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Abstract  
G protein-coupled receptors (GPCRs) shift between inactive states and active signaling states, 
to which intracellular binding partners can bind. Extracellular binding of ligands stabilizes 
different receptor states and modulates the intracellular response via a complex allosteric 
process, which is not completely understood. Despite the recent advances in structure 
determination and spectroscopy techniques, a comprehensive view of the ligand-protein 
interplay remains a challenge. We derived free energy landscapes describing activation of the 
β2 adrenergic receptor (β2AR) bound to ligands with different efficacy profiles using enhanced 
sampling molecular dynamics (MD) simulations. The resulting free energy landscapes reveal 
clear shifts towards active-like states at the G protein binding site for receptors bound to partial 
and full agonists compared to antagonists and inverse agonists. Not only do the ligands control 
the population of states, they also modulate the conformational ensemble of the receptor by 
tuning allosteric protein microswitches. We find an excellent correlation between the 
conformation of the microswitches close to the ligand binding site and in the transmembrane 
region and experimentally reported cAMP signaling responses, highlighting the predictive power 
of our approach. Using dimensionality reduction techniques, we could further assess the 
similarity between the unique conformational states induced by different ligands. Two distant 
hotspots governing agonism on transmembrane helices 5 and 7, including the conserved 
NPxxY motif, formed the endpoints of an allosteric pathway between the binding sites. Our 
results demonstrate how molecular dynamics simulations can further provide insights into the 
mechanism of GPCR regulation by ligands, which may contribute to the design of drugs with 
specific efficacy profiles. 
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Introduction 
G protein-coupled receptors (GPCRs) are membrane proteins which activate cellular signaling 
in response to extracellular stimuli. This process is controlled by extracellular ligands, such as 
hormones and neurotransmitters, and binding of these increases the probability of activating 
intracellular partners. GPCRs are vital in many physiological processes and constitute the most 
common class of drug targets (Hauser et al., 2017).  

Much of the current understanding of GPCR signaling at the molecular level can be attributed to 
the progress in GPCR structure determination during the last decade (Cherezov et al., 2007; 
Hanson et al., 2008; Masureel et al., 2018; Rasmussen et al., 2011a; Ring et al., 2013; Wacker 
et al., 2010). GPCRs interconvert between inactive (R) and active (R*) states, which control G 
protein binding to a conserved intracellular domain via conformational rearrangements amongst 
the seven transmembrane (TM) helices (Fig. 1a)(Manglik and Kruse, 2017). In the absence of a 
bound agonist, this process is called basal activity. Ligands can bind to the orthosteric site in the 
receptor’s extracellular domain and thereby control conformational rearrangements. Orthosteric 
ligands are traditionally classified as either agonists, which promote activation, antagonists, 
which bind to the orthosteric site but do not alter basal activity, or inverse agonists that also 
reduce basal activity. However, this classical view of ligand efficacy is complicated by the fact 
that GPCRs can signal via several intracellular partners, e.g. G-proteins or β-arrestins. Most 
agonists will activate several signaling pathways, but agonists with the ability to activate one 
specific intracellular partner have also been identified, a phenomenon referred to as biased 
signaling. Based on spectroscopy and structure determination studies, conformational changes 
in the receptor govern the activation of signaling pathways (Frei et al., 2020; Liu et al., 2012; 
Masureel et al., 2018), although the underlying molecular mechanisms remain elusive. 
Characterization of the allosteric process guiding interactions with intracellular partners is a 
major challenge and can only be fully understood by using a combination of different 
methodologies.  

The term microswitch, or molecular switch, describes local structural changes in the receptor 
that contribute to controlling activation and can, for example, involve side chain rotamers, 
movement of two domains relative to each other, or a helix twist. Two microswitches implicated 
in activation of class A GPCRs are an outward displacement of the transmembrane helix 6 
(TM6) and twist of the highly conserved N(7.49)P(7.50)xxY(7.53) motif (superscripts notation 
according to Ballesteros-Weinstein numbering (Ballesteros and Weinstein, 1995)), which take 
part in the formation of the intracellular binding site. In the orthosteric site, microswitches are 
typically less conserved and depend on the type of ligand recognized by the receptor (Manglik 
and Kruse, 2017).  

Considering the high dimensionality of a protein with over 300 interacting residues, it is difficult 
to identify relevant microswitches from the sequence or static experimental structures. 
Historically, sequence analysis and mutagenesis experiments (Gregorio et al., 2017; 
Lamichhane et al., 2020, 2015; Manglik et al., 2015; Picard et al., 2019) have been used to 
characterize motifs important for signaling, but this approach may overlook the roles of less 
conserved residues, solvent, and ions in ligand recognition and receptor activation (Chen et al., 
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2020). Molecular dynamics (MD) simulations can generate trajectories from experimental 
starting structures and capture the dynamics of all microswitches, and allow us to derive the free 
energy landscapes governing the equilibrium between protein states. MD simulations have 
indeed been used extensively over the last decade to study GPCR activation (Bhattacharya and 
Vaidehi, 2010; Dror et al., 2011; Hu et al., 2019; Kohlhoff et al., 2014; Li et al., 2013; Miao and 
McCammon, 2016; Niesen et al., 201 ;1Tikhonova et al., 2013). Due to the computational cost 
of brute-force MD simulations, it is nearly impossible to obtain converged results without 
enhanced sampling methods, although the use of special purpose hardware (Dror et al. 2011) 
has pushed the boundaries of what is achievable by conventional MD simulations. Enhanced 
sampling strategies have emerged as an alternative, where exploration of the conformational 
landscape is promoted by the introduction of a bias in the simulations(Harpole and Delemotte, 
2018). In a post-processing step, the bias can be adjusted for, and it is thus possible to derive 
theoretically exact results at a fraction of the cost of unbiased simulations. However, the ever-
increasing size of simulation data and diverse conformations sampled by MD simulations makes 
it difficult to identify and determine the importance of microswitches by simple visualization of 
the conformational ensemble. Data-driven and machine learning approaches can help to 
condense the data and reduce human bias in the interpretation of the results (Fleetwood et al., 
2020a; Hu et al., 2019).  

In this study, we focus on the prototypical β2 adrenergic receptor (β2AR), which interacts with  
Gs proteins to trigger a cyclic adenosine monophosphate (cAMP) response, and arrestins, 
which control endocytosis and kinase activation (Jean-Charles et al., 2017). Both pathways are 
physiologically relevant and are modulated by therapeutic drugs. The β2AR is a common drug 
target for bronchoconstriction medication and was the first receptor crystallized in complex with 
a G protein (Rasmussen et al., 2011a, 2011b). Experimental studies, including crystallography 
(Masureel et al., 2018; Rasmussen et al., 2011b; Ring et al., 2013), spectroscopy methods 
(Gregorio et al., 2017; Imai et al., 2020; Kofuku et al., 2012; Lamichhane et al., 2020; Liu et al., 
2012) and computational methods (Provasi et al., 2011; Chen et al., 2020; Dror et al., 2011; 
Kohlhoff et al., 2014; Tikhonova et al., 2013), have investigated the activation mechanism of the 
β2AR. Agonists bound in experimental structures show a key interaction with S207(5.46) (Chan 
et al., 2016) and an inward bulge of TM5 in the active state. In the TM domain between the 
orthosteric site and G protein binding site, the connector region (Weis and Kobilka, 2018), 
partially overlapping with the P(5.50)I(3.40)F(6.44) motif, undergoes a rotameric change and 
thereby influences the hydrated cavity surrounding the conserved D79(2.50) (Imai et al. 2020), 
which in turn interacts with the conserved NPxxY motif in TM7 and reorients Y326(7.53) to form 
water-mediated interaction with Y219(5.58) (the Y–Y motif) (Latorraca et al., 2017). The 
combination of several microswitches leads to conformational changes that promote an outward 
movement of TM6 and binding of an intracellular binding partner, such as a G protein or 
arrestin. Understanding how ligands modulate individual microswitches could aid the 
development of biased agonists. 

Enhanced sampling techniques have been used to characterize the activation conformational 
ensemble of β2AR, from early coarse-grained protocols (Bhattacharya and Vaidehi 2010; 
Niesen et al. 2011) to more refined methodologies involving Gaussian accelerated MD (GaMD) 
(Tikhonova et al. 2013), metadynamics using path collective variables derived from adiabatic 
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biased MD simulations (Provasi et al. 2011) or adaptive sampling on cloud-based computing 
resources (Kohlhoff et al. 2014). Following in these footsteps, we recently introduced a version 
of the string with swarms of trajectories method designed to capture the activation pathway and 
the free energy landscapes along various microswitches (Fleetwood et al., 2020b).  

 

 

Figure 1. (a) A MD snapshot of the β2 adrenergic receptor in complex with adrenaline in 
an active-like state (simulation starting from PDB 3P0G). The vignettes show the 
conformations of residue pairs reflecting important microswitches in the active and 
inactive structures 3P0G (color) and 2RH1 (white): the TM5 bulge (red), measured as the 
closest heavy atom distance between S207(5.46) and G315(7.41); the connector region’s 
conformational change (pink), measured as the difference in root-mean-square deviation 
(RMSD) between the active and inactive state structure of the residues I121(3.40) and 
F282(6.44); the Y-Y motif (black), measured as the C-ζ distance between Y219(5.58) and 
Y326(7.53) of the NPxxY motif; and the Ionic lock displacement (orange), measured as 
the closest heavy atom distance between E268(6.30) and R131(3.50). (b) Ligands 
considered in this study: agonists BI-167107 and adrenaline; biased partial agonists 
salmeterol; antagonists timolol and alprenolol; and the inverse agonist carazolol. Atoms 
are colored according to their partial charge. 

In this study, thanks to our cost-effective computational approach, we have derived the 
activation free energy and characterized the details of the active-like state of the β2AR (Fig. 1a) 
in its ligand-free state and bound to six ligands with different efficacy profiles (Fig. 1b), all of 
which were resolved bound to the β2AR (Fig. 1b) and several of which are clinically approved 
drugs (Woo and Robinson, 2015). The free energy landscapes revealed a stabilization of active-
like states for the receptor bound to agonists and a shift towards inactive-like states for the 
receptor bound to antagonists or inverse agonists. Remarkably, we obtained a strong 
quantitative correlation between experimentally measured intracellular cAMP response and the 
expectation values of the upper and transmembrane microswitches, highlighting the predictive 
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power of our approach. In a second step, we introduce an adaptive sampling protocol 
developed to quantitatively sample the most stabilized states kinetically accessible from the 
activated starting structure (which we will refer to as the active-like state). Using dimensionality 
reduction techniques, we find that all ligands stabilize distinct receptor states and that ligands 
with similar pharmacological properties cluster together. Several of the microswitches 
considered to be of significance for GPCR activation, such the NPxxY motif and the extracellular 
end of TM5, were automatically identified as important with our protocol. Combined with the 
activation free energies, our results show how ligands control the population of states. They 
modulate the conformational equilibrium by tuning important allosteric microswitches, in 
particular near the G protein binding site. By inspecting the inter-residue contacts formed for 
different ligands, we identified an allosteric pathway between the two binding sites and a large 
heterogeneity of TM7 states. Our results thus build on the earlier use of enhanced sampling 
methods and demonstrate how such protocols combined with today’s computational capacities 
and availability of high-resolution structures in various states can provide insights into the 
structural basis of allosteric communication and ligand efficacy profiles, and potentially find use 
in the design of novel GPCR drug candidates. 

