDNF signaling contributed to 

synapse loss on CA1 pyramidal neurons after OGD. We scavenged proBDNF and mBDNF using 

chimeric TrkB-Fc (10µg/mL) and exposed organotypic hippocampal slices to 4 min OGD. 

Dendritic spine quantification in CA1 pyramidal neurons showed prevention of total spine density 

loss caused by OGD in TrkB-Fc treated cultures in comparison to untreated cultures (Fig. 2a, b). 

Specifically, the OGD-induced decrease in mushroom and long-thin subtype of dendritic spines 

was prevented by TrkB-Fc (Fig. 2a, b). We could confirm that TrkB-Fc scavenges both pro- and 

mBDNF by performing co-immunoprecipitation against TrkB-Fc and Western blot analysis 

against proBDNF and mBDNF (Fig. 2b’). Once we confirmed that TrkB-Fc also scavenges 
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mBDNF, we assessed whether TrkB-Fc treatment also protects GABAergic synapses. We found 

that post-synaptic gephyrin clustering was protected by TrkB-Fc in OGD treated cultures (Fig. 2c-

e). Importantly, TrkB-Fc caused no detectable effect in control cultures (not exposed to OGD). 

 To determine whether morphological synapse protection is recapitulated functionally, we 

recorded excitatory AMPA-mediated mEPSC from CA1 pyramidal neurons from all groups. We 

found that the OGD-induced reduction of mEPSC amplitudes 24 h following OGD was prevented 

by TrkB-Fc treatment, being comparable to treated and untreated controls (Fig. 2f; Suppl. Fig. 1c-

c’’). Similarly, increase in IEI was also prevented by TrkB-Fc treatment as seen 24 h after the 

induction of OGD, with values similar to treated and untreated control slices (Fig. 2f’; Suppl. Fig. 

1c’), indicating that the reduced occurrence of mEPSC after OGD was due to BDNF signaling.   

To test if TrkB-Fc also prevented changes in inhibitory transmission we recorded GABAA-

mediated mIPSC from CA1 pyramidal neurons from all groups. We found that mIPSC amplitudes 

were comparable in all groups (Fig. 2g, g’; Suppl. Fig. 1d). The previously observed increase in 

IEI caused by OGD was prevented with TrkB-Fc treatment to control levels (Fig. 2g’; Suppl. Fig. 

1d’), confirming that the OGD-induced decrease in glutamatergic and GABAergic synapse loss is 

mediated by BDNF.    

 

proBDNF and mBDNF signal via p75NTR and TrkB receptors to induce glutamatergic and 

GABAergic synapse loss respectively after ischemia  

Next we investigated the molecular pathways involving BDNF-mediated synapse loss at 90 min 

post OGD in organotypic hippocampal slice cultures. To specifically investigate the contribution 

of proBDNF on OGD-induced dendritic spine loss, we used blocking antibodies to either inhibit 

proBDNF or p75NTR. Pre-treatment of OGD slices with either anti-proBDNF or anti-p75NTR 
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antibodies prevented OGD-induced dendritic spine loss (Fig. 3a-c; P=0.37). Additionally, 

treatment of OGD slices with anti-proBDNF or anti-p75NTR antibody did not prevent gephyrin 

cluster loss after OGD (Fig. 3d; P=0.52). These findings indicate that pro-BDNF signaling through 

p75NTR to specifically induces excitatory synapses loss following OGD.    

 We next investigated the role of mBDNF in OGD-induced synapse loss. For this we 

pretreated cultures with anti-mBDNF (N-9, a function blocking antibody) prior to OGD and then 

quantified the dendritic spines; control sister cultures were processed simultaneously with and 

without anti-mBDNF treatment. The data revealed a significant downregulation of total dendritic 

spines in both OGD and anti-mBDNF pretreated OGD slices, compared to control and cultures 

pretreated with anti-mBDNF (Fig. 3e-f). Similar to our earlier observations, only the mushroom 

and long-thin subtype of dendritic spines were downregulated 90 min following OGD with or 

without anti-mBDNF treatment (Fig. 3f). This data suggested to us that mBDNF was not mediating 

excitatory synapse loss after OGD. In contrast, anti-mBDNF treatment was sufficient to prevent 

the reduction of gephyrin cluster density in OGD treated slices (Fig. 3g). Reduction of gephyrin 

cluster volume was also prevented in the presence of anti-mBDNF antibody compared to OGD 

slices (Fig. 3h). Our results show that mBDNF acts specifically on GABAergic synapses after 

OGD.  

 

Blocking ERK1/2 and GSK3β pathways protects gephyrin, but not dendritic spine loss 

mBDNF binds with high-affinity to TrkB receptors. It is also known that ERK1/2 and GSK3β 

pathways are activated downstream of TrkB 37. Therefore, we determined whether ERK1/2 and 

GSK3β signaling cascades downstream of TrkB were activated after OGD to mediate gephyrin 

cluster reduction at GABAergic terminals. We pretreated slices with pharmacological inhibitors 
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of GSK3β (25 µM GSK3β-IX) and MEK (30 µM PD98059) to prevent activation of these kinases 

before OGD. Control treated and untreated cultures served for comparative analysis. As expected, 

inhibiting ERK1/2 and GSK3β pathways did not prevent dendritic spine loss in OGD treated 

cultures (Fig. 4a, b). Specifically, the mushroom and stubby dendritic spines that were most 

affected by OGD could not be rescued with ERK1/2 and GSK3β blockade (Fig. 4b). However, at 

GABAergic synapses gephyrin cluster loss was prevented after OGD in slices pretreated with 

GSK3β-IX and PD98059, compared to untreated OGD slices (Fig. 4a, c, d).  

Previously, we have reported that GSK3β phosphorylates gephyrin on serine 270 (ser270) 

to negatively regulate the number of gephyrin clusters 38, and ERK1/2 phosphorylates gephyrin at 

serine 268 (ser268) to negatively regulate the size of gephyrin clusters 39. In order to determine 

whether phosphorylation of these serine residues were important for OGD-induced gephyrin 

downregulation, we used biolistic transfection of GFP-tagged gephyrin where serines 268 and 270 

were mutated to alanines (gephyrinS268A/S270A) into CA1 pyramidal neurons and assessed whether 

this gephyrin mutant is insensitive to mBDNF-mediated TrkB signaling after OGD. Our analysis 

showed that gephyrinS268A/S270A mutant is resistant to OGD compared to wildtype gephyrin 

(gephyrinWT) (Fig. 4e, f, h, i). Transgene expression of gephyrinS268A/S270A mutant could not prevent 

dendritic spine loss after OGD, which is consistent with the data using pharmacological inhibitors 

that block kinase pathways directly phosphorylating gephyrin at Ser268 and Ser270 respectively 

(Fig. 4g). Overall, our results identify gephyrin S268 and S270 phosphorylation downstream of 

TrkB as a determinant for GABAergic synapse loss after OGD.      

 

The MCAO model in vivo recapitulates OGD-induced synapse loss at 24 h post ischemia 
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In order to confirm our in vitro OGD results also occurred in in vivo we used MCAO technique, 

in which an intraluminal filament is used to cause transient ischemia in the fronto-parietal cortex 

and striatum 40, and assayed for glutamatergic and GABAergic synapse loss 24 h post MCAO. 

MCAO is the most extensively used model in rodents as it produces a reproducible infarct (core 

and peri infarct area) where pathophysilogical cascades are well described. The peri-infarct area 

surrounding the core is the site for inflammation, synaptic plasticity and circuit adaptations where 

structural and functional changes within cortex have been observed in patients after 3 months 

following an anterior ischemic stroke 41. Cell death within the ischemic core renders the tissue 

fragile for morphology or functional analysis; hence, we restricted our analysis to the penumbra.   

We used immunohistochemical staining to assess changes in glutamatergic and 

GABAergic synapse changes within the peri-infarct area and in the corresponding area 

contralaterally as comparison. For glutamatergic synapse labeling we chose VGLUT1 to test for 

glutamatergic presynaptic changes and PSD95 for glutamatergic postsynaptic changes (Fig. 5a, b, 

c). For GABAergic synapse labeling we chose GAD65/67 to label presynaptic terminals; 

GABAAR γ2 for synaptic receptors and GABAAR a5 for extrasynaptic receptors (Fig. 5a, d, e, f). 

Analysis of parietal cortex layer 2/3 (L2/3) 24 h after MCAO did not show any observable loss of 

PSD95 (Fig. 5c). This result is consistent with previous report that, under ischemic conditions, 

nNOS interacts with PSD95 to stabilize it at the cell membrane 42. Analysis for VGLUT1-positive 

terminals showed a significant reduction in presynaptic sites in both ipsi- and contra-lateral 

hemispheres (Fig. 5b).  

At GABAergic synapses, we saw a significant reduction in GAD65/67 terminals, γ2 

subunit-containing synaptic GABAARs and a5 subunit-containing extrasynaptic GABAARs (Fig. 

5d-f). We could not morphologically assess for α1 and α2 subunit-containing GABAARs in MCAO 
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tissue due to the strong post-fixation protocol that is not condusive for these two antibodies. 

Therefore, we used Western blot (WB) to examine the expression level of a1 and a2 subunits in 

control and MCAO tissue from both ipsi- and contra-lateral hemispheres of parietal cortex L2/3. 

We found a significant reduction in α1 and α2 GABAAR subunit expression after MCAO (Suppl. 

Fig 2a, b). Overall, our analysis confirms that both ipsi- and contra-lateral hemispheres decrease 

protein expression of important glutamatergic and GABAergic synaptic markers. Therefore, 

reduced excitatory and inhibitory synapse markers in vivo recapitulate our in vitro OGD results 

showing impaired glutamatergic and GABAergic synaptic transmission.    

Blocking effector kinases downstream of TrkB in vitro OGD experiments effectively 

rescued GABAergic synapse loss (Fig. 4c-d) and transgene expression of gephyrin S268A/S270A 

mutant insensitive to ERK1/2 and GSK3b kinases prevented gephyrin cluster loss after OGD (Fig. 

4h-i). Hence, we assessed ERK1/2 and GSK3b kinase activation levels 24 h after MCAO in fronto-

parietal cortex ipsi- and contralaterally in BL6 WT mice. WB analysis for ERK1/2 and its 

phosphorylated form showed unchanged ERK1/2 levels but significantly increased levels of 

phosphorylated ERK1/2 in the ipsi- but not the contra-lateral hemisphere at 24 h after MCAO (Fig. 

5g, h). WB analysis for GSK3b showed increased kinase expression in the contra-lateral 

hemisphere but not the ipsi-lateral hemisphere at 24 h after MCAO (Fig. 5i). Gephyrin expression 

level and its phosphorylation at Ser 268 and Ser 270 sites changed at 24 h after MCAO (Fig. 5j-

j’’’). WB quantification confirmed that total gephyrin protein levels significantly decrease at 24 h 

post MCAO (Fig. 5j’). Consistent with our observation of elevated ERK1/2 activation on the ipsi-

lateral hemisphere, we observed significantly higher S268 phosphorylation on gephyrin (Fig. 5j’’). 

Similarly, higher GSK3b levels in the contra-lateral hemisphere correlated with significantly 

higher gephyrin S270 phosphorylation (Fig. 5j’’’). These observations are consistent with our in 
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vitro OGD data, and further confirm a role for ERK1/2 and GSK3b pathways in directly 

phosphorylating gephyrin to regulate protein stability after MCAO.     

Synapse loss after MCAO is attenuated in GphnS268A/S270A point mutant mice  

To obtain a more direct confirmation for the central role of gephyrin phosphorylation in synapse 

alterations 24 h post-MCAO, we generated a GphnS268A/S270A global point mutant mouse line 

using CRISPR/Cas9 (Cyagen, USA). We performed MCAO in GphnS268A/S270A mutant mice 

and compared synapse plasticity changes in the parietal cortex L2/3 with sham 

GphnS268A/S270A littermates. We analysed for changes in glutamatergic and GABAergic 

synaptic markers using immunohistochemical analysis 24 h post-MCAO (Fig. 6). In the 

GphnS268A/S270A mutant mice, we observed stabilization of excitatory VGLUT1-positive 

terminals on both ipsi- and contralateral hemispheres 24 h post MCAO (Fig. 6a, b, b’). PSD95 

cluster density was also unchanged in the ipsi- and the contra-lateral hemispheres (Fig. 6b’). 

