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Abstract 

Background: Variation in mitochondrial DNA (mtDNA) identified by genotyping microarrays or 

by sequencing only hypervariable regions of the genome may be insufficient to reliably assign 

mitochondrial genomes to phylogenetic lineages or haplogroups. This lack of resolution can 

limit functional and clinical interpretation of a substantial body of existing mtDNA data. To 

address this limitation, we developed and evaluated a method for imputing missing mtDNA 

single nucleotide variants (mtSNVs) that uses a large reference alignment of complete mtDNA 

sequences. The method and reference alignment are combined into a pipeline, which we call 

MitoImpute. 

 

Results: We aligned the sequences of 36,960 complete human mitochondrial genomes 

downloaded from GenBank, filtered and controlled for quality. These sequences were 

reformatted for use in imputation software, IMPUTE2. We assessed the imputation accuracy of 

MitoImpute by measuring haplogroup and genotype concordance in data from the 1,000 

Genomes Project and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The mean 

improvement of haplogroup assignment in the 1,000 Genomes samples was 42.7% (Matthew’s 

correlation coefficient = 0.64). In the ADNI cohort, we imputed missing single nucleotide 

variants.  

 

Conclusions: These results show that our reference alignment and panel can be used to impute 

missing mtSNVs in exiting data obtained from using microarrays, thereby broadening the scope 

of functional and clinical investigation of mtDNA. This improvement may be particularly useful 

in studies where participants have been recruited over time and mtDNA data obtained using 

different methods, enabling better integration of early data collected using less accurate 

methods with more recent sequence data.  

 

Keywords: Mitochondrial DNA; Imputation; reference panel 
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Background 

Variation in mitochondrial DNA (mtDNA) is of interest because it is informative about human 

evolution [1] and because it is sometimes associated with disease [2]. Because human 

mitochondrial genomes do not recombine, the relationships among them can be described by a 

single phylogenetic tree. They can thus be grouped by the phylogenetic lineages to which they 

belong, into so-called haplogroups. In this system of evolutionary classification, genomes that 

belong to deeply divergent lineages form major haplogroups, with minor haplogroups 

corresponding to more recently diverged lineages.  

 

In some studies, mtDNA is not fully characterised by whole genome sequencing, but rather by 

single nucleotide variants (mtSNVs) identified at predetermined sets of mitochondrial genome 

sites using microarrays. Partial mtSNV data obtained using such microarrays may be insufficient 

for reliable haplotype assignment of mitochondrial genomes. Reliable classification of mtSNV 

data is important because haplogroup classification is often used in population genetic studies 

and clinical investigations of associations between mitochondrial genomes and disease [3].  

 

In addition, not all microarrays are designed to assay variation at the same sites in the human 

mitochondrial genome. Inconsistencies in the design of microarrays used in different studies 

can result in mtSNV datasets that are partially incompatible, making it difficult to combine them 

for joint analysis.  

 

The duel problems of inaccurate haplotype assignment and incompatibility of data from studies 

that use different microarrays can be resolved by imputing mtSNVs at missing sites from a 

representative reference panel of human mitochondrial genome sequences. For incomplete 

mitochondrial genome sequence data, the base states (A, C, G, T) of missing nucleotide sites 

can be imputed by estimating their probabilities from the co-occurrence, as haplotypes, of 

bases at sites for which data are available. Accurate estimation of these probabilities has two 

fundamental requirements: (1) An accurate multiple sequence alignment (MSA) of genome 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 23, 2020. ; https://doi.org/10.1101/649293doi: bioRxiv preprint 

https://doi.org/10.1101/649293
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

sequences; and (2) A reference panel of genome sequences that is representative of the 

population being investigated.  

 

The sequences of mitochondrial genomes vary substantially among human populations. To be 

representative, genome reference data must be obtained from the population that is the target 

of investigation. Data that is unrepresentative because it was obtained from an inappropriate 

population, can cause imputation to be biased and inaccurate [4-9]. Additional bias and 

inaccuracy may arise during construction of MSAs, which entails inserting alignment gaps (‘–’) 

between some of the nucleotides in some of the sequences being aligned – doing so accurately 

is a nontrivial challenge [10-12]. 