Methods 

Simulation system configuration 

We initiated simulation systems from a nanobody-bound active-state BI-167017-bound structure 
(PDB ID: 3P0G) (Rasmussen et al., 2011a) and an inactive carazolol-bound structure (PDB ID: 
2RH1) (Cherezov et al., 2007) in CHARMM-GUI (Lee et al., 2016) with the CHARMM36m force 
field (Huang et al., 2017). Since the two structures are missing certain residues and have 
different thermostabilizing mutations, we used GPCRDB’s (Isberg et al., 2014) improved version 
of 2RH1, removed residues not present in 3P0G, and mutated E27(1.26) to Q, a residue 
frequently found in the human population (Dallongeville et al. 2003). As a result, the two 
simulations systems were identical. Following the protocol of a previous study (Fleetwood et al., 
2020b), we reversed the N187E in the crystallized structures, protonated E122(3.41), and 
protonated the two histidines H172(4.64) and H178(4.70) at their epsilon positions. The receptor 
was embedded in a POPC membrane bilayer (Klauda et al., 2010) of 180 molecules, then 
solvated in a 0.15M concentration of neutralizing sodium and chloride ions with 79 TIP3P water 
molecules (Jorgensen et al., 1983)  per lipid molecule. We performed the MD simulations with 
GROMACS 2018.6 (Abraham et al., 2015) patched with PLUMED (Tribello et al., 2014). 
Ligands present in PDB structures 2RH1 (Cherezov et al., 2007), 3NYA (Wacker et al., 2010), 
3D4S (Hanson et al., 2008),  6MXT (Masureel et al., 2018) and 4LDO (Ring et al., 2013)  were 
inserted into the 3P0G structure after alignment on residues interacting with the ligand. Input 
files required to run the simulations in this study are available online (Fleetwood, 2019a). 

String method with swarms of trajectories 

We used an optimized version of the string method with swarms of trajectories to enhance 
sampling and to estimate the free energy along various microswitches (Fleetwood et al. 2020; 
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Pan et al. 2008; Lev et al. 2017). This method finds the most probable transition pathway 
between two end states in a high dimensional space spanned by a set of Collective Variables 
(CVs; in this context synonym with reaction coordinates). Given the initial guess of points 
distributed along a string in CV space, in this case the transition path from the previously 
published apo simulation, the 3P0G-initiated systems were equilibrated by running 200 
nanosecond steered MD simulations along the string with force constant per CV of 3366 
kJ/mol*nm^2 scaled by its estimated importance (more details in the following section). This was 
then followed by a 7 nanosecond initial restrained equilibration at every point. Next, a swarm of 
10 picosecond long trajectories were launched from the output coordinates of every restrained 
simulation. The average drift of the swarm was computed as the mean displacement of the 
short swarm trajectories in CV space, which is proportional to the gradient of the free energy 
landscape. Every swarm consisted of 16-32 trajectories and the exact number was determined 
adaptively to converge the drift vector. The points were displaced according to their drift and 
realigned along the string to maximize the number of transitions between neighbouring points. 
The string was updated iteratively with 30 ps of restrained equilibration per point, followed by a 
batch of swarms and string reparametrization. Gradually, the string relaxed into the most 
probable transition path connecting energetically stable intermediates between the two 
endpoints. We ran the simulations for 305 iterations, requiring an aggregated simulation time of 
4.3 microseconds per ligand.  

As a control, we also initiated a string from the carazolol-bound inactive state structure 2RH1. 
Steered MD from the inactive to the active state resulted in a slight unfolding of the intracellular 
part of TM6. Instead, we followed a slightly different protocol (Lev et al., 2017) and initiated the 
pathway by applying 200 nanoseconds targeted MD with a stronger 100 MJ/mol*nm^2 force 
constant on all protein heavy atoms. From this pathway, the string with swarms of trajectories 
was launched using the same CVs and algorithm as described above.  

Convergence is generally reached when the string diffuses around an equilibrium position. Due 
to MD simulations’ stochasticity, two strings from subsequent iterations may therefore differ 
even when the system has reached equilibrium. To evaluate the convergence we averaged the 
strings over 60 iterations, and stopped sampling every simulation after 305 iterations, at which 
point the average strings for all ligand-receptor complexes had converged.  

Kinetically trapped active-like state sampling 

In order to quantitatively sample the most stabilized state kinetically accessible from the starting 
structure without applying an artificial force on the system, we developed an adaptive sampling 
protocol. A single swarm with 24, 7.5 nanosecond long trajectories was launched from the same 
initial active configuration as described in the previous paragraph. The swarm’s center point, c, 
in CV space was taken as the mean of the trajectories’ endpoint coordinates, xi. Next, we 
computed the average distance, d, from the endpoints to the center and assigned every replica, 
i, a weight, wi(x)=exp(-(|xi-c| / d) ** 2. New trajectories were iteratively seeded by extending 
ni!"i#$jwj copies of  each replica, keeping the total number of trajectories fixed to 24. With this 
approach, only replicas close to the center were extended and the ensemble of trajectories 
eventually diffused around a single equilibrated state.  
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We evaluated convergence by monitoring the distance between the center point of subsequent 
iterations until it converged to a constant value, which occurred within 8 iterations for all 
systems. To demonstrate the robustness of the results, we split the walkers into three sub-
groups for cross validation analysis. 

Collective Variable selection 

We derived the CVs for the string method with swarms of trajectories in a data-driven manner 
from the swarm coordinates of the apo simulation’s final iteration using demystifying(Fleetwood 
et al., 2020a), a software which utilizes machine learning tools and dimensionality reduction 
methods to identify important features from MD simulation trajectories. As features, we chose 
inverse inter-residue C-α distances and filtered them to only include those which sampled 
values in the interval 6-8 Å. We then used the features to train a Restricted Boltzmann Machine 
(RBM) (Smolensky, 1986). An RBM is a single-layer neural network with a number of hidden 
components (2 in this manuscript), equivalent to a fully-connected bipartite graph. Upon training, 
the network is tuned to fit a certain statistical model, which maximizes the joint probability 
between  the components in the input layer and the hidden layer (Pedregosa et al. 2011). The 
input features were ranked by their importance using layer-wise relevance propagation (LRP), 
an algorithm originally developed to identify important pixels in image classification problems 
(Montavon et al., 2018). Since we used stochastic solvers, the results were averaged over the 
results from 50 independent RBMs. Only CVs with an estimated importance above 0.33 were 
included in the final set (Table 1). Every CV was first scaled unitless in order to keep all values 
between 0 and 1, then rescaled according to its importance, so that the restraining force and the 
drift in the swarms of trajectories method would better emphasize the conformational changes 
along important degrees of freedom. Finally, we derived a new pathway in the resulting CV 
space by interpolating between the restrained points of the converged apo simulation. All string 
simulations used these CVs and this new pathway as a starting point to launch swarms except 
for the previously published apo and BI-167107 systems. 

Table 1. String Simulations Collective Variables  

Residues Importance 

F223(5.62)-A271(6.33) 1.0 

Q224(5.63)-K227(5.66) 0.97 

F223(5.62)-L272(6.34) 0.76 

I325(7.52)-R328(7.55) 0.73 

F223(5.62)-K227(5.66) 0.72 

A226(5.65)-K267(6.29) 0.69 

V54(1.53)-C327(7.54) 0.67 

L324(7.51)-R328(7.55) 0.67 
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A134(3.53)-Y141 0.66 

I135(3.54)-L272(6.34) 0.6 

V222(5.61)-A271(6.33) 0.59 

A226(5.65)-E268(6.30) 0.59 

Q26(1.25)-D29(1.28) 0.57 

I135(3.54)-E225(5.64) 0.57 

R131(3.50)-L275(6.37) 0.57 

A134(3.53)-A271(6.33) 0.56 

C285(6.47)-V317(7.43) 0.56 

A76(2.47)-P323(7.50) 0.56 

Q26(1.25)-E30(1.29) 0.55 

A226(5.65)-A271(6.33) 0.54 

I121(3.40)-F208(5.47) 0.53 

E338(8.56)-R343 0.53 

I334(8.52)-R344 0.52 

G50(1.49)-L324(7.51) 0.49 

T25-D29(1.28) 0.47 

I135(3.54)-A271(6.33) 0.46 

T25-E30(1.29) 0.46 

W286(6.48)-G315(7.41) 0.45 

C285(6.47)-N318(7.45) 0.44 

Q27(1.26)-E30(1.29) 0.44 

R63-D331(8.49) 0.43 

Q197(5.37)-V297(6.59) 0.43 

A134(3.53)-E268(6.30) 0.42 

P288(6.50)-L311(7.37) 0.42 

T281(6.43)-N318(7.45) 0.42 
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C341(8.59)-R344 0.42 

I135(3.54)-P138 0.4 

R328(7.55)-R333(8.51) 0.36 

L311(7.37)-G315(7.41) 0.36 

I135(3.54)-E268(6.30) 0.35 

C285(6.47)-I314(7.40) 0.34 

Free energy estimation 

Free energy landscapes were estimated during post-processing by discretizing a grid along a 
chosen set of variables and constructing a regularized transition matrix from the swarm 
trajectories’ transitions between bins. We then derived the resulting free energy landscape from 
the stationary probability distribution of the transition matrix using Boltzmann inversion 
(Fleetwood et al., 2020b; Flood et al., 2019; Lev et al., 2017). To estimate the convergence of 
the free energy landscapes, we applied a Bayesian Markov chain Monte Carlo method 
(Harrigan et al., 2017) to sample 1000 different transition matrices from the dataset, each with a 
corresponding probability distribution and free energy landscape. From these we could estimate 
standard statistical properties such as the mean value and sample standard error. Swarm 
trajectories from a well-sampled equilibrium ensemble with multiple transitions between states 
will generate a narrower distribution of free energy values than trajectories drawn from a non-
equilibrium process or a poorly sampled system.  

Microswitch expectation values and equilibrium between states 

To quantify the effect of a ligand on different microswitches, we computed the expectation value 
and the relative the difference in free energy between the active and inactive state (ΔG) of 
individual microswitches. ΔG was obtained by integrating the free energy landscape over the 
active and inactive basins, respectively. We defined approximate state boundaries by visual 
inspection of the free energy landscapes and the crystal structures.  

We then evaluated the correlation of these two values with experimental measurements of 
cellular response to ligand binding (van der Westhuizen et al., 2014) using linear regression in 
the python software package SciPy  (Millman and Aivazis, 2011). Finally, we applied the derived 
linear relationship to predict the efficacy of the two ligands not part of the experimental dataset, 
BI-167107 and carazolol, based on their microswitch expectation values.  

Supervised and unsupervised feature extraction and learning  

We analyzed the trajectories from the last iteration of the adaptive state sampling protocol and 
the swarms of trajectories method with various dimensionality reduction methods. To identify 
conformational differences induced by the ligands, we performed supervised and unsupervised 
feature extraction with the software demystifying (Fleetwood et al., 2020a), and projected 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


10 

important features onto snake plot templates downloaded from GPCRDB (Isberg et al., 2014). 
As features, we used scaled inverse closest-heavy atom distances. Furthermore, we performed 
unsupervised dimensionality reduction in Scikit-learn (Pedregosa et al., 2011) with Principal 
Component Analysis (PCA) (Tipping and Bishop, 1999), Multi-dimensional scaling (MDS) 
(Modern Multidimensional Scaling, 2005) with a Euclidean distance metric and T-distributed 
Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008), and projected the 
simulation snapshots onto the reduced feature spaces. We constructed a similarity metric by 
taking the average Eucledian distance between all simulation snapshots in two classes, and 
normalized the class similarities between 0 and 1, with higher values representing similar 
classes.  