Analysis of GABAergic synaptic markers showed a significant increase in the GAD65/67 puncta 

density in both ipsi- and contra-lateral hemispheres (Fig. 6c). Significantly, we did not observe 

any reduction in γ2- and α5-containing GABAARs in Gphn268/S270A mutant mice 24 h post 

MCAO (Fig. 6 c’-c’’). Consistent with observed synaptic marker changes, WB analysis for the α1 

and α2 subunits in Gphn268/S270A mutant mice showed no alterations for these two major 

GABAAR subunits 24 h following MCAO (Suppl. Fig. 2c-d). Taken together, these results 

substantiate an involvement of  ERK1/2 and GSK3b as downstream effectors that critically 

influence gephyrin scaffold stability along with glutamatergic and GABAergic synapse integrity 

post-MCAO.  

Microglia induce synapse loss after MCAO 
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While it is well established that BDNF levels increase after cerebral ischemia, the source of BDNF 

after stroke remains unclear. Given that Bdnf transcripts have been localized within microglia 43, 

we wondered whether microglia contributed to BDNF signaling after stroke. We assessed for 

BDNF protein changes within ionized calcium-binding adaptor protein-1 (IBA-1) positive cells 

corresponding to microglia using near super resolution Airy scan microscopy analysis of sham and 

MCAO BL6 WT mice. Under baseline sham condition, we found low BDNF colocalization within 

IBA1 positive microglia (Suppl. Fig. 3a, a’). However, following MCAO we could detect elevated 

BDNF protein within both soma and processes on both ipsi- and contra-lateral hemispheres (Suppl. 

Fig. 3a). Quantification confirmed an increase in BDNF protein within microglia at 24 h post 

MCAO (Suppl. Fig. 3a’), implicating elevated BDNF protein translation within microglia in the 

synaptic pathology of stroke. 

To directly examine the role of microglia in BDNF synthesis and synaptic changes after 

MCAO, we next sought to deplete microglia from the brain using the pharmacological inhibitor 

PLX5622 that targets colony stimulating factor 1 receptor (CSF-1R) phosphorylation in microglia 

(Plexxikon Inc. Berkeley, CA 94710). It has been reported that prolonged administration of this 

drug (1 week) in a formulated chow diet depletes 90% of the microglia from rodent brain 44,45. 

Replacing the mice on regular diet repopulates microglia cells within 5-7 days. No adverse changes 

to synapse structure and function, or transcriptional changes have been reported after PLX5622 

chow administration 46. We confirmed the loss of microglia after PLX5622 chow administration 

after 7 days (Suppl. Fig. 3b, b’). 43 

In order to test whether microglia contribute to synaptic changes observed at 24 h post 

MCAO, we treated BL6 WT with PLX5622 formulated chow or control chow. We then assessed 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

for synapse alterations by staining for synaptic markers and found no significant differences in 

either glutamatergic synaptic markers (VGLUT1, PSD-95) or GABAergic synaptic markers 

(GA65/67, α5 and γ2 GABAARs) between the groups (Suppl. Fig. 3c-h). Similarly, WB analysis 

to assess α1 or α2 GABAAR subunit expression showed no changes at 24 h post-MCAO in mice 

administered with PLX5622 (Suppl. Fig. 2e, f). In addition, WB analysis to assess total gephyrin 

or changes in gephyrin phosphorylation at S268 and S270 in PLX5622 treated mice showed no 

changes (Suppl. Fig. 3i-i’’’). These findings point to the critical role of microglia in mediating 

synapse loss after MCAO.   

Microglia release BDNF after MCAO to induce synapse loss 

BDNF has been shown to play a critical role in the activation of microglia in vitro, and increase in 

BDNF has been tightly linked to pro-inflammation responses 47,48. To specifically evaluate the role 

of BDNF within microglia in synapse loss following MCAO, we used CX3CR1ERT2Cre+/- mice 

specifically expressing tamoxifen-inducible Cre recombinase in microglia cells and generated 

BDNFflox/flox / CX3CR1CreERT2+/- cKO mouse line, thereby preventing Bdnf expression selectively 

in microglia. We used BDNFwt/wt / CX3CR1CreERT2+/- and BDNFflox/flox / CX3CR1CreERT2+/- mice to 

culture microglia from post-natal day 3 pups and treated with tamoxifen to confirm Bdnf gene 

deletion in microglia cells. qRT-PCR analysis confirmed significant reduction in microglial Bdnf 

mRNA specifically from BDNFflox/flox / CX3CR1CreERT2+/- mice (Suppl. Fig. 4a). Next, we 

confirmed the loss of BDNF protein from BDNFflox/flox / CX3CR1CreERT2+/- mice in vivo. We stained 

for BDNF and IBA1 in brain slices from BDNFwt/wt / CX3CR1CreERT2+/- and BDNFflox/flox / 

CX3CR1CreERT2+/- mice. We observed BDNF colocalization in microglia soma and processes in 

the BDNFwt/wt / CX3CR1CreERT2+/- tissue but not in BDNFflox/flox / CX3CR1CreERT2+/- mice tissue 

(Suppl. Fig. 4b, b’).  
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Having confirmed that our cKO mouse line efficiently deletes BDNF in microglia cells, 

we  examined the contribution of microglia Bdnf  to synaptic changes observed at 24 h post MCAO. 

For this we assessed changes in synaptic markers (VGLUT1,GAD65/67, GABAAR γ2 and 

GABAAR a5) in both ipsi- and contra-lateral hemispheres at 24 h post-MCAO compared to 

BDNFflox/flox / CX3CR1CreERT2+/- sham animals. There was no significant changes between the 

MCAO and sham groups (Suppl. Fig. 4c-h). We also performed WB analysis to measure α1 and 

α2 GABAAR subunit expression level changes between MCAO and sham group (Suppl. Fig 2g, 

h). Our analysis confirmed that synaptic receptor expression is unchanged upon Bdnf gene 

depletion from microglia cells post-MCAO. Our earlier observation showed stabilized gephyrin 

protein levels and no increase in gephyrin phopshorylation at Ser268 and Ser270 after microglia 

depletion using PLX5622 (Suppl. Fig. 3i- I’’’). In order to confirm if microglial BDNF signaling 

led to gephyrin protein loss and elevated phosphorylation at Ser268 and Ser270 residues, we 

performed WB analysis using tissue from BDNFflox/flox / CX3CR1CreERT2+/- sham and MCAO 

animals (Suppl. Fig. 4i- i’’’). The WB analysis showed that total gephyrin levels and gephyrin 

phosphorylation at S270 were unchanged, while gephyrin phosporlyation at S268 is reduced post 

MCAO. Our results uncover a consistent pattern of gephyrin stabilization, reduced gephyrin 

phosphorylation at Ser268 and Ser270 residues and synapse preservation at 24 h post-MCAO in 

BL6 mice treated with PLX5622 and BDNFflox/flox / CX3CR1CreERT2+/- transgene mice, suggesting 

that microglia derived BDNF signals for gephyrin phosphorylation and subsequent synapse 

downregulation at 24 h post MCAO.  

Microglia have been implicated in the rapid engulfment and clearance of synapses 

following inflammatory brain pathology 49.To assess if Bdnf gene deletion influenced microglia 

ramification post MCAO, we stained for IBA-1 in BDNFwt/wt / CX3CR1CreERT2+/- and BDNFflox/flox 
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/ CX3CR1CreERT2+/- mice. It has been reported that macrophages infiltrate into the CNS only at day 

4 following MCAO 50; therefore, IBA-1 positive cells are likely to be resident microglial cells. We 

performed 3D volume analysis of reconstructed microglia cells from ipsi- and contra-lateral 

hemispheres (Suppl. Fig. 5a). Quantification showed a significant volume increase in the ipsi- but 

not the contra-lateral hemisphere in BDNFwt/wt / CX3CR1CreERT2+/- mice, while there was no change 

in microglia volume in BDNFflox/flox / CX3CR1CreERT2+/- mice  24h post MCAO (Suppl. Fig. 5b). 

Our data shows significant hypertrophy, indicative of microglial activation, in the ipsi-lateral 

hemisphere of only BDNFwt/wt / CX3CR1CreERT2+/- mice . The lack of microglial activation in 

BDNFflox/flox / CX3CR1CreERT2+/- mice suggests that prevention of microglia BDNF release not only 

preserves synapses, but also prevents alterations in microglia morphology. 

 

GphnS268A/S270A mutation or Bdnf deletion from microglia reduce brain damage after 

MCAO 

While BDNF has been shown to play the role of pro-survival factor, including microglia activation 

in vivo 14, there is evidence to suggest that neuronal activity-dependent exocytosis and/or release 

from microglia can contibute to sepcific conditions of brain pathology 51. To test this, we 

performed MCAO in BL6 WT, BL6 WT mice treated with PLX5622, GphnS268A/S270A mutant 

mice or BDNFflox/flox / CX3CR1CreERT2+/- cKO (Fig. 7a, b). We used cresyl violet staining to 

measure the infarct volume across brain sections 24 h following MCAO. Quantification confirmed 

that in GphnS268A/S270A mutant mice and BDNFflox/flox / CX3CR1CreERT2+/- cKO mice the 

ischemic tissue damage was significantly reduced as compared to BL6 WT mice. We see a trend 

in reduced infarct volume in PLX5622 treated mice that does not reach significance. It is likely 

that ablating microglia completely causes compensatory adaptations in the brain that are not 
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identitical to microglia-specific Bdnf gene deletion.  These results support our idea that prevention 

of microglia BDNF release after ischemia or blocking its downstream phosphorylation target 

gephyrin enhances tissue preservation 24h post-MCAO. 

In vivo inflammatory processes play a key role in tissue damage and repair. In response to 

inflammation, microglia acquire properties for reactive species generation and inflammatory 

cytokine production, and are therefore thought to be principal drivers of pro-inflammatory 

responses 52,53.We have demonstrated above, that depletion of microglia-derived BDNF release 

reduces MCAO-induced increase in microglia volume (Suppl. Fig. 5). Given that 

GphnS268A/S270A mutant mice show enhanced tissue preservation 24h post-MCAO, we 

anticipated gephyrin scaffold stabilization to reduce microglia activation after MCAO. To assess 

microglia properties,  we first examined the density of resident microglia at baseline and 24 h post 

MCAO in the brains of BL6 WT and GphnS268A/S270A mutant mice (Fig. 7c, d). Quantification 

of IBA-1 positive microglia showed a significant reduction of microglia density from both ipsi- 

and contra-lateral hemispheres after MCAO in BL6 WT mice (Fig. 7c’). Similarly, analysing for 

area covered by the microglia cells showed significant reduction in both ipsi- and contra-lateral 

sides (Fig. 7c’’). These observed changes are consistent with the report showing microglia 

migration changes after stroke 53. To confirm inflamation and microglia activation status at 24 h 

post-MCAO we stained for the activation-state marker CD11b in microglial cells. Quantification 

for CD11b intensity showed elevated levels only on the ipsi- but not the contralateral side in BL6 

WT mice (Fig. 7c’’’). Analysis of microglia density in GphnS268A/S270A mutant mice showed 

no changes between sham and MCAO samples (Fig. 7d’). Similarly, there was no change in the 

area covered (Fig. 7d’’). If indeed gephyrin scaffold stabilization leads to reduced microglia 

activation, we anticipated less activation of microglia in GphnS268A/S270A mutant mice after 
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MCAO. Analysis for CD11b intensity was not elevated after MCAO in the GphnS268A/S270A 

mutant mice (Fig. 7d’’’).  Taken together, our data shows that in Gphn268/S270A mutant mice, 

the mutation selectively blocks MCAO-induced microglia activation and reduces ischemic tissue 

damage. 