 

Imputation has been used to identify missing nuclear genome variants in incomplete sequence 

data using the 1,000 Genomes Project dataset [13, 14]. However, this dataset, which contains 

2,504 nuclear and mitochondrial genome sequences representing 26 populations is only 

partially representative of human genome variation, with some populations (e.g., Pacific 

Islanders, Indigenous Australians, and Central Asians) still not represented.  

 

In addition, considerable work is required to convert the 1000 Genomes Project mtSNV data 

from the format in which it has been made publicly available to a format that can be used for 

imputation. There is no published MSA of mitochondrial genomes from the 1000 Genome 

Project data or other more limited datasets (e.g., [3, 15]) that have been used for mitochondrial 

genome imputation. In addition to introducing errors, the need to recreate reference panels 

and MSAs for new studies results in a lack of the standardisation needed for comparison of 

results from different studies. 

 

Imputation of mtDNA data would be greatly simplified and the substantial existing datasets of 

incomplete mitochondrial genome sequences would be made more accessible by overcoming 

the need for: preliminary data reformatting, identification and curation of suitable reference 

data panels, and standardisation of high-quality multi-sequence alignments. 
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Here we address these challenges by creating a large (n=36,960) globally diverse MSA using 

automated alignment software and manual curation by experienced researchers. This resource 

is publicly available as a standard reference panel on GitHub. We also describe a SnakeMake 

pipeline called MitoImpute, which we developed for easy imputation of mtSNVs through the 

IMPUTE2 framework [16]. Finally, we report our evaluation of MitoImpute using in silico 

microarrays (ISMs) derived from The 1000 Genomes Project Consortium [13] whole-genome 

sequence (WGS) data, and empirical data from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) [17].  

Methods 

Reference Alignment and Reference Panel 

Whole human mtDNA sequences were downloaded from GenBank on 18 July 2018 by adapting 

the MitoMap [18] search term (Supplementary Methods). This search returned 44,299 

complete human mtDNA sequences and excluded archaic and ancient sequences (Table S1). 

Sequences were aligned to an pre-existing reference alignment (Supplementary Methods) in 

batches of 2,500 using MAFFT [19] using default settings in Geneious v10.2.6 [20]. The 

standardised site-numbering convention was maintained by including the revised Cambridge 

Reference Sequence (rCRS) [21] in both pre-existing and new reference MSAs, and by removing 

sites where gaps needed to be introduced to accommodate new sequences in the alignment. 

 

To improve the quality of the MSA, sequences with ≥5 ambiguous characters or ≥8 gaps were 

removed. This threshold was set to enable the inclusion of haplogroup B sequences, which 

averaged 7 gaps relative to other sequences. This quality filter reduced the Reference Panel to 

36,960 sequences (Table S1). To avoid adding bias to population frequency estimates, GenBank 

accessions with identical sequences were retained on the basis that they represent relatively 

common mitochondrial genomes. 
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AliStat v1.11 [22] was used to quantify the completeness of the new Reference MSA. The 

Reference Panel was created by converting the Reference MSA to formats compatible with 

IMPUTE2 [16].  

 

Validation Panel  

In silico microarrays (‘microarray’ datasets) were created by selecting only mtSNVs present in 

commercially available microarrays from the 1000 Genomes Project Phase 3 WGS data 

(n=2,535). Microarray information was obtained from strand orientation files available from the 

Wellcome Centre for Human Genetics at the University of Oxford [23], with 103 strand files 

containing mtSNVs (Table S2). Haplogroup assignment for the WGS data and the ISMs was 

performed using HaploGrep2 [24] and Hi-MC [25].  

 

Imputation 

We used the IMPUTE2 chromosome X imputation protocol [3, 16] to generated ‘imputed’ 

datasets from the microarray datasets and the reference panel. No recombination was 

assumed (i.e., a uniform recombination rate of r=0 across all sites). The Markov chain Monte 

Carlo step in IMPUTE2, which is used to account for phase uncertainty in recombining diploid 

data [16], was not used because human mitochondrial genomes are haploid and are not known 

to recombine. Only high-quality imputed sites were retained by removing sites with an 

IMPUTE2 information score of ≤ 0.3. 