Moreover, we computed how important individual residues were for discriminating between 
agonists and non-agonists and to distinguish all ligands from each other, using a symmetrized 
version of the Kullback–Leibler (KL) divergence (Fleetwood et al., 2020a; Kullback and Leibler, 
1951). With this approach, two residues constituting a distance were scored as important if the 
active-like states formed non-overlapping distance distributions, corresponding to a high KL 
divergence. As a control, we evaluated the important features learned by a Random Forest (RF) 
Classifier (Ho, 1995), a machine learning model constructed by an ensemble of randomly 
instantiated decision trees. The importance of inter-residue distances was computed during 
training by normalizing the RF's mean decrease impurity (Breiman et al. 1984; Pedregosa et al. 
2011), which measures how frequently a distance is used to split the decision trees.  

Unsupervised feature extraction was performed with PCA (Tipping and Bishop 1999), which 
transformed the input dataset of distances, F, into to a set of orthogonal variables called 
Principal Components (PCs). The PCs are equivalent to the eigenvectors of FTF, and their 
eigenvalues measure how much of the variance in F they cover. Thus, by multiplying the PCs 
with their egeinvalues, and projecting them back onto the input features, we obtained an 
estimate of importance corresponding to how much the individual distances contributed to the 
variance in F. 

Software code to reproduce the results in this manuscript is available online (Fleetwood, 2020, 
2019a, 2019b).  

Results 

Ligands control efficacy by reshaping microswitches’ probability 
distributions  

We derived the free energy landscape along the most probable activation pathway of the β2AR 
bound to different ligands using the string method with swarms of trajectories (Fig. 1b). The set 
of ligands studied consisted of the full agonists BI-167107 and adrenaline, the G protein biased 
agonist salmeterol, the antagonists alprenolol and timolol (sometimes classified as a partial 
inverse agonist (Hanson et al., 2008)), and the inverse agonist carazolo. After 305 iterations, 
corresponding to 4 microseconds of aggregated simulation time per ligand-receptor complex, 
the activation pathways had converged (Table 2 and Figure 2 – figure supplement 1-6). Based 
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on the short swarm trajectories, we calculated free energies landscapes along different 
microswitches identified previously (Fleetwood et al., 2020b) (Fig. 2a, b and Figure 2 – figure 
supplement 7): (1) the TM5 bulge, which is an indicator of contraction in the ligand binding site; 
(2) the Connector ΔRMSD, a rotameric switch between residues I121(3.40) and F282(6.44) in 
the TM region; (3) the Ionic lock distance reflecting the outward movement of TM6, measured 
as the closest heavy atom distance between E268(6.30) and R131(3.50); and (4) the Y-Y motif 
as the C-ζ distance between Y219(5.58) and Y326(7.53), which acts as an indicator of the twist 
of the NPxxY motif and a slight reorientation of TM5.  

Table 2. Total simulation time per string of swarm simulation ensemble*  

Ligand 

Steered MD 
simulation 
time [µs] 

#Restrained 
equilibration 
trajectories 
(30 ps each) 

#Swarm 
trajectories 
(10 ps each) 

Total 
simulation 
time [µs] 

Carazolol 0.2 14878 352816 4.17 

Alprenolol 0.2 14878 364856 4.29 

Timolol 0.2 14878 363808 4.28 

Salmeterol 0.2 14878 363232 4.28 

Adrenaline 0.2 14878 372936 4.38 

* The previously published apo and BI-167107 initiated systems followed a slightly different initialization 
protocol with three substrings (Fleetwood et al. 2020) and have been excluded from the table. 

The free energy landscapes projected along the Connector ΔRMSD (Fig. 2a) reveal two states. 
In agreement with what could be expected, agonists lower the relative free energy of the active 
state (R*) of this microswitch, whereas non-agonists favor the inactive state (R) more. A loose 
coupling between the orthosteric ligand and G protein binding site was proposed based on 
correlated motions between the two domains in long timescale MD simulations of the BI-
167107-bound receptor (Dror et al., 2011). The free energy landscapes projected along the TM5 
bulge in the orthosteric site and the ionic lock distance in the G protein binding site (Fig. 2b) 
provide a quantitative view of this correlation and reveal that the activation pathway and the 
precise conformation of the stabilized states along the pathway depends on the ligand 
(Tikhonova et al. 2013; Kohlhoff et al., 2014). In general, the TM5 bulge assumed an outward 
conformation when TM6 was in its inward, inactive state. Furthermore, non-agonists favored a 
conformation with both a fully inactive TM5 Bulge and an inactive TM6, whereas agonists 
favored a more contracted binding site even in the inactive state of TM6. However, despite the 
relatively loose coupling, it should be noted that agonists were generally observed to shift the 
energy balance to favor active-intermediate receptor conformations with a TM6 displacement 
larger than in the inactive state.  

It is not straightforward to predict ligand efficacy by visual inspection of a free energy landscape, 
since it is the Boltzmann integrals over the basins that determine the relative free energy of the 
active and inactive states (ΔG). To investigate if ligand efficacy could be quantified using our 
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simulation results, we computed expectation values and ΔG of the microswitches and compared 
them to functional experiments measuring the maximal G protein-mediated cAMP production 
(Emax) (Fig. 2c-f and Figure 2 – figure supplement 8)(van der Westhuizen et al., 2014). 
Remarkably, the expectation values associated with the upper microswitches were strongly 
correlated to the previously reported experimental values, in particular the TM5 bulge (Fig. 2c; 
R=-0.95) and the Connector ΔRMSD (Fig. 2d; R=0.93). Emax values of BI-167107 and 
carazolol were not available, and we thus inferred their predicted Emax from the linear 
correlation obtained for the other ligands: we predicted BI-167107 to have a cAMP Emax value 
slightly higher than adrenaline and salmeterol, and carazolol to have an Emax similar to the 
values of the ligand free receptor and inverse agonist timolol (Fig. 2c, d). These results are in 
line with expectations; BI-167107 is indeed a known full agonist and carazolol an inverse 
agonist (Manglik et al., 2015; Rasmussen et al., 2011a; Ueda et al., 2019). Similar results were 
obtained using the free energy difference of the active and inactive states, ΔG (Figure 2 – figure 
supplement 8). These results thus suggest that our simulations accurately captured the relative 
stability of states, and should therefore be able to provide insights into how ligands with different 
efficacy profiles control the conformational ensemble of the receptor. Moving down the 
microswitch cascade towards the intracellular region, the cAMP response was less well 
correlated with the expectation values and the ΔG of the Y-Y motif and Ionic lock distance (Fig. 
2e; R=-0.75 and Fig. 2f; R=0.58, respectively, and Figure 2 – figure supplement 8), as expected 
from the looser coupling between these microswitches and the ligand binding sites.  

As a control, we converged the activation string for a simulation set initiated from the inactive 
state structure, where the starting activation pathway was sampled in the reverse direction 
(Figure 2 – figure supplement 1-2, 9a). The transmembrane microswitches expectation values 
lead to a similar prediction of Emax, accurately classifying carazolol as a non-agonist (Figure 2 
– figure supplement 10). Inspection of the free energy landscapes (Figure 2 – figure supplement 
9b-d), on the other hand, revealed two differences between the carazolol-bound receptors’ 
active states obtained starting from different initial strings (Figure 2 – figure supplement 9c-d): 
(1) in the 2RH1-iniated system, the intracellular domain of TM6 assumed an orientation with the 
ionic lock residues’ side chains pointing away from each other (Figure 2 – figure supplement  
10d), although the backbone distance between TM6 and TM3 was very similar (Figure 2 – figure 
supplement 9d) and (2) the 2RH1-initiated system sampled a conformation with an inactive TM5 
bulge domain and active cytosolic domain (Figure 2 – figure supplement 9c), unlike any 
conformation captured in experimental structures. We hypothesize that the conformation 
obtained starting from the inactive state could be an artifact of pulling the inverse agonist-bound 
receptor directly toward its unfavorable active state without targeting metastable intermediate 
states along the pathway. Moving forward, we thus favor a protocol in which the receptor was 
pulled along a pathway identified by unbiased MD simulations, presumably closer to the most 
favorable converged activation pathway (Dror et al., 2011; Fleetwood et al., 2020b). 
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Figure 2. (a) Free energy landscapes for the different ligands projected along the 
Connector ΔRMSD microswitch. The inactive and active states are marked by R and R* 
respectively. (b) Free energy projected onto the TM5 Bulge CV in the orthosteric site and 
the Ionic lock distance (measuring TM6 displacement in the G protein binding site). (c)-(f) 
Correlation between experimental values of downstream cAMP signaling and the 
expectation value of different microswitches for the receptor bound to different ligands, 
(c) for the TM5 bulge, (d) for the Connector ΔRMSD, (e) for the Y-Y motif, and (f) for the 
Ionic lock distance. The cAMP Emax values for Carazolol and BI-167107 (marked with an 
asterisk), which were not available in the experimental study, are inferred from the linear 
regression. Red dashed lines highlight the clustering of the agonist-bound structures. 
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Figure 2 – figure supplement 1. Strings averaged over different iterations for the 
Carazolol-bound receptor initiated from the active starting structure. The four most 
important CVs are shown on the y-axis. The x-axis shows progression toward the 
inactive endpoint. Whiskers show the interquartile range for the last iterations; outliers 
are shown as circles. Note that although the other 39 CVs are not shown, they were of 
lower importance and their contribution to the drift of the string was smaller compared to 
those shown.  

 

Figure 2 – figure supplement 2. Strings averaged over different iterations for the 
Carazolol-bound receptor initiated from the inactive starting structure. The four most 
important CVs are shown on the y-axis. The x-axis shows progression toward the 
inactive endpoint. Whiskers show the interquartile range for the last iterations; outliers 
are shown as circles.  

 

Figure 2 – figure supplement 3. Strings averaged over different iterations for the 
Alprenolol-bound receptor initiated from the inactive starting structure. The four most 
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important CVs are shown on the y-axis. The x-axis shows progression toward the 
inactive endpoint. Whiskers show the interquartile range for the last iterations; outliers 
are shown as circles.  

 

Figure 2 – figure supplement 4. Strings averaged over different iterations for the Timolol-
bound receptor initiated from the inactive starting structure. The four most important 
CVs are shown on the y-axis. The x-axis shows progression toward the inactive 
endpoint. Whiskers show the interquartile range for the last iterations; outliers are shown 
as circles.  

 

Figure 2 – figure supplement 5. Strings averaged over different iterations for the 
Salmeterol-bound receptor initiated from the inactive starting structure. The four most 
important CVs are shown on the y-axis. The x-axis shows progression toward the 
inactive endpoint. Whiskers show the interquartile range for the last iterations; outliers 
are shown as circles.  
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Figure 2 – figure supplement 6. Strings averaged over different iterations for the 
Adrenaline-bound receptor initiated from the inactive starting structure. The four most 
important CVs are shown on the y-axis. The x-axis shows progression toward the 
inactive endpoint. Whiskers show the interquartile range for the last iterations; outliers 
are shown as circles.   
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Figure 2 – figure supplement 7. Free energy landscapes projected along important 
microswitches; (a) the TM5 bulge microswitch in the orthosteric site, (b) the Connector 
ΔRMSD, (c) the D79-N322 distance in the transmembrane region, (d) the NPxxY motif’s 
(Cɑ positions of residues 322-327) RMSD to the inactive structure 2RH1, (e) the Y-Y motif 
in the intracellular binding site, and (f) the Ionic lock displacement. The box plots show 
the median (as a horizontal line in orange), the interquartile range (as a box), the upper 
and lower whiskers (as vertical lines) and the outliers (as circles), based on 1000 
transition matrices from MCMC sampling. The inactive and active states are marked by R 
and R* respectively. Vertical dashed lines show the boundary between the active and 
inactive state. 

