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Among ‘big data’ initiatives, the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium—a 
worldwide alliance of over 2,000 scientists diversified into over 50 Working Groups—has yielded some of the largest studies 
of the healthy and diseased brain. Integration of multisite datasets to assess transdiagnostic similarities and differences and 
to contextualize findings with respect to neural organization, however, have been limited. Here, we introduce the ENIGMA 
Toolbox, a Python/Matlab ecosystem for (i) accessing ENIGMA datasets, allowing for cross-disorder analysis, (ii) visualizing 
data on brain surfaces, and (iii) contextualizing findings at the microscale (postmortem cytoarchitecture and gene expression) 
and macroscale (structural and functional connectomes). Our Toolbox equips scientists with tutorials to explore molecular, 
histological, and network correlates of noninvasive neuroimaging markers of brain disorders. Moreover, our Toolbox bridges 
the gap between standardized data processing protocols and analytic workflows and facilitates cross-consortia initiatives. 
The Toolbox is documented and openly available at http://enigma-toolbox.readthedocs.io.  
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INTRODUCTION 

he recent growth of data sharing practices and 
open science culture, increasingly fostered by 
major biomedical funding agencies encouraging 

grant recipients to provide full access to scientific data1, 
has propelled international scientific collaborations. The 
fields of neuroimaging and genetics, particularly, have 
conquered ‘big data’ territory by making data and 
resources increasingly accessible to the community2. 
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Access to large datasets enables the testing of novel 
hypotheses with adequate statistical power, driving new 
discoveries and enhancing reproducibility and 
generalizability of results3, 4.  

The ENIGMA (Enhancing NeuroImaging Genetics 
through Meta-Analysis) Consortium is one of the leading 
big data alliances that pools neuroimaging and genetic 
data from around the globe. Since its inception, 
ENIGMA has grown to a collaboration of thousands of 
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scientists from over 45 countries5. Organized into several 
Working Groups (FIG. 1A), the ENIGMA Consortium 
has made important contributions to fundamental and 
clinical neuroscience, publishing some of the largest 
neuroimaging studies to date6-15. The success of the 
ENIGMA Consortium has heavily relied on 
standardized pipelines for data processing, quality 
control, and meta-analysis of widely used morphological 
measures. From these harmonized procedures, brain 
metrics (such as cortical thickness and subcortical 
volume) are extracted from raw neuroimaging data at 
each research center within a given Working Group and 
entered into site-specific linear models to test for case vs. 
control differences or to assess correlations with 
covariates of interest. Effect sizes and the heterogeneity 
of these effects across sites are then estimated via topic- 
and disease-specific meta-analyses, with the resulting 
aggregated statistical information being published and 
shared. 

Through the sharing of these site-specific brain 
metrics or ensuing aggregated statistical maps16, 
ENIGMA has set the stage for unprecedented analyses 
to compare findings across Working Groups and to 
contextualize findings across different scales of neural 
organization. Several such cross-disorder studies are 
underway, including a comparison of three 
neurodevelopmental disorders across 151 cohorts 
worldwide17, and an initiative to relate structural brain 
abnormalities to cell-specific profiles of gene 
expression18.  

The neuroscience community, however, currently 
lacks standardized tools to analyze multicenter datasets 
beyond traditional structural MRI case-control meta- 
and mega-analyses. To fill this gap, we developed the 
ENIGMA Toolbox, an ecosystem for: (i) archiving, 
accessing, and integrating different ENIGMA-derived, 
or equivalently processed, datasets, (ii) visualizing data 
on cortical and subcortical surface models, and (iii) 
contextualizing neuroimaging findings across multiple 
scales of neural organization. We provide the ability to 
decode ENIGMA-type brain maps with respect to 
postmortem gene expression maps (from the Allen Human 
Brain Atlas19), postmortem cytoarchitecture (from the 
BigBrain project20), and structural as well as functional 
connectome properties (from the Human Connectome 
Project21). We provide several start-to-finish tutorials to 
show how these workflows can offer neurobiological and 
system-level insights into how regional effects, for 
example disease-related atrophy patterns, co-vary with 
transcriptomic, microstructural, and macrolevel 
properties, similar to recently published ENIGMA 
studies18, 22. 

Here, we present the ENIGMA Toolbox with ready-
to-use and easy-to-follow code snippets. Our toolbox is 
available in Python and Matlab—two widely used 
languages in neuroimaging, neuroinformatics, and 
genetics communities—and is compatible with a range 
of subject-level, as well as meta- and mega-analytic 
datasets. Data and codes are openly accessible 
(http://github.com/MICA-MNI/ENIGMA) and 
complemented with expandable online documentation 
(http://enigma-toolbox.readthedocs.io). 

RESULTS 
The ENIGMA Toolbox is an ecosystem composed of 
three modules. Each of these modules can be stand-alone 
or integrated with one another, allowing for greater 
flexibility, adaptiveness, and continuous development. 
We furthermore provide thoroughly documented 
workflows that users can easily adapt to their own 
datasets.  

