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Abstract 96 

Biogeographical studies have traditionally focused on readily visible organisms, but recent 97 
technological advances are enabling analyses of the large-scale distribution of microscopic 98 
organisms, whose biogeographical patterns have long been debated. Here we assessed the global 99 
structure of plankton geography and its relation to the biological, chemical and physical context of 100 
the ocean (the ‘seascape’) by analyzing metagenomes of plankton communities sampled across 101 
oceans during the Tara Oceans expedition, in light of environmental data and ocean current 102 
transport. Using a consistent approach across organismal sizes that provides unprecedented 103 
resolution to measure changes in genomic composition between communities, we report a pan-104 
ocean, size-dependent plankton biogeography overlying regional heterogeneity. We found robust 105 
evidence for a basin-scale impact of transport by ocean currents on plankton biogeography, and on 106 
a characteristic timescale of community dynamics going beyond simple seasonality or life history 107 
transitions of plankton. 108 

Main Text 109 

Plankton communities are constantly on the move, transported by ocean currents1. Transport involves 110 
both advection and mixing. While being advected by currents, plankton can be influenced by multiple 111 
processes, both physico-chemical (fluxes of heat, light and nutrients2) and biological (species 112 
interactions, life cycles, behavior, acclimation/adaptation3,4), which act across various spatial and 113 
temporal scales. In turn, plankton impact seawater physico-chemistry while they are being advected2. 114 
The community composition and biogeochemical properties of a water mass at a given site are also 115 
partially dependent on its history of mixing with neighboring water masses during transport. These 116 
intertwined processes occurring along transport by currents form the pelagic seascape5 117 
(Supplementary Fig. 1a). Due to logistical and analytical constraints, previous studies on plankton 118 
distribution have tended to be geographically or taxonomically restricted6–10, to focus on individual 119 
factors such as nutrient or light availability11,12, or have investigated the influence of transport on 120 
specific nutrients13 or types of planktonic organisms14–16. We set out to test for the first time at 121 
genomic resolution the hypotheses that a global-scale plankton biogeography exists and that it is 122 
closely linked to transport via large-scale ocean currents. To do this, we integrated metagenomic data 123 
from samples collected during the world-wide Tara Oceans expedition17 with in situ and satellite 124 
environmental metadata and large-scale ocean circulation simulations. The use of DNA as a primary 125 
proxy for global plankton diversity has several important advantages over classical morphology-based 126 
analyses, notably because methods can be standardized and applied across the entire range of 127 
plankton sizes, from viruses through prokaryotes and protists to animals.  128 

DNA sequence data was obtained from samples collected at 113 world-wide stations during the Tara 129 
Oceans expedition, including from up to six organismal size fractions: one virus-enriched (0-0.22 μm)8, 130 
one prokaryote-enriched (either 0.22-1.6 or 0.22-3 μm)18, and four eukaryote-enriched (0.8-5 μm, 5-131 
20 μm, 20-180 μm and 180-2000 μm19; Supplementary Fig. 1b). We analyzed 24.2 terabases of 132 
metagenomic sequence reads and 738 million eukaryotic 18S V9 ribosomal DNA marker sequences 133 
(Supplementary Table 1), complementing previously described Tara Oceans data8,18,19. We used 134 
metagenomic data and Operational Taxonomic Units (OTUs, representing groups of genetically 135 
related organisms) independently to compute pairwise comparisons of plankton community 136 
dissimilarity (as proxies for β-diversity). Metagenomic dissimilarity highlighted, at species and sub-137 
species resolution, differences in the genomic identity of organisms between stations. Our 138 
metagenomic sampling resulted in pairwise metagenomic dissimilarities that likely represent an 139 
overestimate of β-diversity (Supplementary Information 1). However, we applied an identical 140 
procedure to compute metagenomic dissimilarity for all size fractions (correlations among fractions 141 
ranged from Spearman’s ρ 0.6 to 0.9, p ≤ 10-4, Supplementary Fig. 2). The more thoroughly sampled 142 
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OTU dissimilarity, in contrast, incorporated more numerous rare taxa within the plankton, but at 143 
genus or higher-level taxonomic resolution19. Metagenomic and OTU dissimilarities were correlated 144 
for all size fractions (Spearman’s ρ 0.53 to 0.97, p ≤ 10-4, Supplementary Fig. 2), indicating that both 145 
proxies, although characterized by different sampling levels and taxonomic resolution, provided 146 
coherent and complementary estimates of β-diversity (Supplementary Information 1). We performed 147 
subsequent analyses using both measures, which produced consistent results. The taxonomic 148 
composition of these Tara Oceans samples, not discussed here, is instead presented in a parallel 149 
analysis20 of the spatial dynamics of planktonic eukaryotes, based on the same environmental data 150 
and large-scale ocean circulation simulations.    151 