 

Figure 2 – figure supplement 8. Correlation between experimental values of downstream 
cAMP signaling and the relative stability of states for the receptor bound to different 
ligands. (a) for the TM5 bulge microswitch, (b) for the Connector ΔRMSD, (c) for the D79-
N322 distance, (d) for the Y-Y motif microswitch, and (e) for the Ionic lock distance. The 
cAMP values for carazolol and BI-167107 (marked with an asterisk) which were not 
available in the literature are inferred from the linear regression.  
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Figure 2 – figure supplement 9. Comparison between the two pathways obtained for the 
Carazolol-bound receptor. (a) The average final average pathways along the two highest 
ranked CVs. (b)-(d) Free energy landscapes from the two pathways. Left column: results 
from the 2RH1(inactive structure)-initiated string. Right column: results from the 
3P0G(active structure)-initiated string. States present in one system but not the other are 
highlighted by black boxes. (b) The Connector ΔRMSD rotameric switch in the 
transmembrane region. (c) Free energy projected onto the TM5 Bulge CV in the 
orthosteric site and the ionic lock distance in the G protein binding site. (d) Free energy 
projected onto the TM6 backbone displacement, measured as the Cɑ distance between 
residues L272(6.34) and R131(3.50), and the Ionic lock distance.   
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Figure 2 – figure supplement 10. Correlation between experimental values of downstream 
cAMP signaling and microswitch expectation value for the receptor bound to different 
ligands. (a) for the TM5 bulge microswitch, (b) for the Connector ΔRMSD, (c) for the Y-Y 
motif microswitch, and (d) for the Ionic lock distance. Carazolol’s values were derived 
from the string with the inactive state starting structure, 2RH1.  

 

Figure 2 – figure supplement 11. Free energy landscapes for the receptor in its apo state 
(left column), bound to Carazolol (center column), and bound to BI-167107 (right column). 
These three conditions were also investigated in spectroscopy experiments, which we 
compare to throughout the manuscript. (a) Free energy projected onto the TM6 backbone 
displacement, measured the Cɑ distance between residues L272(6.34) and R131(3.50), 
and the Ionic lock distance. Black boxes highlight states where the Ionic lock side chains 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


21 

assume agonist-specific orientations either toward (for Carazolol) or away (for BI-167107) 
from each other. (b) Free energy projected onto the hydration of the G protein binding 
site, measured as the number of water molecules within 0.8 nm of L266(6.34), and the 
Ionic lock distance. Black boxes highlight the agonist-specific active state with a 
dehydrated binding site. 

Although downstream efficacy is an important metric for drug discovery purposes, alternative 
methods are required to characterize the molecular basis of receptor activation. Spectroscopy 
experiments have proven useful for this purpose (Gregorio et al., 2017; Imai et al., 2020; Kofuku 
et al., 2012; Manglik et al., 2015; Ma et al., 2020; Nygaard et al., 2013; Ueda et al., 2019; Weis 
and Kobilka, 2018), yet they are often difficult to compare quantitatively to atomistic simulations 
due to chemical modifications introduced and/or complex interpretation of measured signals. 
19F-fluorine NMR and double-electron resonance (DEER) spectroscopy experiments have 
shown that the conformational ensembles of carazolol and the apo receptor have similar TM6 
distance distributions (Manglik et al., 2015), in agreement with the similarity in their microswitch 
expectation values and free energy landscapes (Fig. 2b, f and Figure 2 – figure supplement 8e). 
It has also been proposed that the inactive receptor exists in two sub-states (Manglik et al., 
2015), one with a formed and one with a broken ionic lock. Our simulations rarely captured a 
sub-state with the ionic lock formed, which suggest that the state with a broken ionic lock is of 
lower free energy, although modelling of missing residues in the cytosolic domain of TM6 and 
TM3 may alter the dynamics of this region (Dror et al. 2009). Nevertheless, the agonists 
stabilized a state with the side chains of the ionic lock residues pointing away from each other, 
while the inverse agonist carazolol favored a state with the side chains pointing toward each 
other, although the TM6 displacement was too large for the residues to fully form an ionic bond 
(Figure 2 – figure supplement 11a). In general, the ligands stabilized active-like states of 
different ionic lock displacements (Fig. 2b). As GPCRs only assume their fully active state in the 
presence of an intracellular binding partner—a condition not met in the simulations carried out in 
this work— a loose allosteric coupling between intracellular microswitches and the cellular 
response is expected. 

β2AR crystal structures reveal a number of stabilized water molecules in the inactive state, while 
this region is dehydrated in the G protein-bound state (Cherezov et al. 2007; Rasmussen et al. 
2011). The disruption of intra-receptor water networks and the formation of a hydrophobic 
barrier, a prerequisite of activation (Trzaskowski et al. 2012), are likely conserved features of 
activation (Venkatakrishnan et al. 2019). Hydration in the active state may also contribute to the 
change in probe environment observed in spectroscopy experiments (Lamichhane et al., 2015). 
We investigated the hydration near the intracellular binding site by counting the number of water 
molecules within 0.8 nm of L266(6.28) (Figure 2 – figure supplement 11b), and found that BI-
167107 stabilized a partially dehydrated active state when TM6 assumed its outward pose. 
Carazolol and the apo condition, on the other hand, did not induce dehydration with TM6 in its 
active conformation (Figure 2 – figure supplement 11b). This finding shows that, to fully 
understand agonist control of GPCR activation, one needs to combine the shift in free energy 
with the conformational difference between the states formed by the ligands. 
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Data-driven analysis reveals that ligands stabilize unique states.  

To pinpoint the molecular basis of signaling, we reduced the high dimensional datasets to a 
more compressed representation using methods from machine learning (Fig. 3). We used three 
different methods to analyze all inter-residue contacts:  PCA, MDS, and t-SNE. All these 
approaches were designed to find a low dimensional embedding of the high dimensional data, 
but differ in their underpinnings. PCA seeks a linear transformation of the input data into an 
orthogonal basis of Principal Components (PCs) and is designed to cover as much of the 
variance in the data as possible (Fig. 3a). MDS projects the high dimensional space into a low 
dimensional representation using a non-linear transformation which preserves the distance 
between points (Fig. 3b). T-SNE is a visualization technique which seeks to disentangle a high-
dimensional data set by transforming it into a low-dimensional embedding where similar points 
are near each other and dissimilar objects have a high probability of being distant (Fig. 3c). 

We evaluated two datasets: the equilibrated active-like state ensemble (Fig. 3) and the swarm 
trajectories from the final iteration of the converged string. For the latter, which represent the 
converged activation pathways, the dimensionality reduction techniques created embeddings 
which separated snapshots by their progression along the activation path (Figure 3 – figure 
supplement 1). This is expected because unsupervised dimensionality reduction methods tend 
to emphasize large scale amplitude motions, such as the displacement of TM6 in the case of 
GPCR activation (Fleetwood et al., 2020a). These results confirmed that this feature is shared 
amongst all activation pathways, regardless of which ligand the receptor was bound to.  

Whereas the activation path ensembles contained inactive, intermediate, and active-like states 
for every ligand-receptor complex, the active-like state ensemble simulations revealed that the 
conformations sampled in presence of different ligands differed substantially. Indeed, after eight 
iterations with an accumulated simulation time of 1.4 microseconds per ligand (see Methods), 
the method for finding single equilibrated states generated trajectories which diffused around 
the most stabilized state kinetically accessible from the starting structure (Figure 3 – figure 
supplement 2). Dividing the dataset into thirds yielded similar results (Figure 3 – figure 
supplement 3), showing that the states were adequately sampled.  

The details of the active state ensemble varied among the ligands (Fig. 3a-c). Simulations with 
agonists bound tended to be grouped together for all three dimensionality reduction methods, 
but each of them generally also led to a distinct conformational ensemble. The simulation 
snapshots with the agonist adrenaline bound were generally close to the full agonist BI-167107 
and the partial agonist salmeterol. For the other ligands, the receptor explored a different 
conformational space than with agonists, but the ensembles were more diverse. In agreement 
with the projections, the similarity matrix based on the average distance between snapshots in 
the full feature space (Fig. 3d) showed that agonists and non-agonists stabilize significantly 
different states.  
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Figure 3. Dimensionality reduction techniques applied to the active-like simulation 
ensembles. Each point represents a simulation snapshot, colored according to the ligand 
bound to the receptor. Red dashed lines highlight regions where agonists cluster. The 
features are computed as the inverse closest heavy atom distances between residues. (a) 
Principal Component Analysis (PCA) projection onto the first two Principal Components 
(PCs), (b) Multi-dimensional scaling (MDS) and (c) T-distributed Stochastic Neighbor 
Embedding (t-SNE). (d) The similarity between conformations sampled when agonist (BI-
167107, adrenaline and salmeterol) and non-agonist ligands are bound, measured as the 
average distance between configurations in the full feature space. 
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Figure 3 – figure supplement 1. Dimensionality reduction of the activation pathways, 
applied to the activation paths derived from the swarms of trajectories method. Every 
point represents a simulation snapshot, colored according to its index along the 
converged string with a marker specific to the bound ligand. The darker the color, the 
closer to the active state endpoint the snapshot is. The features are computed as the 
inverse closest heavy atom distances between residues. (a) The first two PCs of PCA, (b) 
PCA’s third and fourth PC, (c) Multi-dimensional scaling (MDS) and (d) T-distributed 
Stochastic Neighbor Embedding (t-SNE).  

 

 

Figure 3 – figure supplement 2. Equilibration of single states. Distance in CV space (y-
axis) between the center points of two subsequent iterations (x-axis). Eventually the 
center points diffuse very slowly between iterations, which indicates convergence. The 
shaded areas show the distance between iterations taking the standard deviation of the 
walkers’ distance to the center points into account. 
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Figure 3 – figure supplement 3. Dimensionality reduction plots and similarity metrics for 
the kinetically trapped active-like states, using three subsets of the simulation frames in 
(a)-(c). Each dataset contains a third of the total simulation snapshots. 

 

Figure 3 – figure supplement 4. State projection onto higher order PCs. Projection of the 
single equilibrated states onto the third and fourth Principal Components (PCs). 
Compared to the projection onto the first two components (Fig. 3a), there is much less 
overlap between the different agonists and timolol.  
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Using PCA, we note that timolol clusters together with the agonist ligands. Thus, the first two 
PCs are not sufficient to completely separate the dataset according to the ligands present (Fig. 
3a), but including more PCs in the projection leads to a satisfactory separation (Figure 3 – figure 
supplement 4). The non-linear methods separated the classes well in two dimensions. As 
expected, a few points deviated from the other snapshots in the same class due to sampling 
slightly outside defined free energy basins. We also note that although t-SNE generates an 
embedding with perfect separation between classes, the micro-clusters depend on 
parametrization of the method and their exact placement is stochastic (Schubert, 2017).  

To summarize, analysis of the simulations by machine learning shows that ligands share many 
overall features of activation, but stabilize unique local states, in agreement with previous work 
(Kohlhoff et al. 2014; Tikhonova et al. 2013; Provasi et al., 2011; Liu et al. 2012; Lamichhane et 
al. 2020; Frei et al. 2020; Suomivuori et al. 2020). Together with the free energy landscapes, 
our findings support that ligands control the relative time a receptor spends in active-like states, 
and induces small conformational state-specific signatures throughout the protein.  

Ligands control residues near the G protein binding site. 