Bdnf deletion from microglia or GphnS268A/S270A mutation prevent BDNF increase   

If gephyrin scaffold stability contributes towards microglia activation after MCAO, then it should 

be reflected in proBDNF and mBDNF level changes in our different mouse lines. As a first step, 

we assessed for differences in the baseline level of proBDNF and mBDNF across our different 

mouse lines. WB analysis showed that BL6 WT mice treated with PLX5622 had elevated levels 

of proBDNF and BDNFflox/flox / CX3CR1CreERT2+/- mice exhibited significantly lower levels of 

proBDNF, while others had levels similar to BL6 WT control (Suppl. Fig. 6a, a’). The analysis of 

mBDNF across different mice lines showed no significant differences (Suppl. Fig. 6a, a’’).  

Once we established the baseline differences in proBDNF and mBDNF expression across 

mice lines used in our study, we went on to compare intra-mouse changes in proBDNF and 

mBDNF within ipsi- and contra-lateral hemispheres 24 h post-MCAO. In BL6 WT mice, we 

observed a significant increase in both pro- and mature- forms of BDNF specifically in the ipsi-

lateral side; there was a small increase in the contra-lateral side but it was not statistically 

significant (Suppl. Fig. 6b-b’’). In BL6 WT mice treated with PLX5622, we saw a significant 

reduction of pro-BDNF levels in both hemispheres 24h post MCAO compared to sham group 

(Suppl. Fig. 6c-c’). This reduction suggests that resident microglia themselves are an important 

source of proBDNF or alternatively that microglia signal for proBDNF release elsewhere 

following MCAO. Levels of mBDNF showed no changes within both ipsi- and contra-lateral 
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hemispheres in PLX5622 treated mice (Suppl. Fig. 6c’’). In BDNFflox/flox / CX3CR1CreERT2+/- cKO, 

although proBDNF levels were significantly lower than BL6 WT animals at baseline, there was 

no significant difference within the genotype after MCAO (Suppl. Fig. 6d, d’). However, mBDNF 

that was at similar levels to BL6 WT, showed a significant reduction in both ipsi- and contra-

lateral hemispheres after MCAO within the genotype (Suppl. Fig. 6d-d’’). We then assessed BDNF 

level changes in the GphnS268A/S270A mutant mice. Quantification of the WB showed that 

gephyrin scaffold stabilization prevented the ipsilateral increase in proBDNF and mBDNF levels 

observed in BL6 WT animals after MCAO (Suppl. Fig. 6e-e’’). These observations suggests that 

1) microglia are an important source of BDNF after MCAO and that 2) microglial proBDNF and 

mBDNF release is influenced by the phosphorlyation status of gephyrin at S268 and S270 

following MCAO.  

We looked for direct evidence linking gephyrin phosphorylation at Ser268 and Ser270 

contributing to BDNF changes within microglia after MCAO.  In this regard, we stained for BDNF 

and IBA-1 and used near super resolutin Airy scan microscopy to quantify BDNF protein changes 

within microglia of BDNFwt/wt / CX3CR1CreERT2+/-, BDNFflox/flox / CX3CR1CreERT2+/- and 

GphnS268A/S270A mutant mice (Fig. 8a-c’). Quantification of BDNF intensity within IBA-1 

cells confirmed increase within ipsi- and contra-lateral hemispheres of BDNFwt/wt / 

CX3CR1CreERT2+/- mice (Fig. 8a’). However, there was no change in BDNF intensity within 

microglia of BDNFflox/flox / CX3CR1CreERT2+/- mice or GphnS268A/S270A mutant mice (Fig. 8b’, 

c’). These results indeed confirm that gephyrin phosphorylation regulates BDNF levels within 

microglia to initiate release and downstream signaling that ultimately lead to synapse loss 

following cerebral ischemia (see model Fig. 8d).  
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Discussion: 

This study reveals a direct connection between microglia, BDNF signaling and gephyrin 

phosphorylation as a key pathway regulating tissue integrity and synapse loss after ischemic 

stroke. Preventing BDNF release from microglia or preventing gephyrin phosphorylation at Ser 

268 and Ser 270 are equally protective against synapse loss within 24 h post ischemic injury. 

Specifically, we demonstrate that (a) microglia released proBDNF and mBDNF act through 

p75NTR and TrkB receptors respectively to facilitate glutamatergic and GABAergic synapse loss 

after ischemia; (b) ERK1/2 and GSK3b kinase phosphorylate gephyrin at Ser 268 and Ser 270 

downstream of TrkB for GABAergic synapse downregulation; (c) in vivo microglia-specific Bdnf 

gene deletion or expression of gephyrin phospho-null S268A/S270A mutant protect against 

synapse loss at 24 h post-MCAO; (d) GphnS268A/S270A mutant mice prevent microglia 

activation and synapse loss at 24 h post-MCAO; (e) the mouse lines tested in our study consistently 

indicate similar changes within both ipsi- and contra-lateral hemispheres which is rarely addressed 

in stroke studies. Taken together, microglia activation and BDNF secretion are tightly coupled to 

glutamatergic and GABAergic synapse integrity in our model of ischemia-induced brain injury.  

 

GABAergic system in ischemia  

Our results concur with previous observations in the gerbil where following transient cerebral 

ischemia (24 h) GABAARs are downregulated 11. In mice, it was reported that tonic GABA 

currents are increased in the peri-infarct area 3 days after ischemia. An impairment in GABA 

transporter GAT3/GAT4 function was shown to contribute towards upregulation of extrasynaptic 

a5 and d GABAAR tonic current 54. In this study, we report a reduction in synaptic GABAAR 

subunits a1, a2, g2 and also extrasynaptic a5 subunit expression at 24 h after ischemia (Fig. 5; 
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Suppl. Fig. 2). In addition, we report that presynaptic GAD65/67 terminals are also significantly 

reduced at 24 h after ischemia. Importantly, our data indicates that by stabilizing GABAergic 

synaptic and extrasynaptic transmission, one can reduce ischemic brain damage (Fig. 7a). It has 

also been reported that inverse agonists specific for α5-subunit-containing extrasynaptic GABAA 

receptors administered 4 days after stroke promotes early stroke recover 54. Hence, it is conceivable 

that increase in extrasynaptic GABAARs observed at day 4 post ischemia is a homeostatic response 

to the early reduction in GABA and synaptic GABAARs. Stabilizing the gephyrin scaffold could 

thus explain the neuroprotection observed in Gphn268A/S270A mutant mice at 24 h post ischemia.  

 

Postsynaptic scaffold stability after ischemia  

In WT mice, 24 h post MCAO gephyrin protein levels are reduced (Suppl. Fig. 3e); however, we 

observe no change in PSD95 clusters, as a proxy for glutamatergic post-synaptic sites (Fig. 5c). 

Previous studies have revealed that after ischemia nNOS interaction with PSD95 stabilizes the 

protein at postsynaptic sites 42. Interestingly, gephyrin has also been reported to interact with nNOS 

55. However, it remains to be tested whether interaction with nNOS is influenced by ERK1/2 and 

GSK3b phosphorylation of gephyrin. It is possible that reduced gephyrin expression after MCAO 

might make more nNOS available for PSD95 interaction and stabilization. If neuroinflammation 

is the trigger for nNOS activation, our data shows reduced inflammation in GphnS268A/S270A 

mutant mice and BDNFflox/flox; CX3CR1CreERT2+/- cKO mice. Therefore, BDNF signaling could 

increase neuroinflammation by activating nNOS after ischemia.   

 

proBDNF and mBDNF signaling regulate synapse downregulation  
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At the neuromuscular junction, proBDNF and mBDNF elicit opposite effects by promoting axon 

retraction through activation of p75NTR on presynaptic site or potentiate synapse through TrkB 

activation at the postsynaptic site respectively. High-frequency neuronal activity controls the ratio 

of extracellular proBDNF/mBDNF by regulating the secretion of extracellular proteases, serving 

as a reward signal to stabilize synaptic contacts and strengthen neurotransmission 56 However, 

within hippocampal neurons, proBDNF has been reported to activate p75NTR localized in dendritic 

spines of CA1 neurons and enhance NR2B-dependent LTD 57.  

In the current study, we present evidence for proBDNF and mBDNF in glutamatergic and 

GABAergic synapse down regulation after ischemia. p75NTR lack intrinsic enzymatic activity and 

activate signal transduction pathway by associating with adaptor proteins that are distinct from 

TrkB signaling cascade 58. Consistent with this literature, our data shows the specificity for 

proBDNF and p75NTR signaling for spine downregulation and mBDNF and TrkB for gephyrin 

regulation at GABAergic postsynaptic sites (Fig. 3). Our study has important implications. First, 

we uncover a synaptic plasticity function for proBDNF and p75NTR in the ischemic brain, which 

is in marked contrast to its role in regulating neuronal apoptosis. Second, our results show that 

TrkB and downstream pathways (ERK1/2 and GSK3b) specifically influence the stability of shaft 

synapse and of not spine synapses (Fig.4).  

 

Microglia as a source of BDNF in ischemia     

Deletion of BDNF from specific subpopulations of neurons has revealed that both presynaptic and 

postsynaptic BDNF contributes to specific aspects of LTP. For example, presynaptic BDNF was 

documented to increase the strength of LTP, while postsynaptic BDNF facilitates LTP 

maintenance 59. In addition, BDNF release from dendritic spines can activate NMDA and TrkB 
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receptors within the same release site to influence structural plasticity 60. At GABAergic terminals, 

time duration of exogenous BDNF exposure has opposite effects on GABAAR and gephyrin 

clustering. In hippocampal neuron culture, short-term (5 min) BDNF application inhibits 

GABAAR internalization through phosphoinositide-3 kinase (PI-3 kinase) and PKC pathways 

(Jovanovic et al., 2004). However, long-term (90 min) BDNF application reduces GABAAR and 

gephyrin clustering 20. Presynaptically, BDNF regulates GAD65 mRNA expression through the 

recruitment of ERK pathway, leading to cAMP-response element (CRE)-binding protein (CREB) 

activation 61.  

To add to this complexity, BDNF is not only found in neurons but also expressed in both 

astrocytes and microglia 43,62. Within the spinal cord circuit, BDNF activates TrkB in lamina I 

neurons to downregulate KCC2 (Chloride potassium symporter), thereby increasing intracellular 

chloride concentration and reversing GABAergic inhibition to cause neuronal depolarization 48. 

The resulting hyperexcitability of neurons contributes to mechanical hypersensitivity. Microglia-

specific Bdnf knockout reduces PNI-induced pain 63 In the current study, we report microglia as 

the major source of BDNF after ischemia for glutamatergic and GABAergic synapse regulation. 

We observed elevated proBDNF in PLX5622 treated mice in sham condition, which suggests that 

microglia ablation at baseline could trigger proBDNF synthesis from other cell-types as 

compensatory mechanism (Suppl. Fig. 6 a’). Interestingly, proBDNF levels reduce significantly in 

PLX5622 treated animals after MCAO, indicating that microglia play a pivotal role in de novo 

BDNF synthesis, we also do not know how different metalloproteases are affected after microglia 

depletion. The release of BDNF from microglia has been linked to purinergic receptor P2X4R 

activation, causing disinhibition of pain-transmitting spinal lamina I neurons 64,65. The expression 

of P2X4R increases after exposure to proinflammatory cytokines such as INF-g 66. Microglia can 
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sense extracellular ATP through P2Y12R to migrate 67, or P2X7R to be activated 68. Hence, it is 

possible that within 24 h post ischemia inflammation activates P2X4R expression to promote 

BDNF protein synthesis and release.  