We focus on analyses of metagenomic dissimilarity here, with accompanying results for OTU 152 
dissimilarity presented in Supplementary Figures, and validation by comparison to abundance 153 
differences among metagenome-assembled genomes21 and to more traditional imaging data 154 
presented independently below.  155 

Globally, we observed significant metagenomic dissimilarities between sampled stations (including 156 
adjacent sites) across all size fractions (Supplementary Fig. 3a, Supplementary Information 1). The 157 
resulting portrait is of a heterogeneous oceanic ecosystem at all scales separating Tara Oceans 158 
sampling sites (even those separated by only a few kilometers), dominated by a small number of 159 
abundant and cosmopolitan taxa, with a much larger number of less abundant taxa found at fewer 160 
sampling sites (Supplementary Fig. 3b-e), corroborating other studies19,20.  161 
Overlying this heterogeneity, we found robust evidence for the existence of large-scale 162 
biogeographical patterns within all plankton size classes using two complementary analyses of 163 
dissimilarity among samples (Fig. 1a, Supplementary Fig. 4a-f, Supplementary Fig. 5, Supplementary 164 
Information 2). First, we grouped metagenomic samples within each size fraction into ‘genomic 165 
provinces’ via hierarchical clustering (Supplementary Fig. 6). Second, we derived colors for each 166 
sample based on a principal coordinates analysis (PCoA-RGB; see Methods) in order to visualize 167 
transitions in community composition within and between genomic provinces. Most genomic 168 
provinces were composed of large-scale geographically contiguous stations (consistent with previous 169 
studies documenting patterns in plankton biogeography6–9) with some independent distant samples 170 
(Fig. 1a, Supplementary Fig. 4a-f). Genomic provinces of smaller plankton (viruses, bacteria and 171 
eukaryotes <20 µm) tended to be limited to a single ocean basin and to approximately correspond to 172 
Longhurst biogeochemical provinces11 (Supplementary Fig. 4a-d; Supplementary Information 3). In 173 
contrast, provinces of larger plankton (micro- and meso-plankton, >20 µm) spanned multiple basins 174 
(Supplementary Fig. 4e-f, Supplementary Information 4).  175 
These large-scale biogeographical patterns derived from metagenomes were linked to environmental 176 
parameters including nutrients and temperature. Seawater temperature was significantly different 177 
among genomic provinces for all plankton size classes (Kruskal-Wallis test, p < 10-5), corroborating 178 
previous results for prokaryotes18, whereas other environmental conditions were significantly 179 
different only with respect to specific size classes (Supplementary Fig. 7). The geography of combined 180 
nutrient and temperature variations resembled the biogeography of smaller plankton size classes (Fig. 181 
1a-b, Supplementary Fig. 4a-d,h), whereas temperature alone more closely matched the distribution 182 
of larger plankton (Supplementary Fig. 4e,f,i), potentially reflecting different ecological constraints.  183 
Many genomic provinces were spatially consistent with ocean basin-scale circulation patterns, such 184 
as western boundary currents or major subtropical gyres22 (Fig. 1a, Supplementary Fig. 4a-f), 185 
suggesting a particular role for large-scale surface transport (a core component of the seascape) in 186 
the emergence of spatial patterns of plankton community composition, as previously proposed23. We 187 
therefore investigated community metagenomic composition differences between sampled stations 188 
in light of the corresponding transit time, which has previously been suggested as the relevant factor 189 
for studying dispersal mechanisms16. We inferred the characteristic timescale of main transport paths 190 
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between stations from trajectories computed with the physically well-constrained MITgcm ocean 191 
model (see Methods), which takes into account directionalities1 and meso- to large-scale circulation, 192 
potential dispersal barriers and mixing effects24,25. For this we used the minimum travel time26 (Tmin) 193 