Data archiving and accessing 
The ENIGMA Toolbox stores and accesses multiple 
ENIGMA datasets in a central repository. Given that 
data sharing practices can at times be challenging, in part 
due to privacy and regulatory protection, ENIGMA 
represents a practical alternative for standardized data 
processing and anonymized analysis of results (i.e., meta-
analysis) as well as the sharing of non-identifiable 
derivatives (i.e., mega-analysis). Available datasets within 
our Toolbox consist of summary statistics from several 
ENIGMA Working Groups. The current release (v1.0.0) 
includes case-control summary statistics from eight 
Working Groups, including: 22.q11.2 deletion 
syndrome, attention deficit/hyperactivity disorder, 
autism spectrum disorder, bipolar disorder, epilepsy, 
major depressive disorder, obsessive-compulsive 
disorder, and schizophrenia (see METHODS). These 
datasets, obtained from standardized and quality-
controlled protocols, represent morphological (e.g., 
subcortical volume, cortical thickness, surface area) case-
control effect sizes from previously published meta-
analyses6-8, 11-15 and can be retrieved using the 
load_summary_stats() function (FIG. 1B, C) and used 
for secondary analyses. Summary statistics from other 
Working Groups will be continuously added as they are 
published. As many ENIGMA groups have moved 
beyond meta-analysis to mega-analysis of subject-level 
data, the Toolbox is also compatible with subject-level 
data. As part of the ENIGMA Toolbox, we also provide 
example data from an individual site, accessible via 
load_example_data(). Alternatively, if users have 
generated their own summary statistics/subject-level 
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data that adhere to ENIGMA’s harmonized processing 
and analysis protocols 
(http://enigma.ini.usc.edu/protocols/), or have in-
house parcellated datasets, they can load their own data 
locally and still take advantage of every function our 
Toolbox has to offer. Online tutorials are suited for all 
dataset types. 
 To yield novel insights into brain structural 
abnormalities that are common or different across 
disorders, available summary statistics can also be 
harnessed to conduct cross-disorder analyses. From the 
cross_disorder_effect() function, users can explore 

shared and disease-specific morphometric signatures 
with two different approaches: (i) by applying a principal 
component analysis (PCA) to any combination of 
disease-specific summary statistics, resulting in shared 
latent components that can be used for further analysis 
(FIG. 1D–F), and (ii) by systematically cross-correlating 
patterns of brain structural abnormalities with every 
other set of available summary statistics, resulting in a 
correlation matrix (SUPPLEMENTARY FIG. 1A–C). 
Users can also upload local summary statistics, or 
equivalently processed data, for inclusion in the PCA or 
comparison against our database. 

Figure 1. Data archiving and accessing. (a) World map of a subset of ENIGMA’s Working Groups (color key). Each group consists of international 
teams of researchers and clinicians studying major brain diseases and conditions and contributing data to the ENIGMA consortium. Case-control 
summary statistics from published studies are archived in the ENIGMA Toolbox and easily accessible via simple Python (b) and Matlab (c) scripts. 
Summary statistics from the Epilepsy Working Group is shown as an example. Minimal (d) Python and (e) Matlab code snippets to identify 
transdiagnostic morphometric signatures. (f) Eigenvalues of each component are displayed in the scree plot. The principal component underlying the 
shared cross-disorder effect is projected to the surface template. 
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Cortical and subcortical surface data visualization 
The ENIGMA Toolbox provides functions to visualize 
cortical and subcortical data on surface models and 
generate publication-ready figures (FIG. 2A, B). To 
illustrate the plot_cortical() and plot_subcortical() 
functions, we projected cortical and subcortical gray 
matter atrophy in individuals with focal epilepsy relative 
to healthy controls to the surface templates (FIG. 2C). 
Beyond the mapping of gray matter atrophy, our surface 
visualization function is compatible with any 
neuroimaging data type, parcellation, and surface 
templates. Mapping to and from brain parcellations and 
the vertex-wise surface space can also be easily achieved 
using the parcel_to_surface() and 
surface_to_parcel() functions. 

Multiscale contextualization 
Transcriptomics data 
The emergence of open databases for human 
transcriptomics yields new opportunities to associate 
macroscale neuroimaging findings with spatial variations 
at the molecular scale19, 23-25. The Allen Institute for 
Brain Science released the Allen Human Brain Atlas 
(AHBA)—a brain-wide gene expression atlas comprising 
microarray-derived measures from over 20,000 genes 

sampled across 3,702 spatially distinct tissue samples19. 
Using the abagen toolbox26 and following guidelines 
established by Arnatkevic̆iūtė et al.23, this large 
expression dataset was collapsed into cortical and 
subcortical regions of interest and combined across 
donors23, 26, 27. Genes that were consistently expressed 
across donors (r≥0.2, ngenes=15,633), can be easily 
obtained using the fetch_ahba() function (FIG. 3A–C). 
Additional details on processing and analytical choices, 
including parcellation compatibility and stability 
thresholds, are provided in the METHODS.  

BigBrain data 
The BigBrain, an ultra-high-resolution 3D 
reconstruction of a sliced and stained human brain20, has 
supported quantitative analysis of cytoarchitecture. As 
part of the ENIGMA Toolbox, we characterized 
regional cytoarchitecture using statistical moments of 
staining profiles (see METHODS)28. Specifically, studying 
the mean intracortical staining across the mantle allows 
inferences on overall cellular density, whereas analysis of 
profile skewness indexes the distribution of cells across 
upper and lower layers of the cortex—a critical 
dimension of laminar differentiation. 

FIGURE 2. Cortical and subcortical surface visualization. Minimal (a) Python and (b) Matlab code snippets for plotting cortical thickness and subcortical 
volume deficits in individuals with left focal epilepsy. (c) Summary statistics (Cohen’s d) comparing individuals with left focal epilepsy to healthy controls 
are projected to the surface templates. Profound gray matter atrophy can be visually appreciated in bilateral precentral gyrus, precuneus, thalamus, 
as well as left mesiotemporal regions, including the hippocampus. 
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In addition to statistical moments, prior work has 
demonstrated robust evidence for a principal gradient of 
gradual cytoarchitectural variation running from 
primary sensory to limbic areas, mirroring spatial trends 
in laminar differentiation and cytoarchitectural 
variations29-31. To expand our BigBrain 
contextualization module, we also incorporated this 
microstructural similarity gradient to describe a sensory-
fugal transition in intracortical microstructure (see 
METHODS). Stratifying cortical findings relative to this 
gradient could, for example, test whether patterns of 
changes are conspicuous in cortices with marked laminar 
differentiation (e.g., sensory and motor cortices) or in 
those with subtle laminar differentiation (e.g., limbic 
cortices).  