To capture important characteristics of receptor activation, we applied PCA on the swarms of 
trajectories datasets representing the activation ensemble and extracted important features 
therefrom (Fig. 4c). This analysis identified parts of TM6 and TM7 near the G-protein binding 
site as particularly important (Fig. 4c and Figure 4 – figure supplement 1), adding further support 
for the importance of these microswitches for activation. To characterize molecular differences 
between the active-like states controlled by the different ligands, we applied supervised learning 
on our dataset. With this approach, we derived features discriminating between the classes 
based on inter-residue distances and thereby identified residues which could be important for 
activation. Importance profiles were computed for discriminating between agonists and non-
agonists (Fig. 4a) and to distinguish all ligands from each other (Fig. 4b) using a symmetrized 
version of the Kullback–Leibler (KL) divergence (Fleetwood et al., 2020a; Kullback and Leibler, 
1951). With this approach, two residues constituting a distance were scored as important if the 
active-like states formed non-overlapping distance distributions, corresponding to a high KL 
divergence. As a control, we also evaluated the important features learned by a Random Forest 
Classifier (RF), a machine learning classifier constructed by an ensemble of decision trees. The 
importance profiles of the KL and RF feature extractors were similar, although the RF classifier 
generated importance profiles with more distinct peaks. Since the datasets included a few 
simulation frames that fluctuated outside the equilibrated states, the RF classifier probably 
suppressed some features to enhance prediction accuracy for these frames. KL divergence 
estimated how much the distributions overlap along individual features and was therefore less 
likely to discard features based on these frames. Remarkably, both data-driven methods 
identified established microswitches as the most important regions for classification: the NPxxY 
motif and the intracellular part of TM6 in the intracellular binding site (Fig. 4a,b and Figure 4 – 
figure supplement 2). These results underpin experimental evidence that differences in these 
regions are related to biased signaling (Frei et al., 2020; Lamichhane et al., 2020, 2015; Liu et 
al., 2012; Suomivuori et al., 2020). The TM5 bulge was particularly important for discriminating 
between agonists and non-agonists (Fig. 4a). This region does not show up as important when 
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differentiating between all ligands (Fig. 4b), which means that the TM5 conformations within the 
two groups of ligands were so similar that this region could not be used to, for example, 
discriminate agonists from each other. The NPxxY motif, on the other hand, assumed a unique 
conformation for each ligand (Fig. 4b).  

Spectroscopy experiments have shown that the agonist BI-167107 stabilizes an intermediate, 
pre-active state (Manglik et al., 2015). It was hypothesized that receptor activation involves a 
transition via this state before forming the fully active state together with an intracellular binding 
partner (Manglik et al., 2015). The experimental response was too weak to discern a 
corresponding pre-active state for antagonists, but the authors found it likely that such a state is 
accessible to all ligands. Moreover, spectroscopy experiments found that different agonists 
induced different states in the cytoplasmic domain (Manglik et al., 2015). Our results provide 
molecular models for the pre-active ensemble, and identified the region around the NPxxY 
domain a major source of conformational heterogeneity (Fig. 4-b and Figure 4 – figure 
supplement 1-4). In agreement, conformational differences in this domain has been shown to 
correlate to efficacy and biased signaling in 19F NMR and single-molecule fluorescence 
spectroscopy experiments (Frei et al., 2020; Lamichhane et al., 2020; Liu et al., 2012).  

Taken together, we arrived at a conceptual model to describe how different ligands control the 
G protein binding site (Fig. 4d). Ligands exercise direct control on TM5, where agonists and 
non-agonists stabilize different states. In turn, residues approximately one helical turn below the 
orthosteric site—including the connector region, which was identified as a good predictor of 
downstream response (Fig. 2d)—couple to the conformations in the orthosteric site. This leads 
to distinct interaction patterns between TM6 and TM7 in the transmembrane domain. The 
importance of TM7 is further enhanced by direct ligand interactions, generating a variety of 
ligand-specific NPxxY motifs. By favoring distinct TM7 states and modulating the probability for 
TM6 to be in an active conformation, ligands hence control the G protein binding site. The 
overall pattern is compatible with observations made from MSM analysis of large-scale 
computations (Kohlhoff et al., 2014). However, since our simulations protocol achieves 
conformational sampling at a fraction of the computational cost, it has allowed us to compute 
the free energy landscape for a larger ligand dataset and to thus find the molecular basis for the 
effect of binding of various agonists, antagonists and inverse agonists. 
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Figure 4. (a)-(b) Residues identified to be important for classification of the equilibrated 
active-like states. Importance was derived by computing the Kullback–Leibler (KL) 
divergence along all features, followed by averaging per residue. (a) Comparison of 
agonists to non-agonists. One signaling hotspot is located at the TM5 Bulge and another 
on TM7 close to the NPxxY motif. (b) Important residues to discriminate between all 
ligands. The main hotspot is located near the NPxxY motif. (c) Important residues for the 
activation ensemble from the swarms of trajectories method, extracted with PCA. The 
importance per feature was computed as the product of the PC’s weights and the PC’s 
projection onto the input feature. The intracellular end of TM6, which undergoes a large 
conformational change upon activation, is marked as important. Inverse closest heavy 
atom distances were used as input features in all figures. (d) Conceptual model 
describing allosteric communication between the hotspots. Ligands exercise direct 
control of TM5, which is stabilized in different states by agonists and non-agonists. In 
turn, residues approximately one helical turn below the orthosteric site, including the 
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connector region, couple to the conformations in the orthosteric site. This leads to 
distinct interaction patterns between TM6 and TM7 in the transmembrane domain. The 
importance of the TM7 is further enhanced by direct ligand interactions. By favoring 
distinct TM7 states and modulating the probability of stabilizing TM6 in an active 
conformation, ligands control the G protein binding site.  
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Figure 4 – figure supplement 1. Feature Importance projected onto snakeplots. (a)-(b) 
Residues identified to be important for classification of the equilibrated states, seen from 
the transmembrane side. Importance was derived by computing the Kullback–Leibler 
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(KL) divergence along all features, then averaging per residue. (a) comparison of 
agonists to non-agonists. (b) important residues to discriminate between all ligands. (c) 
Important residues for the activation ensemble from the swarms of trajectories method, 
extracted with PCA. Inverse closest heavy atom distances were used as features in all 
figures.  

 

 

Figure 4 – figure supplement 2. Comparison between supervised feature extraction 
methods. Comparison between (a) computing the Kullback–Leibler (KL) divergence per 
feature for identifying important residues and (b) a Random Forest classifier’s feature 
importance in the single equilibrated states. Inverse closest heavy atom distances were 
used as features.  
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Figure 4 – figure supplement 3. Important activation features per ligand identified by 
applying unsupervised PCA on the activation paths. 
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Figure 4 – figure supplement 4. Important features for equilibrated active-like states. 
Important residues for discriminating individual equilibrated active-like states from each 
other.  
 

Molecular basis for allosteric transmission from the orthosteric to the 
intracellular binding site 
To further explore the atomistic basis of our conceptual model (Fig. 4), we systematically 
inspected the most important features connecting the two hotspots near the TM5 bulge and the 
NPxxY motif. As in the previous section, we computed the KL divergence of the inter-residue 
distance distributions between the ligands. Distances with a high KL divergence that contributed 
to the formation of ligand-specific active-like states, were further investigated. Although the 
identified residue-pairs do not necessarily reflect the causality of molecular interactions driving 
the conformational changes, key features of activation were captured by this automated 
approach.  
 
We first identified features shared between agonists near the orthosteric site. We found that 
V206(5.46) could form van der Waals interactions with T118(3.37) only in the presence of 
agonists (Fig. 5a and b). This interaction is probably caused by hydrogen bonding between 
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S207(5.46), the TM5 bulge microswitch, and the ligand. In the transmembrane domain, agonists 
induced a contraction between L284(6.46) and F321(7.48) (Fig. 5a and b) compared to non-
agonists. Both of these residues face the lipid bilayer and are only weakly interacting in the 
simulations with agonists bound, but are located in a hotspot region for activation. L284(6.46) is 
located just above the part of TM6 that kinks upon activation. The identified feature essentially 
connects the binding site and PIF motif to the NPxxY motif. F282(6.44) of the PIF motif is close 
to L284(6.46). T118(3.37), which was identified as important near the TM5 bulge (Fig. 5b), is 
only one helix turn above I121(3.40) of the PIF motif in the connector region. Thus, the 
connector region is likely a driving factor behind the allosteric communication between the 
ligand and G protein binding sites, which influences the region surrounding F321(7.48). 
F321(7.48) is located next to the NPxxY motif, which undergoes a twist upon activation, and is 
part of the important hotspot on TM7. In this region, our machine-learning analysis also 
identified that the backbone carbonyl of S319(7.46) formed a hydrogen bond with the side chain 
of N51(1.50) on TM1 for agonists, whereas this interaction was destabilized for the other ligands 
(Fig. 5d). N51(1.50) is one of the most conserved residues across class A GPCRs (Isberg et al., 
2014) and stabilizes a water network together with D79(2.50) and Y326(7.53) in the inactive 
receptor (Cherezov et al., 2007; Venkatakrishnan et al., 2019). Thus, this agonist-specific 
interaction, together with the D79(2.50)-N322(7.49) interaction (Fig. S7c and S8c), may promote 
dehydration of the water-filled cavity around conserved residue D79(2.50) and a twist of the 
NPxxY motif. Overall, agonists favored contractions between local inter-residue distances 
compared to non-agonists. By inspecting the most substantially changing large scale distances, 
we also identified a contraction of the entire protein for agonist-bound receptors, as reflected by 
the decrease in distance between S203(5.43) and E338(8.56) on helix 8 (H8) and between 
S207(5.46) and V307(7.33) across the orthosteric binding site (Fig. 5a and c).  
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Figure 5. (a) Molecular basis for agonists’ control of receptor activation. S203(5.43) and 
S207(5.46) (red sticks) are part of the TM5 bulge, which form direct contacts with the 
ligand. V206(5.46) forms van der Waals interactions with T118(3.37) (red), which is 
located above I121(3.40) of the PIF motif in the connector region (pink sticks). TM6 and 
TM7, highlighted as L284(6.46) (orange sticks) close to F282(6.44) of the PIF motif and 
F321(7.48) (orange sticks) above the NPxxY motif, move closer together in the presence 
of agonists. Half a helix turn above F321(7.48), S319(7.46) forms a backbone interaction 
with the side chain of N51(1.50) for agonist-bound receptors, whereas water molecules 
interact with these residues for non-agonists. Together with TM7-ligand contacts in the 
orthosteric site, these interaction pathways stabilize the second important hotspot on 
TM7 close to the NPxxY motif (Y326(7.53) shown in black). (b) The T118(3.37)-V206(5.46) 
distance near the orthosteric site against the L284(6.46)-F321(7.48) distance in the 
transmembrane region. Agonists contract both of these regions. (c) The distance across 
the orthosteric site between S207(5.461) and V307(7.33) (dark red in (a)) against the 
S203(5.43)-E338(8.56) distance across the transmembrane domain. Agonists stabilize 
more compact receptor conformations. (d) The N51(1.50)-S319(7.46) distance against the 
L275(6.37)-Y326(7.53) distance. Agonists share the common feature of stabilizing the 
N51(1.50)-S319(7.46) backbone interaction, but form different NPxxY orientations, shown 
as the distance from Y326(7.53) to L275(6.37). (e) The three agonists stabilize slightly 
different TM6 and TM7 orientations, here illustrated by the distance between L275(6.37) 
and Y326(7.53). Adrenaline (purple) induces an active-like NPxxY motif whereas BI-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


36 

167107 (dark blue) stabilizes an inactive-like motif. The salmeterol-bound receptor (slate 
gray) adopts a distinct Y326(7.53) orientation. 