between pairs of Tara stations. These trajectories corresponded to the dominant paths that transport 194 
the majority of water volume and its contents (e.g., heat, nutrients and plankton; Fig. 1c). For all 195 
plankton size classes, community composition differences between stations were significantly 196 
correlated to travel time (Supplementary Fig. 8). 197 
Cumulative correlation values (correlations between metagenomic dissimilarity and Tmin computed for 198 
an increasing range of Tmin) were maximal for pairs of stations separated by Tmin <~1.5 years for all size 199 
classes, with correlation values (Spearman’s ρ 0.45 to 0.71 depending on size class, p ≤ 10-4; Fig. 2a, 200 
Supplementary Fig. 9) far exceeding those based on previous studies of morphological and/or 201 
metabarcode data15 or considering geographic distance rather than travel time27. These high 202 
correlations between metagenomic dissimilarity and Tmin for travel times up to 1.5 years hence reveal 203 
measurable plankton community dynamics on time scales far longer than typical plankton growth 204 
rates or life cycles. In contrast, no such unimodal pattern was found for correlations between 205 
metagenomic dissimilarity and geographic distance (without traversing land; Supplementary Fig. 9f). 206 
Over the timescale <~1.5 years, which corresponds well with the average time to travel across a basin 207 
or gyre, the timescale of large-scale transport is therefore an appropriate framework for studying 208 
differences in plankton genomic community composition (Fig. 2b). The fact that simulated transport 209 
times and metagenomic dissimilarity were correlated despite a 3 year pan-season sampling campaign, 210 
which could be considered to weaken our inference, suggests instead that a large-scale impact of the 211 
seascape promotes the existence of a biogeographical structure at a large spatial scale that is resilient 212 
to seasonal or other smaller spatio-temporal variations (across all size fractions, genomic provinces 213 
consist of stations sampled over an average of 4.7 ± 2.8 different months and 2.7 ± 1.2 different 214 
seasons, adjusted for hemisphere). Consistent with our results, seasonal variations have previously 215 
been shown to have minor effects on the boundary positions of biogeochemical provinces based on 216 
satellite data, but not enough to affect the overall pattern of ocean regionalization28.   217 
Differences in environmental conditions for pairs of stations also covaried (although less strongly) with 218 
transit time for Tmin <~1.5 years (Fig. 3). This indicates that changes in environmental conditions and 219 
plankton community composition are concurrent along large-scale oceanic current systems. In our 220 
data, beyond ~1.5 years of transport, correlations of Tmin with metagenomic dissimilarity decreased 221 
(Fig. 2a, Fig. 3, Supplementary Fig. 9a-e), meaning the signature of transport in generating large-scale 222 
diversity changes weakened and travel time therefore becomes a less appropriate context to study β-223 
diversity. A similar trend was observed for the correlation between Tmin and nutrient concentrations, 224 
whereas temperature, the gradients of which are mostly dictated by Earth-scale processes, remained 225 
well correlated for longer transit times (Fig. 3). 226 
 227 
Together, these analyses suggest the existence in the seascape of biogeochemical continua stretched 228 
by currents on the basin scale with predictable, interlinked changes in environmental conditions and 229 
plankton community composition (Supplementary Information 5). It has previously been posited that 230 
transport could generate continuous transitions between niches based on physical processes29, but it 231 
was not anticipated that other aspects of the seascape would be implicated and that this would occur 232 
on the scale of ocean basins or larger. Moreover, beyond ~1.5 years, the correlation of metagenomic 233 
dissimilarity with differences in temperature increased while that with differences in nutrients 234 
decreased (Fig. 3, Supplementary Fig. 9a-e), although both of these correlations with metagenomic 235 