 

The effect of varying the number of sequences in the reference alignment (khap) was estimated 

by setting khap to 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 20,000, and 30,000. We tested the 

ability of our pipeline to impute rare variants by filtering the Reference Panel to exclude 

variants with minor allele frequencies (MAF) of MAF>1%, MAF>0.5% and MAF>0.1%, resulting 

in 409, 682 and 1874 mtSNVs, respectively (Table S3). With this filtering scheme, 2 of the 103 

strand files did not include any mtSNVs at MAF>1% or MAF>0.5% (Table S2). Imputation 
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accuracy was assessed using Matthews [26] Correlation Coefficient (MCC) for genotype 

concordance. Both HaploGrep2 [24] and Hi-MC [25] were used for haplogroup assignment, with 

the WGS data used as the truth set. HaploGrep2 has the advantage of covering the full scope of 

the PhyloTree haplogroup nomenclature [24, 27], including small sub-haplogroups. Hi-MC was 

developed for epidemiological research that uses high-throughput data by reducing PhyloTree 

nomenclature to 46 common haplogroups using a limited array of mtSNVs from which to assign 

haplogroups. We treated the first major sub-haplogroup of all L linages (i.e. L0), as well as HV 

and JT as macrohaplogroups. 

 

Linear mixed-model ANOVA was used to assess the meaningfulness of difference in MCC (mean 

of mtSNVs per ISM) and haplogroup assignment for different parameters tested for khap and 

MAF.  

 

Pipelines for implementing our imputation protocol and reproducing our results were initially 

created in BASH shell scripts then lifted over into SnakeMake [28] for the MitoImpute pipeline. 

 

Results 

Reference Alignment and Reference Panel 

To comply with minimum reporting standards for MSAs, completeness metrics of the Reference 

MSA were computed (Table 1). As described in Wong, Kalyaanamoorthy [22], Ca is the 

completeness of the MSA, Cr is the completeness of the r
th

 sequence, Cc is the completeness of 

the c
th

 site, and Cij is the completeness of the i
th

 and j
th

 sequences. Overall, the Reference MSA 

is highly complete (Ca > 0.99). Individual sequences are also mostly complete (Cr), with the least 

complete sequence containing completely-specified nucleotides at 91% of its sites and the most 

complete sequence containing completely-specified nucleotides at all of its sites. The least 

complete site in the MSA contained completely-specified nucleotides in 44.3% of sequences, 

and the most complete sites had completely-specified nucleotides in all of the sequences. The 
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proportion of homologous sites with completely-specified nucleotides at in both sequences (Cij) 

ranged from 83% so 100%, suggesting that the majority of sequence pairs contain enough 

information to quantify evolutionary distances. Sites and sequences missing a substantial 

number of nucleotide states were removed in the filtration processes as described in the 

Methods section.  

 

GenBank metadata on geographic provenance was available for 7,128 (19.3% filtered and 

16.1% unfiltered) sequences in the Reference Panel, from 49 countries and 54 sub-country 

regions (Table S4). These regions included smaller ethnic groups such as Yami Taiwanese, 

Moroccan Berbers, Pacific Islanders, Indigenous Australians, and people from Central Asia and 

Siberia. For sequences with provenance information, there is, however, a distinct bias towards 

Europe (3,855; 54.1%; 10.4% filtered; 8.7% unfiltered) and East Asia (2,065; 29.0%; 5.6% 

filtered; 4.7% unfiltered).  

 

All major haplogroups are represented in the Reference Panel (Figure 1, Table S1), including 

rare haplogroups such as haplogroup S, which is endemic to Indigenous Australians, haplogroup 

L5, which is found in Mbuti Pygmies, haplogroup L6, which is found in low frequencies in Yemen 

and Ethiopia, and haplogroups O and Q, which are found exclusively in the Pacific Islands. 