 

 

Figure 5 - figure supplement 1. Three distinct NPxxY conformations stabilized by 
Salmeterol. Simulation snapshots of salmeterol assuming three distinct conformations of 
the NPxxY motif: an inactive conformation (white), an active-like conformation (orange) 
and a novel conformation (blue). (a) the receptor from the transmembrane view, (b) the 
interaction between salmeterol and S207(5.46), lost in the novel state and (c) the 
orientation of N322(7.49) and Y326 of the NPxxY motif. (d) Scatter plot of snapshots from 
the 300th string iteration. The interaction between Salmeterol and S207(5.46) and 
S203(5.43) is only lost when the NPxxY motif assumes a unique conformation (measured 
as the backbone RMSD for residues 322-327 to the inactive structure 2RH1). 
 
Near the NPxxY motif, we found that the agonists stabilized different TM6 and TM7 orientations 
(Fig. 5d and e). Adrenaline favored the most active-like NPxxY motif, which was also maintained 
throughout its activation path (Fig. S7d), with Y326(7.53) closer to L275(6.37) (Fig. 5d). 
Salmeterol stabilized a distinct NPxxY conformation, which was also observed in the activation 
path ensembles (Fig. 5 – figure supplement 1), in which Y326(7.53) underwent a side chain 
rotation, bringing the tyrosine’s functional group further into the interface between TM6 and 
TM7. This pose is reminiscent of conformations suggested by 19F NMR studies on the β1-
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adrenergic receptor (Frei et al., 2020). BI-167107 stabilized an inactive-like NPxxY motif with 
Y326(7.53) pointing away from L275(6.37) (Fig. 5d).  
 
In general, our data-driven approach automatically identified highly conserved residues involved 
in receptor activation (Fig. 4). A noteworthy example is the D79(2.50) cavity, which is partially 
formed by strongly conserved residues S319(7.46), N51(1.50), and D79(2.50) and N322(7.49) 
(Isberg et al., 2014), and mutation of these may lead to non-functional receptors (Chung et al., 
1988). Another example is the identification of V206(5.46), S207(5.46), and the PIF motif as a 
key region for allosteric communication. V206(5.46) and S207(5.46) were shown to interact with 
a recently discovered negative allosteric modulator that binds in an extrahelical site adjacent to 
the PIF motif (Liu et al., 2020). Our results do not only illustrate the usefulness of MD combined 
with data-driven analysis; they allow us to identify potential allosteric sites that can be targeted 
by ligands, and reveal that, against our expectations, signaling hotspots near the NPxxY motif, 
far away from the orthosteric site, experience the largest ligand-induced conformational 
heterogeneity.  

Discussion 
Following the progress in GPCR research, it has become evident that a simple two-state model 
of activation is an oversimplification with considerable limitations. To explain biased and partial 
agonism, there is a need for a more comprehensive model. Many ligands have been 
characterized as full, partial or biased agonists (van der Westhuizen et al., 2014). However, a 
systematic characterization of the molecular mechanisms which transmit this allosteric 
communication across the cell membrane remain elusive. Researchers have successfully 
managed to discriminate between arrestin and G protein bias using spectroscopic probes 
(Lamichhane et al., 2020; Liu et al., 2012), but the conformational changes and dynamics of 
many microswitches cannot be captured in a single measurement. MD simulations have the 
potential to provide additional insights thanks to the atomistic-level description they enable 
(Lamim Ribeiro and Filizola, 2019). Whereas the free energy landscapes clearly show that 
ligands influence several microswitches, a direct comparison between free energy profiles may 
be misleading if the other orthogonal microswitches are ignored. For example, the local minima 
in the Connector ΔRMSD landscapes are located at similar positions for all ligands but our 
analysis clearly shows that the overall conformational ensembles differ (Fig. 2a and Figure 2 – 
figure supplement 7b). Such projections onto single variables can thus obscure major 
differences in other microswitches. To address this limitation, we have used data-driven 
analysis methods, which are better suited for handling high-dimensional data than mere visual 
inspection, and found that there were indeed significant conformational differences in the states 
stabilized by the different ligands. Remarkably, this protocol automatically identified both 
receptor-specific and conserved motifs considered to be of significance for GPCR activation, 
such as the TM5 bulge and the NPxxY motif, as important. The different dimensionality 
reduction techniques found similar partitioning of the data, which strongly indicates that the 
results are not due to fortuitous parameter tuning or method choice. One of the remaining 
enigmas in GPCR research is to understand how the same overall activation mechanism can be 
conserved in spite of the fact that very different ligands are recognized by the family. Our 
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machine learning-inspired data analysis protocol provides an unbiased approach to identify key 
features of activation for different receptor types.  

The derivation of free energy landscapes and the corresponding microswitch expectation values 
provide a tool for estimating the stability of activation states, and thus also the relative efficacy 
of different ligands. Given the high correlations between microswitch expectation values and 
experimental data, we anticipate that microswitches located in the orthosteric and connector 
regions can be used for future predictions of ligand efficacy. Additionally, an advantage of the 
methods used in this study is that results were derived from several simulation replicas, which 
reduces the statistical error related to the stochastic nature of MD simulations on short time 
scales. Since we allow the strings to diffuse around the converged equilibrium pathway for many 
iterations, the statistical error in the microswitch expectation values and energy landscapes is 
small, although it may be somewhat underestimated since swarm trajectories launched from the 
same point are correlated to each other. The systematic error is likely bigger for reasons related 
to the choice of force field (Guvench and MacKerell, 2008). An important limitation is that the 
string method can only identify one out of multiple activation pathways. Our control simulation 
starting from the inactive crystal structure, which converged to a different active state, indeed 
demonstrated this issue and highlights the importance of starting from a well-chosen input 
pathway. 

Understanding ligand control of receptor activation is of great interest in drug development. The 
conformational selection of intracellular binding partners enables construction of molecules or 
nanobodies that have a high binding affinity only in combination with a specific ligand 
(Sencanski et al., 2019), which has been utilized in structure determination (Masureel et al., 
2018; Rasmussen et al., 2011a; Ring et al., 2013; Staus et al., 2016). Similarly, a well-designed 
nanobody or allosteric modulator could enhance or block binding of a specific compound (Staus 
et al., 2016). However, in this study, the ligands were bound to the receptor throughout the 
simulations and no intracellular binding partner was considered. GPCRs only assume their fully 
active state in the presence of an intracellular binding partner (Gregorio et al., 2017; Manglik et 
al., 2015; Nygaard et al., 2013). The β2AR undergoes basal activity, where it fluctuates between 
active-like and inactive states (Gregorio et al., 2017; Lamichhane et al., 2015), which can be 
inferred from the relatively low free energy difference between the basins in the energy 
landscapes. While extracellular and transmembrane microswitches only require an agonist to 
maintain their active state conformations, intracellular microswitches interact with an intracellular 
binding partner directly and are more affected by its absence, which is likely why correlations 
between microswitch expectation value and Emax are worse for the intracellular microswitches.  

Other important aspects of receptor-ligand interactions, such as identifying the binding pose of 
novel compounds or estimating a ligand’s binding free energy, cannot be estimated with this 
approach. There are other, complementary, techniques such as Free Energy Perturbation 
methods (Cournia et al., 2017)(Matricon et al. 2021; Matricon et al. 2017), which can be used to 
rigorously estimate binding affinity. Combined with enhanced sampling MD, we move towards 
having a complete toolkit for in silico drug design for development of high affinity GPCR ligands 
with a specific efficacy.  
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Despite the increasing number of β2AR structures, the receptor has not been solved in a form 
bound to arrestin. However, conformations observed in our simulations share properties with 
other arrestin-bound states observed for other receptors. For example, the supervised learning 
methods identified the C-terminal and H8 below the NPxxY motif as relatively important (Fig. 4a, 
Figure 4 – figure supplement 1-4). This region is known to be stabilized in ligand-dependent 
states for the angiotensin II type 1 receptor (Suomivuori et al., 2020; Wingler et al., 2019). While 
the reorganization of H8 may be a secondary effect due to modulation of the NPxxY motif, this 
region could be important for arrestin recruitment (Lally et al., 2017; Staus et al., 2018). 
Salmeterol’s distinct NPxxY state only formed in combination with a lost interaction between the 
salmeterol and S207(5.46) and S203(5.43), which is remarkable considering that  the two 
binding sites are believed to be only loosely coupled (Dror et al., 2011; Fleetwood et al., 2020b). 
A similar phenomenon has been reported in a recent structure of β1AR (Lee et al., 2020), where 
the corresponding serines in the orthosteric site experienced weakened interactions to the 
biased agonist formoterol. Seeing that Y(7.53) is known to form contacts with arrestin for β1AR 
(Lee et al., 2020), our derived β2AR conformation may have biased signaling properties.  

Our results show that the activation pathways as well as the stabilized states are significantly 
altered upon ligand binding, and that ligands with shared efficacy profiles generate similar, albeit 
not identical, ensembles of states. It therefore cannot be taken for granted that two ligands 
which lead to a similar downstream response necessarily stabilize the same receptor 
conformations. As we considered several compounds in this study, similarities and differences 
between different compound classes emerged. The results in this study provide a good starting 
point for further analysis and allowed us to catch a glimpse of the complexity underlying 
receptor signaling. A thorough quantification of biased and partial agonism will require to study 
further ligands that stimulate various signaling pathways to different extents. 

Conclusion 
In this study, we derived the activation free energy of the β2AR bound to ligands with different 
efficacy profiles using enhanced sampling MD simulations. We found a strong correlation 
between cellular response and the computed expectation values of the upper and 
transmembrane microswitches, which suggests that our approach holds predictive power. Not 
only did the results show how ligands control the population of states, they also modulate the 
conformational ensemble of states by tuning important allosteric microswitches in the vicinity of 
the G protein binding site. By inspecting the contacts formed for agonists and non-agonist 
ligands, we identified an allosteric pathway between the two binding sites and a large 
heterogeneity of TM7 states. Our results show how enhanced sampling MD simulations of 
GPCRs bound to ligands with various activation profiles, in combination with data-driven 
analysis, provides the means for generating a comprehensive view of the complex signaling 
landscape of GPCRs. We anticipate that our protocol can be used together with other 
computational methods to understand GPCR signaling at the molecular level and provide 
insights that make it possible to design ligands with specific efficacy profiles. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


40 

Acknowledgements 
This work was supported by grants from the Gustafsson Foundation and Science for Life 
Laboratory to JC and LD. The work was also supported by grants from the Swedish Research 
Council (2017-04676) and the Swedish strategic research program eSSENCE to JC. The 
simulations were performed on resources provided by the Swedish National Infrastructure for 
Computing (SNIC) at PDC Centre for High Performance Computing (PDC-HPC).   

Abbreviations 
GPCRs, G protein-coupled receptors; MD, Molecular dynamics; β2AR, β2 adrenergic receptor; 
TM1-7, Transmembrane helix 1-7; H8, Helix 8; cAMP, cyclic adenosine monophosphate; CV, 
Collective variable; PCA, Principal component analysis; PC, principal component; MDS, Multi-
dimensional scaling; t-SNE, T-distributed stochastic neighbor embedding; RMSD, Root-mean-
square deviation; KL divergence, Kullback–Leibler (KL) divergence 

References 
Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. 

