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Abstract 50 

Extensive sequence similarity between duplicated gene pairs produced by 51 

paleo-polyploidization may result from illegitimate recombination between homologous 52 

chromosomes. The genomes of Asian cultivated rice Xian/indica (XI) and Geng/japonica (GJ) 53 

have recently been updated, providing new opportunities for investigating on-going gene 54 

conversion events. Using comparative genomics and phylogenetic analyses, we evaluated 55 

gene conversion rates between duplicated genes produced by polyploidization 100 million 56 

years ago (mya) in GJ and XI. At least 5.19%–5.77% of genes duplicated across three 57 

genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~0.4 58 

mya, with more (7.77%–9.53%) showing conversion of only gene portions. Independently 59 

converted duplicates surviving in genomes of different subspecies often used the same donor 60 

genes. On-going gene conversion frequency was higher near chromosome termini, with a 61 

single pair of homoeologous chromosomes 11 and 12 in each genome most affected. Notably, 62 

on-going gene conversion has maintained similarity between very ancient duplicates, 63 

provided opportunities for further gene conversion, and accelerated rice divergence. 64 

Chromosome rearrangement after polyploidization may result in gene loss, providing a basis 65 

for on-going gene conversion, and may have contributed directly to restricted 66 

recombination/conversion between homoeologous regions. Gene conversion affected 67 

biological functions associated with multiple genes, such as catalytic activity, implying 68 

opportunities for interaction among members of large gene families, such as NBS-LRR 69 

disease-resistance genes, resulting in gene conversion. Duplicated genes in rice subspecies 70 

generated by grass polyploidization ~100 mya remain affected by gene conversion at high 71 

frequency, with important implications for the divergence of rice subspecies. 72 
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Introduction 77 

Rice is the largest food crop in the world. There are two distinct types of domesticated rice, 78 

Asian rice (Oryza sativa) and African rice (Oryza glaberrima), each with unique histories of 79 

domestication (Sweeney and McCouch, 2007). Asian rice is planted worldwide, feeding half 80 

of the world’s population as staple food and providing more than 20% of the energy for 81 

human survival (Kim et al., 2008, Stein et al., 2018, Wang et al., 2018b). Xian/Indica (XI) 82 

and Geng/Japonica (GJ) are the two major subspecies of rice, which diverged ~0.4 million 83 

years ago (mya). The first whole-genome draft sequence of GJ cultivar ‘Nipponbare’, which 84 

is representative of the subspecies, was obtained in 2002 (Goff et al., 2002), and genome 85 

sequencing and annotation have been continuously improved (Tanaka et al., 2008). The 86 

whole-genome sequence of XI (93-11) has also been deciphered (Yu et al., 2002), with 87 

high-quality genome sequences of representative varieties Zhenshan 97 (XI-ZS97) and 88 

Minghui 63 (XI-MH63) made available (Zhang et al., 2016). These two main varieties of XI 89 

are the parents of an excellent Chinese hybrid. XI accounts for more than 70% of global rice 90 

production and possesses much higher genetic diversity than GJ (Huang et al., 2010), as 91 

highlighted by recent analysis of 3,010 diverse Asian cultivated rice genomes and 1,275 rice 92 

varieties (Li et al., 2020, Wang et al., 2018b). 93 

Recursive polyploidization or whole-genome duplication (WGD) is the doubling of an 94 

entire set of chromosomes in cells and is prevalent throughout the plant and animal kingdoms 95 

(Frawley and Orr-Weaver, 2015). The impact of polyploidization on plant functional 96 

evolution is extremely profound, facilitating rapid expansion and divergence of species (Jiao 97 

et al., 2011, Puchta et al., 1996, Barker et al., 2016, Wu et al., 2020). A large number of 98 

duplicated genes generated by polyploidization are distributed on the homologous 99 

chromosomes of extant species, which leads to genome instability. Homoeologous 100 

recombination may result in loss of large segments of DNA (Paterson et al., 2004, Zhuang et 101 

al., 2019), de novo functionalization of genes, subfunctionalization (Taylor and Raes, 2004), 102 

or rearrangement of genomic DNA (Wang et al., 2005, Murat et al., 2017, Wang et al., 2018a, 103 

Wang et al., 2017), providing material for plant evolution. At least five WGD events occurred 104 

during the formation of modern cultivated rice. The two oldest are a WGD event (called ζ) 105 

shared by seed plants (divergence ~310 mya) and a WGD event (called ε) that occurred prior 106 

to the appearance of the most recent common ancestor of all extant angiosperms (~235 mya) 107 

(Jiao et al., 2011). Two relatively recent WGD events occurred after the formation of 108 
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monocotyledons: one (τ) shared by most monocotyledons at ~130 mya, and another (σ) 109 

shared by Poales at ~115-120 mya (Tang et al., 2010, Paterson et al., 2004, Ming et al., 2015). 110 

The most recent WGD event (ρ) was originally thought to have occurred before the 111 

divergence of major grasses (~70 mya) (Paterson et al., 2004, Wang et al., 2005); however, 112 

the latest fossil evidence advances this ρ event to ~100 mya (Wang et al., 2015). 113 

Homologous recombination provides a major source of genetic innovation (Kurosawa 114 

and Ohta, 2011). In plants, meiotic and mitotic recombination result in reciprocal or 115 

symmetric exchange of DNA sequence information between homologous chromosomes 116 

(Gardiner et al., 2019). In addition to normal genetic recombination, highly similar sequences 117 

undergo frequent recombination between homologous chromosomes, which is called 118 

illegitimate recombination (Wang et al., 2009). One result of this recombination is gene 119 

conversion, where one gene (or DNA fragment) replaces another gene (or DNA fragment) on 120 

a homologous chromosome or chromosomal region. Gene conversion between duplicated 121 

genes produced by polyploidization has been identified in the genomes of Poaceae, Arachis 122 

hypogaea, Gossypium, Brassica campestris, and Brassica oleracea (Wang et al., 2009, Wang 123 

et al., 2011, Paterson et al., 2012, Zhuang et al., 2019, Yu et al., 2013, Liu et al., 2020). Gene 124 

conversion is frequent and on-going between homologous chromosomes, such as 125 

homologous chromosomes 11 and 12 produced from the duplication common to grasses (ρ 126 

event) in the modern rice genome (Wang et al., 2009, Kurosawa and Ohta, 2011, Wang and 127 

Paterson, 2011, Wang et al., 2019). 128 

Recombination is a mutagenic factor, and mutations lay the foundation for natural 129 

selection. The main role of gene conversion is to maintain the homology or similarity of 130 

duplicated sequences. Comparison between rice and sorghum clearly suggests that gene 131 

conversion promotes gene divergence (Wang et al., 2009). Recombination accelerates 132 

mutation, with gene conversion playing an important role (Guo et al., 2013). Gene conversion 133 

of functional sequences and new mutations produced by related homologous recombination 134 

may affect gene function. Sequences encoding functional domains are converted more 135 

frequently than those encoding non-functional domains (Wang et al., 2007). Gene conversion 136 

and DNA duplication may facilitate functional innovation through gene extension and 137 

mutations in structural domains of disease-resistance genes (Ratnaparkhe et al., 2011). Gene 138 

conversion between chromosomes 11 and 12 of rice has been accompanied by 139 

subfunctionalization or purifying selection of genes related to spikelet abortion (Zhang et al., 140 