Haplogroup B was the haplogroup most frequently removed by the quality control filter (3,395 

or 46% of all 7,339 removed sequences), leaving only 273 haplogroup B sequences. Haplogroup 

H was also heavily filtered following quality control (1,376; 19%), but remained well 

represented in the final reference panel (n=7,644). Only a small fraction of other haplogroups 

were removed during quality control. 

In silico Microarrays 

Parameter Tuning 

We measured imputation accuracy of genotypes using the Matthews [26] Correlation 

Coefficient (MCC). To summarise MCC values, we calculated the mean MCC across all imputed 

sites, then compared the estimated marginal means using a linear mixed-model ANOVA. Our 
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results show that the Reference Panel filtered to MAF>0.1% was the best performing 

(μ��� � 0.60), followed by MAF>0.5 (μ��� � 0.58), then by MAF>1% (μ��� � 0.57). These 

contrasts are all statistically significant (ANOVA, 	 � 0.002) (Table S5a-c). For the khap 

parameter, there was no significant pairwise differences between ���� � 100 and the other 

���� values up to 1,000. Above a ���� � 1,000, contrasts were often statistically significant 

(Table S5d-f), with larger khap parameter values performing comparatively poorly, indicating a 

reduced ability to correctly assign haplogroups for some ISMs. 

 

Imputation accuracy was also evaluated using the IMPUTE2 Info Score using the same statistical 

framework described for MCC. In contrast to MCC, the Reference Panel filtered to MAF>1% was 

the best performing (μ��	
 � 0.73), followed by MAF>0.5 (μ��� � 0.69), and MAF>0.1% 

(μ��� � 0.63). All of these contrasts are statistically significant (ANOVA, 	 � 0.0001) (Table 

S6a-c). Starting at ���� � 1,000, pairwise comparison of larger khap values become statistically 

significant, suggesting a meaningful difference in mean haplogroup concordance becomes 

apparent when more reference haplotypes are included. 

 

Imputation accuracy was further evaluated by determining whether haplogroup assignments 

were concordant between imputed sequenced datasets. As HaploGrep2 assigns haplotypes to 

very specific sub-haplogroups, we measured concordance using the sub-haplogroups in 

addition to macrohaplogroups. We found that sub-haplogroup concordance decreased slightly 

for MAF>1% (-2.5%) and MAF>0.5% (-0.6%), and only slightly increased using MAF>0.1% (1.4%). 

Statistical significance is observed between all these comparisons (Table S7a-c). The differences 

between khap parameters settings were more pronounced, with all khap parameter values 

showing a decrease in concordance (Table S7d-f), likely because all khap experiments used the 

Reference Panel filtered at MAF>1%. Larger khap parameter values performed more poorly than 

smaller values.  

 

Macrohaplogroup concordance increased only slightly following imputation. There was no 

statistically significant difference between any of the MAF thresholds, although there was a 
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slight increase in accuracy with decreasing MAF (0.8% to 2.2%, ANOVA 	 � 0.09). Reference 

haplotype parameter values from ���� � 100 to ���� � 1,000 exhibit minor increases in 

performance, with larger khap parameter values leading to relatively poorer imputation 

performance (Table S8d-f). We note, however, that the mean macrohaplogroup concordance in 

the ISM data was already >86.7%. 

 

Additionally, we evaluated whether the HaploGrep2 haplogroup quality score improved 

following imputation. There was no significant difference in haplogroup quality score between 

MAF thresholds (ANOVA, 	 � 0.56); however, on average there was a small decrease in the 

quality score (0.6%-0.8%) (Table S9a-c). The parameter values for the number of included 

reference haplotypes showed statistical differences starting at the contrast ���� � 100 to 

���� � 1,000, with imputation accuracy decreasing at higher khap parameter values (Table S9d-

f). 