Cytoarchitectural types 
To further describe microscale cortical organization, the 
ENIGMA Toolbox includes a digitized parcellation of 
the von Economo and Koskinas cytoarchitectonic maps 
of the human cerebral cortex32, 33. From this mapping, 
five different structural types of cerebral cortex are 
recorded: i) agranular (thick with large cells but sparse 
layers II and IV), ii) frontal (thick but not rich in cellular 
substance, visible layers II and IV), iii) parietal (thick and 
rich in cells with dense layers II and IV but small and 
slender pyramidal cells), iv) polar (thin but rich in cells, 
particularly in granular layers), and v) granular or 

koniocortex (thin but rich in smalls cells, even in layer 
IV, and a rarified layer V)34. 

Connectivity data 
Neuroimaging, particularly with functional and diffusion 
MRI, has become a leading tool to characterize human 
brain network organization in vivo and to identify 
network alterations in brain disorders. Although ongoing 
efforts in ENIGMA and beyond are beginning to 
coordinate analyses of resting-state functional35-37 and 
diffusion38-40 MRI data, connectivity measures remain 
sparse within the consortium. As an alternative, our 
Toolbox leverages high-resolution structural (derived 
from diffusion-weighted tractography) and functional 
(derived from resting-state functional MRI) connectivity 
data from a cohort of unrelated healthy adults from the 
Human Connectome Project (HCP) initiative21. 
Preprocessed cortico-cortical, subcortico-cortical, and 
subcortico-subcortical functional and structural 
connectivity matrices can be easily retrieved using the 
load_fc() and load_sc() functionalities (FIG. 4A–C). 
Connectivity matrices were parcellated according to 
several atlases, including the Desikan-Killiany atlas, and 
can thus be readily combined with any ENIGMA-
derived, or other parcellated, datasets27. Details on 
subject inclusion, data preprocessing, and matrix 
generation are provided in the METHODS. 

Analytical workflows 

FIGURE 3. ENIGMA-friendly gene co-expression data. Minimal (a) Python and (b) Matlab code snippets to fetch disease-related gene co-expression 
data. Genes related to epilepsy, more specifically focal hippocampal sclerosis (Focal HS), are extracted as an example. (c) The complete microarray 
expression data can be easily accessed from the ENIGMA Toolbox and contains data from over 15,000 genes. (d) Disease-related gene co-expression 
data can be mapped to the surface templates; here, we displayed the average expression levels of Focal HS genes on the cortical and subcortical 
surface templates. 
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As of the current release (v1.0.0), the ENIGMA Toolbox 
comprises two neural scales for the contextualization of 
findings: (i) using microscale properties, namely gene 
expression and cytoarchitecture, and (ii) using 
macroscale network models, such as regional hub 
susceptibility analysis and disease epicenter mapping. 
Albeit often restricted to individual site studies, similar 
approaches have been used to study microstructural 
organization in healthy29, 41, 42 and diseased43 brains, and 
to model network-level patterns of disease-related 
atrophy44-46. To ease programming and maximize 
transparency, analytic workflows are accompanied by 
comprehensive tutorials and visual assessment 
checkpoints. As proofs of concept, we demonstrate 
ready-to-use, easy-to-follow, and validated secondary 
analysis tutorials to relate patterns of gray matter atrophy 
in individuals with left focal epilepsy to transcriptomic, 
histological, and normative connectome properties. 

Transcriptomics contextualization of findings 
Motivated by the growing body of research relating gene 
expression to diverse properties of macroscale brain 
organization, toolbox users can import the AHBA 
microarray expression dataset and visualize brain maps 
of gene expression levels. This tool can also be used to 
identify genes that are spatially correlated with a given 
brain map (e.g., a disease-related atrophy map). 
Moreover, based on reports of recently published 
genome-wide association studies (GWAS)47-53, users can 
extract the most likely genes associated to significant 
genome-wide loci across a range of disorders. From these 

sets of genes, users can generate disease-specific gene 
expression maps to contextualize and decode 
neuroimaging findings with transcriptomics data. To 
illustrate the risk_genes() function, we selected genes 
related to focal epilepsy with hippocampal sclerosis51 and 
displayed their average expression levels on the cortical 
and subcortical surface templates (FIG. 3D). In this 
example, we can observe higher gene co-expression 
levels of epilepsy-related genes in mesiotemporal lobe 
regions, overlapping with regions of profound atrophy in 
individuals with left focal epilepsy. Related efforts are 
underway to map the effects of common (single 
nucleotide) variants in the genome on brain structure, 
using visualization platforms such as ENIGMA-Vis 
(https://enigma-brain.org/enigmavis/)54 and the 
Oxford Brain Imaging Genetics browser 
(http://big.stats.ox.ac.uk/).  

Histological contextualization of findings 
Applied conjointly with ENIGMA datasets, BigBrain-
derived intracortical profile information (i.e., the 
statistical moments and the principal gradient of 
microstructure differentiation) offers two complementary 
approaches to situate ENIGMA-type cortical findings 
with respect to histological findings. For the former 
approach, users can feed a thresholded cortical map—
for instance highlighting areas of significant structural 
abnormalities in patients vs. controls—into the 
bb_moments_raincloud() function to contextualize 
macroscale features with respect to intensity profiles 
reflecting microstructural composition (e.g., cellular 

FIGURE 4. High-resolution connectivity data sharing and exploiting. Minimal (a) Python and (b) Matlab code snippets to load preprocessed functional 
and structural connectivity matrices. (c) Available connectivity data within the ENIGMA Toolbox include cortico-cortical, subcortico-cortical, and 
subcortico-subcortical connectivity matrices. Matrices are unthresholded and parcellated according to the Desikan-Killiany atlas29. 
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density, cellular distribution asymmetry) along cortical 
columns. This quantitative approach has notably been 
used to guide boundary definition and fingerprint 
cytoarchitecture in studies of postmortem data55, 56. 
Alternatively, thresholded (or unthresholded) cortical 
maps can be fed into the bb_gradient_plot() function, 
which discretizes the principal microstructure similarity 
gradient into five equally-sized bins and averages surface 
findings within each gradient bin. From this, 
neuroimaging data can be embedded into the gradient 
space, allowing users to make inferences about the 
underlying microstructural hierarchy of, for instance, 
atrophied regions. Contextualizing gray matter atrophy 
patterns in left focal epilepsy with respect to histological 
properties, we were able to demonstrate that atrophy 
predominantly affected cortical regions with greater, and 
more evenly distributed, cellular densities across upper 
and lower layers of the cortex (SUPPLEMENTARY FIG. 
2A–D)—areas located towards the sensory apex of the 
cytoarchitectural gradient (SUPPLEMENTARY FIG. 3A–
D). 