 

Gephyrin phosphorylation influences microglia activation 

During acute ischemic stroke natural killer (NK) cells infiltrate periinfarct areas of the brain to 

promote inflammation (e.g. microglia activation) and neuronal damage. Interestingly, depletion of 

NK cells within the first 12 h after MCAO attenuates neurological deficits and infarct volume 69. 

Here, we report that microglia depletion using PLX5622 (Suppl. Fig 5) and Bdnf gene deletion 

specifically from microglia (Suppl. Fig. 4) prevent glutamatergic and GABAergic synapse loss 

and reduce the extent of infarct volume (Fig. 7a) after ischemia. Hence, it is possible that NK cells 

influence infarct development through microglia activation and local BDNF release to trigger 

glutamatergic and GABAergic synapse loss. Furthermore, in addition to activation of microglia, 

we uncover activation of ERK1/2 and GSK3b pathways (Fig. 5g-i) 24 h post ischemia. As a direct 

target of ERK1/2 39and GSK3b 38, gephyrin phosphorylation at Ser268 and Ser270 sites are 

significantly increased after ischemia, while total gephyrin level is decreased (Fig. 5 j-j’’’). 

Stabilization of gephyrin clusters through the expression of S268A/S270A mutant in hippocampal 

slice culture selectively prevents GABAergic synapse loss after ischemia (Fig. 4h, i). In 

GphnS268A/S270A mutant mice both glutamatergic and GABAergic synapse loss can be 

prevented (Fig. 6). This suggests to us that mechanisms activated after ischemia in vivo might be 

similar to mechanisms operational in organotypic slice cultures after OGD.  

We reveal a link between gephyrin phosphorylation at Ser268 and Ser270, microglia 

activation and BDNF secretion (see model; Fig. 8d). Within this model, a currently unknown signal 
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originating at GABAergic postsynaptic sites would activate microglia to synthesize and release 

proBDNF and mBDNF for downstream signaling after MCAO. This is based on our data showing 

BDNF protein levels do not change after MCAO in Gphn268A/S270A mutant mice, which 

suggests that gephyrin scaffold stability controls microglia activation. The glutamatergic spine 

synapse collapse through p75NTR signaling and GABAergic synapse downregulation via gephyrin 

S268 and S270 phosphorylation could facilitate microglia aided stripping of VGLUT and VGAT 

terminals. It has been reported that microglia physically displace GABAergic presynaptic 

terminals after lipopolysaccharide induced inflammation 70. Together, our data identifies the 

mechanistic basis for silencing neurotransmission at the initial 24 h post-MCAO.  

 

Experimental Procedures: 

 

Ethics Statement 

All animal handling procedures were carried out consistent with guidelines set by the Canadian 

Council on Animal Care, the European Community Council Directives of November 24, 1986 

(86/609/EEC) and approved by the cantonal veterinary office of Zurich (ZH219/15). All 

procedures were approved by the Animal Resource Committee of the School of Medicine at 

McGill University and are outlined in McGill University Animal Handling Protocol #5057.  

 

Hippocampal Slice Cultures and Oxygen-Glucose Deprivation (OGD) 

We have chosen to study the hippocampus as it possesses a unique unidirectional network that is 

preserved within organotypic cultures 71, making it an ideal candidate to study microcircuitry 

remodeling. Organotypic hippocampal slices were prepared using the roller-tube method, as 
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previously described 71 with transgenic mice expressing membrane-targeted MARCKS-enhanced 

GFP under the Thy-1 promoter in a subpopulation of CA1 cells 72. We used an established model 

of OGD as a model of ischemia 73, briefly, mature organotypic hippocampal slices were placed in 

a glass dish containing glucose-free Tyrode’s solution (in mM: NaCl, 137; KCl, 2.7; CaCl2, 2.5; 

MgCl2, 2; NaHCO3, 11.6; NaH2PO4, 0.4; pH 7.4) containing: 2 mM 2-Deoxyglucose, 3 mM 

sodium azide and 8 mM sucrose, for 4-5 min, and were then returned to culture media for 90 min, 

24 h or 1 week. Control slices were exposed to Tyrode’s solution (in mM: NaCl, 137; KCl, 2.7; 

CaCl2, 2.5; MgCl2, 2; NaHCO3, 11.6; NaH2PO4, 0.4; glucose, 5.6; pH 7.4) for 4-5 min and returned 

to culture media. 

 

Mouse lines 

All procedures fulfilled the ARRIVE guidelines on experimental design, animal allocation to 

different experimental groups, blinding of samples to data analysis and reporting animal 

experiments. Littermates from heterozygous breedings were used within similar genotypes and 

inbred animal backgrounds. We compared results within same genotypes. The GphnS268A/S270A 

mutant mouse was generated using CRISPR/cas9 (Cyagen, USA) in BL6 background. 

B6.129P2(C)-Cx3cr1tm2.1(cre/ERT2) (Stock 020940) 74mice and Bdnftm3Jae or BDNFTg (Stock 

004339) 75 were obtained from Jackson Laboratory to generate BDNFwt/wt / CX3CR1ERT2Cre+/- and 

BDNFflox/flox / CX3CR1ERT2Cre+/-cKO lines. The mice were injected (i.p) on four consequtive days 

with tamoxifen dissolved in corn oil (Sigma H-6278; 1mg/ day) to induce Cre expression at 4 

weeks followed by sham or MCAO surgery at 8-9 weeks of age. Animals were random assigned 

and both genders were used for both conditions. The PLX5622 treatment for microglia depletion 

followed recommended company dose (1200mg of active form of PLX5622/kg of chow).  
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Middle cerebral artery occlusion (MCOA) model 

Wild type C57Bl6/J-Crl1 mice were purchased from Charles River Laboratories (Germany), the 

GphnS268A/S270A mutant, BDNFTg/Tg / CX3CR1ERT2Cre+/- were bred in house. At 4 weeks age 

animals were randomly allocated to groups. The transient occlusion of the middle cerebral artery 

was conducted at 8-9 weeks age using the filament model as described previously 76. Briefly, 

anaesthesia was induced using 3% isoflurane in an oxygen/air (1:4) mixture and maintained at 2% 

Isoflurane. The area around the neck was shaved, disinfected and an incision was made along the 

midline. The common and the external carotid artery were isolated and ligated. A silicon rubber 

filament (Doccol, USA, Lot 701956RE) was inserted into the internal carotid artery to block the 

middle cerebral artery. The filament remained in place for 30min before reperfusion was allowed 

by withdrawing it. During occlusion the mouse was placed in a preheated (30°C) recovery box and 

allowed to recover from anaesthesia. After reperfusion, the internal carotid artery was ligated to 

prevent bleeding and the wound was sutured. Sham operation involved identical surgical 

procedures, but the filament was immediately withdrawn after insertion. A total volume of 500µl 

of Buprenorphine (0.03mg/g) with Saline was injected after surgery and consecutive after 4h and 

8h s.c. The mouse was kept for 2h in the recovery box and then placed back into its home cage. 

Mashed food and food pellets were placed on the cage bottom to encourage food uptake. The 

described lesion paradigm caused an extensive damage to the unilateral basal ganglia and the 

adjacent neocortex. For clinical scoring, mice were examined for forelimb flexion and body 

posture maintenance using the Bederson score [as described in 

https://www.ahajournals.org/doi/pdf/10.1161/01.STR.17.3.472]. Animals were excluded from the 

studies when they fulfilled one of the following criteria: prolonged surgery time (>15 min); no 
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reflow after filament withdrawal; Clinical scoring of 0; seizures during/after MCAO or dead before 

experimental endpoint. A total of 7 animals were exluded (3 due to clinical scoring of 0 following 

MCAO and 4 due to seizures during/after MCAO).  

 

Cresyl violet staining 

Cresyl violet staining was performed 24h after of reperfusion and infarct volume was assessed as 

percentage of the affected hemisphere. Five 20µm thick coronal sections taken at Bregma +2.8, 

+1.54, +0.14, −1.94 and −4.6mm, were stained with cresyl violet using vendor protocol and later 

digitalised using a Zeiss Axio Scan.Z1 at 5x magnification and lesions were determined using Zen 

Software (Zeiss). The person analysing was blinded to the treatment groups. Cerebral lesion 

volume was calculated summing up the volume of each section, while corrected for oedema (group 

numbers >4).  

 

Immunofluorescence and Confocal Microscopy 

Hippocampal organotypic slices 

90 min after OGD induction, hippocampal slices were fixed for 1 h at room temperature in 4% 

paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. Slices were then washed 5× in 0.1 M 

PB, permeabilized in 0.4% Triton X-100 and blocked with 1.5% heat inactivated horse serum 

overnight at 4°C. 1:500 anti-Gephyrin (Synaptic Systems) was incubated for 5 days at 4°C in 

permeabilizing buffer and washed 5× with 0.1 M PB containing 1.5% heat inactivated horse serum. 

Slices were incubated for 3 h at room temperature with 1:250 anti-mouse DyLight 650 (Jackson 

ImmunoResearch, Burlington, ON, Canada) secondary antibody diluted in 0.1 M PB containing 

1.5% heat inactivated horse serum. Following 5× washes with 0.1 M PB containing 1.5% heat-
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inactivated horse serum, slices were mounted with fluorescent mounting medium (DAKO, 

Mississauga, ON, Canada) onto microscope slides.  

Slices were imaged using a Leica TCS SP2 scan head (Leica Microsystems) on a Leica 

DM6000 B upright microscope, equipped with HCX PL APO 63× NA 1.4 oil immersion objective 

using a 543 nm HeNe laser line. Image stacks were collected at Z = 0.3 µm and averaged 2-3 times 

to improve signal-to-noise ratio. For quantification, image stacks were obtained with identical 

parameters (laser intensity, filters, pinhole size, photomultiplier tube gain and offset). 

Representative images are maximum intensity projections of 5 sections from each stack.  

 

Immunohistochemical imaging of brain slices  

 24 h following MCAO, P60-70 (male or female) mice were anesthetized by intraperitoneal 

pentobarbital injection (Nembutal; 50 mg/kg) and perfused transcardially with ice-cold 

oxygenated ACSF 77, pH 7.4, for 2min. Brains were immediately fixed in 4% PFA for 3 h at 4°C. 

After rinsing in PBS, brains were incubated in 30% sucrose (in PBS) at 4°C over-night. 45µm-

thick coronal sections were cut from frozen blocks using a sliding microtome (HM400; Microm) 

and stored at -20°C in antifreeze solution. After 3 times 10 min washes in Tris-Triton Solution 

(50mM Tris, 150mM NaCl, 0.05% Trito X-100, pH 7.4), sections were incubated in primary 

antibody solution (50mM Tris, 150mM NaCl, 0.4% Triton X-100, 2% normal goat serum, pH 7.4) 

at 4°C overnight. Primary antibodies are listed in Table 1. Sections were washed 3 x 10min in Tris-

Triton Solution and incubated in secondary antibody solution (50mM Tris, 150mM NaCl, 0.05% 

Triton X-100,  2% normal goat serum, pH 7.4) for 1 hour at room temperature with secondary 

antibodies raised in goat. All secondary antibodies used were diluted 1:500. Antibodies conjugated 

to AlexaFluor-488 and AlexaFluor-647 were purchased from Invitrogen, while antibodies 
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conjugated to Cy3 were purchased from Jackson ImmunoResearch Laboratories. Sections were 

washed 3 times 10 min in Tris-Triton Solution and mounted on gelatin-coated slides using 

Fluorescence Mounting Medium (Dako).  Z-stack images (4 optical sections, 0.75µm step size) 

were recorded of all sections using confocal laser scanning microscopy (LSM 700, Carl Zeiss). 