 

Improvements in Haplogroup concordance was also evaluated using Hi-MC to assign 

haplogroups. Following imputation, there was a mean increase (31.2%-32.5%) in accuracy of 

haplogroup assignment across different Reference Panel MAF thresholds. However, there was 

no statistically significant difference between these MAF thresholds (ANOVA, 	 � 0.83) (Table 

S10a-c). With an increase in the khap parameter, a decrease in accurate haplogroup assignment 

was observed, with contrasts at ���� � 100 to ���� � 2,500 becoming statistically significant. 

These patterns were observed when macrohaplogroups were examined (Table S11a-f). On 

average, haplogroup concordance ranged from 16.7%-21.0%, while macrohaplogroup 

concordance ranged from 88.0%-88.4% 

 

Taken together, these findings indicate optimum values of ���� � 500 for the number of 

reference haplotypes, and MAF>0.1% for the minor allele frequency threshold of the Reference 

Panel.  
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Overall Microarray Performance 

Using our recommended settings (���� � 500, MAF>0.1%), most genotypes were successfully 

imputed in most cases, with μ��� � 0.618 (95% ���� !"��"  �#"$%&' ()*+  �  0.615, 0.620). 

The best performing chip was the GSA-24v2-0_A1-b37 (,)) � 0.658; 95%)* � 0.636, 0.681), 

and the worst performing chip was the HumanOmni2.5S-8v1_B-b37 (,)) � 0.381; 95%)* �

0.320,0.441) (Table S12). 

 

On average, macrohaplogroups assigned using HaploGrep2.0 from imputed data were 

concordant with the truth set 88.2% of the time (95%)* � 88.1%, 89.4%). The GSAMD-24v2-

0_20024620_A1-b37 was the best performing ISM in terms of HaploGrep macrohaplogroup 

concordance (99.4%;  95%)* � 99.2%, 99.7%), while the InfiniumImmunoArray-24v2-0_A-

b37 was the worst performing ISM (10.8%; 95%)* � 9.6%, 12.0%). On average there was an 

improvement in concordance of 1.5%. HumanOmni2.5S-8v1_B-b37 had the largest 

improvement (24.4%). HumanOmni5-4v1_B-b37 was the worst performing ISM, with a 13.6% 

decrease in concordance (Table S12).  

 

On average, macrohaplogroups assigned using Hi-MC from imputed data were concordant with 

the truth set 91.8% of the time (95%)* � 91.7%, 91.9%). BDCHP-1X10-

HUMANHAP240S_11216501_A-b37 was the best performing ISM in terms of Hi-MC 

macrohaplogroup concordance (99.9%, 95%)* � 99.8%, 100%/, and 

InfiniumOmniZhongHua-8v1-3_A1-b37 was the worst performing (28.6%; 95%)* �

26.9%, 30.4%). The overall increase in improvement was 24.9% (Table S12), with the 

HumanOmni5-4v1-1_A-b37 the best performing chip, increasing 43.6%, and HumanOmni1-

Quad_v1-0_B-b37 the worst performing, showing a 32.8% decrease in concordance.  

Overall Haplogroup Concordance 

Concordance of individual haplogroups was estimated at the macro-haplogroup level using 

HaploGrep2.0 and Hi-MC. Before imputation, less than 50% of sequences from 

macrohaplogroup V were assigned to their connect macrohaplogroup by HaploGrep2.0 (Table 
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S13a), and less than 50% of sequences from macrohaplogroups H, HV, I, M, V, W, X were 

assigned to their correct macrohaplogroup by Hi-MC (Table S13b). Imputation accuracy as 

measured by macrohaplogroup concordance using HaploGrep2.0 showed a difference with the 

ISM dataset ranging from a decrease of 16.6% (HV) to an increase of 52.9% (V). With the 

exception of L5, all African macrohaplogroups showed a slight decrease (3.12%-0.18%). For the 

Native American-associated macrohaplogroups, only B showed a decrease (5.02%). Among the 

East Asian-associated macrohaplogroups, G, N, and Z showed a decrease (0.88%-7.42%). 