2011), lipid transfer genes (Jang et al., 2008, Wang et al., 2012), two recessive yellowing 141 
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control genes (Mao et al., 2011), genes encoding cyclic C2-type proteins (Jung et al., 2012), 142 

and the zinc-inducible promoter family (Ricachenevsky et al., 2011). 143 

Our knowledge of gene conversion between paralogous genes in the two rice subspecies 144 

(Wang et al., 2007) is based on outdated genomic data (ver. 4), and the imperfections in 145 

genome sequencing assembly and annotation particularly may have implications for gene 146 

conversion analysis. Here, we used the latest genomic data and recent approaches for 147 

resolving genomic homology (Wang et al., 2018a) to identify paralogous genes generated by 148 

WGD event (ρ) in three rice genomes representing the two major subspecies. We then 149 

combined this with comparative and phylogenetic genomics to establish an improved method 150 

for inferring gene conversion. We evaluated the ratio, level, and pattern of gene conversion in 151 

three rice genomes and explored the effects of this process on genome evolutionary rate, gene 152 

function innovation, chromosome structure, and genome stability. 153 

  154 
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Results 155 

Intra/intergenomic homologous genes 156 

We performed genomic colinearity and structure analysis and identified duplicated genes 157 

generated by the WGD event common to grasses in the GJ, XI-MH63, and XI-ZS97 genomes. 158 

For blocks containing more than four colinear genes, there were more duplicated genes in GJ 159 

(3,314 pairs) than in XI-MH63 or XI-ZS97 (2,629 pairs and 2,889 pairs, respectively). We 160 

identified 46, 18, and 10 homologous blocks with more than 10, 20, and 50 colinear gene 161 

pairs in GJ, respectively. XI genomes had much shorter duplicated blocks, with fewer than 10 162 

blocks possessing more than 50 colinear gene pairs (Supplemental Table 1). We also used a 163 

bidirectional best BLAST homology search to identify homologous gene pairs residing in 164 

paralogous regions because some pairs might have been removed from the colinearity 165 

analysis. Finally, 3,256, 2,502, and 2,816 homologous gene pairs were identified in GJ, 166 

XI-MH63, and XI-ZS97, respectively (Figure 1). Compared with GJ, the XI varieties had 167 

fewer homologous genes because XI has experienced more chromosomal rearrangement 168 

events. 169 

We used colinearity and structure analysis of intergenomic homologous genes to infer 170 

orthologous genes generated by the recent species divergence (Supplemental Table 1). 171 

Colinearity analysis identified 19,089 orthologous gene pairs in 103 blocks between the GJ 172 

and XI-MH63 genomes. Between GJ and XI-ZS97, there were 18,498 orthologous gene pairs 173 

in 119 blocks. The two varieties of XI, XI-MH63 and XI-ZS97, showed better colinearity, 174 

with 25,262 orthologous gene pairs between them in 146 blocks. We again performed a 175 

bidirectional best BLAST homology search among the three genomes to identify additional 176 

orthologous genes. There were 23,719 orthologous gene pairs between GJ and XI-MH63, and 177 

23,056 orthologous gene pairs between GJ and XI-ZS97. Since XI-MH63 and XI-ZS97 are 178 

more closely related, we identified 35,049 orthologous gene pairs between the genomes of 179 

these varieties (Supplemental Table 2). 180 

Homologous gene quartets 181 

To detect possible gene conversion between homologous genes produced by WGD, we used 182 

homology and colinearity information to identify homologous gene combinations for WGD 183 

and species divergence, which we defined ‘homologous gene quartets.’ Assuming that the 184 

genomes of two species ('O' and 'S') retain a pair of duplicated chromosomal generated in a 185 
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common ancestor through WGD, the paralogous genes O1 and O2 in species O and the 186 

respective orthologous genes S1 and S2 in species S constitute a homologous gene quartet 187 

(Figure 2A). Sequence similarity between orthologous gene pairs is more similar than that 188 

between paralogous gene pairs if there is no gene conversion (or nonreciprocal recombination) 189 

between the duplicated gene pairs after species divergence (Figure 2B). However, if gene 190 

conversion occurs between duplicated genes, we might find that the gene tree topology has a 191 

different structure than expected (Figure 2C-E). Changes in the topological structure of the 192 

gene tree can be determined from the similarity of homologous sequences in homologous 193 

gene quartets. As the gene sequence may be converted in whole or in part, we used different 194 

methods to infer whole-gene conversion (WCV) and partial-gene conversion (PCV) (see 195 

Materials and Methods for details). 196 

Based on colinearity information of intragenomic and intergenomic homologous genes, 197 

we identified 2,788 quartets between GJ and XI-MH63, and 2,879 quartets between GJ and 198 

XI-ZS97. Although XI-MH63 and XI-ZS97 are varieties of the same subspecies, relatively 199 

few quartets (2,566) were identified between them, probably due mainly to differences in 200 

gene loss after the three genomes diverged. By comparing the three genomes, we inferred a 201 

possible ancestral gene content before divergence of 19,104. Rates of gene loss or 202 

translocation were 6.13%, 13.31%, and 7.89% in GJ, XI-MH63, and XI-ZS97, respectively. 203 

Finally, we identified 3,332, 3,322, and 3,254 homologous genes in GJ, XI-MH63, and 204 

XI-ZS97, respectively. These homologous genes were mainly conserved in 82, 85, and 93 205 

blocks, and they were unevenly distributed across the 12 chromosomes in the three genomes 206 

(Figure 1). 207 

Gene conversion and occurrence patterns 208 

We removed highly divergent sequences to reduce the possibility of inferring gene 209 

conversion events from unreliable sequences (see Materials and Methods for details). After 210 

this, 2,788 gene quartets were identified between GJ and XI-MH63, 2,879 quartets between 211 

GJ and XI-ZS97, and 2,566 quartets between XI-ZS97 and XI-MH63 (Supplemental Table 212 

2). We used two methods to infer gene tree topology, one based on synonymous nucleotide 213 

substitution rate (Ks) as a similarity measure and the other based on amino acid identity ratio, 214 

which we called whole-gene conversion type I and type II (WCV-I and WCV-II), respectively. 215 

We used a combination of dynamic planning and phylogenetic analysis to infer possible 216 

partial-gene conversion (PCV) events (Supplemental Table 3). Since paralogous gene pairs 217 
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may be identified in different quartets, we merged the paralogous gene pairs affected by gene 218 

conversion in each genome. This gave us the gene conversion events of each genome after 219 

the divergence of rice.  220 

 In GJ, 398 pairs (~12%) of paralogs had been converted. Of these, 179 pairs (5.37%) 221 

had undergone WCV: 11 pairs were inferred byWCV-I and 168 pairs were inferred by 222 