Cytoarchitectornic contextualization of findings 
Integration of cytoarchitecture with in vivo neuroimaging 
can consolidate microstructural differentiation with 
macroscale-level effects. As part of the Toolbox, users 
can also leverage a digitized cytoarchitectonic atlas from 
seminal postmortem work by von Economo and 
Koskinas33. From the economo_koskinas_spider() 
function, users can apply this well-established 
decomposition to summarize cortex-wide effects (e.g., a 
disease-related atrophy map) and assess relationships to 
distinct cytoarchitectonic classes. To ease 
interpretability, cytoarchitectonic classification of 
findings are also displayed in a spider plot. To highlight 
how atrophy can vary with distinct architectonic cortical 
types, case-control Cohen’s d measures, representing 
atrophy in left focal epilepsy, were averaged within each 
von Economo and Koskinas cytoarchitectonic class. 
Projecting the results in a radar (spider) plot revealed that 
the agranular cortex was most affected by atrophy in left 
focal epilepsy (SUPPLEMENTARY FIG. 4A–C). 

Hub susceptibility model 
Normative structural and functional connectomes hold 
valuable information for relating macroscopic brain 
network organization to patterns of disease-related 
atrophy (FIG. 5A, B). Prior work studying network 
underpinnings of morphological abnormalities in 
neurodegenerative and psychiatric disorders has 
demonstrated that hubs (i.e., brain regions with many 
connections) typically show greater atrophy than locally-

connected peripheral nodes57, 58. Within the ENIGMA 
Epilepsy Working Group, we recently tested this 
hypothesis using data from 1,021 individuals with 
epilepsy and 1,564 healthy controls, and also showed 
that atrophy preferentially colocalized with highly 
interconnected hub regions in the common epilepsies22. 
A series of follow-up ENIGMA studies are currently 
underway to assess these network-level effects in other 
disorders.  
 Building on the above-described functions, we can 
first derive weighted degree centrality maps from 
functional (or structural) connectivity data by computing 
the sum of all weighted cortico- and subcortico-cortical 
connections for every region, with higher degree 
centrality denoting hub regions (FIG. 5C). Spatial 
similarity between atrophy patterns (obtained from 
individuals with left focal epilepsy as an example) and 
hub distributions can then be compared through 
correlation analysis (and statistically assessed via spin 
permutation tests; see below), revealing that profound 
atrophy implicates functional cortico- and subcortico-
cortical hubs more strongly than nonhub regions (FIG. 
5D). 

Disease epicenter model 
To further investigate whether disease-related 
morphological abnormalities (e.g., atrophy) follow 
overarching principles of connectome organization, one 
can identify disease epicenters. Disease epicenters are 
regions whose functional and/or structural connectivity 
profile spatially resembles a given disease-related atrophy 
map22, 44-46. Hence, disease epicenters can be identified 
by spatially correlating every region’s healthy functional 
and/or structural connectivity profiles to whole-brain 
atrophy patterns in a given disease. This approach must 
be repeated systematically across the whole brain, 
assessing the statistical significance of the spatial 
similarity of every region’s functional and/or structural 
connectivity profiles to disease-specific abnormality 
maps with spatial permutation tests. Cortical and 
subcortical epicenter regions can then be identified if 
their connectivity profiles are significantly correlated 
with the disease-specific abnormality map. Regardless of 
its atrophy level, a cortical or subcortical region could 
potentially be an epicenter if it is (i) strongly connected to 
other high-atrophy regions and (ii) weakly connected to 
low-atrophy regions. Moreover, disease epicenters do 
not necessarily represent hub regions, but may rather be 
connected to them (i.e., so-called ‘feeder nodes’, which 
directly link peripheral nodes to hubs). As in prior work22, 
this approach suggests that patterns of atrophy in left 
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focal epilepsy are anchored to the connectivity profiles of 
mesiotemporal regions (SUPPLEMENTARY FIG. 5A–C). 

Statistical comparison of spatial maps 
The intrinsic spatial smoothness of brain maps—where 
data from neighboring regions are not statistically 
independent of each other—violates the underlying 
assumptions of several inferential statistical tests and 
consequently inflates the apparent significance of their 

spatial correlation, unless more sophisticated tests are 
used. To overcome these shortcomings and minimize 
Type I error, our toolbox includes non-parametric 
spatial permutation models to assess statistical 
significance while preserving the spatial autocorrelation 
of brain maps59, 60. With such functionality, for instance 
spin_test(), the spatial coordinates of the surface data 
are projected onto the surface spheres and randomly 
rotated to generate surface maps with randomized 

FIGURE 5. Advanced analytical workflows: hub susceptibility models and spin permutation testing. Minimal (a) Python and (b) Matlab code snippets to 
assess relationships between hubs and patterns of atrophy. (c) Functional degree centrality, derived from the HCP dataset, was used to identify the 
spatial distribution of hub regions. (d) Strong negative associations between cortical thickness/subcortical volume Cohen’s d values and cortico-
/subcortico-cortical degree centrality were observed, indicating that atrophy preferentially colocalized with hub regions. Minimal (e) Python and (f) 
Matlab code snippets to assess statistical significance of two surface maps while preserving spatial autocorrelation. (g) A schematic of the spin and shuf 
permutation frameworks for cortical and subcortical maps, respectively. The null distributions of correlations are shown; the empirical (i.e., original) 
correlation coefficients and associated spin permuted p-values are indexed by the dashed line. 
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topography but identical spatial autocorrelation. The 
empirical (i.e., real) correlation coefficient can then be 
compared against the null distribution determined by the 
ensemble of correlation coefficients comparing spatially 
permuted surface maps. Spatial correspondence between 
two subcortical surface maps can be examined via a 
standard non-parametric null model, namely 
shuf_test(), where subcortical labels are randomly 
shuffled as opposed to being projected onto spheres. To 
illustrate these functions, we assessed the statistical 
significance of cortical and subcortical hub-atrophy 
correlations in left focal epilepsy (FIG. 5E, F) and 
displayed the empirical correlation coefficients onto the 
null distributions of permuted correlations (FIG. 5G). 