Among the Euro-Indian-associated macrohaplogroups, H, J, and U showed a decrease (0.14%-

1.82%). Imputation accuracy as measured by macrohaplogroup concordance using Hi-MC 

showed a difference with the ISM dataset from a decrease of 15.7% (B) to an increase of 89.9% 

(M). All African macrohaplogroups showed a slight decrease (8.9%-0.64%). The Native 

American-associated macrohaplogroups, B and C showed a decrease (0.15%-15.7%). Among the 

East Asian-associated macrohaplogroups, only N showed a decrease (6.5%). Among the Euro-

Indian associated macrohaplogroups, only U showed a decrease (0.8%). However, it should be 

noted that Hi-MC did not detect any presence of macrohaplogroups F, G, L4, L5, Y, or Z. 

Alzheimer’s Disease Neuroimaging Initiative 

We applied MitoImpute to data from 258 participants in the ADNI study, who had provided 

both WGS [29] and microarray data [17] (Table S14). The ADNI microarray data were mapped to 

the rCRS and following imputation sites with an IMPUTE2 info score ≤ 0.3 were discarded. Both 

HaploGrep2 [24] and Hi-MC [25] were used to assign haplogroups to the WGS, microarray, and 

imputed data. Genotypes were moderately successfully imputed, as measured by MCC 

(μ��� � 0.322;  95%)* � 0.294,0.350). This is in contrast with the ISM for the chip with which 

ADNI was genotyped (Illumina Human610-Quad BeadChip, Human610-Quadv1_B-b37, 

μ��� � 0.606;  95%)* � 0.576,0.637). 

 

Using HaploGrep2.0, the correct macrohaplogroup to 95.7% of samples for the microarray data, 

which improved to 97.7% after imputation. Macrohaplogroup V showed any improvement of 

66.7%, whereas all other macrohaplogroups showed no change, with the exception of H, which 
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showed a 0.9% decrease (Table S15a). The corresponding improvement using Hi-MC was 37.9% 

to 95.0%. Macrohaplogroups A, H, J, JT, M, N, V, W, and X all showed improvements, ranging 

from 27.2% to 100% (Table S15b). The results for macrohaplogroups M, V, W, and X, are 

particularly noteworthy since they had no correct assignments prior to imputation. 

Macrohaplogroup HV remained at 0% concordance before and after imputation.  

Discussion 

Investigations into the genetic basis of human mitochondrial disease and of evolutionary 

history rely on the accurate alignment of homologous nucleotide positions, and complete 

mtDNA sequences [30]. These two factors, in turn, benefit from globally diverse sequences 

being included in MSAs used in these investigations. The imputation of missing variants can 

mitigate datasets of incomplete mtSNVs; however, accurate alignment of sequences and 

consistent placement of gap character states is fraught with difficulty and time consuming for 

even experienced bioinformaticians [10]. Lack of publicly available reference MSAs and 

reference panels, therefore, presents a limitation to researchers investigating mitochondrial 

disease or evolutionary history. We address this limitation by creating a reference MSA from 

36,960 globally diverse mtDNA sequences, which was manually curated by experienced 

researchers to ensure consistency of the placement of gap character states. Aligning novel 

sequences to our reference alignment will alleviate the pressures of the alignment process by 

providing a guide for these new sequences. 

 

The reference panel we present here is globally and phylogenetically representative. Despite 

less than 20% of samples having geographic provenance metadata available, the sample that do 

contain this information suggest there are at least 103 geographic regions from 49 countries 

cover all inhabited continents. These include populations usually not represented in major 

population genetic datasets (e.g., the 1,000 Genomes Project), such as Pacific Islanders and 

Indigenous Australians. Additionally, all PhyloTree [27] macrohaplogroups are present in our 

reference alignment and reference panel. To the best of our knowledge, this is the largest and 

most genetically and geographically diverse curated mtDNA reference panel publicly available. 
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Additionally, as a curated MSA, our reference MSA can be subsampled for use in answering 

evolutionary and disease-associated research questions. Furthermore, the reference MSA can 

be used as a reference panel for the imputation of mtSNVs. This reference panel will enable 

comparison and combined analyses across datasets of differing age and completeness. The 

reference panel has been packaged into a user-friendly mtSNV imputation pipeline, 

MitoImpute. 