WCV-II. Another 259 pairs (7.77%) were PCVs, which occurred at a remarkably higher rate 223 

than WCV. In XI-MH63, 466 pairs (~14%) of paralogs had been converted, of which 182 224 

pairs (5.48%) were WCVs: 8 pairs were inferred by WCV-I and 174 pairs were inferred by 225 

WCV-II. Another 312 pairs (9.39%) were PCVs, which was significantly higher than WCVs. 226 

In XI-ZS97, 468 pairs (~14%) of paralogs had been converted: 185 pairs (5.69%) were 227 

WCVs, comprising 8 pairs inferred by WCV-I and 177 pairs inferred by WCV-II. Another 228 

310 pairs (9.53%) were PCVs, which was also more than the number of WCVs (Table 1). For 229 

example, we detected gene conversion between the paralogous genes Zs11g0407.01 and 230 

Zs12g0396.01, and one gene fragment from 335 to 462 bp was converted through one-way 231 

genetic information transmission (or rearrangement) (Figure 3A). We discovered that the 232 

gene conversion rate in XI was significantly higher than that in GJ (Figure 3B). By analyzing 233 

topological changes in the gene trees reconstructed using homologous genes, we further 234 

determined that gene conversion occurred between Mh11g0214.01 and Mh12g0189.01 235 

(Figure 3C; Supplemental Text). 236 

High-frequency on-going gene conversion 237 

By comparing the similarity of homologous gene quartets between different genomes, we 238 

inferred gene conversion events in the three genomes during different evolutionary periods. 239 

Duplicated gene pairs produced ~100 mya were still being affected by gene conversion. In GJ, 240 

we identified 398 pairs of paralogous genes that might have undergone gene conversion after 241 

the divergence of rice (Figure 3D). The amino acid identity of four (1.01%) pairs of 242 

paralogous genes was > 99%, with Ks < 0.01 (Supplemental Figures 1 and 2). A relatively 243 

large number of duplicated genes were affected by gene conversion in the two XI varieties, 244 

XI-MH63 and XI-ZS97. In XI-MH63, we found 466 pairs of paralogous genes that might 245 

have undergone gene conversion (Figure 3D) after the divergence of rice subspecies; six 246 

(1.29%) of these pairs of paralogous genes had > 99% amino acid identity between them and 247 

Ks < 0.01 (Supplemental Figures 1 and 2). Similarly, we identified 471 pairs of paralogous 248 

genes in XI-ZS97 that might have undergone gene conversion after GJ diverged from XI 249 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424042
http://creativecommons.org/licenses/by/4.0/


 

 11 

(Figure 3D), and six (1.27%) of these pairs of paralogous genes had > 99% amino acid 250 

identity between them and Ks < 0.01 (Supplemental Figures 1 and 2). We identified small 251 

synonymous and nonsynonymous nucleotide substitutions and high sequence identity 252 

between duplicated gene pairs in which gene conversion had occurred, suggesting that gene 253 

conversion may have occurred over a very short time. 254 

Another striking indication was that 407 and 391 pairs of paralogous genes were 255 

affected by gene conversion before the formation of XI-MH63 and XI-ZS97, respectively; 78 256 

and 79 pairs of paralogous genes were converted after formation of the two varieties, 257 

accounting for 16.7% and 16.6% of the total gene conversion, respectively (Figure 3D). 258 

Duplicated genes in XI-MH63 and XI-ZS97 sharing a homologous region showed nearly 99% 259 

amino acid identity and 0.99 nonsynonymous nucleotide substitution rate (Ks) 260 

(Supplemental Figures 1 and 2). These data suggest that gene conversion between 261 

paralogous gene pairs is on-going and occurs at high frequencies in rice subspecies.  262 

A donor is usually a donor 263 

Gene conversion involves a donor locus and an acceptor locus. Donors and acceptors can be 264 

identified by comparing topological changes in the phylogenetic trees of homologous gene 265 

quartets since the paralog of the donor should be more similar than its ortholog. Donors have 266 

at least 30% more converted sites than acceptors. We found that 765, 934, and 930 duplicated 267 

genes had been converted in GJ, XI-MH63, and XI-ZS97, respectively, with 196, 215, and 268 

200 of these representing donors. A total of 1,520 duplicated genes had been converted in the 269 

three genomes, with 1,378 (90.66%) of these converted in two or three genomes. Interestingly, 270 

113 (88.98%) genes had preferred donors in at least two genomes, and 85 (66.93%) genes 271 

had the same donor in the three genomes (Supplemental Table 4). This suggested that the 272 

duplicated gene that had undergone gene conversion was usually present as a donor locus in 273 

each different genome (Figure 4A). For example, in the region of ~1.0 Mb near the telomere 274 

on chromosomes 11 and 12, gene conversion had occurred in 13 duplicated genes. Twelve 275 

duplicated genes had undergone gene conversion in at least two genomes. Ten duplicated 276 

genes were present as donors, and seven duplicated genes acting as donors in different 277 

genomes (Figure 4B). 278 

Gene conversion and uneven distribution 279 

Gene replacement and conversion were unevenly distributed across the different paralogous 280 
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homologous chromosomal regions, and all three genomes were most affected by gene 281 

replacement and conversion between duplicated genes on chromosomes 11 and 12. The gene 282 

conversion rate was 18.88%, 21.78%, and 18.71% on chromosomes 11 and 12 of GJ, 283 

XI-MH63, and XI-ZS97, respectively (Supplemental Table 5). In GJ, XI-MH63, and 284 

XI-ZS97, gene conversions were clustered in the 2 Mb region at the termini of chromosomes 285 

11 and 12, and the gene conversion rate was 74.60%, 67.11%, and 73.02%, respectively. This 286 

suggests that gene conversion usually occurs at the termini of chromosomes. (Figure 1D). 287 

The physical location of genes on chromosomes may influence the chance of gene 288 

conversion. Gene conversion is usually found at the termini of chromosomes, where gene 289 

density is high (Figure 1; Table 2). In GJ, 692 paralogs were located in the 2 Mb at the 290 

termini of chromosomes and about 17.20% of the paralogs were converted. This was higher 291 

than the gene conversion rate for the whole genome (12.09%). In XI-MH63, we found 584 292 

paralogs in the 2 Mb at the termini of chromosomes, and approximately 25.34% showed gene 293 

conversion, which was also higher than the gene conversion rate for the whole genome 294 

(18.57%). In XI-ZS97, there were 675 paralogs located in the 2 Mb close to the termini of 295 

chromosomes, of which about 20.59% had undergone gene conversion, which was higher 296 

than the gene conversion rate for the whole genome (16.62%). We found that the physical 297 

location of genes on chromosomes may correlate with the chance of gene conversion, with 298 

genes near the chromosomal termini more frequently affected by gene conversion.  299 

Effect of chromosome rearrangement on gene conversion 300 

Chromosome rearrangement is a random process, and block number in the genome can 301 

reflect the degree of chromosome rearrangement after polyploidization. Block number and 302 

gene conversion rate showed a positive correlation (Supplemental Table 6) in XI-MH63 (R
2
 303 

= 0.22, P-value = 0.12), XI-ZS97, and GJ. However, there was no significant positive 304 

correlation in the three genomes (Figure 5A). If four special homologous chromosomes 305 