 
D ISCUSSION 
The ENIGMA Toolbox is an integrated ecosystem that 
dovetails with ENIGMA’s standardized data processing 
and meta-analysis strategies for integration, 
visualization, and contextualization of multisite results. 
Our Toolbox relies on a simple but efficient codebase for 
exploring and analyzing big data, aiming to facilitate and 
homogenize follow-up analyses of ENIGMA, or other, 
MRI datasets around the globe. At its core, the Toolbox 
is composed of three modules for (i) archiving, accessing, 
and integrating case-control meta-analytic datasets from 
specialized Working Groups, (ii) cortical and subcortical 
surface data visualization, and (iii) contextualizing 
findings based on transcriptomics, cytoarchitectonics, 
and connectivity data. Owing to its comprehensive 
tutorials, detailed functionality descriptions, and visual 
reports, our Toolbox is accessible to researchers and 
clinicians without extensive programming expertise 
within and beyond ENIGMA itself.  

Enriching in vivo morphological correlates with 
postmortem microstructural information can deepen our 
understanding of the molecular and cellular 
underpinnings of healthy and diseased brain 
organization. To illustrate such microscale 
contextualization, we provide several tutorial examples 
that reference ENIGMA-type maps of gray matter 
atrophy in individuals with epilepsy against postmortem 
gene co-expression and histological measures. Based on 
the gene expression atlas from the Allen Institute for 
Brain Science19, which compiles information on 
transcription of thousands of genes across the adult 
brain, users can compare spatial patterns of brain-wide 
gene expression to MRI-derived neuroanatomy 
measures. Importantly, microarray expression data 
within our toolbox were processed according to 

recommendations for best practice summarized in 
Arnatkevic̆iūtė and colleagues using the open-access 
abagen toolbox 
(https://abagen.readthedocs.io/en/stable/)26, 
facilitating comparisons of findings across studies. Prior 
neuroimaging studies have already identified specific 
transcriptomic signatures of cortical morphometry in 
early brain development61, cortical anatomy changes in 
youth with known genomic dosage variations62, 
myeloarchitectural development in adolescence63, and 
autism pathophysiology64, bridging microstructural and 
macroscopic scales of brain organization (for a review, 
see 24). Similarly, in a large-scale collaborative effort 
involving six ENIGMA Working Groups, Patel and 
colleagues correlated brain-wide cell-specific gene 
expression with group differences in cortical thickness, 
revealing shared neurobiological processes that underlie 
morphological phenotypes of multiple psychiatric 
disorders18. Moreover, as part of our toolbox, we also 
made the digital cell body-stained BigBrain20 and von 
Economo and Koskinas cytoarchitectural atlas32, 33 easily 
accessible and compatible with ENIGMA neuroimaging 
datasets. From the 3D histological BigBrain, several 
groups have made promising headway into mapping the 
patterns of cortical laminar architecture65, exploring 
histological underpinnings of MRI-based thickness 
gradients in sensory and motor cortices66, and identifying 
a sensory-fugal axis of microstructural differentiation29. 
On the other hand, histological atlases, such as the one 
by von Economo and Koskinas, are invaluable for 
linking brain microstructure to functional localization34. 
The digitized parcellation of von Economo and Koskinas 
cytoarchitectural types, thus, enables users to speculate 
on the underlying cytoarchitectural composition of, for 
instance, structurally abnormal areas in specific diseases. 
When combined, transcriptomic and cytoarchitectonic 
decoding can embed ENIGMA findings in a rich 
neurobiological context and yield potentially novel 
insights into the etiology of several brain disorders. 

At the macroscopic level, network connectivity offers 
a vantage point to quantify brain reorganization in 
diseases that are increasingly being conceptualized as 
network disorders67-69. To exemplify the potential of 
macroscale network modeling, our toolbox provides 
detailed tutorials on how to relate ENIGMA-based 
surface maps to normative connectome properties 
derived from functional and diffusion MRI. Building on 
prior neurodegenerative46, 57 and psychiatric70 research, 
as well as recent work from our group22, Toolbox users 
can build hub susceptibility models to assess the 
vulnerability of highly connected network hubs to 
disease-related effects. Given their role in integrative 
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processing, as well as their high topological value and 
biological cost, hub regions have been hypothesized to 
be preferentially susceptible to diverse pathological 
perturbations71, 72. Consequently, hub decoding 
represents an invaluable tool to interrogate whether 
heightened connectivity, atrophy, or metabolism 
properties in hubs relate to disease-specific processes. 
Complementing the hub susceptibility approach, 
another network modeling functionality available within 
our Toolbox is disease epicenter mapping, an analysis 
technique originally developed to study the spread of 
atrophy in neurodegenerative diseases73. Subsequent in 
vivo neuroimaging research provided evidence that 
network connectivity may herald patterns of gray matter 
atrophy in schizophrenia44, Parkinson’s disease46, 74, and 
frontotemporal dementia syndromes45, each linking 
greater atrophy to the connectivity profiles of distinct 
epicenters. Also applied to the common epilepsies as part 
of an ENIGMA-Epilepsy secondary project22, this 
approach identified mesiotemporal epicenters in 
temporal lobe epilepsy and subcortico-cortical epicenters 
in generalized epilepsy, regions known to be involved in 
pathophysiology of each syndrome75-79. Combined, these 
two network models can significantly advance our 
understanding of how connectome architecture relates to 
morphological abnormalities across a range of disorders. 
Indeed, as with the microscale contextualization, our 
macroscale hub- and epicenter-based analytic pipelines 
can be applied to any ENIGMA-obtained datasets. 
Network models can be further enriched with 
microstructural properties to inject multiscale 
information into cortical and subcortical morphometric 
findings80. 

