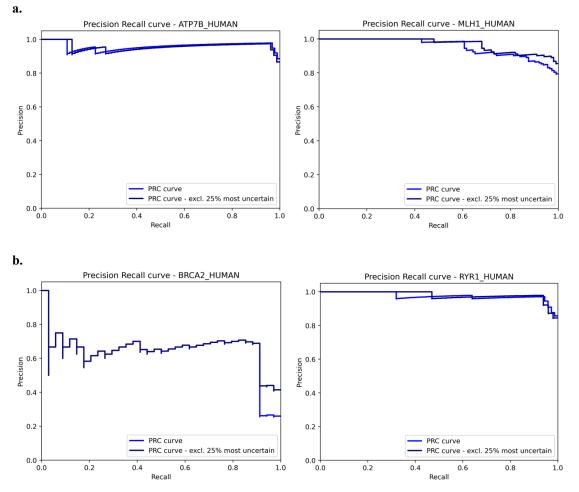
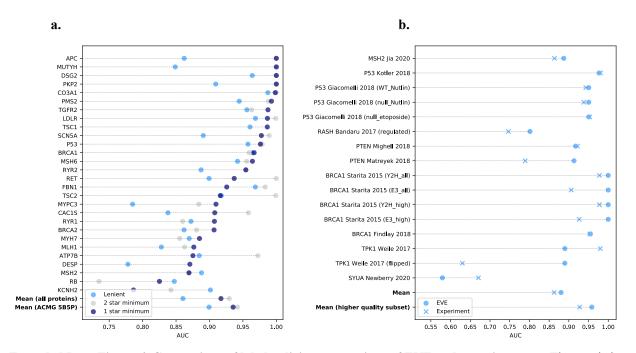
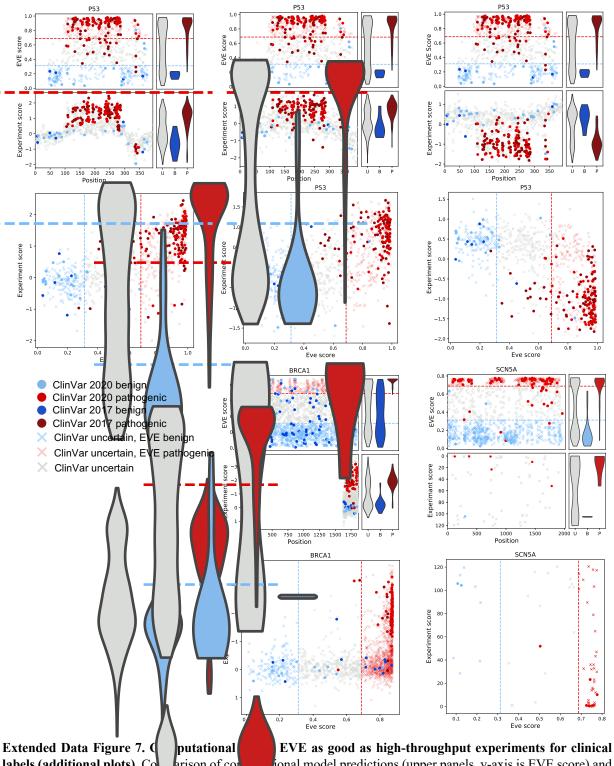

Extended Data Figure 1 – Bayesian VAE architecture details. The Bayesian VAE architecture in EVE is comprised of a symmetric 3-layer encoder & decoder architecture (with 2,000-1,000-300 and 300-1,000-2,000 units respectively) and a latent space of dimension 50. After performing a one-hot encoding of the input sequence across amino acids (zeros in white, ones in green), we flatten the input before performing the forward pass through the network. We use a single set of parameters for the encoder (ϕ_p) and learn a fully-factorized gaussian distribution over the weights of the decoder (θ_p): weight samples for the decoder are obtained by sampling a random normal variable (rnv), multiplying that sample by the standard deviation parameters, and subsequently adding the mean parameters. A one-dimensional convolution is applied on the un-flattened output of the decoder to capture potential correlations between amino-acid usage. Finally, a softmax activation turns the final output into probabilities over amino acids at each position of the sequence (low values in white, high values in dark green). The overall network is trained by maximizing the Evidence Lower Bound (ELBO), which forms a tractable lower bound to the log-marginal likelihood (Methods).