 

We evaluated how accurately we could impute mtSNVs using our reference panel, as measured 

by the concordance of assigned haplogroups and Matthews [26] correlation coefficient of 

genotypes. Across most ISMs, we were able to improve genotype concordance and 

macrohaplogroup assignment marginally when assigned using HaploGrep2.0 and significantly 

when using Hi-MC. As HaploGrep2.0 already accurately assigns macrohaplogroups, these 

results suggest we are successfully imputing phylogenetically informative mtSNVs. Some 

macrohaplogroups experienced marginal decreases in their correct assignment; however, this 

does not appear to be biased to any locality outside of Africa. As all haplogroups, except for 

haplogroups JT and X, experienced an average improvement >30%, this suggests that the 

reference panel is not biased towards improvement for certain lineages over others. The 

addition of new sequences to the reference panel will only further increase accurate 

haplogroup assignment in populations or mtDNA lineages that are still underrepresented. We 

also tested the practical use of our reference panel by imputing mtSNVs in the ADNI dataset, 

demonstrating that the reference panel and imputation pipeline can successfully impute 

genotypes and, in some instances, dramatically increase the correct macrohaplogroup 

assignment. Given that there are 499 samples in the ADNI genotyping dataset that were not re-

sequenced in subsequent phases, this demonstrates the utility of our reference panel for long-

term studies that need to bring their older, incomplete dataset to the same standard as newer, 

complete datasets. 
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Performance testing of the MitoImpute pipeline using ISM revealed a seemingly 

counterintuitive result, the decrease in imputation accuracy as the khap parameter increases. 

Increasing the khap parameter increases the number of haplotypes in the reference panel from 

which IMPUTE2 will impute. We suspect that increasing the number of reference haplotypes 

beyond 1,000 leads to a greater chance of mismatch between the incomplete sample 

haplotypes and the reference panel haplotypes, particularly in ISMs with few mtSNVs. 

Alternatively, highly diverse reference panels may contain a large number of haplotypes 

uninformative for imputing variants missing from the study sample, which has previously been 

noted by [31]. The limitations of the MAF and khap parameters, we suspect, is due to a dearth of 

mtSNVs in some ISMs. Datasets with a small number of variants from which to impute missing 

mtSNVs will always present this limitation, and we recommend users proceed with caution 

when using these datasets for subsequent analyses. 

 

Our reference panel provides an opportunity for datasets with limited mitochondrial genetic 

variation to be analysed with a more complete set of genetic variants and a more accurate 

assignment of haplogroups. The global disparity in medical research is evident in the high 

proportion of European individuals (~78%) association study catalogues [32]. The 1,000 

Genomes Project phase 3 includes 2,504 individuals from 26 populations, however, these 

individuals were often sampled from 1-3 cities within geographically diverse countries, such as 

China. Our reference panel contains sequences from at least 103 regions in at least 49 

countries, capturing a more globally-representative sample of mitochondrial genetic diversity. 

The diversity included in our reference panel will allow researchers to perform imputation in 

under-represented human populations, contributing to solving the disparity in medical 

genomics research. This study also highlights the imperative to include accurate and detailed 

metadata when submitting sequences to public repositories, such as GenBank. Having only 

geographic provenance metadata available for 19.3% of downloaded GenBank sequences limits 

our ability to determine regions underrepresented in DNA databases. As haplogroups are only 

useful for determining geographic provenance at a fine sub-haplogroup level [1], haplogroups 

cannot be relied on as geographic proxies. 
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Availability of source code 

Project name: MitoImpute 

Project home page: https://github.com/sjfandrews/MitoImpute 

Operating system(s): Linux; OSX 

Programming language: Python 

Other requirements: Snakemake 5.30.1 

License: MIT License 

 

Availability of supporting data 

The data set(s) supporting the results of this article is(are) available in the in MitoImpute GitHub 

repository, (10.5281/zenodo.4338785).  