To enhance interpretability and avoid ‘black-box’ 
solutions, datasets, codes, and functionalities within our 
Toolbox are openly accessible and thoroughly 
documented. We hope that these efforts accelerate 
research and increase reliability and reproducibility. 
Notably, the modular architecture of our Toolbox allows 
for continuous development of analytical functionalities 
and tutorials. Future planned releases are poised to 
embrace new scientific approaches as they are published, 
adapting to new datasets (e.g., PsychEncode 
consortium81), modalities (e.g., resting-state functional 
MRI), and analytic pipelines (e.g., structural covariance 
network analysis). Extension of the ENIGMA Toolbox 
to increase versatility of secondary analyses to additional 
brain parcellations, as well as vertex- and voxel-wise 
space, is already part of the development roadmap and 
will be updated to accommodate users’ requests. 
Integration of analytic methods from users around the 
globe is supported and encouraged to maximize the 

contribution, reusability, and adaptability of any 
neuroimaging datasets. 

In closing, by bridging the gap between pre-
established data processing protocols and several analytic 
workflows, we hope that the ENIGMA Toolbox 
facilitates neuroscientific contextualization of results and 
cross-consortia initiatives. We are eager for researchers 
and clinicians to test hypotheses beyond traditional case-
control comparisons. We hope that our platform will 
lead to novel and harmonized analyses in global 
neuroimaging initiatives.  
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MATERIALS AND METHODS 
Code data availability 
All code used for data analysis and visualization is 
available on GitHub (http://github.com/MICA-
MNI/ENIGMA). The ENIGMA Toolbox Python 
package relies on the following open-source Python 
dependencies: Matplotlib82, NiBabel83, nilearn84, 
Numpy85, 86, pandas87, seaborn88, Scikit-learn89, SciPy90, 
and VTK91. Users seeking help are encouraged to 
subscribe and post their questions to the ENIGMA 
Toolbox mailing list at 
https://groups.google.com/g/enigma-toolbox.  

ENIGMA data description 
Meta-analytical group comparisons (summary 
statistics) 
ENIGMA’s standardized protocols for data processing, 
quality assurance, and meta-analysis of individual 
subject data were conducted at each site 
(http://enigma.ini.usc.edu/protocols/imaging-
protocols/). For site-level meta-analysis, all research 
centres within a given specialized Working Group tested 
for case vs. control differences using multiple linear 
regressions, where diagnosis (e.g., healthy controls vs. 
individuals with epilepsy) was the predictor of interest, 
and subcortical volume, cortical thickness, or surface 
area of a given brain region was the outcome measure. 
Case-control differences were computed across all 
regions using either Cohen’s d effect sizes or t-values, 
after adjusting for effects of age and sex (attention 
deficit/hyperactivity disorder [cortical thickness], 
bipolar disorder [cortical thickness and surface area], 
major depressive disorder [cortical thickness and surface 
area], schizophrenia [cortical thickness and surface 
area]), age, sex, and dataset (22.q11.2 [cortical thickness 
and surface area]), age, sex, and IQ (autism spectrum 
disorder [cortical thickness and surface area]), age, sex, 
and intracranial volume (ICV; attention 
deficit/hyperactivity disorder [surface area], epilepsy 
[cortical thickness, surface area, and subcortical 
volume], obsessive compulsive disorder [cortical 
thickness and surface area]). Across-site random-effects 
meta-analyses of Cohen’s d/t-values were then 
performed for each of the cortical and subcortical region. 
These ENIGMA summary statistics can be retrieved 
from the ENIGMA Toolbox and contains the following 
data: effect sizes for case-control differences (d_icv), 
standard error (se_icv), lower bound of the confidence 
interval (low_ci_icv), upper bound of the confidence 
interval (up_ci_icv), number of controls (n_controls), 
number of patients (n_patients), observed p-values 

(pobs), false discovery rate (FDR)-corrected p-value 
(fdr_p). 

Individual site or mega-analytic data 
Functionalities and tutorials within the ENIGMA 
Toolbox are generalizable to individual site or mega-
analysis datasets, which pool individual-level data. Due 
to restrictions of individual-level data transfer, however, 
we provide an ENIGMA-derived example dataset that 
includes subject-level data from ten healthy controls (7 
females, age±SD=33.3±8.8 years) and ten individuals 
with drug-resistant temporal lobe epilepsy (7 females, 
age±SD=39.8±14.8 years). The Ethics Committee of the 
Montreal Neurological Institute and Hospital approved 
the study. Written informed consent, including a 
statement for open sharing of collected data, was 
obtained from all participants. As per ENIGMA-
Epilepsy protocols, users can fetch covariate information 
(subject ID, diagnosis, sub-diagnosis, handedness, age at 
onset, duration of illness, and ICV), regional volumetric 
data (from 12 subcortical regions—namely bilateral 
accumbens, amygdala, caudate, pallidum, putamen, and 
thalamus, bilateral hippocampus, and bilateral 
ventricles), and cortical thickness and surface area from 
every Desikan-Killiany cortical region27. Given the 
standardized ENIGMA format, users can easily replace 
our example dataset with any other individual site or 
mega-analysis datasets of their own. 

Compatibility with other datasets 
To increase generalizability and usability, every function 
within the ENIGMA Toolbox is compatible with any 
neuroimaging data parcellated according to the Desikan-
Killiany27, Glasser92, and Schaefer93 parcellations (other 
parcellations will be added upon request). 