Extended Data Figure 2 – Comparison of performance at mutation effect prediction of our Bayesian VAE implementation and DeepSequence. Comparison between the performance of our implementation of Bayesian VAE and the one from state-of-art DeepSequence, at correlating with fitness scores from multiplexed assays of variant effects. The spearman correlations between model and experiment were evaluated for 38 multiplexed assays of variant effects. "Evolutionary indices" were computed using, for both models, the same protocol as Riesselman et al., *i.e.* by sampling 2k times from the approximate posterior distribution (as opposed to the 200k used for reporting EVE results) and by ensembling scores from 5 VAEs.

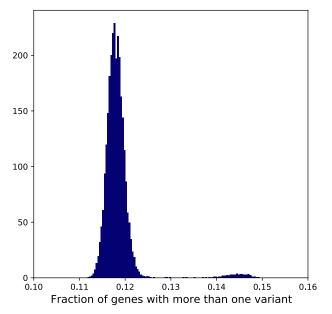


Extended Data Figure 3 – **Evolutionary index distribution overall and by protein.** Two-component Gaussian Mixture Models (GMM) over the distributions of the evolutionary indices for all the single amino acid variants of 1,081 proteins combined (top, left) and for P53, PTEN and SCN5A separately (top right, bottom left and right, respectively). Dashed blue and red lines represent the two components distribution for the benign and pathogenic clusters, respectively, whereas dashed black line represents the GMM distribution.




a. Average AUC per protein, computed across 1,081 proteins, for EVE and state-of-art supervised methods Mistic, MCAP and Polyphen. EVE outperforms existing methods in terms of this metric. **b.** Percentage of the 1,081 proteins for which the model obtains an AUC of less than 0.6, 0.6-0.84, 0.85-0.94, 0.95-0.99 and 1, respectively, for the four models EVE, Mistic, MCAP and Polyhen. EVE has a higher proportion of very high/perfect protein-level AUCs (\geq 0.95) and a lower proportion of low & medium protein-level AUCs (<0.85) (Methods).

Extended Data Figure 5 – Comparison of Precision-Recall curves for proteins with similar AUC. a. Comparison between the precision-recall curve of EVE for ATP7B and MLH1, which both have an AUC over all variants of ~0.88. While for both proteins precision and recall are near perfect, the precision for MLH1 drops for high sensitivity (recall), while for ATP7B it remains high for near perfect sensitivity. **b**. Comparison between the precision-recall curve of EVE for BRCA2 and RYR1, which both have an AUC over all variants of ~0.91. For BRCA2, the precision and recall are considerably worse than for RYR1.



Extended Data Figure 6. Comparison of label policies, comparison of EVE and experiments. a. The y-axis is the subset of the ACMG59 actionable protein list with at least 5 benign and 5 pathogenic labels with at least a one-star review status in ClinVar, mean for the 1,081 proteins and mean for this subset. x-axis is AUCs computed using these labels (deep blue), labels with at least a two-star review status (light grey) and a more lenient labelling policy (sky blue), which uses labels from ClinVar of any review status, with additional benign labels added from gnomAD, defined as any variant with a frequency greater than the highest frequency pathogenic variant in that gene (with at least a one-star review status). **b.** AUCs computed with the lenient labels over the set of variant common to both the experimental assay (crosses) and EVE model (dots).

Labels (additional plots). Co experimental assay measurer VUS (crosses), where pale protein. Also shown are so measurements data from A549_p53NULL_Etoposid putational arison of contention arison of contention ts (lower partynd pale blue coss plot experiment up l scans of 15 BRCA1.

EVE as good as high-throughput experiments for clinical ional model predictions (upper panels, y-axis is EVE score) and y-axis experimental assay metric) to ClinVar labels (dots) and ue obsess indicate EVE assignments of VUS. x-axes are position in xpe ment scores (y-axis) against EVE scores (x-axis). Experimental scans of P53, from left (WT_Nutlin-3, A549_p53NULL_Nutlin-3, BRCA1.

Extended Data Figure 8 – Fraction of genes per person with more than one variant. Density function of the fraction of total genes per person (\sim 3k) with at least two variants. Data extracted from 50k genomes of the UKBiobank (Methods).