GROMACS: High performance molecular simulations through multi-level parallelism from 
laptops to supercomputers. SoftwareX 1–2, 19–25. doi:10.1016/j.softx.2015.06.001 

Ballesteros, J.A., Weinstein, H., 1995. [19] Integrated methods for the construction of three-
dimensional models and computational probing of structure-function relations in G protein-
coupled receptors, in: Receptor Molecular Biology, Methods in Neurosciences. Elsevier, pp. 
366–428. doi:10.1016/S1043-9471(05)80049-7 

Bhattacharya, S., Vaidehi, N., 2010. Computational mapping of the conformational transitions in 
agonist selective pathways of a G-protein coupled receptor. J. Am. Chem. Soc. 132, 5205–
5214. doi:10.1021/ja910700y 

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984. Classification and regression 
trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. 

Chan, H.C.S., Filipek, S., Yuan, S., 2016. The Principles of Ligand Specificity on beta-2-
adrenergic receptor. Sci. Rep. 6, 34736. doi:10.1038/srep34736 

Chen, K.-Y.M., Keri, D., Barth, P., 2020. Computational design of G Protein-Coupled Receptor 
allosteric signal transductions. Nat. Chem. Biol. 16, 77–86. doi:10.1038/s41589-019-0407-2 

Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G.F., Thian, F.S., Kobilka, T.S., 
Choi, H.-J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C., 2007. High-resolution crystal 
structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 
318, 1258–1265. doi:10.1126/science.1150577 

Cournia, Z., Allen, B., Sherman, W., 2017. Relative binding free energy calculations in drug 
discovery: recent advances and practical considerations. J. Chem. Inf. Model. 57, 2911–
2937. doi:10.1021/acs.jcim.7b00564 

Dallongeville, J., Helbecque, N., Cottel, D., Amouyel, P., Meirhaeghe, A., 2003. The Gly16--
>Arg16 and Gln27-->Glu27 polymorphisms of beta2-adrenergic receptor are associated 
with metabolic syndrome in men. J. Clin. Endocrinol. Metab. 88, 4862–4866. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


41 

doi:10.1210/jc.2003-030173 
Dror, R.O., Arlow, D.H., Maragakis, P., Mildorf, T.J., Pan, A.C., Xu, H., Borhani, D.W., Shaw, 

D.E., 2011. Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci USA 
108, 18684–18689. doi:10.1073/pnas.1110499108 

Fleetwood, O., 2019a. delemottelab/gpcr-string-method-2019 initial-submission. Zenodo. 
doi:10.5281/zenodo.2662201 

Fleetwood, O., 2019b. delemottelab/demystifying: Updated benchmarks. Zenodo. 
doi:10.5281/zenodo.3567774 

Fleetwood, O., 2020. delemottelab/state-sampling initial-release. zenodo. 
Fleetwood, O., Kasimova, M.A., Westerlund, A.M., Delemotte, L., 2020a. Molecular Insights 

from Conformational Ensembles via Machine Learning. Biophys. J. 118, 765–780. 
doi:10.1016/j.bpj.2019.12.016 

Fleetwood, O., Matricon, P., Carlsson, J., Delemotte, L., 2020b. Energy Landscapes Reveal 
Agonist Control of G Protein-Coupled Receptor Activation via Microswitches. Biochemistry 
59, 880–891. doi:10.1021/acs.biochem.9b00842 

Flood, E., Boiteux, C., Lev, B., Vorobyov, I., Allen, T.W., 2019. Atomistic simulations of 
membrane ion channel conduction, gating, and modulation. Chem. Rev. 119, 7737–7832. 
doi:10.1021/acs.chemrev.8b00630 

Frei, J.N., Broadhurst, R.W., Bostock, M.J., Solt, A., Jones, A.J.Y., Gabriel, F., Tandale, A., 
Shrestha, B., Nietlispach, D., 2020. Conformational plasticity of ligand-bound and ternary 
GPCR complexes studied by 19F NMR of the β1-adrenergic receptor. Nat. Commun. 11, 
669. doi:10.1038/s41467-020-14526-3 

Ghanouni, P., Schambye, H., Seifert, R., Lee, T.W., Rasmussen, S.G., Gether, U., Kobilka, 
B.K., 2000. The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-
dependent activation. J. Biol. Chem. 275, 3121–3127. doi:10.1074/jbc.275.5.3121 

Gregorio, G.G., Masureel, M., Hilger, D., Terry, D.S., Juette, M., Zhao, H., Zhou, Z., Perez-
Aguilar, J.M., Hauge, M., Mathiasen, S., Javitch, J.A., Weinstein, H., Kobilka, B.K., 
Blanchard, S.C., 2017. Single-molecule analysis of ligand efficacy in β2AR-G-protein 
activation. Nature 547, 68–73. doi:10.1038/nature22354 

Guvench, O., MacKerell, A.D., 2008. Comparison of protein force fields for molecular dynamics 
simulations. Methods Mol. Biol. 443, 63–88. doi:10.1007/978-1-59745-177-2_4 

Hanson, M.A., Cherezov, V., Griffith, M.T., Roth, C.B., Jaakola, V.-P., Chien, E.Y.T., Velasquez, 
J., Kuhn, P., Stevens, R.C., 2008. A specific cholesterol binding site is established by the 
2.8 A structure of the human beta2-adrenergic receptor. Structure 16, 897–905. 
doi:10.1016/j.str.2008.05.001 

Harpole, T.J., Delemotte, L., 2018. Conformational landscapes of membrane proteins 
delineated by enhanced sampling molecular dynamics simulations. Biochim. Biophys. Acta 
Biomembr. 1860, 909–926. doi:10.1016/j.bbamem.2017.10.033 

Harrigan, M.P., Sultan, M.M., Hernández, C.X., Husic, B.E., Eastman, P., Schwantes, C.R., 
Beauchamp, K.A., McGibbon, R.T., Pande, V.S., 2017. Msmbuilder: statistical models for 
biomolecular dynamics. Biophys. J. 112, 10–15. doi:10.1016/j.bpj.2016.10.042 

Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schiöth, H.B., Gloriam, D.E., 2017. Trends in 
GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 
829–842. doi:10.1038/nrd.2017.178 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


42 

Ho, T.K., 1995. Random decision forests. Proceedings of 3rd international conference on 
document analysis and recognition 1, 278–282. 

Hu, X., Wang, Y., Hunkele, A., Provasi, D., Pasternak, G.W., Filizola, M., 2019. Kinetic and 
thermodynamic insights into sodium ion translocation through the μ-opioid receptor from 
molecular dynamics and machine learning analysis. PLoS Comput. Biol. 15, e1006689. 
doi:10.1371/journal.pcbi.1006689 

Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B.L., Grubmüller, H., 
MacKerell, A.D., 2017. CHARMM36m: an improved force field for folded and intrinsically 
disordered proteins. Nat. Methods 14, 71–73. doi:10.1038/nmeth.4067 

Imai, S., Yokomizo, T., Kofuku, Y., Shiraishi, Y., Ueda, T., Shimada, I., 2020. Structural 
equilibrium underlying ligand-dependent activation of β2-adrenoreceptor. Nat. Chem. Biol. 
16, 430–439. doi:10.1038/s41589-019-0457-5 

Isberg, V., Vroling, B., van der Kant, R., Li, K., Vriend, G., Gloriam, D., 2014. GPCRDB: an 
information system for G protein-coupled receptors. Nucleic Acids Res. 42, D422-5. 
doi:10.1093/nar/gkt1255 

Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., 1983. Comparison 
of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926. 
doi:10.1063/1.445869 

Klauda, J.B., Venable, R.M., Freites, J.A., O’Connor, J.W., Tobias, D.J., Mondragon-Ramirez, 
C., Vorobyov, I., MacKerell, A.D., Pastor, R.W., 2010. Update of the CHARMM all-atom 
additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843. 
doi:10.1021/jp101759q 

Kofuku, Y., Ueda, T., Okude, J., Shiraishi, Y., Kondo, K., Maeda, M., Tsujishita, H., Shimada, I., 
2012. Efficacy of the β₂-adrenergic receptor is determined by conformational equilibrium in 
the transmembrane region. Nat. Commun. 3, 1045. doi:10.1038/ncomms2046 

Kohlhoff, K.J., Shukla, D., Lawrenz, M., Bowman, G.R., Konerding, D.E., Belov, D., Altman, 
R.B., Pande, V.S., 2014. Cloud-based simulations on Google Exacycle reveal ligand 
modulation of GPCR activation pathways. Nat. Chem. 6, 15–21. doi:10.1038/nchem.1821 

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Statist. 22, 79–86. 
doi:10.1214/aoms/1177729694 

Lally, C.C.M., Bauer, B., Selent, J., Sommer, M.E., 2017. C-edge loops of arrestin function as a 
membrane anchor. Nat. Commun. 8, 14258. doi:10.1038/ncomms14258 

Lamichhane, R., Liu, J.J., Pljevaljcic, G., White, K.L., van der Schans, E., Katritch, V., Stevens, 
R.C., Wüthrich, K., Millar, D.P., 2015. Single-molecule view of basal activity and activation 
mechanisms of the G protein-coupled receptor β2AR. Proc Natl Acad Sci USA 112, 14254–
14259. doi:10.1073/pnas.1519626112 

Lamichhane, R., Liu, J.J., White, K.L., Katritch, V., Stevens, R.C., Wüthrich, K., Millar, D.P., 
2020. Biased Signaling of the G-Protein-Coupled Receptor β2AR Is Governed by 
Conformational Exchange Kinetics. Structure. doi:10.1016/j.str.2020.01.001 

Lamim Ribeiro, J.M., Filizola, M., 2019. Allostery in G protein-coupled receptors investigated by 
molecular dynamics simulations. Curr. Opin. Struct. Biol. 55, 121–128. 
doi:10.1016/j.sbi.2019.03.016 

Latorraca, N.R., Venkatakrishnan, A.J., Dror, R.O., 2017. GPCR dynamics: structures in motion. 
Chem. Rev. 117, 139–155. doi:10.1021/acs.chemrev.6b00177 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


43 

Lee, J., Cheng, X., Swails, J.M., Yeom, M.S., Eastman, P.K., Lemkul, J.A., Wei, S., Buckner, J., 
Jeong, J.C., Qi, Y., Jo, S., Pande, V.S., Case, D.A., Brooks, C.L., MacKerell, A.D., Klauda, 
J.B., Im, W., 2016. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, 
OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force 
Field. J. Chem. Theory Comput. 12, 405–413. doi:10.1021/acs.jctc.5b00935 

Lee, Y., Warne, T., Nehmé, R., Pandey, S., Dwivedi-Agnihotri, H., Edwards, P.C., García-
Nafría, J., Leslie, A.G.W., Shukla, A.K., Tate, C.G., 2020. Molecular determinants of β-
arrestin coupling to formoterol-bound β1 -adrenoceptor. BioRxiv. 
doi:10.1101/2020.03.27.011585 

Lev, B., Murail, S., Poitevin, F., Cromer, B.A., Baaden, M., Delarue, M., Allen, T.W., 2017. 
String method solution of the gating pathways for a pentameric ligand-gated ion channel. 
Proc Natl Acad Sci USA 114, E4158–E4167. doi:10.1073/pnas.1617567114 

Li, J., Jonsson, A.L., Beuming, T., Shelley, J.C., Voth, G.A., 2013. Ligand-dependent activation 
and deactivation of the human adenosine A(2A) receptor. J. Am. Chem. Soc. 135, 8749–
8759. doi:10.1021/ja404391q 

Liu, J.J., Horst, R., Katritch, V., Stevens, R.C., Wüthrich, K., 2012. Biased signaling pathways in 
β2-adrenergic receptor characterized by 19F-NMR. Science 335, 1106–1110. 
doi:10.1126/science.1215802 