(homologous chromosome pairs 1-5 and homologous chromosome pairs 11-12) were 306 

removed, there was a significant positive correlation between block number and gene 307 

conversion rate in XI-MH63 (R
2
 = 0.85, P-value < 0.01). There was also a significant positive 308 

correlation between block number of the chromosomes and gene conversion rate in XI-ZS97 309 

(R
2 
= 0.75, P-value < 0.01) and GJ (R

2 
= 0.74, P-value < 0.01) (Figure 5B). 310 

Correlation does not imply a direct factor leading to gene conversion. For this reason, 311 

we further analyzed the relationship between block length and gene conversion rate on each 312 
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chromosome (Supplemental Table 7). We found that longer blocks had a higher gene 313 

conversion rate (Supplemental Figure 3). The average gene conversion rate for a total of 14 314 

blocks with more than 100 paralogous gene pairs was 14.12% (349 pairs). The block with 315 

fewer than 20 paralogous gene pairs was block 219, with a gene conversion rate of 11.77% 316 

(178 pairs). These results indicate that the direct result of chromosome rearrangement is the 317 

loss of duplicated genes, which may increase the chances of gene conversion. However, 318 

chromosome rearrangement may also reduce recombination between chromosomes and 319 

inhibit gene conversion. 320 

Gene conversion and evolution 321 

Gene conversion homogenizes paralogous gene sequences. This makes the affected 322 

homologous genes appear younger than expected, based on sequence divergence with one 323 

another. The synonymous substitution rate (Pn) and nonsynonymous substitution rate (Ps) 324 

between paralogs undergoing gene conversion were smaller than those of paralogs not 325 

affected by gene conversion (Table 3). In GJ, the average Pn=0.20 and Ps=0.46 for converted 326 

genes were significantly smaller than the average Pn=0.25 and Ps=0.51 for genes not 327 

converted. The average Pn=0.18 and Ps=0.44 for XI-MH63 gene conversion were 328 

significantly smaller than the average Pn=0.23 and Ps=0.49 for XI-MH63 genes with no 329 

conversion. XI-ZS97 gene conversion had average Pn=0.18 and Ps=0.45, which was 330 

significantly smaller than the average Pn=0.24 and Ps=0.49 for genes showing no conversion. 331 

We could not determine whether converted genes evolve slowly based on the paralogs 332 

themselves, since pairwise distances between paralogs are converted. However, Pn and Ps 333 

were slightly larger between orthologous gene pairs affected by gene conversion than 334 

between orthologs not showing gene conversion. This suggests that the orthologs in which 335 

gene conversion has occurred have evolved faster than those not affected by gene conversion. 336 

We used Ps and Pn for determining whether gene conversion was affected by 337 

evolutionary selection pressure. The ratio of Pn/Ps reflects the selection pressure between 338 

gene pairs during evolution. We compared the Pn/Ps ratio between genes subjected to 339 

conversion and those with no conversion. The average Pn/Ps ratio for XI-MH63 gene 340 

conversion was 0.41, and the average Pn/Ps ratio of non-converted paralogs was 0.48. This 341 

indicates that converted genes were subject to purifying selection (Table 3). The Pn/Ps ratios 342 

for gene conversion in XI-ZS97 and GJ were also smaller than those for non-converted genes. 343 

The selection pressure for gene conversion or no gene conversion did not change much. 344 
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However, there was not much difference in the selection pressure between orthologous gene 345 

pairs with and without gene substitution. No evidence suggests a change in selection pressure 346 

of converted genes. 347 

On-going gene conversion and function 348 

Some duplicated genes are preferentially converted. We performed Gene Ontology (GO) 349 

analysis to relate duplicated genes to biological functions. The GO analysis revealed that 350 

some genes with specific functions may be preferred for conversion, while gene conversion 351 

of some functional genes is avoided (Supplemental Figures 4-6; Supplemental Table 8). 352 

We analyzed 761, 910, and 912 duplicated genes with gene conversion and 5,262, 5,224, and 353 

5,135 duplicated genes without gene conversion in GJ, XI-MH63, and XI-ZS97, respectively. 354 

Genes involved in functions associated with large numbers of genes (catalytic activity, 355 

metabolic process) were biased toward gene conversion in the three genomes. By contrast, 356 

some genes associated with functions encoded by few genes (protein-containing complex, 357 

transporter activity) might have avoided gene conversion. 358 

GO analysis of duplicated genes with and without gene conversion suggested that genes 359 

associated with functions encoded by a large number of genes are more biased towards gene 360 

conversion (Table 4). Four secondary-level terms were significantly enriched at the level of 361 

molecular function and biological processes, and accounted for about 30% of the 362 

corresponding gene sets. For example, the number of catalytic activity genes and metabolic 363 

process genes in the three genomes in which gene conversion occurred (31.4% - 37.7%) was 364 

significantly more than that in which no gene conversion occurred (26.6% - 30.6%) (P-value 365 

< 0.01). Similarly, binding genes and cellular process genes showed higher gene conversion 366 

(27.4% - 39.9%) than duplicated genes without gene conversion (24.6.6% - 38.4%), 367 

suggesting that they are more likely to be converted. 368 

Evolution and conversion of NBS-LRR genes 369 

Rice diseases caused by various pathogens are one of the most serious constraints in global 370 

rice production (Divya et al., 2014). Disease resistance genes play a very important role in the 371 

evolution of plant genomes and are one of the indispensable families of genes for survival of 372 

plants under natural selection (Keen, 1992, Bertioli et al., 2016). We therefore identified 373 

1,697 NBS-LRR (nucleotide binding site-leucine rich repeat) resistance genes in the three 374 

genomes (Supplemental Table 9). Among these, we identified 462 NBS-LRR genes in GJ, 375 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424042
http://creativecommons.org/licenses/by/4.0/


 

 15 

less than in XI-MH63 (644) and XI-ZS97 (591). The NBS-LRR genes were unevenly 376 

clustered on the chromosomes of the three genomes. The density on chromosome 11 was the 377 

highest, as confirmed in previous studies (Zhang et al., 2014, Stein et al., 2018). We found 378 

113 (24.46%), 126 (21.32%), and 181 (28.11%) NBS-LRR genes on chromosome 11 of GJ, 379 

XI-MH63, and XI-ZS97, respectively. There were more NBS-LRR genes on chromosome 11 380 

than on the other chromosomes (3.68% - 10.66%). 381 

GO analysis of NBS-LRR genes in the genomes revealed enrichment mainly in terms 382 

associated with molecular function and biological process (Supplemental Figure 7). In GJ, 383 