dissimilarity remained strong on these time scales. This might be related to distant Tara Oceans 236 
stations experiencing similar oceanographic phenomena (notably temperature), for example 237 
upwelling zones, producing generally similar environmental conditions.  238 
The existence of a size-class dependent (smaller or larger than 20 µm) structure of plankton geography 239 
indicates that the continua that we observe vary among size fractions because of different reactions 240 
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of organisms within the seascape, in agreement with a parallel survey based on taxonomic groups20. 241 
In the case of the North Atlantic current system (including the Mediterranean Sea), a simple 242 
exponential fit of metagenomic dissimilarity along Tmin for Tmin <~1.5 years (Fig. 2c) revealed that the 243 
smaller size classes (<20 µm) had a shorter metagenomic turnover time (ca. 1y) than larger plankton 244 
(ca. 2y) (Supplementary Fig. 10, Supplementary Information 6). At global geographical scales, the 245 
genomic provinces of small size classes, which are enriched in phytoplankton18–20,30, corresponded in 246 
our data with differences in environmental parameters such as nutrient levels (Fig. 1b, Supplementary 247 
Fig. 7) that are often constrained by regional oceanographic processes31. On the other hand, genomic 248 
provinces of larger plankton, enriched in heterotrophic and symbiotic organisms19,20,30, were less 249 
coupled with geochemical parameters and were more related to global scale gradients and circulation 250 
patterns, notably major latitudinal temperature zones or the separation between Atlantic and Indo-251 
Pacific large-scale surface circulations (Supplementary Fig. 4e,f,i). These divergent effects were also 252 
evident in comparisons of metagenomic dissimilarity with variations in environmental conditions 253 
(Supplementary Fig. 9b). For smaller plankton, correlations with differences in nutrient concentrations 254 
were stronger for Tmin up to ~1.5 years, but for larger plankton, correlations were stronger with 255 
temperature variations for Tmin beyond ~1.5 years. Larger plankton are dominated by eukaryotes, 256 
often multicellular, with much longer life cycles, potentially leading to slower community turnover. 257 
Organisms with long life cycles, on the order of several months or years, can be transported through 258 
basins spanning multiple biogeochemical niches in which they may encounter strong environmental 259 
variability; this trend was also detected in a taxonomy-based analysis accounting for differences in 260 
both body size and ecology among groups20. As observed here, their biogeography is less affected by 261 
nutrient limitation and rather depends on large-scale temperature gradients among basins. This 262 
dependence may be linked to the known correlation between body size and organismal metabolic 263 
rate32. Conversely, variants within populations of organisms with short life cycles have the capacity to 264 
increase their relative abundance within restricted ecological niches to which they are adapted. This 265 
difference, detectable at genomic resolution, may not be picked up in analyses performed using 266 
biological traits with less resolution. These results indicate a significant size-based decoupling within 267 
planktonic food webs. For example, large size predators will encounter different prey when transiting 268 
through the genomic provinces of small sized organisms (see Supplementary Information 4). 269 
We compared our analyses of metagenomic data to those based on more traditional zooplankton 270 
imaging data collected for the same Tara Oceans samples. β-diversity calculated from zooplankton 271 
imaging was correlated with metagenomic dissimilarity (Spearman’s ρ between 0.32 and 0.60; 272 
Supplementary Fig. 2), indicating that the two data sources provide concordant measurements of 273 
variation in plankton community composition. However, correlations with ocean transport time were 274 
far weaker for zooplankton imaging data than for metagenomic data from all organismal size fractions 275 