Extended Data Table 1

		Accuracy	Labels	Labels	EVE, CV	EVE _and_ACMG, CV	B_LB	P_LP	U	В	U	Р	B_LB	P_LP	U
Protein	AUC	75pct	pre	post	disagree	disagree	pre	pre	pre	mod	mod	mod	post	post	post
LDLR	0.99	0.98	608	835	17	1	53	555	751	277	319	763	65	770	524
FBN1	0.93	0.97	600	1166	20	2	16	584	1981	733	817	1031	77	1089	1415
BRCA1	0.97	0.83	286	1795	42	15	176	110	3925	1129	1240	1842	154	1641	2416
MYH7	0.89	0.87	245	586	19	0	11	234	1355	328	681	591	16	570	1014
TSC2	0.92	0.84	237	591	23	3	179	58	2145	678	1159	545	204	387	1791
BRCA2	0.91	0.84	266	1091	27	5	223	43	5284	1533	3021	996	365	726	4459
MLH1	0.88	0.88	159	514	15	3	40	119	1057	351	324	541	53	461	702
P53	0.98	0.98	153	440	4	1	25	128	737	193	318	379	43	397	450
CO3A1	1	0.99	141	477	1	0	19	122	971	416	266	430	83	394	635
RYR2	0.95	0.97	138	766	3	1	28	110	2695	1088	1092	653	275	491	2067
KCNH2	0.79	0.91	153	386	11	1	12	141	933	380	397	309	35	351	700
ATP7B	0.88	0.9	116	190	9	2	20	96	956	344	439	289	24	166	882
SCN5A	0.98	0.96	109	541	4	0	24	85	1520	665	480	484	114	427	1088
MSH2	0.87	0.9	100	401	7	2	33	67	1669	526	886	357	79	322	1368
RYR1	0.91	0.93	115	605	9	1	25	90	3359	980	1939	555	88	517	2869
TSC1	0.99	0.89	82	198	7	2	77	5	876	453	287	218	70	128	760
MYPC3	0.91	0.92	73	233	5	0	28	45	1065	338	528	272	60	173	905
MSH6	0.96	0.95	71	338	2	0	41	30	2538	1072	1178	359	54	284	2271
RET	0.94	0.98	54	161	7	1	13	41	945	536	313	150	25	136	838
TGFR2	0.99	1	47	60	0	0	7	40	233	104	75	101	8	52	220
CAC1S	0.91	0.76	55	464	9	2	49	6	1210	508	421	336	240	224	801
DESP	0.87		39	220	0	0	30	9	1963	648	1354	0	211	9	1782
RB	0.83	0.84	43	114	5	0	29	14	528	211	292	68	58	56	457
DSG2	1	0.96	43	158	1	0	37	6	763	240	375	191	60	98	648
APC	1	1	37	1655	0	0	29	8	3828	1465	1271	1129	605	1050	2210
PMS2	0.99	1	37	263	0	0	25	12	1364	422	665	314	29	234	1138
MUTYH	1	0.89	20	33	2	0	9	11	738	435	323	0	23	10	725
PKP2	1	1	27	139	0	0	20	7	677	259	347	98	61	78	565

Extended Data Table 1 – Classification summary for actionable genes defined by ACMG with at least 5 benign and 5 pathogenic ClinVar labels. AUC, accuracy for the most certain variant predictions (dropping the 25% most uncertain). Labels pre: Number of ClinVar labels with at least a one-star rating, Labels post: Number of labels following our analysis combining EVE predictions with other sources of evidence in accordance with the ACMG-AMP guidelines. EVE, CV disagree: Total number of variants for which the EVE model predicts Benign/Pathogenic when the label in ClinVar is Pathogenic/Benign. EVE _and_ACMG, CV disagree: Total number of variants for which the EVE model, when combined with other evidence in accordance with the ACMG-AMP criteria, predicts Benign/Pathogenic when the label in ClinVar is Pathogenic/Benign. B_LB Pre: Number of (Likely) Benign labels with at least as one-star rating. P_LP Pre: Number of (Likely) Pathogenic labels with at least as one-star rating. U pre: Number of variants of uncertain significance, as obtained from ClinVar and gnomAD. (B, P, U) mod: Number of variants predicted Benign, Pathogenic or Uncertain respectively by the EVE model. (B_LB, P_LP, U) post: Number of variants predicted Benign, Pathogenic or Uncertain respectively by the EVE model. (B_LB, P_LP, U) post: Number of variants predicted Benign, Pathogenic or Uncertain following our analysis combining EVE predictions with other sources of evidence in accordance with the ACMG-AMP guidelines.