XI-MH63, and XI-ZS97, 97%, 91.1%, and 93.1% of genes, respectively, were involved in 384 

binding (P-value=0.01) (Supplemental Table 10). Therefore, the NBS-LRR genes may be 385 

associated with the molecular function of binding and might be biased toward the occurrence 386 

of gene conversion. Polyploidization may also result in expansion of NBS-LRR genes, with 387 

ectopic recombination causing the NBS-LRR genes to further undergo a birth-to-death 388 

process. Evolutionary analysis of the NBS-LRR genes revealed 25, 67, and 39 young genes 389 

with Ks < 0.1 in the three genomes (Figure 6A-C). Most of the NBS-LRR genes were 390 

generated after the divergence of rice subspecies, and clusters of young NBS-LRR genes 391 

were found on chromosomes 2 and 11. These NBS-LRR genes showed a pattern of proximal 392 

localization and young origin in the three genomes, as well as similarity in gene conversion. 393 

We found a positive correlation between NBS-LRR genes and converted genes in regions 394 

with more than 1% of the NBS-LRR genes in the three genomes. This suggested that during 395 

their evolution, NBS-LRR genes might have had many chances to interact with one another, 396 

leading to gene conversion. (Figure 6D).  397 

Discussion 398 

On-going conversion between duplicated genes 399 

Recombination between neo-homologous chromosome pairs or homologous chromosome 400 

pairs resulting from WGD has existed throughout a long evolutionary history, generated a 401 

large number of chromosomal rearrangements (Murat et al., 2010, Bowers et al., 2003, Murat 402 

et al., 2014). This recombination can persist for a long time, maybe even hundreds of millions 403 

of years (Wicker et al., 2015). Previous studies have illustrated that many duplicated genes 404 

from WGD events about 100 mya are affected by illegitimate recombination and gene 405 

conversion (Jacquemin et al., 2009, Jacquemin et al., 2011). In some genomic regions, this 406 
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effect persists for millions of years, especially on chromosomes 11 and 12 of rice (Wang et al., 407 

2007). We used new, high-quality genomic data to analyze the genome sequences of GJ, 408 

XI-ZS97, and XI-MH63, revealing the level and pattern of gene conversion in all 409 

homologous genes of modern crop rice during domestication and improvement. Study of 410 

gene conversion after the divergence of rice subspecies and after the divergence of the two XI 411 

varieties revealed a shared region of gene substitution between XI-MH63 and XI-ZS97. This 412 

suggests that gene conversion may be on-going for a long time in the evolution of species and 413 

continue to provide a driving force in genome evolution and genetic innovation. 414 

Gene conversion has contributed to cultivated rice divergence 415 

Gene conversion is the result of recombination. Classical theoretical studies point out that 416 

recombination accelerates mutation (Koszul and Fischer, 2009, Jacquemin et al., 2011). Gene 417 

conversion may therefore play an important role in recombination, and we used the results of 418 

the new data analysis to further confirm this conclusion. We identified that the Ks between 419 

orthologous genes showing gene conversion was significantly smaller than that of 420 

orthologous genes without conversion. This suggests that genes having undergone gene 421 

conversion may have evolved more rapidly, which has been demonstrated by previous studies 422 

(Chen et al., 2007, Wang and Paterson, 2011). Gene conversion is one of the major 423 

mutational mechanisms in the evolution of species. Gene conservation can provide 424 

opportunities for gene conversion (Cossu et al., 2017). Our results showed that 46% of 425 

ancient gene conversions may have again undergone gene conversion more recently after the 426 

divergence of rice subspecies. Gene conversion is an accelerating force in the genetic 427 

evolution of mutations. After gene conversion, these genes restart the evolutionary process 428 

and accelerate the divergence of rice subspecies. 429 

Gene conversion and chromosome rearrangement  430 

Our results showed that the degree of chromosome rearrangement and gene conversion rate 431 

are positively correlated. However, gene conversion is not necessary for the survival of the 432 

species, as most grass species have undergone massive chromosome rearrangements (Murat 433 

et al., 2010, Wang et al., 2019). Previous reports suggest that the occurrence of a large 434 

inversion in the short arm before the rice–sorghum divergence may suppress gene conversion, 435 

with the lowest rate of gene conversion occurring between chromosomes 1 and 5 in rice 436 

(Wang et al., 2009, Paterson et al., 2009). However, we did not find the lowest rates of gene 437 

conversion in the three genomes of rice subspecies between chromosomes 1 and 5, possibly 438 
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because chromosome recombination may be stage-specific. Shorter homoeologous regions 439 

are a modern state resulting from historical evolution. We found more chromosomal 440 

rearrangements in XI than GJ, which may lead to gene loss, and relatively more gene 441 

conversion. Chromosome rearrangement might result in gene loss and thus provide 442 

conditions for on-going gene conversion. Chromosome rearrangement might have directly 443 

contributed to restriction of recombination/conversion between homoeologous regions. 444 

Why is a donor usually a donor?  445 

Gene conversion is to copy one gene sequence from a donor locus to a receptor locus (Harpak 446 

et al., 2017). Analyzing the scale of gene conversion helps to illuminate the mechanism of 447 

gene conversion (Cossu et al., 2017). We found that independent conversions that have 448 

survived (so far) in different lineages have often used the same genes as donors. It seems 449 

improbable to attribute this to selection, noting that the donor and acceptor copies have 450 

coexisted in the genome for 100 million years. A more plausible explanation is that one gene 451 

copy has some ‘privileged’ nature over the other. This could be genetic or epigenetic. If one 452 

copy or its neighboring region possesses mutations or epigenetic changes, the other copy 453 

might be more likely to act as a donor, helping to reinstate intactness. Moreover, some 454 

homologous chromosomal segments also seem to be preferential donors rather than acceptors. 455 

Mechanisms underlying these biases remain unknown, but an exciting future investigation 456 

will be to explore epigenetic phenomena such as have been suggested to influence patterns of 457 

gene retention/loss along chromosome segments (Woodhouse et al., 2010). 458 

Gene conversion and function 459 

Gene conversion leads to genes similar or even identical in sequence. The analysis above 460 

indicates that large gene families may be more susceptible to gene conversion. Duplicated 461 

copies may neutralize the presence of putative mutations, providing an opportunity for 462 

functional innovation (Daugherty and Zanders, 2019). Rather than being a conservative factor 463 

among different genotypes, gene conversion accelerates divergence (Wang et al., 2011). Gene 464 

conversion has been used to explain the evolution of large gene families, such as NBS-LRR 465 

genes and rRNA genes, which typically have dozens of copies on chromosomes (Okuyama et 466 

al., 2011, Nawrocki and Eddy, 2013, Rooney, 2004). Extensive analysis has shown that the 467 

evolution of functional genes that are members of large families may often be accompanied 468 

by strong purifying selection. Until 1990, most multigene families were thought to have 469 

coevolved with related homologous genes through gene conversion (Godiard et al., 1994). 470 
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Evolution of the NBS-LRR gene family, rRNA gene family, and some other highly conserved 471 

gene families may be consistent with this conclusion. For these families, most genes are 472 

usually extremely similar. However, the evolution of other gene families may be better 473 

explained by the birth-and-death model. New genes are created through gene duplication, and 474 

some genes remain in the genome for a long time while others may be lost (Finet et al., 475 

2019). 476 

 477 

Materials and Methods 478 

Sequence data 479 

Genomic sequence data for XI-MH63 and XI-ZS97 were obtained from the GenBank 480 

database (https://www.ncbi.nlm.nih.gov/). Genomic data for GJ ‘Nipponbare’ and 481 