(Supplementary Fig. 9), to the extent that we were not able to calculate community turnover times 276 
based on imaging data from the same set of stations using an exponential fit. We interpret this as 277 
being a result of the expected significantly lower resolution in imaging data as compared to 278 
metagenomic data (a similar difference of resolution in OTU data versus metagenomic data is 279 
discussed in Supplementary Information 1). Finally, we also confirmed our metagenome sequence 280 
read comparison-based results by comparing them to β-diversity among sampling sites using a 281 
collection of metagenome-assembled genomes (MAGs), which are likely to represent the most 282 
abundant genomes, from the 20-180 µm size fraction (the size fraction in which the largest proportion 283 
of metagenomic reads were mapped to MAGs, 18.4%)21. Metagenomic and MAG β-diversity were 284 
highly correlated (Spearman’s ρ 0.94) and consequently they displayed similar biogeographical 285 
patterns (Supplementary Fig. 4e,g).    286 
 287 
In this study, we provide genomic evidence for an organism-size-dependent global-scale plankton 288 
biogeography shaped by ocean currents. Using analysis of standardized metagenomic data, we reveal 289 
that the integration of seascape physical, chemical and biological processes over time and space 290 
produces a quasi-stationary biological partitioning of the oceans that supersedes short-term variability 291 
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and seasonal cycles, ultimately generating global biogeographical patterns. Future studies both on 292 
smaller spatio-temporal scales and on the global-scale constraints and influences on the seascape 293 
itself (i.e., the three-dimensional topology of the oceans) could lead to a more detailed understanding 294 
of plankton dynamics. Overall, our work shows that studies of the dynamics of plankton communities 295 
must consider the critical influence of ocean currents in stretching and altering, on the scale of basins, 296 
the distribution of both planktonic organisms and the physico-chemical nature of the water mass in 297 
which they reside. We also demonstrate that the combination of ocean circulation modeling with the 298 
use of metagenomic DNA as a tracer of plankton communities provides a resolution above the 299 
minimum necessary for assessing the role of transport in community turnover over time and space. 300 
The planktonic ecosystem is fundamentally different in many ways from other major planetary 301 
ecosystems and this study provides a basis to understand and potentially predict the structuring of 302 
the ocean ecosystem in a scenario of rapid environmental and current system changes30,33,34. 303 
 304 
 305 
 306 
Methods 307 
 308 
Sampling, sequencing and environmental parameters 309 
Sampling, size fractionation, measurement of environmental parameters and associated metadata, 310 
DNA extraction and metagenomic sequencing were conducted as described previously35,36. Samples 311 
were collected at 113 Tara Oceans stations for up to six size fractions (0-0.2, 0.22-1.6/3, 0.8-5, 5-20, 312 
20-180, 180-2000 µm; Supplementary Fig. 1b; Supplementary Table 1) and two depths (subsurface 313 
and deep chlorophyll maximum (DCM)). The prokaryote-enriched size fraction was collected either a 314 
0.22-1.6 µm or 0.22-3 µm filter18,35. For technical reasons, not all size fractions were sequenced for all 315 
stations (see Supplementary Information 7 for a summary of why this does not affect our principal 316 
conclusions). 317 
We used physico-chemical data measured in situ during the Tara Oceans expedition (depth of 318 
sampling, temperature, chlorophyll a, phosphate, nitrate + nitrite concentrations), supplemented with 319 
simulated values for iron and ammonium (using the MITgcm Darwin model described below in “Ocean 320 
circulation simulations”), day length, and 8-day averages calculated for photosynthetically active 321 
radiation (PAR) in surface waters (AMODIS, https://modis.gsfc.nasa.gov). In order to obtain PAR values 322 
at the deep chlorophyll maximum, we used the following formula37: 323 