Images were taken using a 40x objective with a numerical aperture of 1.4, and pixel size of 112 

nm2. Three juxtaposed images of the motor cortex layer 2/3 were taken on the ipsi- and contra-

lateral hemispheres. To reduce variability, multiple images were captured from 3 sections per 

mouse and total of 4-5 mice were analyzed per condition/genotype. Cluster density values were 

averaged from these sections. All imaging parameters were kept constant between MCAO and 

sham animals. For cluster analysis, a custom Python-script using the ImageJ image-processing 

framework was used. The script can be used as a plugin and is openly available on a github 

repository (https://github.com/dcolam/Cluster-Analysis-Plugin). Representative example images 

were processed using ImageJ. Statistical tests were performed using Prism software (GraphPad) 

using 5 mice per group. 

 

Microglia analysis 

Iba1 staining was acquired using a spinning-disk confocal microscope (Nikon Ti2 coupled to 

Yokogawa CSU-W1 confocal scanning unit) with a Omicron modified Light HUB+ laser emitting 

at 488 nm and a CFI Plan Apochromat Lambda 60X oil objective (N.A 1.40, W.D. 0.13mm). 3D 

stack images of 25.5 µm were acquired with a z-step of 0.3 µm in layer II/III of the motor cortex 

(2-3 slices per animal, 5 animals per group). For the microglia density analysis, individual 

microglial cells were counted in FIJI, through colocalization of the Iba1 and DAPI stainings in 3D 
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and the «Analyze Particles» function. The mean intensity and area covered by the Iba1 signal were 

analyzed on the maximum intensity projection of the stack in FIJI. 

Imaris Software (Bitplane, Switzerland) was used for reconstruction of MCAO BDNFwt/wt 

/ CX3CR1CreERT2+/- and BDNFflox/flox/ CX3CR1CreERT2+/- cells. 3D rendering of microglial volume 

was based on Iba1 immunoreactivity, applying recorded algorithms with fixed thresholds for Iba1 

signal intensity. Morphometric values were extracted per individual cells (BDNFwt/wt / 

CX3CR1CreERT2+/-; Contra, n=68; Ipsi, n=72; BDNFflox/flox / CX3CR1CreERT2+/-;   Contra, n=82; Ipsi, 

n=94). 

 

Dendrite Reconstructions, Spine Quantification, cluster Quantification 

3D confocal stacks were deconvolved with Huygens Essentials software (Scientific Volume 

Imaging, Hilversum, The Netherlands) using a full maximum likelihood extrapolation algorithm. 

Stacks were then imported and rendered using the Surpass function in Imaris software (Bitplane 

AG). Experimenter was blinded to conditions and treatment groups, spines were manually counted 

and using the ratio of the diameter and length of the head and neck of spines it was possible to 

distinguish between stubby, mushroom, and thin subtypes of dendritic spines. These classifications 

were based on previously established criteria 34. Lastly, n values for spine analysis represent ~75-

100 µm of dendrite from 1-2 cells imaged from each slice. The number and volume of gephyrin 

clusters were quantified using the Spot function of Imaris software, which differentiates puncta 

based on the fluorescence intensity.  

 

Electrophysiological Recordings and Analysis 
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Slices were transferred into a temperature-controlled chamber (25°C) mounted on an upright 

microscope (DM LFSA, Leica Microsystems) and continuously perfused with external solution. 

Patch recording electrodes were pulled from borosilicate glass (GC150TC; Clark Instruments, Old 

Sarum, Salisbury UK). All electrophysiological recordings were made using an Axopatch 200A 

amplifier (Molecular Devices, Sunnyvale, CA, U.S.A.).  

AMPA-mediated mEPSCs were gathered from whole-cell voltage-clamp recordings of 

CA1 pyramidal neurons obtained at 25°C using electrodes with resistances of 4-5 MΩ and filled 

with intracellular solution containing (in mM): K-Gluconate, 120; EGTA, 1; HEPES, 10; Mg-

ATP, 5; Na-GTP 0.5; NaCl, 5; KCl, 5; phosphocreatine, 10; 295 mOsm; pH adjusted with KOH 

to 7.3. mEPSCs were recorded at -60 mV and in the presence of 1 µM tetrodotoxin (TTX), 15 µM 

3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP), 100 µM picrotoxin, and 1 µM 

CGP55845 in the external Tyrode’s solution. Access resistance was monitored with brief test 

pulses at regular intervals (2-3 min) throughout the experiment. Access resistance was usually 10-

13 MΩ and data were discarded if the resistance deviated more than 10% through the course of 

the experiment. Series resistance of the access pulse and decay time was also used for the 

calculation of total membrane capacitance. After the holding current had stabilized, data were 

recorded at a sampling frequency of 10 kHz and filtered at 2 kHz for 10 to 15 min.  

 GABAAR-mediated mIPSCs were gathered from whole-cell voltage-clamp recordings of 

CA1 pyramidal neurons obtained at 25°C using electrodes with resistances of 4-5 MΩ and filled 

with intracellular solution containing (in mM): CsCl, 140; NaCl, 4; 0.5, CaCl2; HEPES, 10; 

EGTA, 5; QX-314, 2; Mg-ATP, 2; Na-GTP 0.5; 290 mOsm; pH adjusted with CsOH to 7.36. 

mIPSCs were recorded at -60 mV and in the presence of 1 µM TTX, 25 µM CPP, 5 µM CGP55845, 

5 µm 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 0.3 µm strychnine in external Tyrode’s 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


34 
 

solution. Access resistance was monitored with brief test pulses at regular intervals (2-3 min) 

throughout the experiment. After the holding current had stabilized, data were recorded at a 

sampling frequency of 10 kHz and filtered at 2 kHz for 10 to 15 min. 

All mEPSCs and mIPSCs were detected offline using the Mini Analysis Software 

(Synaptosoft, Decatur, GA, USA). The amplitude threshold for mEPSC and mIPSCs detection was 

set at four times the root-mean-square value of a visually event-free recording period. From every 

experiment, 5 min of stable recording was randomly selected for blinded analysis of amplitude and 

inter-event interval. The data obtained was then used to plot cumulative histograms with an equal 

contribution from every cell. For statistical analysis, data were averaged for every single cell. It 

should be noted that the amplitude analysis was conducted only on single mEPSCs and mIPSCs 

that did not have subsequent events occurring during their rising and decaying phases. For 

frequency analysis, all selected events were considered.  

 

Pharmacological Treatments 

To scavenge BDNF, slices were treated with TrkB-Fc (R&D Systems; Minneapolis, MN, USA), 

a fusion protein in which the BDNF binding site of the TrkB receptor replaces the Fc fragment of 

a human IgG1 antibody. We found that TrkB-Fc treatment to hippocampal cultures for 24 h 

downregulated TrkB receptor phosphorylation (data not shown). TrkB-Fc was diluted in culture 

media at a final concentration of 10 µg/ml and treatment began immediately following induction 

of OGD. ERK activation was inhibited using 30 µM of MEK inhibitor PD98059 (Tocris 

Biosciences, ON, Burlington, Canada), GSK3β activity was inhibited using 25 µM GSK3β-IX 

(Tocris Biosciences). PD98059 and GSK3β-IX were diluted in dimethyl sulfoxide (Invitrogen) 

and treatment began overnight prior to OGD induction, removed during induction and continued 
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for 90 min after. Control sister cultures were treated with control culture media containing 

dimethyl sulfoxide only. The following function blocking antibodies were used: 1:200 anti-p75NTR 

(kind gift from Dr. P. Barker, McGill University, Montreal, QC, Canada; Rex antibody for more 

information see 78, 1:200 anti-proBDNF (kind gift from Dr. Philip Barker, McGill University, 

Montreal, Canada) and 1:100 anti-mBDNF (N-9, Developmental Studies Hybridoma Bank, 

University of Iowa, IA, USA; for more information see 79. Function blocking antibody treatment 

began 2 h prior to OGD induction, removed during induction and continued for 90 min after. 

 

Biolistic Gene Transfection 

Cartridges were prepared according to manufacturer’s protocol (Bio-Rad, Helios Gene Gun). 

Briefly, 15 mg of gold particles (1 µm diameter) were first coated with 0.05 M spermidine. 15 µg 

of plasmid DNA expressing tdTomato and 45 µg of wildtype gephyrin-GFP (gephyrinWT-GFP) or 

dephosphorylation mutant gephyrin-GFP S268A/S270A (gephyrinS268A/S270A-GFP). Plasmids were 

then precipitated onto the particles by adding CaCl2. The coated particles were resuspended into 

100% ethanol and infused into Tefzel tubing, which were then coated with the particles. Coated 

tubing was cut into 0.5 inch cartridges which were then transfected into mature organotypic slice 

cultures by shooting at a distance of 2 cm with a pressure of 200 psi through a nylon mesh. 

Following 48 h, slices which expressed target plasmids in CA1 pyramidal neurons were processed 

with OGD or control Tyrode solution. 

 

Western blotting 

24 h following MCAO, mice were killed by decapitation and brains were dissected on ice. The 

ipsi- and contralateral cortices were immediately transferred to lysis buffer (50 mM Tris, pH 7.6, 
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150 mM NaCl, 1% Triton X-100, CompleteMini Protease Inhibitor Mixture, Roche). The cortices 

were homogenized and incubated on ice for 1 hour. Lysates were centrifuged at 20,000 RPM for 

30 min at 4°C, and supernatants were stored at -80°C. Samples were run on Tris-glycine 

polyacrylamide gels and proteins were transferred to PVDF membranes. Primary antibodies (see 

Table 1) were incubated in Tris-buffered saline with 0.05% Tween 20 (TBST), including 5% 

WesternBlocking Solution (Roche) overnight at 4°C. Membranes were washed 5 x 5min in TBST. 

HRP-coupled donkey secondary antibodies (1:30,000) and fluorescent-coupled donkey secondary 

antibodies (1:20,000) were incubated for 30 min at room temperature, and membranes were 

washed again 5 times 5 min in TBST. Fluorescent signals were captured using the Odyssey® CLx 

Imager. SuperSignal West Pico ChemiluminescentSubstrate (Thermo Fisher Scientific) was 

applied to visualize HRP labelled antibodies and developed using the FUJIFILM Luminescent 

Image Analyzer LAS-1000 plus & Intelligent Dark Box II (Fujifilm). Images were analyzed using 

ImageJ and statistical tests were performed using Prism software (GraphPad) using a minimum of 

4 mice per group. Western blot membrane stripping for restaining was performed for p-ERK1/2 

and ERK1/2 antibodies using a mild stripping protocol from abcam. Briefly, membranes were 

incubated twice for 5-10 min with mild stripping buffer (200mM gylcine, 20mM SDS, 0.01% 

Tween 20, pH 2.2) followed by 2 x 10min incubation with PBS and 2 x 5min incubations with 

TBST. Efficiency of stripping was checked by incubating with chemiluniscent detection. When 

stripping was judged satisfactory, the membranes were rinsed and incubated with primary 

antibody. 

 

Statistical Analysis 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


37 
 

An a priori power analysis was conducted using data reported in Figures 5-8 obtained with the 

MCAO surgery procedure. Combined with type-1 error set to 0.05. Power set to 0.8 (1-beta-error), 

we determined the effect size with a group size of 5. These indicated an inter individual variation 

(SD) of 10-15%. We used multiple group comparison test (Bonferroni) to make maximal number 

of comparisons between groups.  

For the slice culture comparisons we performed 2-way ANOVA and independent t-tests on 

the following figures: Figure 2b, d, e, ,f’, f, g, g’; Figure 3b, c, d, f, g, h; Figure 4b, c, d, g, h, i. 

The t-tests were performed to confirm significance between conditions as 2-way ANOVA and post 

hoc test does not cover all the comparisons of our interest. These t-test p values are unprotected, 

therefore we adjusted them using Bonferroni correction (e.g. if the set of the data is compared 5 

times, we need to multiply the p-value by 5).  The listed significant comparisons all have protected 

p-values by Bonferroni post-test. *** p<0.001; **p<0.01; *p<0.05.  

Comparison between two groups were made using two-tailed independent Student’s t-test. 