Arabidopsis thaliana were downloaded from genome databases Gramene 482 

(http://www.gramene.org/) and TAIR (https://www.arabidopsis.org/), respectively.  483 

Detection of duplicated segments and homologous gene quartets 484 

BLASTP (Camacho et al., 2009) was used to search for intragenomic and intergenomic 485 

homology of protein sequences (E < 1e-5). ColinearScan (Wang et al., 2005) was used to 486 

analyze colinear regions based on gene homology predictions, and the significance of 487 

colinearity was tested. Colinear intragenomic and intergenomic chromosome fragments were 488 

inferred from analysis of homologous genome structures, and homologous and colinear genes 489 

were determined. Blocks of homologous genome structure within and between rice 490 

subspecies were also deduced. These blocks might represent paralogs produced by WGD 491 

events in the common ancestor or orthologs caused by species divergence. To determine 492 

homology and colinearity between chromosomes, genes in large gene families were removed 493 

from the ColinearScan analysis. Therefore, to obtain more complete homology information 494 

within genomes, further bidirectional best BLASTP homology searches were performed on 495 

the three genomes. Gene quartets were inferred from intragenomic and intergenomic paralogs 496 

and orthologs. 497 

Inference of gene conversion 498 

To infer possible gene conversion between paralogs, ClustalW (Larkin et al., 2007) 499 
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comparison of the quartets identified between any two genomes was performed. Highly 500 

divergent sequences were removed to eliminate potential problems created by inferring gene 501 

conversion from unreliable sequences. Quartets showing gaps in the pairwise alignments 502 

exceeding 50% of the alignment length, or with amino acid identity between homologous 503 

sequences of less than 40% were removed. 504 

Whole-genome conversion (WCV) inference: Since paralogous genes arise before 505 

species divergence, the similarity between orthologous gene pairs in two species should be 506 

higher than the similarity between paralogous gene pairs. However, gene conversion events 507 

change the similarity between gene pairs. The first whole-genome conversion inference 508 

method (WCV-I) used was based on studying the homology relationship between genomes, 509 

using Ks value as a similarity measure. The Ks values between paralogous and orthologous 510 

gene pairs were used to infer possible gene conversion, and 1000 bootstrap tests were 511 

performed on all gene trees in which gene conversion occurred to obtain the confidence level 512 

for each gene (Wang et al., 2009, Wang and Paterson, 2011). The second whole-genome 513 

conversion inference method (WCV-II) calculated the ratio of amino acid locus identity 514 

between homologous gene pairs, and compared point-by-point homology between paralogous 515 

gene pairs and between orthologous gene pairs. These sequences were used to infer possible 516 

changes to evolutionary tree topology, depending on whether the paralogous genes were more 517 

similar to each other than orthologous genes (Wang et al., 2009). This is a strict criterion, as 518 

paralogs were produced at least 100 mya from a WGD, whereas orthologs have diverged 519 

more recently. Instead of using Ks values as a metric here, identical sites between 520 

homoeologous sequences were calculated directly. The similarity between sequences 521 

representing different rice subspecies is often very high, as in a previous study of hexaploid 522 

wheat (Liu et al., 2020). 523 

Partial-gene conversion (PCV) inference: Quartets were used to identify possible gene 524 

conversion among partial gene sequences that may occur after species divergence. A 525 

combination of dynamic planning and phylogenetic analysis was used to document the 526 

differences between two aligned bases from paralogous and orthologous genes for each 527 

genome. In averaged distance arrays, the paralogs in each species should be more distant if 528 

no PCV was involved. Bootstrap frequency was obtained by repeating the 1000 bootstrap 529 

tests to identify high-scoring segments with shorter lengths and smaller scores. After masking 530 

some of the larger fragments, a recursive procedure revealed shorter high-scoring fragments, 531 

which helped to reveal genes affected by multiple gene conversion events (Wang et al., 532 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424042
http://creativecommons.org/licenses/by/4.0/


 

 20 

2009). 533 

GO enrichment analysis 534 

The GO data search software InterProScan (Jones et al., 2014) was used to determine 535 

whole-genome GO functional annotation. GO annotation results of the gene sets were 536 

compared and plotted using the online visualization tool WEGO (Ye et al., 2018) to visualize 537 

the distribution of functional genes and trends. The significance of the enrichment of 538 

GO-annotated genes was explained using calculated P-value. 539 

Identification of disease-resistance genes 540 

The comparison software HMMscan (Eddy, 2011) was used to identify NBS-LRR domains in 541 

the whole genomes of GJ, XI-MH63, and XI-ZS97, and NBS-LRR gene set A was obtained. 542 

The whole genome of the model organism Arabidopsis thaliana was searched for the 543 

NB-ARC domain (PF00931) using HMMsearch (Eddy, 2011) to identify NBS-LRR domains 544 

with E-value of 1e-10. After obtaining the NBS-LRR genes of Arabidopsis thaliana, 545 

BLASTP was used to compare these sequences with the whole genomes of GJ, XI-MH63, 546 

and XI-ZS97. Genes with a score value of > 150 and E-value > 1e-10 were designated 547 

NBS-LRR gene set B of the rice subspecies. Genes present in both gene sets A and B were 548 

identified as NBS-LRR genes in the three genomes. 549 

 550 

Accession Numbers 551 

Sequence data from this article can be found in Materials. 552 

 553 

Supplemental Data 554 

Supplemental Text Gene conversion and occurrence patterns. 555 

Supplemental Figure 1. Distribution of amino acid identity between duplicated genes in 556 

Oryza subspecies genomes. 557 

Supplemental Figure 2. Distribution of synonymous nucleotide substitution percentage (Ps) 558 

between syntenic paralogs in duplicated blocks of Oryza subspecies genomes. 559 
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Supplemental Figure 3. Relationship between length of blocks on each chromosome and 560 

rate of gene conversion. 561 

Supplemental Figure 4. Histogram of Gene Ontology (GO) statistics for duplicated genes 562 

with and without gene conversion in GJ. 563 

Supplemental Figure 5. Histogram of Gene Ontology (GO) statistics for duplicated genes 564 

with and without gene conversion in XI-MH63. 565 

Supplemental Figure 6. Histogram of Gene Ontology (GO) statistics for duplicated genes 566 

with and without gene conversion in XI-ZS97. 567 

Supplemental Figure 7. Histogram of Gene Ontology (GO) statistics of NBS-LRR genes in 568 

GJ, XI-MH63 and XI-ZS97. 569 

Supplemental Table 1. Number of homologous genes and blocks in GJ, XI-MH63, and 570 

XI-ZS97. 571 

Supplemental Table 2. Identified quartets and gene conversion in GJ, XI-MH63, and 572 

XI-ZS97. 573 

Supplemental Table 3. Gene conversion of quartets in the three rice subspcies genomes. 574 

Supplemental Table 4. Homology of donor locus and acceptor locus in gene conversion. 575 

Supplemental Table 5. Distribution of paralogs and gene conversion GJ, XI-MH63, and 576 