PAR(Z) = PAR(0)*exp(-k*Z) 324 
x=log(Chl) 325 

log(Z)=1.524-0.426x-0.0145x^2+0.0186x^3 326 
k=-ln (0.01)/Z 327 

in which k is the attenuation coefficient, and Z is the depth of the DCM (in meters). Other data, such 328 
as silicate and the (nitrate + nitrite)/phosphate ratio, were extracted from the World Ocean Atlas 2013 329 
(WOA13 version 2, https://www.nodc.noaa.gov/OC5/woa13/), by retrieving the annual mean values 330 
at the closest available geographical coordinates and depths to Tara sampling stations. For 331 
temperature and nitrate + nitrite, we calculated seasonality indexes (SI) from monthly WOA13 data. 332 
For each sample, the index is the annual variation of the parameter (max - min) at this location divided 333 
by the highest variation value among all samples. 334 
A list of samples, metagenomic and metabarcode sequencing information and associated 335 
environmental data is available in Supplementary Tables 1-2. 336 
 337 
Calculation of metagenomic community dissimilarity 338 
Metagenomic community distance between pairs of samples was estimated using whole shotgun 339 
metagenomes for all six size fractions. We used a metagenomic comparison method (Simka38) that 340 
computes standard ecological distances by replacing species counts by counts of DNA sequence k-341 
mers (segments of length k). K-mers of 31 base pairs (bp) derived from the first 100 million reads 342 
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sequenced in each sample (or the first 30 million reads for the 0-0.2 µm size fraction) were used to 343 
compute a similarity measure between all pairs of samples within each organismal size fraction. Based 344 
on a benchmark of Simka, we selected 100 million reads per sample (or 30 million for the 0-0.2 µm 345 
fraction) because increasing this number did not produce a qualitatively different set of results, and 346 
to ensure that the same number of reads were used in each pairwise comparison within a size fraction. 347 
Nearly all samples in our data set had at least 100 million reads (or at least 30 million for the 0-0.2 µm 348 
fraction; Supplementary Table 1).  349 
We estimated b-diversity for metagenomic reads with the following equation within Simka: 350 

Metagenomic b-diversity = (b + c) / (2a + b + c) 351 
Where a is the number of distinct k-mers shared between two samples, and b and c are the number 352 
of distinct k-mers specific to each sample. We represented the distance between each pair of samples 353 
on a heatmap using the heatmap.2 function of the R-package39 gplots_2.17.040. The dissimilarity 354 
matrices we produced for each plankton size fraction (on a scale of 0 = identical to 100 = completely 355 
dissimilar) are available as Supplementary Tables 3-8. 356 
 357 
Calculation of OTU-based community dissimilarity 358 
Within the 0-0.2 µm size fraction, we used previously published viral populations (equivalent to 359 
OTUs)41 and viral clusters (analogous to higher taxonomic levels)8 based on clustering of protein 360 
content. For the 0.22-1.6/3 µm size fraction, we used previously derived miTAGs based on 361 
metagenomic matches to 16S ribosomal DNA loci and processed them as described18. For the four 362 
eukaryotic size fractions, we added additional samples to a previously published Tara Oceans 363 
metabarcoding data set and processed them using the same methods19 (also described at DOI: 364 
10.5281/zenodo.15600). 365 
We calculated OTU-based community dissimilarity for all size fractions as the Jaccard index based on 366 
presence/absence data using the vegdist function implemented in vegan 2.4-042 in the software 367 
package R. The dissimilarity matrices we produced for each plankton size fraction (on a scale of 0 = 368 
identical to 100 = completely dissimilar) are available as Supplementary Tables 9-14. 369 
 370 
Calculating distances of environmental parameters 371 
We calculated Euclidean distances43 for physico-chemical parameters. Each were scaled individually 372 
to have a mean of 0 and a variance of 1 and thus to contribute equally to the distances. Then the 373 
Euclidean distance between two stations i and j for parameters P was computed as follows: 374 