Transcriptomics data and contextualization 
As part of the ENIGMA Toolbox, users can fetch and 
manipulate preprocessed microarray expression data 
collected from six human donor brains and released by 
the Allen Institute for Brain Sciences19. Microarray 
expression data were first generated using abagen26, a 
toolbox that provides reproducible workflows for 
processing and preparing gene co-expression data 
according to previously established recommendations23; 
preprocessing steps included intensity-based filtering of 
microarray probes, selection of a representative probe 
for each gene across both hemispheres, matching of 
microarray samples to brain parcels from the Desikan-
Killiany27, Glasser92, and Schaefer93 parcellations, 
normalization, and aggregation within parcels and 
across donors. Moreover, genes whose similarity across 
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donors fell below a threshold (r<0.2) were removed, 
leaving, for instance, a total of 15,633 genes for analysis 
for using Desikan-Killiany atlas. To accommodate users, 
we also provide unthresholded gene datasets with 
varying stability thresholds (r≥0.2, r≥0.4, r≥0.6, r≥0.8) 
for every parcellation 
(https://github.com/saratheriver/enigma-extra). 
ENIGMA Toolbox users can furthermore query pre-
defined lists of disease-related genes (obtained from 
several recently published GWAS), including gene sets 
for attention deficit/hyperactivity disorder (ngenes=26)47, 
autism spectrum disorder (ngenes=30)48, bipolar disorder 
(ngenes=30)49, depression (ngenes=269)50, common 
epilepsies (ngenes=21)51, schizophrenia (ngenes=213)52, and 
Tourette’s syndrome (ngenes=58)53. These gene sets can be 
subsequently mapped to cortical and subcortical regions 
using the Allen Human Brain Atlas19 and projected to 
surface templates using our surface visualization tools. 

BigBrain data and contextualization 
BigBrain is a ultra-high resolution, 3D volumetric 
reconstruction of a postmortem Merker-stained and sliced 
human brain from a 65-year-old male, with specialized 
pial and white matter surface reconstructions (obtained 
via the open-access BigBrain repository: 
https://bigbrain.loris.ca/main.php)20. The postmortem 
brain was paraffin-embedded, coronally sliced into 7400 
20μm sections, silver-stained for cell bodies94, and 
digitized. A 3D reconstruction was implemented with a 
successive coarse-to-fine hierarchical procedure95, 
resulting in a full brain volume. For the ENIGMA 
Toolbox, we used the highest resolution full brain 
volume (100μm isotropic voxels), then generated 50 
equivolumetric surfaces between the pial and white 
matter surfaces. The equivolumetric model compensates 
for cortical folding by varying the Euclidean distance 
between pairs of intracortical surfaces throughout the 
cortex, thus preserving the fractional volume between 
surfaces96. Next, staining intensity profiles, representing 
neuronal density and soma size by cortical depth, were 
sampled along 327,684 surface points in the direction of 
cortical columns. 

Following seminal histological work55, 56, 63, we 
characterized vertex-wise cytoarchitecture by taking two 
central moments of the staining intensity profiles (mean 
and skewness). Finally, the Desikan-Killiany atlas was 
nonlinearly transformed to the BigBrain histological 
surfaces97 and central moments were averaged within 
each parcels, excluding outlier vertices with values more 
than three scaled median absolute deviations away from 
the parcel median.  

The BigBrain gradient was obtained from the original 
publication29 and mapped to the Desikan-Killiany27, 
Glasser92, and Schaefer93 parcellations. In brief, the 
authors derived an MPC matrix by correlating BigBrain 
intensity profiles between every pair of regions in a 1,012 
cortical node parcellation, controlling for the average 
whole-cortex intensity profile. The MPC matrix was 
thresholded row-wise to retain the top 10% of 
correlations and converted into a normalized angle 
matrix. Diffusion map embedding98, 99, a nonlinear 
manifold learning technique, identified the principal axis 
of variation across cortical areas, i.e., the BigBrain 
gradient. In this space, cortical nodes that are strongly 
similar are closer together, whereas nodes with little to 
no intercovariance are farther apart. To allow 
contextualization of ENIGMA-derived surface-based 
findings, we mapped the BigBrain gradient to the 
Desikan-Killiany atlas and partitioned it into five equally 
sized discrete bins.  

Cytoarchitectonics data and contextualization 
By adapting a previously published approach32, we 
mapped the cytoarchitectonic atlas of von Economo and 
Koskinas33 to cortical surface templates. 
Cytoarchitectonic class labels from the original five 
different structural types of cerebral cortex (agranular, 
frontal, parietal, polar, granular) were manually assigned 
to each parcellation region32 and subsequently mapped 
to vertex-wise space.  

To stratify cortex-wide effects according to the five 
cytoarchitectonic classes, the economo_koskinas_atlas() 
function maps parcellated data (e.g., disease-related 
atrophy map on the Desikan-Killiany atlas) to vertex-
wise space and iteratively averages values from all 
vertices within each class. 