XI-ZS97. 577 

Supplemental Table 6. Relationship between the block number and the gene conversion rate 578 

in GJ, XI-MH63, and XI-ZS97. 579 

Supplemental Table 7. Relationship between the block length and the gene conversion rate 580 

in the three rice subspecies genomes. 581 

Supplemental Table 8. GO analysis of gene conversion and non-gene conversion in GJ, 582 

XI-MH63, and XI-ZS97. 583 

Supplemental Table 9. NBS-LRR gene counts by chromosome in GJ, XI-MH63, and 584 

XI-ZS97. 585 

Supplemental Table 10. GO annotation analysis of NBS-LRR genes in GJ, XI-MH63, and 586 
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Legends 596 

Table 1. Converted paralogs in GJ and XI genomes (XI-MH63 and XI-ZS97). 597 

 598 

Table 2. Relationship between gene physical location and gene conversion 599 

 600 

Table 3. Nucleotide substitution rates of quartets in rice subspecies 601 

 602 

Table 4. Function comparison of genes subjected to conversion or not in GJ, XI-MH63, and 603 

XI-ZS97. 604 

 605 

Figure 1. Genome duplications and conversion patterns in three rice subspecies genomes. 606 

Lines show duplicated gene pairs between chromosomes in three genomes. Colored lines 607 

indicate gene-conversion pairs; grey lines indicate non-gene-conversion pairs. (A) Gene 608 

duplication and gene conversion in GJ. (B) Gene duplication and gene conversion in 609 
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XI-MH63. (C) Gene duplication and gene conversion in XI-ZS97. (D) Gene duplication and 610 

gene conversion on chromosomes 11 and 12 of GJ, XI-MH63, and XI-ZS97. 611 

 612 

Figure 2. Gene conversion events were inferred by construction of homologous gene quartets 613 

and changes in phylogenetic tree topology. (A) Colinear chromosomal segments from two 614 

genomes (O and S), represented by rectangles of different colors. Arrows show genes, and 615 

homologous genes are indicated by the same color. Homologous gene quartets are formed by 616 

paralogous genes O1 and O2 in one genome and their respective orthologs S1 and S2 in the 617 

other genome. (B-E) Squares symbolize a WGD event in the common ancestral genome; 618 

circles symbolize species divergence. (B) The expected phylogenetic relationship of the 619 

homologous genes if no conversion occurs. (C) O2 (an acceptor) is converted by O1 (a 620 

donor). (D) S1 is converted by S2. (e) Both of the above conversions occur. 621 

 622 

Figure 3. Evolution of gene conversion. (A) Sequence alignment for a homologous gene 623 

quartet. The nucleotide sequence from 335 to 462 bp of Zs12g0396.01 and Zs11g0407.01 has 624 

undergone gene conversion, with Zs11g0407.01 as the donor. (B) The number of WCV and 625 

PCV events occurring in the three genomes. (C) Evolutionary tree of genes in which gene 626 

conversion has occurred. the numbers at nodes represent boostrap value. Gene conversion has 627 

occurred in Mh11g0214.01 and Oj12g0111700.00. (D) Gene conversion in species divergence 628 

events. 629 

 630 

Figure 4. Distribution of donors and receptors in the genome where gene conversion occurs. 631 

(A) Homologous distribution of donors and acceptors on chromosomes undergoing gene 632 

conversion. Curved lines within the inner circle are formed by 12 chromosomes color coded 633 

to the seven ancestral chromosomes before the WGD event common to grasses (ECH) (Wang 634 

et al., 2015). Intra-loop curves show duplicated gene pairs in GJ. The inner three circles show 635 

the relationships of orthologous gene distribution between the three genomes in which gene 636 

conversion has occurred. The outer three circles show the distribution between the three 637 

genomes undergoing gene conversion, and the inner three circles show paralogous homologs. 638 

Different colors indicate donor (orange) or acceptor (pink) loci, as well as some uncertain loci 639 

(green). (B) Local gene conversion and the distribution of donor and acceptor loci. Pink 640 
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swatches represent donor loci, orange swatches represent acceptor loci, and green swatches 641 

represent those loci where donor or acceptor status is uncertain. And Zs means XI-ZS97; Mh 642 

means XI-MH63; Oj means GJ. 643 

 644 

Figure 5. Relationship between block number and gene conversion rate on each 645 

chromosomes. (A) Relationship between block number on 12 chromosomes and gene 646 

conversion rate on the corresponding chromosomes of GJ, XI-MH63, and XI-ZS97. (B) 647 

Relationship between block number on 8 chromosomes and gene conversion rate on the 648 

corresponding chromosomes after removing the four special chromosomes (homologous 649 

chromosome pair 1-5 and homologous chromosomes pair 11-12). 650 

 651 

Figure 6. NBS-LRR gene amplification model in three rice subspecies genomes. (A-C) 652 

Distribution of NBS-LRR genes on 12 chromosomes in GJ, XI-MH63, and XI-ZS97. Green 653 

curved lines within the inner circle connect homologous pairs of NBS-LRR genes on the 12 654 

chromosomes. Green blocks indicate NBS-LRR genes; red lines between NBS-LRR genes 655 

indicate Ks < 0.1, yellow lines indicate 0.1 < Ks < 0.2, and blue lines indicate Ks < 1. (D) 656 

Relationship between NBS-LRR genes and gene conversion in regions with more than 1% of 657 

the NBS-LRR genes in the three genomes. 658 

  659 
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Table 1. Converted paralogs in GJ and XI genomes (XI-MH63 and XI-ZS97). 864 

 GJ 

XI-MH63 XI-ZS97 

Period A
1
 Period B

2
 Total Period A

1
 Period B

2
 Total 

Paralogs 3332 3322 3254 

WCV-I 11 (2.76%) 7 (1.72%) 1 (1.28%) 8 (1.72%) 7 (1.79%) 1 (1.27%) 8 (1.71%) 

WCV-II 168 (42.21%) 173 (42.51%) 1 (1.28%) 174 (37.34%) 175 (44.76%) 2 (2.53%) 177 (37.82%) 

PCV 259 (65.08%) 250 (61.43%) 77 (98.72%) 312 (66.95%) 251 (61.22%) 77 (97.47%) 310 (66.24%) 

On chromosomes 11 and 12  64 (16.08%) 63 (15.48%) 17 (21.79%) 76 (16.31%) 57 (14.58%) 8 (10.13%) 64 (13.68%) 

All gene conversions 398 407 78 466 391 79 468 

Conversion rate 0.119 0.123 0.023 0.140 0.120 0.024 0.144 

Note: 1Gene conversion events occurred after the formation of the XI subspecies but before the formation of XI varieties XI-MH63 and XI-ZS97. 865 

2Gene conversion events occurred after the formation of XI varieties (XI-MH63 and XI-ZS97). 866 

 867 
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Table 2. Relationship between gene physical location and gene conversion 868 

Distance to telomere <2 Mbp 2-4 Mbp 4-6 Mbp 6-8 Mbp 8-10 Mbp >10 Mbp Total 

GJ 

All converted 119 (17.20%) 60 (13.02%) 71 (15.78%) 25 (8.42%) 12 (8.45%) 478 (11.16%) 765 (12.09%) 