Comparisons between multiple groups and treatments were made using two-way ANOVA with 

post hoc Bonferroni multiple comparison test. Comparisons between multiple groups were made 

using one-way ANOVA. Cumulative probability plots were compared using Kolmogorov-

Smirnov test for probability distributions. Results are expressed as mean ± sd.  
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Figure Legends: 

Figure 1 – OGD induces morphological and functional deficits in excitatory synapses.  

(a) Example tertiary dendrites from CA1 pyramidal neurons expressing myristoylated-eGFP in 

control versus 90 min post-OGD organotypic hippocampal cultures. Scale = 2 µm. (b) 

Quantification of dendritic spines categorized into stubby, mushroom and long thin subtypes (*p 

< 0.05 and **p < 0.01, two-tailed independent Student’s t-test). Total spine density (spines/µm of 

dendrite): Control – 1.76 ± 0.08 (n = 8); OGD – 1.25 ± 0.11 (n = 8). (c) Example images of 

maximum intensity projections of area CA1 immunostained for gephyrin and VGAT in control 

cultures versus 90 min following OGD. (d) Quantification of number of gephyrin clusters per 

confocal stack (consisting of five 512x512 pixel z-planes each; ***p < 0.0001, two-tailed 

independent Student’s t-test; gephyrin cluster values were normalized to control). Mean number 

(A.U.): Control – 1.00 ± 0.03 (n = 10 slices); OGD – 0.40 ± 0.05 (n = 10 slices). (e) Quantification 

of the total volume of gephyrin cluster (***p < 0.0001, two-tailed independent Student’s t-test). 

Mean volume (A.U.): Control – 1.00 ± 0.05; OGD – 0.53 ± 0.03. Data shown as mean ± s.d. (n=30 

cells). (f) Cumulative probability histogram and mean ±SEM amplitude (p < 0.001, Kolmogorov-

Smirnov test). (f’)  Cumulative probability histogram and mean ±SEM for IEIs of mEPSCs (p < 

0.05, Kolmogorov-Smirnov test). (f’’) sample mEPSC traces from control cells and OGD cells. 

(g) Cumulative probability histogram and mean ±SEM amplitude of mIPSCs (p < 0.001, 

Kolmogorov-Smirnov test). (g’)  Cumulative probability histogram and mean ±SEM for IEIs of 

mIPSCs (p < 0.05, Kolmogorov-Smirnov test). (f’’) sample mEPSC traces from control cells and 

OGD cells. Data shown as mean ± s.d. 

 

Figure 2 – Scavenging BDNF rescues OGD-induced synapse deficits  
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(a) Example dendrites from CA1 neurons expressing myristoylated-eGFP with and without TrkB-

fc treatment. Scale = 2 µm. (b) Quantification of dendritic spines (*p < 0.05, Two-way ANOVA 

with Bonferroni multiple comparison test). Total spine density (spines/µm of dendrite): Control – 

1.22 ± 0.05 (n = 16); Control+TrkB-Fc – 1.40 ± 0.10 (n = 12); OGD – 0.95 ± 0.06 (n = 12); 

OGD+TrkB-Fc – 1.19 ± 0.07 (n = 14). (b’) Immunoprecipitation using TrkB-Fc chimera and WB 

against proBDNF or mBDNF. (c) Example images of maximum intensity projections of 

organotypic hippocampal slices immunostained for gephyrin with and without TrkB-Fc treatment. 

Scale = 2 µm. (d) Quantification of number of gephyrin puncta per confocal stack (consisting of 

five 512x512 pixel z-planes each; ***p < 0.0001, Two-way ANOVA with Bonferroni multiple 

comparison test; all gephyrin values were normalized to control). Mean number (A.U.): Control – 

1.00 ± 0.04 (n = 15); Control+TrkB-Fc – 0.95 ± 0.04 (n = 9 slices); OGD – 0.27 ± 0.03 (n = 13); 

OGD+TrkB-Fc – 0.86 ± 0.05 (n = 13). (e) Quantification of gephyrin puncta volume (***p < 

0.0001, Two-way ANOVA with Bonferroni multiple comparison test). Mean volume (A.U.): 

Control – 1.00 ± 0.03; Control+TrkB-Fc – 0.98 ± 0.03; OGD – 0.67 ± 0.06; OGD+TrkB-Fc – 1.02 

± 0.04. Data shown as mean ± s.d. (n=30 cells). (f) Cumulative probability histogram of mean 

amplitude (p < 0.001, Two-way ANOVA with Bonferroni multiple comparison test). (f’)  

Cumulative probability histogram for IEIs of mEPSCs (p < 0.05, Two-way ANOVA with 

Bonferroni multiple comparison test). (g) Cumulative probability histogram of mean amplitude of 

mIPSCs (p > 0.05, Two-way ANOVA with Bonferroni multiple comparison test). (g’)  Cumulative 

probability histogram for IEIs of mIPSCs (p < 0.05, Two-way ANOVA with Bonferroni multiple 

comparison test). Data shown as mean ± s.d.   
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Figure 3 – Differential proBDNF and mBDNF signaling induce synapse loss after ischemia. 

(a) Example tertiary dendrites from CA1 pyramidal neurons of organotypic hippocampal slices 

immunostained for gephyrin, with or without anti-proBDNF or anti-p75NTR (Rex) treatment before 

OGD. Scale = 2 µm. (b) Dendritic spine quantification (***p < 0.0001 Two-way ANOVA with 

Bonferroni multiple comparison test). Total spine density (spines/µm of dendrite): Control – 1.43 

± 0.04 (n = 15); Control+anti-proBDNF – 1.37 ± 0.07 (n = 15); Control+anti-p75 NTR – 1.42 ± 0.05 

(n = 15); OGD – 0.95 ± 0.04 (n = 39); OGD+anti-proBDNF – 1.40 ± 0.03 (n = 30); OGD+anti-

p75NTR – 1.35 ± 0.04 (n = 32). (c) Quantification of number of gephyrin cluster density (consisting 

of five 512x512 pixel z-planes each; p = 0.28, Two-way ANOVA with Bonferroni multiple 

comparison test, compared to control and treated controls; all gephyrin values were normalized to 

control). Mean number (A.U.): Control – 1.00 ± 0.03 (n = 18 slices); Control+anti-proBDNF – 

0.97 ± 0.07 (n = 6); Control+anti-p75NTR – 0.97 ± 0.06 (n = 6); OGD – 0.43 ± 0.03 (n = 20 slices); 

OGD+anti-proBDNF – 0.47 ± 0.03 (n = 16 slices); OGD+anti-p75NTR – 0.47 ± 0.04 (n = 9). (d) 

Quantification of gephyrin puncta volume (p = 0.57, Two-way ANOVA with Bonferroni multiple 

comparison test, compared to control and treated controls). Mean volume (A.U.): Control – 1.00 

± 0.04; Control+anti-proBDNF – 0.95 ± 0.07; Control+anti-p75NTR – 1.01 ± 0.09; OGD – 0.63 ± 

0.03; OGD+anti-proBDNF – 0.65 ± 0.02; OGD+anti-p75NTR – 0.62 ± 0.03. (e) Example tertiary 

dendrites from CA1 pyramidal neurons of organotypic hippocampal slices immunostained for 

gephyrin, with or without anti-mBDNF (N-9) treatment before OGD. Scale = 2 µm. (f) 

Quantification of dendritic spines (**p < 0.001 Two-way ANOVA with Bonferroni multiple 

comparison test). Total spine density (spines/µm of dendrite): Control – 1.45 ± 0.04 (n = 34); 

Control+anti-mBDNF (N-9) – 1.37 ± 0.03 (n = 17); OGD – 0.95 ± 0.05 (n = 31); OGD+anti-N-9 

– 1.05 ± 0.06 (n>20 cells). (g) Quantification of number of gephyrin clusters per confocal stack; 
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consisting of five 512x512 pixel z-planes each (***p < 0.0001, Two-way ANOVA with 

Bonferroni multiple comparison test; all gephyrin values were normalized to control). Mean 

number (A.U.): Control – 1.00 ± 0.03 (n = 11); Control+N-9 – 0.99 ± 0.04 (n = 6 slices); OGD – 

0.44 ± 0.04 (n = 12); OGD+ anti-mBDNF (N-9) – 0.85 ± 0.06 (n = 8). (h) Quantification of 

gephyrin cluster volume (***p < 0.0001, Two-way ANOVA with Bonferroni multiple comparison 

test). Mean volume (A.U.): Control – 1.00 ± 0.06; Control+N-9 – 1.07 ± 0.06; OGD – 0.66 ± 0.05; 

OGD+N-9 – 0.88 ± 0.05. Data shown as mean ± s.d.   

 

Figure 4 –ERK1/2 and GSK3β pathways induce gephyrin degradation but not dendritic spine 

loss after OGD.  

(a) Example tertiary dendrites from CA1 pyramidal neurons from control and 90 min post-OGD 

slices, immunostained for gephyrin, with or without pharmacological treatment (GSK3β inhibitor: 

GSK3β-IX and MEK inhibitor: PD98059). Scale = 2 µm. (b) Dendritic spine quantification (**p 

< 0.01 Two-way ANOVA with Bonferroni multiple comparison test). Total spine density 

(spines/µm of dendrite): Control – 1.41 ± 0.06 (n = 21); Control+PD+G.-IX – 1.46 ± 0.07 (n = 19); 

OGD – 1.09 ± 0.06 (n = 22); OGD+PD+G.-IX – 1.15 ± 0.05 (n = 21). (c) Quantification of number 

of gephyrin cluster density (consisting of five 512x512 pixel z-planes each; ***p < 0.0001, Two-

way ANOVA with Bonferroni multiple comparison test; all gephyrin values were normalized to 

control). (d) Quantification of number of gephyrin cluster volume. Mean number (A.U.): Control 

– 1.00 ± 0.08 (n = 11); Control+PD+G.-IX – 1.12 ± 0.08 (n = 9); OGD – 0.44 ± 0.08 (n = 9); 

OGD+PD+G.-IX – 1.16 ± 0.09 (n = 9). (d) Quantification of gephyrin puncta volume (**p < 0.001, 

Two-way ANOVA with Bonferroni multiple comparison test). Mean volume (A.U.): Control – 

1.00 ± 0.04; Control+PD+G.-IX – 0.91 ± 0.05; OGD – 0.67 ± 0.04; OGD+PD+G.-IX – 0.96 ± 
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0.07. (e) Maximum intensity projection of example CA1 pyramidal neurons which had been 

biolistitally transfected with a plasmid expressing tdTomato. Scale = 10 µm. Neurons were 

cotransfected with either wildtype or mutant gephyrin. (f) Example tertiary dendrites from CA1 

pyramidal neurons from control and 90 min post-OGD slices which were transfected with either 

eGFP-gephyrinWT or eGFP-gephyrinS268A/S270A. (g) Dendritic spine quantification (**p < 0.01 

Two-way ANOVA with Bonferroni multiple comparison test). Total spine density (spines/µm of 

dendrite): Control + gephyrinWT-GFP – 1.05 ± 0.052 (n = 11); Control + eGFP-gephyrinS268A/S270A 

– 1.05 ± 0.090 (n = 12); OGD – eGFP-gephyrinWT 0.74 ± 0.056 (n = 14); OGD + eGFP-

gephyrinS268A/S270A– 0.69 ± 0.064 (n = 8); **p < 0.01, Two-way ANOVA with Bonferroni multiple 

comparison test). (h) Quantification of number of gephyrin cluster density (**p < 0.01, Two-way 

ANOVA with Bonferroni multiple comparison test). Density: Control + eGFP-gephyrinWT –  0.38 

± 0.58; Control + eGFP-gephyrinS268A/S270A – 0.47 ± 0.092; OGD + eGFP-gephyrinWT – 0.11 ± 

0.015; OGD+ eGFP-gephyrinS268A/S270A– 0.44 ± 0.12. (i) Quantification of gephyrin cluster volume 

(**p < 0.01, Two-way ANOVA with Bonferroni multiple comparison test). Mean volume: Control 

+ eGFP-gephyrinWT –  0. 85 ± 0.012; Control + eGFP-gephyrinS268A/S270A – 0.22 ± 0.043; OGD + 

eGFP-gephyrinWT– 0.046 ± 0.01; OGD+ eGFP-gephyrinS268A/S270A – 0.21 ± 0.049. Data shown as 

mean ± s.d.   