Connectivity data for macroscale connectome 
models 
As in prior work22, we selected a group of unrelated 
healthy adults (n=207; 83 males, mean 
age±SD=28.73±3.73 years, range=22-36 years) from 
the HCP dataset21. HCP data were acquired on a 
Siemens Skyra 3T and included: (i) T1-weighted images 
(magnetization-prepared rapid gradient echo 
[MPRAGE] sequence, repetition time [TR]=2,400ms, 
echo time [TE]=2.14ms, field of view [FOV]=224✕224 
mm2, voxel size=0.7✕0.7✕0.7 mm, 256 slices), (ii) 
resting-state functional MRI (gradient-echo echo-planar 
imaging [EPI] sequence, TR=720 ms, TE=33.1 ms, 
FOV=208✕180 mm2, voxel size=2 mm3, 72 slices), and 
(iii) diffusion MRI (spin-echo EPI sequence, TR=5,520 
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ms, TE=89.5ms, FOV=210✕180, voxel size=1.25mm3, 
b-value=1,000/2,000/3,000 s/mm2, 270 diffusion 
directions, 18 b0 images). HCP data underwent the 
initiative’s minimal preprocessing100. In brief, resting-
state functional MRI data underwent distortion and 
head motion corrections, magnetic field bias correction, 
skull removal, intensity normalization, and were mapped 
to MNI152 space. Noise components attributed to head 
movement, white matter, cardiac pulsation, arterial, and 
large vein related contributions were automatically 
removed using FIX101. Preprocessed time series were 
mapped to standard gray ordinate space using a cortical 
ribbon-constrained volume-to-surface mapping 
algorithm and subsequently concatenated to form a 
single time series. Diffusion MRI data underwent b0 
intensity normalization and correction for susceptibility 
distortion, eddy currents, and head motion. High-
resolution functional and structural data were 
parcellated according to the Desikan-Killiany27, 
Glasser92, as well as Schaefer 100, 200, 300, and 40093 
parcellations. 

Normative functional connectivity matrices were 
generated by computing pairwise correlations between 
the time series of all cortical regions and subcortical 
(nucleus accumbens, amygdala, caudate, hippocampus, 
pallidum, putamen, thalamus) regions; negative 
connections were set to zero. Subject-specific 
connectivity matrices were then z-transformed and 
aggregated across participants to construct a group-

average functional connectome. Available cortico-
cortical, subcortico-cortical, and subcortico-subcortical 
matrices are unthresholded. Normative structural 
connectivity matrices were generated from preprocessed 
diffusion MRI data using MRtrix3102. Anatomical 
constrained tractography was performed using different 
tissue types derived from the T1-weighted image, 
including cortical and subcortical gray matter, white 
matter, and cerebrospinal fluid103. Multi-shell and multi-
tissue response functions were estimated104 and 
constrained spherical deconvolution and intensity 
normalization were performed105. The initial tractogram 
was generated with 40 million streamlines, with a 
maximum tract length of 250 and a fractional anisotropy 
cutoff of 0.06. Spherical-deconvolution informed 
filtering of tractograms (SIFT2) was applied to 
reconstruct whole-brain streamlines weighted by the 
cross-section multipliers106. Reconstructed streamlines 
were mapped onto the 68 cortical and 14 subcortical 
(including hippocampus) regions to produce subject-
specific structural connectivity matrices. The group-
average normative structural connectome was defined 
using a distance-dependent thresholding procedure, 
which preserved the edge length distribution in 
individual patients107, and was log transformed to reduce 
connectivity strength variance. As such, structural 
connectivity was defined by the number of streamlines 
between two regions (i.e., fiber density). 
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The ENIGMA Toolbox: Cross-disorder integration and multiscale 
neural contextualization of multisite neuroimaging datasets 
 

Supplementary Information 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423838
http://creativecommons.org/licenses/by-nc-nd/4.0/


Larivière et al.  
   

 
 
 

CODE | http://github.com/MICA-MNI/ENIGMA                                              DOCUMENTATION | http://enigma-toolbox.readthedocs.io 

ENIGMA Toolbox | 20 

 
  

SUPPLEMENTARY FIGURE 1. Cross-disorder effect: cross-correlation. Minimal (a) Python and (b) Matlab code snippets to systematically correlate patterns of 
brain structural abnormalities across disorders. (c) Resulting cross-correlation matrix showing similar (red) and dissimilar (blue) transdiagnostic 
morphometric signatures. 
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SUPPLEMENTARY FIGURE 2. Advanced analytical workflows: BigBrain statistical moments. Minimal (a) Python and (b) Matlab code snippets to stratify 
significantly atrophied regions according to BigBrain statistical moments. (c) Regional cytoarchitecture using two statistical moments of staining profiles: 
(i) mean intracortical staining across the mantle, which allows inferences on overall cellular density, and (ii) profile skewness, which indexes the 
distribution of cells across upper and lower layers of the cortex. (d) Applying this approach to individuals with left focal epilepsy revealed greater cortical 
atrophy in regions with greater, and more evenly distributed, cellular densities. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.21.423838doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.21.423838
http://creativecommons.org/licenses/by-nc-nd/4.0/


Larivière et al.  
   

 
 
 

CODE | http://github.com/MICA-MNI/ENIGMA                                              DOCUMENTATION | http://enigma-toolbox.readthedocs.io 

ENIGMA Toolbox | 22 

 

  

SUPPLEMENTARY FIGURE 3. Advanced analytical workflows: BigBrain gradient. Minimal (a) Python and (b) Matlab code snippets to stratify significantly 
atrophied regions according to the BigBrain gradient. (c) BigBrain-derived gradient of microstructural profile covariance gradient describes a sensory-
fugal transition in intracortical microstructure (top). The BigBrain gradient was then mapped to several parcellations and partitioned it into five equally 
sized discrete bins (bottom). (d) Applying this approach to individuals with left focal epilepsy revealed greater cortical atrophy in areas located towards 
the sensory apex (blue/green) of the cytoarchitectural gradient. 
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SUPPLEMENTARY FIGURE 4. Advanced analytical workflows: von Economo and Koskinas cytoarchitectonic atlas. Minimal (a) Python and (b) Matlab code 
snippets to stratify significantly atrophied regions according to cytoarchitectonic classes. (c) A digitized cytoarchitectonic atlas from seminal postmortem 
work by von Economo and Koskinas30. Contextualizing cortical atrophy patterns in individuals with left focal epilepsy revealed greater atrophy in the 
agranular cortex (purple). 
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SUPPLEMENTARY FIGURE 5. Advanced analytical workflows: disease epicenter model. Minimal (a) Python and (b) Matlab code snippets to identify disease-
specific cortical and subcortical epicenters. (c) Applying this approach to individuals with left focal epilepsy revealed that patterns of atrophy in left focal 
epilepsy were anchored to the connectivity profiles of mesiotemporal regions. 
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