Abbreviations  

ADNI: Alzheimer’s disease neuroimaging initiative   
ISMs: in silico microarrays  
MAF: Minor allele frequency  
MCC: Matthews Correlation Coefficient  
MSA: multiple sequence alignment  
mtDNA: mitochondrial DNA 
mtSNVs: mitochondrial DNA single nucleotide variants  
WGS: whole-genome sequence 
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Tables 

Table 1. AliStat completeness metrics for the Reference MSA. 

 

Feature Value(s) 

Sequences 44,299 

Sites 16,569 

Completeness Score (Ca) 0.9997 

C-score for individual sequences (Cr) [min-max] 0.9119 - 1.0000 

C-score for individual sites (Cc) [min-max] 0.4429 - 1.0000 

C-score for pairs of sequences (Cij, i≠j) [min-max] 0.8314 - 1.0000 

 

Ca: completeness of the alignment; Cr: completeness of the r
th

 sequence; Cc; completeness of 

the c
th

 site; and Cij: completeness of the i
th

 and j
th

 sequences. 
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Figures  
 

Figure 1:  Diversity of mitochondrial reference alignment. A) PCA of mitochondrial sequencies 

included in reference panel coloured by haplogroup. B) UMAP projection of mitochondrial 

sequencies. C) Phylogenetic tree of 1000 genomes mitochondrial sequences highlighting 

phylogenetic relationship between mitochondrial haplogroups. D) Projection of 1000 Genomes 

mitochondrial sequences onto the mitochondrial reference alignment. 
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Supplementary Information 

Supplementary Methods 

 

The following search term was used to identify whole human mtDNA sequences from GenBank 

on 2018-07-18:  

 

(016500[SLEN]:016600[SLEN]) AND Homo[Organism] AND mitochondrion[FILT] AND complete 

genome NOT (Homo sp. Altai OR Denisova hominin OR neanderthalensis OR heidelbergensis OR 

consensus OR ancient human remains OR shotgun) 

 

Reference Alignment 

We used publicly available PhyloTree (van Oven and Kayser, 2009) sequences to create a large (n=7,747) 

reference alignment with the revised Cambridge Reference Sequence (rCRS) (Andrews et al., 1999) site 

numbering convention. Inclusion of rCRS in  the reference alignment ensures that site numbering 

conventions are maintained and verified as new sequences are added. We aligned sequences in batches 

of 50 using the L-INS-i version of MAFFT (Katoh and Standley, 2013), then combined the batches, 

resolving inconsistent gap placements manually. rCRS site numbers were preserved by removing sites at 

which gaps were introduced in the rCRS during the alignment process. 

Supplementary Tables  

Table S1: Sequences included in the Reference Panel alignment 
 
Table S2: Strand files downloaded from the Wellcome Centre 
 
Table S3: Variable sites found in the Reference Panels at varying minor allele frequencies 
(MAF) 1%, 0.5%, and 0.1% 

 
Table S4: Summary table of geographic provenance of samples in the reference alignment and 
panel extracted from GenBank metadata. 
 
Table S5a-f: MCC genotype imputation accuracy across MAF and khap settings 
 
Table S6a-f: IMPUTE2 info score across MAF and khap settings 
 
Table S7a-f: HaploGrep2.0 haplogroup concordance across MAF and khap settings 
 
Table S8a-f: HaploGrep2.0 macrohaplogroup concordance across MAF and khap settings 
 
Table S9a-f: HaploGrep2.0 haplogroup quality score across MAF and khap settings 
 
Table S10a-f: Hi-MC haplogroup concordance across MAF and khap settings 
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Table S11a-f: Hi-MC macrohaplogroup concordance across MAF and khap settings 
 
Table S12: Per-chip performance summary using recommended parameter settings 
(MAF>0.1% and k_hap=500) 
 
Table S13a-b: Proportion of macrohaplogroups correctly assigned using HaploGrep2.0 and Hi-
MC before and after imputation 
 
Table S14: ADNI samples with genotype and whole genome sequencing data  
 
Table S15a-b: Macro-haplogroup concordance between genotyped and imputed ADNI data 
using HaploGrep2.0 and Hi-MC 
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