 

Figure 5 - Synapse changes in the peri-infarct area of ipsi-lateral hemispheres 24 h following 

MCAO.  

(a)  Example composite images for glutamatergic synaptic proteins (VGLUT1 and PSD95) and 

GABAergic synaptic markers (GAD65/67, g2 and a5 GABAARs). (b) Quantification for VGLUT1 

cluster density (One-way ANOVA, Bonferroni multiple comparison post-hoc test; F(2,49)=11.2; 
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P<0.0001). (c) Quantification for PSD95 cluster density (One-way ANOVA, Bonferroni multiple 

comparison post-hoc test; F(2,49)=0.84; P=0.43). (d-f) Quantification for GAD65/67 (One-way 

ANOVA, Bonferroni multiple comparison post-hoc test; F(2,10)=7.9; P=0.0085), g2 (One-way 

ANOVA, Bonferroni multiple comparison post-hoc test; F(2,9)=6.4; P=0.018) and a5 GABAAR 

cluster density (One-way ANOVA, Bonferroni multiple comparison test; F(2,9)=8.3; P=0.0088). 

Data shown as mean ± s.d. (n=5 animals); *P<0.05; **P<0.01; ***P<0.001. (g-i) WB analysis for 

phospho-ERK1/2, total ERK1/2, GSK3b and actin in sham and 24 h post MCAO samples. (j-j’’’) 

WB analysis for total gephyrin, phospho gephyrin-S268 and phospho gephyrin-S270 levels in BL6 

WT sham and 24 h post MCAO mice. Data shown as mean ± s.d. (n=4 animals). 

 

Figure 6 – Synapse loss is attenuated in GphnS268A/S270A mutant mice 24 h following MCAO. 

(a) Example images of immunohistochemical stainings from motor cortex L2/3 ipsi- and contra-

lateral sides in GphnS268A/S270A mutant mice 24 h following MCAO. Glutamatergic synaptic 

terminals were visualised using VGLUT1 and PSD95 (see inset). GABAergic synaptic sites were 

visualised using GAD65/67, g2 and a5 GABAARs. (b) Quantification for VGLUT1 (One-way 

ANOVA, Brown-Forsythe test; F(2,11)=o.35; P=0.70). (b’) Quantification of PSD95 cluster 

density (One-way ANOVA, Brown-Forsythe test; F(2,11)=1.03; P=0.38). (c) Quantification for 

GAD65/67 (One-way ANOVA, Bonferroni multiple comparison test; F(2,9)=11.9; P=0.003). (c’) 

Quantification of g2 (One-way ANOVA, Bonferroni multiple comparison test; F(2,11)=0.60; 

P=0.56). (c’’) Quantification of a5 GABAARs clusters (One-way ANOVA, Bonferroni multiple 

comparison test; F(2,11)=4.9; P=0.02). Data shown as mean ± s.d. (n=5 animals).  
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Figure 7 – GphnS268A/S270A mutant mice show reduced neuroinflammation 24 h following 

MCAO. (a) Quantification of infarct volume in BL6 WT, BL6 WT treated with PLX5622, 

BDNFflox/flox / CX3CR1ERT2Cre+/- and GphnS268A/S270A mutant mice at 24 h following MCAO 

(One-way ANOVA, Brown-Forsythe test; F(3,15)=8.9; P=0.0028). (b) Example image of 

volumetry analysis from 24 h post MCAO tissue sections from BL6 WT, BL6 WT treated with 

PLX5622, BDNFflox/flox / CX3CR1ERT2Cre+/- and GphnS268A/S270A mutant mice. Results 

expressed as mean ± s.d. (N=5 or more). (c) Example images of BL6 WT mice stained from sham 

or 24 h post MCAO tissue for microglia markers IBA1 and CD11b (IBA1 shown). (c’) 

Quantification for microglia density in sham animals and ipsi- and contra-lateral sides of MCAO 

animals. (c’’) Quantification microglia area covered using IBAI staining from sham animals, ipsi- 

and contra-lateral sides of MCAO animals. (c’’’) Quantification for CD11b intensity in sham 

animals, ipsi- and contra-lateral sides after MCAO animals. (d) Example images of 

GphnS268A/S270A mutant mice stained from sham or 24 h post MCAO tissue for microglia 

markers IBA1 and CD11b (IBA1 shown). (d’) Quantification for microglia density in sham 

animals and ipsi- and contra-lateral sides of MCAO animals. (d’’) Quantification microglia area 

covered using IBAI staining from sham animals, ipsi- and contra-lateral sides of MCAO animals. 

(d’’’) Quantification for CD11b intensity in sham animals, ipsi- and contra-lateral sides after 

MCAO animals. Results expressed as mean ± s.d. (n=5 animals); *P<0.05 (One-way ANOVA, 

Bonferroni multiple comparison test).  

 

Figure 8 – GphnS268A/S270A mutation affects BDNF levels in microglia after MCAO. (a) 

Example images from BDNFwt/wt / CX3CR1ERT2Cre+/- mice stained from sham or 24 h post MCAO 

tissue for microglia markers IBA1 and BDNF (composite shown). (a’) Quantification for BDNF 
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intensity within IBA1 positive cells in BDNFwt/wt / CX3CR1ERT2Cre+/- sham animals and ipsi- and 

contra-lateral sides of MCAO animals. (b) Example images from BDNFflox/flox / CX3CR1ERT2Cre+/- 

mice stained from sham or 24 h post MCAO tissue for microglia markers IBA1 and BDNF. (b’) 

Quantification for BDNF intensity within IBA1 positive cells in BDNFflox/flox / CX3CR1ERT2Cre+/- 

sham animals and ipsi- and contra-lateral sides of MCAO animals. (c) Example images from 

GphnS268A/S270A mutant sham animals and ipsi- and contra-lateral sides of MCAO animals. 

(c’) Quantification for BDNF intensity within IBA1 positive cells in GphnS268A/S270A mutant 

sham animals and ipsi- and contra-lateral sides of MCAO animals. (d) Overview of pathway(s) 

regulating synaptic downregulation downstream of microglia release proBDNF and mBDNF; (1) 

an unknown signal from GABAergic postsynaptic sites facilitates microglia hyper reactivity after 

MCAO; (2) activated microglia produce and release proBDNF and mBDNF to act on their cognate 

receptors p75NTR and TrkB respectively; (3) proBDNF via p75NTR activates RhoA/Rac1 pathway 

for actin remodeling and spine loss, triggering microglia aided stripping of VGLUT terminals; (4) 

ERK1/2 and GSK3b pathways are activated downstream of TrkB receptors to phosphorylate 

gephyrin at S268 and S270 residues respectively; (5) gephyrin phosphorylation at S268 and S270 

leads to gephyrin scaffold loss via calpain-1 clevage to facilitate GABAAR internalization and 

microglia aided displacement of GABAergic terminals. This mechanism outlines how excitatory 

and inhibitory synapses are lost at both ipsi- and contra-lateral sides 24 h post ischemia.  
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Table 1 

 

 

  

 

Target Host species Dilution Catalog # Company/origin 
 
Antibodies used for immunohistochemistry 
 
GABAAR γ2 Guinea pig 1:2000 - Home-made 
GABAAR α5 Guinea pig 1:3000 - Home-made 
Gad-65/67 Rabbit 1:1000 GC 3008 Affiniti 
Vglut1 Guinea pig 1:1000 135 304 Synaptic Systems 
PSD95 Mouse 1:1000 73-028 NeuroMap 
GFAP Mouse 1:2000 MAB360 Millipore 
Iba-1 Rabbit 1:1000 019-19741 Wako 
Cd11b Rat 1:50 550282 BD-Pharmingen 
mBDNF N-9 Mouse 1:100  BDNF #9 DSHB 
p75NTR Rabbit  1:200 AB-NO1 Advanced Targeting 

System  
pro-BDNF #B240 Mouse 1:200  Philip Barker  
 
Antibodies used for Western Blot 
 
GABAAR α1 Rabbit 1:600 - Home-made 
GABAAR α2 Rabbit 1:1000 - Home-made 
Gephyrin Mouse 1:1000 147 111 Synaptic Systems 
Gephyrin PS268 Rabbit 1:500 - Home-made 
Gephyrin PS270 Rabbit 1:500 - Home-made 
GSK3β Rabbit 1:1000 ab124661 Abcam 
Erk1/2 Rabbit 1:4000 9102S Cell Signaling  
Phospho-Erk1/2 
(Thr202/Tyr204) 

Rabbit 1:4000 9101 Cell Signaling  

BDNF Rabbit 1:3000 Ab108319 Abcam 
Actin Mouse 1:10,000 MAB1501 Millipore 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


Control OGD+90mina

b

c

OG
D 

+ 9
0 m

in
Co

ntr
ol

Gephryin VGAT Merge

d e

ge
ph

yri
n c

lus
ter

 de
ns

ity

ge
ph

yri
n c

lus
ter

 vo
lum

e

0.2
0.4
0.6
0.8
1.0
1.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.0

0.0

0.5

1.0

1.5

2.0

Sp
ine

 de
ns

ity
 (s

pin
es

 / μ
m)

Control
OGD+90min

Stubby Mushroom Thin Total

*

*

**

***
***

Control
OGD+90min

420 6 8

Cu
mu

lat
ive

 pr
ob

ab
ilit

y

IEI (x103 ms)

0.0

1.0

0.0

1.0

40200 60 80
Amplitude (pA)

100

Cu
mu

lat
ive

 pr
ob

ab
ilit

y

840 12 160.0

1.0

Cu
mu

lat
ive

 pr
ob

ab
ilit

y

IEI (x103 ms)
0.0

1.0

10050 150
Amplitude (pA)

200

Cu
mu

lat
ive

 pr
ob

ab
ilit

y

0

2 pA

10 ms

Control

OGD+24H

5 pA

10 ms

f f’ g g’

Cramer et al., Figure 1.

mEPSC mIPSC

Control

OGD+24H

20

15

10

5

0

m
EP

SC
s 

am
pl

itu
de

 (p
A)

**

0

3000

6000

Int
er-

ev
en

t in
ter

va
l (m

s)

Control
OGD+24H

Traces  mEPSCs

m
IP

SC
s 

am
pl

itu
de

 (p
A)

10

0

20

30

40

In
te

r-e
ve

nt
 in

te
rv

al 
(m

s)

50

0

200

100

150

250

Control
OGD+24H

10 s
20 pA

1 s
20 pA

OGD+24HControlOGD+24H

Traces  mIPSCs
f’’ g’’

Control

* *

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


Control

OGD+TrkB-Fc

OGD+90mina

Control+TrkB-Fc

b

Stubby
0.0

1.0

Sp
ine

 de
ns

ity
 / μ

m

0.4

1.4

Mushroom Thin Total

Control
Control+TrkB-Fc
OGD+90min
OGD+TrkB-Fc

0.2

0.6

1.2

0.8

c

1.6

d e

f

ge
ph

yri
n c

lus
ter

 vo
lum

e

**

0.2

0.4

0.6

0.8

1.0

1.2

0.0

ge
ph

yri
n c

lus
ter

 de
ns

ity

***

0.2

0.4

0.6

0.8

1.0

1.2

0.0

Control OGD + 90minOGD + 90minControl

Ge
ph

ryi
n

**

*

Control
Control+TrkB-Fc
OGD+90min
OGD+TrkB-Fc

+TrkB-Fc +TrkB-Fc

20 ms
2 pA

12
10

2
0

4

14

6
8

mE
PS

Cs
 am

pli
tud

e (
pA

)