Paralogous genes 692 461 450 297 142 4283 6326 

XI-MH63  

All converted 148 (25.34%) 74 (20.00%) 68 (23.78%) 35 (18.52%) 8 (7.92%) 576 (17.11%) 909 (18.57%) 

Paralogous genes 584 370 286 189 101 3366 4896 

XI-ZS97 

All converted 139 (20.59%) 76 (16.03%) 70 (18.57%) 37 (14.98%) 12 (9.16%) 578 (16.14%) 912 (16.62%) 

Paralogous genes 675 474 377 247 131 3581 5486 
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 869 

Table 3. Nucleotide substitution rates of quartets in rice subspecies 870 

Paralog 

XI-MH63 XI-ZS97 GJ 

Pn Ps Pn/Ps Pn Ps Pn/Ps Pn Ps Pn/Ps 

Gene conversion 0.180 0.444 0.405 0.179 0.448 0.400 0.198 0.456 0.434 

No gene conversion 0.234 0.486 0.481 0.235 0.486 0.484 0.253 0.509 0.497 

P-value 1.82×10-18 8.73×10-9 - 7.81×10-20 1.25×10-7 - 3.71×10
-26

 8.00×10
-20

  

Orthologs 

XI-MH63 vs. GJ XI-ZS97 vs. GJ XI-MH63 vs. XI-ZS97 

Pn Ps Pn/Ps Pn Ps Pn/Ps Pn Ps Pn/Ps 

Gene conversion 0.049 0.076 0.645 0.053 0.085 0.624 0.055 0.100 0.550 

No gene conversion 0.023 0.036 0.639 0.025 0.038 0.658 0.014 0.022 0.636 

P-value 5.61×10-19 9.63×10-23 - 1.76×10-21 1.23×10-27  6.25×10-20 2.58×10-31 - 

 871 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424042
http://creativecommons.org/licenses/by/4.0/


 

 34 

Table 4. Function comparison of genes subjected to conversion or not in GJ, XI-MH63, and XI-ZS97. 872 

GO level2 

GJ XI-MH63 XI-ZS97 

cv vs. non-cv1 P-value cv vs. non-cv1 P-value cv vs. non-cv1 P-value 

Catalytic activity 31.4:25.5 0.001 32.5:26.4 <0.001 33.6:26.1 <0.001 

Binding 38.8:35.5 0.083 39.9:37.7 0.199 39.6:38.1 0.412 

Metabolic process 37.7:27.7 <0.001 36.8:29.6 <0.001 37.4:29.4 <0.001 

Cellular process 28.9:24.0 0.003 28.0:26.2 0.262 27.4:25.8 0.32 

Note: 1Proportion of converted genes vs. proportion of non-converted genes. 873 
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C D

A B

Figure 1. Genome duplications and conversion patterns in three rice subspecies genomes. 
Lines show duplicated gene pairs between chromosomes in three genomes. Colored lines 
indicate gene-conversion pairs; grey lines indicate non-gene-conversion pairs. (A) Gene 
duplication and gene conversion in GJ. (B) Gene duplication and gene conversion in 
XI-MH63. (C) Gene duplication and gene conversion in XI-ZS97. (D) Gene duplication and 
gene conversion on chromosomes 11 and 12 of GJ, XI-MH63, and XI-ZS97.
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Figure 2. Gene conversion events were inferred by construction of homologous gene quartets and 
changes in phylogenetic tree topology. (A) Colinear chromosomal segments from two genomes (O 
and S), represented by rectangles of different colors. Arrows show genes, and homologous genes 
are indicated by the same color. Homologous gene quartets are formed by paralogous genes O1 
and O2 in one genome and their respective orthologs S1 and S2 in the other genome. (B-E) 
Squares symbolize a WGD event in the common ancestral genome; circles symbolize species di-
vergence. (D) The expected phylogenetic relationship of the homologous genes if no conversion 
occurs. (C) O2 (an acceptor) is converted by O1 (a donor). (D) S1 is converted by S2. (E) Both of occurs. (C) O2 (an acceptor) is converted by O1 (a donor). (D) S1 is converted by S2. (E) Both of 
the above conversions occur.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.424042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.424042
http://creativecommons.org/licenses/by/4.0/


all
PCV
WCV

GJ XI-MH63 XI-ZS97

A

B

D

C

Figure 3. Evolution of gene conversion. (A) Sequence alignment for a homologous gene 
quartet. The nucleotide sequence from 335 to 462 bp of Zs12g0396.01 and Zs11g0407.01 
has undergone gene conversion, with Zs11g0407.01 as the donor. (B) The number of 
WCV and PCV events occurring in the three genomes. (C) Evolutionary tree of genes in 
which gene conversion has occurred. the numbers at nodes represent boostrap value. 
Gene conversion has occurred in Mh11g0214.01 and Oj12g0111700.00. (D) Gene conver-
sion in species divergence events.
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Figure 4. Distribution of donors and receptors in the genome where gene conversion 
occurs. (A) Homologous distribution of donors and acceptors on chromosomes undergoing 
gene conversion. Curved lines within the inner circle are formed by 12 chromosomes color 
coded to the seven ancestral chromosomes before the WGD event common to grasses 
(ECH) (Wang et al., 2015). Intra-loop curves show duplicated gene pairs in GJ. The inner 
three circles show the relationships of orthologous gene distribution between the three ge-
nomes in which gene conversion has occurred. The outer three circles show the distribution 
between the three genomes undergoing gene conversion, and the inner three circles show between the three genomes undergoing gene conversion, and the inner three circles show 
paralogous homologs. Different colors indicate donor (orange) or acceptor (pink) loci, as 
well as some uncertain loci (green). (B) Local gene conversion and the distribution of donor 
and acceptor loci. Pink swatches represent donor loci, orange swatches represent acceptor 
loci, and green swatches represent those loci where donor or acceptor status is uncertain. 
And Zs means XI-ZS97; Mh means XI-MH63; Oj means GJ.
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A

Figure 5. Relationship between block number and gene conversion rate on each chromo-
somes. (A) Relationship between block number on 12 chromosomes and gene conversion 
rate on the corresponding chromosomes of GJ, XI-MH63, and XI-ZS97. (B) Relationship 
between block number on 8 chromosomes and gene conversion rate on the corresponding 
chromosomes after removing the four special chromosomes (homologous chromosome 
pair 1-5 and homologous chromosomes pair 11-12).
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Figure 6. NBS-LRR gene amplification model in three rice subspecies genomes. (A-C) 
Distribution of NBS-LRR genes on 12 chromosomes in GJ, XI-MH63, and XI-ZS97. Green 
curved lines within the inner circle connect homologous pairs of NBS-LRR genes on the 12 
chromosomes. Green blocks indicate NBS-LRR genes; red lines between NBS-LRR genes 
indicate Ks < 0.1, yellow lines indicate 0.1 < Ks < 0.2, and blue lines indicate Ks < 1. (D) 
Relationship between NBS-LRR genes and gene conversion in regions with more than 1% 
of the NBS-LRR genes in the three genomes.
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