Liu, X., Kaindl, J., Korczynska, M., Stößel, A., Dengler, D., Stanek, M., Hübner, H., Clark, M.J., 
Mahoney, J., Matt, R.A., Xu, X., Hirata, K., Shoichet, B.K., Sunahara, R.K., Kobilka, B.K., 
Gmeiner, P., 2020. An allosteric modulator binds to a conformational hub in the β2 
adrenergic receptor. Nat. Chem. Biol. doi:10.1038/s41589-020-0549-2 

Manglik, A., Kim, T.H., Masureel, M., Altenbach, C., Yang, Z., Hilger, D., Lerch, M.T., Kobilka, 
T.S., Thian, F.S., Hubbell, W.L., Prosser, R.S., Kobilka, B.K., 2015. Structural Insights into 
the Dynamic Process of β2-Adrenergic Receptor Signaling. Cell 161, 1101–1111. 
doi:10.1016/j.cell.2015.04.043 

Manglik, A., Kruse, A.C., 2017. Structural Basis for G Protein-Coupled Receptor Activation. 
Biochemistry 56, 5628–5634. doi:10.1021/acs.biochem.7b00747 

Masureel, M., Zou, Y., Picard, L.-P., van der Westhuizen, E., Mahoney, J.P., Rodrigues, 
J.P.G.L.M., Mildorf, T.J., Dror, R.O., Shaw, D.E., Bouvier, M., Pardon, E., Steyaert, J., 
Sunahara, R.K., Weis, W.I., Zhang, C., Kobilka, B.K., 2018. Structural insights into binding 
specificity, efficacy and bias of a β2AR partial agonist. Nat. Chem. Biol. 14, 1059–1066. 
doi:10.1038/s41589-018-0145-x 

Ma, X., Hu, Y., Batebi, H., Heng, J., Xu, J., Liu, X., Niu, X., Li, H., Hildebrand, P.W., Jin, C., 
Kobilka, B.K., 2020. Analysis of β2AR-Gs and β2AR-Gi complex formation by NMR 
spectroscopy. Proc Natl Acad Sci USA 117, 23096–23105. doi:10.1073/pnas.2009786117 

Matricon, P., Ranganathan, A., Warnick, E., et al. 2017. Fragment optimization for GPCRs by 
molecular dynamics free energy calculations: Probing druggable subpockets of the A 2A 
adenosine receptor binding site. Scientific Reports 7(1), p. 6398. 

Matricon, P., Suresh, R.R., Gao, Z.-G., Panel, N., Jacobson, K.A. and Carlsson, J. 2021. Ligand 
design by targeting a binding site water. Chemical Science. 

Miao, Y., McCammon, J.A., 2016. Graded activation and free energy landscapes of a 
muscarinic G-protein-coupled receptor. Proc Natl Acad Sci USA 113, 12162–12167. 
doi:10.1073/pnas.1614538113 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


44 

Millman, K.J., Aivazis, M., 2011. Python for Scientists and Engineers. Comput. Sci. Eng. 13, 9–
12. doi:10.1109/MCSE.2011.36 

Modern Multidimensional Scaling, 2005. . Springer New York, New York, NY. doi:10.1007/0-
387-28981-X 

Montavon, G., Samek, W., Müller, K.-R., 2018. Methods for interpreting and understanding deep 
neural networks. Digit. Signal Process. 73, 1–15. doi:10.1016/j.dsp.2017.10.011 

Niesen, M.J.M., Bhattacharya, S., Vaidehi, N., 2011. The role of conformational ensembles in 
ligand recognition in G-protein coupled receptors. J. Am. Chem. Soc. 133, 13197–13204. 
doi:10.1021/ja205313h 

Nygaard, R., Zou, Y., Dror, R.O., Mildorf, T.J., Arlow, D.H., Manglik, A., Pan, A.C., Liu, C.W., 
Fung, J.J., Bokoch, M.P., Thian, F.S., Kobilka, T.S., Shaw, D.E., Mueller, L., Prosser, R.S., 
Kobilka, B.K., 2013. The dynamic process of β(2)-adrenergic receptor activation. Cell 152, 
532–542. doi:10.1016/j.cell.2013.01.008 

Pan, A.C., Sezer, D., Roux, B., 2008. Finding transition pathways using the string method with 
swarms of trajectories. J. Phys. Chem. B 112, 3432–3440. doi:10.1021/jp0777059 

Pedregosa, F., Varoquaux, G., Gramfort, A., 2011. Scikit-learn: Machine learning in Python. … 
of machine learning …. 

Picard, L.-P., Schonegge, A.-M., Bouvier, M., 2019. Structural Insight into G Protein-Coupled 
Receptor Signaling Efficacy and Bias between Gs and β-Arrestin. ACS Pharmacol. Transl. 
Sci. 2, 148–154. doi:10.1021/acsptsci.9b00012 

Provasi, D., Artacho, M.C., Negri, A., Mobarec, J.C., Filizola, M., 2011. Ligand-induced 
modulation of the free-energy landscape of G protein-coupled receptors explored by 
adaptive biasing techniques. PLoS Comput. Biol. 7, e1002193. 
doi:10.1371/journal.pcbi.1002193 

Ranganathan, A., Dror, R.O., Carlsson, J., 2014. Insights into the role of Asp79(2.50) in β2 
adrenergic receptor activation from molecular dynamics simulations. Biochemistry 53, 
7283–7296. doi:10.1021/bi5008723 

Rasmussen, S.G.F., Choi, H.-J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., 
Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., Schnapp, A., Konetzki, I., Sunahara, R.K., 
Gellman, S.H., Pautsch, A., Steyaert, J., Weis, W.I., Kobilka, B.K., 2011a. Structure of a 
nanobody-stabilized active state of the β(2) adrenoceptor. Nature 469, 175–180. 
doi:10.1038/nature09648 

Rasmussen, S.G.F., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., 
Chae, P.S., Pardon, E., Calinski, D., Mathiesen, J.M., Shah, S.T.A., Lyons, J.A., Caffrey, 
M., Gellman, S.H., Steyaert, J., Skiniotis, G., Weis, W.I., Sunahara, R.K., Kobilka, B.K., 
2011b. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 
549–555. doi:10.1038/nature10361 

Ring, A.M., Manglik, A., Kruse, A.C., Enos, M.D., Weis, W.I., Garcia, K.C., Kobilka, B.K., 2013. 
Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. 
Nature 502, 575–579. doi:10.1038/nature12572 

Schubert, E., 2017. interpretation - Clustering on the output of t-SNE  
Sencanski, M., Glisic, S., Šnajder, M., Veljkovic, N., Poklar Ulrih, N., Mavri, J., Vrecl, M., 2019. 

Computational design and characterization of nanobody-derived peptides that stabilize the 
active conformation of the β2-adrenergic receptor (β2-AR). Sci. Rep. 9, 16555. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


45 

doi:10.1038/s41598-019-52934-8 
Shan, J., Khelashvili, G., Mondal, S., Mehler, E.L., Weinstein, H., 2012. Ligand-dependent 

conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation 
and membrane-driven oligomerization properties. PLoS Comput. Biol. 8, e1002473. 
doi:10.1371/journal.pcbi.1002473 

Smolensky, P., 1986. Information Processing in Dynamical Systems: Foundations of Harmony 
Theory. 

Staus, D.P., Strachan, R.T., Manglik, A., Pani, B., Kahsai, A.W., Kim, T.H., Wingler, L.M., Ahn, 
S., Chatterjee, A., Masoudi, A., Kruse, A.C., Pardon, E., Steyaert, J., Weis, W.I., Prosser, 
R.S., Kobilka, B.K., Costa, T., Lefkowitz, R.J., 2016. Allosteric nanobodies reveal the 
dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 
535, 448–452. doi:10.1038/nature18636 

Staus, D.P., Wingler, L.M., Choi, M., Pani, B., Manglik, A., Kruse, A.C., Lefkowitz, R.J., 2018. 
Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-
arrestin coupling. Proc Natl Acad Sci USA 115, 3834–3839. doi:10.1073/pnas.1722336115 

Suomivuori, C.-M., Latorraca, N.R., Wingler, L.M., Eismann, S., King, M.C., Kleinhenz, A.L.W., 
Skiba, M.A., Staus, D.P., Kruse, A.C., Lefkowitz, R.J., Dror, R.O., 2020. Molecular 
mechanism of biased signaling in a prototypical G protein-coupled receptor. Science 367, 
881–887. doi:10.1126/science.aaz0326 

Tikhonova, I.G., Selvam, B., Ivetac, A., Wereszczynski, J., McCammon, J.A., 2013. Simulations 
of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. 
Biochemistry 52, 5593–5603. doi:10.1021/bi400499n 

Tipping, M.E., Bishop, C.M., 1999. Probabilistic Principal Component Analysis. J. Royal 
Statistical Soc. B 61, 611–622. doi:10.1111/1467-9868.00196 

Tribello, G.A., Bonomi, M., Branduardi, D., Camilloni, C., Bussi, G., 2014. PLUMED 2: New 
feathers for an old bird. Comput. Phys. Commun. 185, 604–613. 
doi:10.1016/j.cpc.2013.09.018 

Ueda, T., Kofuku, Y., Okude, J., Imai, S., Shiraishi, Y., Shimada, I., 2019. Function-related 
conformational dynamics of G protein-coupled receptors revealed by NMR. Biophys. Rev. 
11, 409–418. doi:10.1007/s12551-019-00539-w 

van der Maaten, L., Hinton, G., 2008. Visualizing Data using t-SNE. J Mach Learn Res 9. 
van der Westhuizen, E.T., Breton, B., Christopoulos, A., Bouvier, M., 2014. Quantification of 

ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug 
taxonomy. Mol. Pharmacol. 85, 492–509. doi:10.1124/mol.113.088880 

Venkatakrishnan, A.J., Ma, A.K., Fonseca, R., Latorraca, N.R., Kelly, B., Betz, R.M., Asawa, C., 
Kobilka, B.K., Dror, R.O., 2019. Diverse GPCRs exhibit conserved water networks for 
stabilization and activation. Proc Natl Acad Sci USA 116, 3288–3293. 
doi:10.1073/pnas.1809251116 

Wacker, D., Fenalti, G., Brown, M.A., Katritch, V., Abagyan, R., Cherezov, V., Stevens, R.C., 
2010. Conserved binding mode of human beta2 adrenergic receptor inverse agonists and 
antagonist revealed by X-ray crystallography. J. Am. Chem. Soc. 132, 11443–11445. 
doi:10.1021/ja105108q 

Weis, W.I., Kobilka, B.K., 2018. The Molecular Basis of G Protein-Coupled Receptor Activation. 
Annu. Rev. Biochem. 87, 897–919. doi:10.1146/annurev-biochem-060614-033910 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/


46 

Wingler, L.M., Elgeti, M., Hilger, D., Latorraca, N.R., Lerch, M.T., Staus, D.P., Dror, R.O., 
Kobilka, B.K., Hubbell, W.L., Lefkowitz, R.J., 2019. Angiotensin Analogs with Divergent 
Bias Stabilize Distinct Receptor Conformations. Cell 176, 468-478.e11. 
doi:10.1016/j.cell.2018.12.005 

Woo, T.M., Robinson, M.V., 2015. Pharmacotherapeutics for advanced practice nurse 
prescribers, 4th ed. F. A. Davis Company. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2020. ; https://doi.org/10.1101/2020.07.06.186601doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.186601
http://creativecommons.org/licenses/by-nc/4.0/