0

1000

2000

1500

2500

500

Int
er

-e
ve

nt 
int

er
va

l (m
s)

Int
er

-e
ve

nt 
int

er
va

l (m
s)

50

0

200

100

150

250
*

mI
PS

Cs
 am

pli
tud

e (
pA

)
10

0

20

30

35

5

15

25

5 pA
40 ms

Control
Control+TrkB-Fc
OGD+90min
OGD+TrkB-Fc

f’

mEPSC mIPSC

g g’

Cramer et al., Figure 2

*

***
*** **

**
***** **

Lysate    IP
proBDNF

mBDNF~15kDa

~35kDa
b’

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


Stubby
0.0

1.0

Sp
ine

 de
ns

ity
 / μ

m

0.4

1.4

Mushroom Thin Total

0.2

0.6

1.2

0.8

1.6
Control
Control anti-proBDNF

OGD + 90min

OGD anti-proBDNF

a

b c

ge
ph

yri
n c

lus
ter

 de
ns

ity
 / μ

m

ge
ph

yri
n c

lus
ter

 vo
lum

e μ
m3

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

d

OGD anti-p75 NTR  (Rex)

Control anti-p75 NTR  (Rex)

Control Control OGD + 90min OGD + 90minControl OGD + 90min

 

Gephyrin

Merge

***

***

GFP anti-proBDNF anti-p75NTR (Rex) anti-proBDNF anti-p75NTR (Rex)

ProBDNF

p75 NTR

RhoA

spine loss

Control OGD + 90min e Control

Gephyrin

Merge

GFP

OGD + 90min

anti-mBDNF (N-9) anti-mBDNF (N-9)

***

Stubby
0.0

1.0

Sp
ine

 de
ns

ity
 / μ

m

0.4

1.4

Mushroom Thin Total

0.2

0.6

1.2

0.8

1.6 Control
Control+anti-mBDNF (N-9)
OGD+90min
OGD+anti-mBDNF (N-9)

f
g

ge
ph

yri
n c

lus
ter

 de
ns

ity
 / μ

m

ge
ph

yri
n c

lus
ter

 vo
lum

e μ
m3

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

h

***
**

**

mBDNF

TrkB

ERK / GSK3β?

gephyrin loss

Cramer et al., Figure 3

***

***
***

***

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


OGD + 90min OGD + 90min Control

tdTomato

eGFP-gephyrin WT

Merge

Stubby Mushroom Thin Total

Sp
ine

 de
ns

ity
 / μ

m

0.0

0.2

0.4

0.6

0.8

1.0

1.4

1.2

Ge
ph

yri
n d

en
sit

y /
μ

m

0.10

0.20

0.30

0.00

0.2

0.4

0.6

0.0

Ge
ph

yri
n v

olu
me

 (μ
m3 )

Control eGFP-gephyrin WT

Control eGFP- S268A/S270A

OGD + 90min eGFP-gephyrin WT

OGD + 90min eGFP-S268A/S270A 

e f

g h

*

**

**

**

i
**

a

p-S268 p-S270

N
C

G C E

ERK1/2 GSK3β

Mature BDNF

Trk-B receptor

 Control

eGFP- S268A/S270A eGFP-gephyrin WT eGFP- S268A/S270A

gephyrin

Cramer et al., Figure 4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


A
                       

   SHAM             IPSI                                 CONTRA

  5 µm

C’

Co
mp

os
ite

 (
γ

5
γ2

 / 
76-56 DAG

 V
GL

UT
1 /

 P
SD

95
GA

BA
AR

 α
5

γ2
 / 

76-56 DAG

γ2
 / 

76-56 DAG

 V
GL

UT
1 /

 P
SD

95

 V
GL

UT
1 /

 P
SD

95
GA

BA
AR

 α
5

GA
BA

AR
 α

5

VGLUT1 PSD-95

GABAAR γ2 GABAAR α5GAD 65-67

Cramer et al., Figure 5 

SHAM IPSI

CONTRA
SHAM IPSI

CONTRA
SHAM IPSI

CONTRA

SHAM IPSI

CONTRA
SHAM IPSI

CONTRA

SHAM IPSI

CONTRA
SHAM IPSI

CONTRA

0.0

0.5

1.0

1.5

2.0

*
*

 
pERK1/2

ERK1/2

Actin

GSK3β

Actin

~ 44 kDa

~ 44 kDa

~ 45 kDa

~ 40 kDa

~ 45 kDa
Re

lat
ive

 to
 ac

tin

Re
lat

ive
 to

 E
RK

1/2

pERK1/2

gephyrin p270

gephyrin p268

Actin~45kDa

~90kDa

~90kDa

~90kDa gephyrin
**

*

****
**

SHAM IPSI   CONTRA

SHAM
IPSI

CONTRA
SHAM

IPSI

CONTRA
SHAM

IPSI

CONTRA

Re
lat

ive
 to

 ac
tin

Re
lat

ive
 to

 ge
ph

yri
n

Re
lat

ive
 to

 ge
ph

yri
n

gephyrin gephyrin p268 gephyrin p270

BL6

SHAM IPSI   CONTRA

BL6 BL6 BL6

0.0

0.1

0.2

0.3

0.4

0.5
**

*

0.0

0.5

1.0

1.5

2.0

     *

0.0

0.5
1.0

1.5
2.0
2.5

0.0

0.5
1.0

1.5
2.0
2.5

0.0

0.5

1.0

1.5

2.0

GSK3β

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

**
**

0.0

0.5

1.0

1.5

2.0

 *
*

0.0

0.5

1.0

1.5

2.0

*
*

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

BL6

a b

b

c

d e

b

f

g i

j’
j

j’’ j’’’

h

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


VGLUT1 PSD-95 GAD65/ 67 GABAAR γ2 GABAAR α5 

γ2
 / 

76-56 DAG
 V

GL
UT

1 /
 P

SD
95

GA
BA

AR
 α

5

a

b b’ c c’ c’’

Cramer et al., Figure 6

Gphn S268A/ S270A mut Gphn S268A/ S270A mut Gphn S268A/ S270A mut

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

  

SHAM IPSI CONTRA

  5 µm

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

2.0

****
**

 *

SHAM IPSI

CONTRA
SHAM IPSI

CONTRA
SHAM IPSI

CONTRA
SHAM IPSI

CONTRA
SHAM IPSI

CONTRA

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

  

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

  

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

  

Re
lat

ive
 E

xp
re

ss
ion

 C
ha

ng
e

  

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


 +/-

 Ipsi

M
ic

ro
gl

ia
 d

en
si

ty
 (c

el
ls

 / 
m

m
3 )

M
ic

ro
gl

ia
 d

en
si

ty
 (c

el
ls

 / 
m

m
3 )

30 µm

30 µm

SHAM IPSI CONTRA

IB
A-

1
IB

A-
1

Gphn S268A / S270A mut Gphn S268A / S270A mut Gphn S268A / S270A mut

SHAM IPSI CONTRA
BL6 BL6 BL6

 

CD
11

b I
nte

ns
ity

 (a
.u.

)
CD

11
b I

nte
ns

ity
 (a

.u.
)

SHAM
IPSI

CONTR A

c` c`` c```

d```d`d

SHAM IPSI

CONTRA
Ar

ea
 c

ov
er

ed
 (%

)
Ar

ea
 c

ov
er

ed
 (%

)

*
*

*
*

+ / -
flox / flox

Cramer et al., Figure 7

**
**

BDNF 
CX3Cr1 Cre

BL6  

Gphn S268A/S270A 
mut

b

Gphn S268A/ S270A mut

BL6 + 
PLX5622 

a

c

In
fa

rc
t v

olu
me

 [%
]

0

5

10

15

20

25

BL6
  

Gphn
 S268

A/S270
A mut

BDNF 
 

Cx3c
r1 

Cre 
+ /

 -

flox
 / fl

ox

BL6 
+ P

LX
562

2

0

5

10

15

20

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

0

5

10

15

20

25

0

50

100

150

 **
 **

0

50

100

150

 **  **

SHAM
IPSI

CONTRA
SHAM

IPSI

CONTRA
SHAM

IPSI

CONTRA

SHAM
IPSI

CONTRA
SHAM

IPSI

CONTRA

d``

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


Cramer et al., Figure 8
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Cramer et al., Supplementary Figure 1
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Cramer et al., Supplementary Figure 5 

15 µm 0

500

1000

1500

2000

2500

Mi
cro

gli
a 

Vo
lum

e (
μm

3
)

Contra

Ipsi*

BDNF wt/wt

 CONTRA
BDNF wt/wt

IPSI

BDNF BDNF

BDNF  Ipsi

Cx3cr1 Cx3cr1

Cx3cr1 Cx3cr1

+/- +/-

+/- +/-

BDNF wt/wt 

Cx3cr1 Cre +/- 
BDNF flox/flox

Cx3cr1 Cre +/- 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/


Actin

proBDNF

~45kDa

~35kDa

mBDNF~14kDa

SHAM IPSI   CONTRA

e

d’’

Re
lat

ive
 to

 P
ro

BD
NF

BDNF flox/flox / Cx3cr1 Cre +/-

Cramer et al., Supplementary Figure 6 

~35kDa

~45kDa

~15kDa

*

SHAM
SHAM

SHAM IPSI   CONTRA

Actin

ProBDNF

mBDNF

ProBDNF mBDNF

c

e’ e’’

Re
lat

ive
 to

 ac
tin

Re
lat

ive
 to

 P
roB

DN
F

Gphn S268A / S270A mut 

~45kDa

~35kDa

~14kDa

Actin

ProBDNF

mBDNF

SHAM IPSI   CONTRA

SH
AM

ProBDNF

Re
lat

ive
 to

 ac
tin

SHAM

b b’ b’’

*

*

BL6

Re
lat

ive
 to

 P
ro

BD
NF

C’’

~45kDa

~35kDa

~15kDa

SHAM IPSI   CONTRA

Actin

ProBDNF

mBDNF

Re
lat

ive
 to

 ac
tin

Re
lat

ive
 to

 P
ro

BD
NF

d

c’ c’’

BL6 + PLX5622

ProBDNF mBDNF

***
**

SHAM
SHAM

  

CONTRA

CONTRA

CONTRA

CONTRA

CONTRA

CONTRA

CONTRA

IPSI

IPSI

IPSI

IPSI

IPSI

IPSI

IPSI

Re
la

tiv
e 

to
 a

ct
in

SHAM

CONTR
A

SHAM

ProBDNFd’

A
B

A
G

A
R

 

α

IPSI

   BL6 

 

proBDNF~35kDa

~14kDa mBDNF

Actin~45kDa

SHAM

0.0

0.5

1.0

1.5

2.0

0.0
0.5
1.0
1.5
2.0
2.5 n.s.

ProBDNF

mBDNF

mBDNF

Re
lat

ive
 to

 B
L6

Re
lat

ive
 to

 B
L6

a a’ a’’

 

 

 

 

 

 

  

0.0

0.5

1.0

1.5

2.0

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5

1.0

1.5

2.0

0.0
0.5
1.0
1.5
2.0
2.5

mBDNF

*
*

**
**

BL6 

BL6 
PLX

562
2

Gphn
S268

A/ S
270

A

BDNFwt/wt

Cx3cr1ERT2Cre+/-

BDNFw
t/w

t / Cx3c
r1
ERT2C

re+
/-

BDNFflox/flox

Cx3cr1ERT2Cre+/-

BDNFf
lox

/flo
x  / C

x3c
r1
ERT2C

re+
/-

  

BL6 

BL6 
PLX

562
2

Gphn
S268

A/ S
270

A

BDNFw
t/w

t / Cx3c
r1
ERT2C

re+
/-

BDNFf
lox

/flo
x  / C

x3c
r1
ERT2C

re+
/-

GphnS268A/ S270ABL6 PLX5622

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2020. ; https://doi.org/10.1101/2020.04.22.055087doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055087
http://creativecommons.org/licenses/by-nd/4.0/