𝐸𝐷(𝑖, 𝑗, 𝑃) = *+,𝑥./ − 𝑥1/2
3

/∈5

 375 

 376 
RGB encoding of environmental positions  377 
We color-coded the position of stations in environmental space for Fig. 1b and Supplementary Fig. 4h 378 
as follows. First, environmental variables were power-transformed using the Box-Cox transformation 379 
to have Gaussian-like distributions to mitigate the effect of outliers and scaled to have zero mean and 380 
unit variance. We then performed a principal component analysis (PCA) with the R command prcomp 381 
from the package stats 3.2.139 on the matrix of transformed environmental variables and kept only 382 
the first 3 principal components. Finally, we rescaled the scores in each component to have unit 383 
variance and decorrelated them using the Mahalanobis transformation. Each component was mapped 384 
to a color channel (red, green or blue) and the channels were combined to attribute a single composite 385 
color to each station. The components (x, y, z) were mapped to color channel values (r, g, b) between 386 
0 and 255 as r = 128 * (1 + x / max(abs(x)), and similarly for g and b. This map ensures that the global 387 
dispersion is equally distributed across the three components and composite colors span the whole 388 
color space. 389 
 390 
Definition of genomic provinces 391 
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We used a hierarchical clustering method on the metagenomic pairwise dissimilarities produced by 392 
Simka for all surface and DCM samples, and multiscale bootstrap resampling for assessing the 393 
uncertainty in hierarchical cluster analysis. We focused on metagenomic dissimilarity due to its higher 394 
resolution, and confirmed that the patterns found in metagenomic data were consistent when using 395 
OTU data (Supplementary Fig. 5). We used UPGMA (Unweighted Pair-Group Method using Arithmetic 396 
averages) clustering, as it has been shown to have the best performance to describe clustering of 397 
regions for organismal biogeography44. The R-package pvclust_1.3-245, with average linkage clustering 398 
and 1,000 bootstrap replications, was used to construct dendrograms with the approximately 399 
unbiased p-value for each cluster (Supplementary Fig. 6). Because the number of genomic provinces 400 
by size fraction was not known a priori, we applied a combination of visualization and statistical 401 
methods to compare and determine the consistency within clusters of samples. First, the silhouette 402 
method46 was used to measure how similar a sample was within its own cluster compared to other 403 
clusters using the R package cluster_2.0.147. The Silhouette Coefficient s for a single sample is given 404 
as: 405 

s = (b - a) / max(a,b) 406 
Where a is the mean distance between a sample and all other points in the same class and b is the 407 
mean distance between a sample and all other points in the next nearest cluster. We used the value 408 
of s, in addition to bootstrap values, to partition each tree into genomic provinces (see Supplementary 409 
Information 2 for further details on statistical validation of genomic provinces). Additionally, we used 410 
the Radial Reingold-Tilford Tree representation from the JavaScript library D3.js (https://d3js.org/)48 411 
to visualize sample partitions from the dendrogram. Single samples were not considered as genomic 412 
provinces. 413 

In a complementary approach, we performed a principal coordinates analysis (PCoA) with the R 414 
command cmdscale (eig = TRUE, add = TRUE) from the package stats 3.2.139 on the matrices of 415 
pairwise metagenomic dissimilarities calculated by Simka (or OTU dissimilarity measured with the 416 
Jaccard index) within each size fraction and kept only the first 3 principal coordinates. We then 417 
converted those coordinates to a color using the RGB encoding described above, with one 418 
modification: scaling factors λr, λg and λb were calculated as the ratios of the second and third 419 
eigenvalues to the first (dominant) eigenvalue to ensure that the dispersion of stations along each 420 
color channel reproduced the dispersion of the stations along the corresponding principal component 421 
(the ratio for the color corresponding to the dominant eigenvalue is 1). The components (x, y, z) were 422 
then mapped to color channel values (r, g, b) between 0 and 255 as r = 128 * (1 + λcx / max(abs(x)), 423 
where λc is the ratio of the eigenvalue of color c to the dominant eigenvalue. 424 
We represented number and PCoA-RGB color of genomic provinces for each sample on a world map 425 
(Fig. 1, Supplementary Fig. 4a-f) generated with the R packages maps_3.0.0.249, mapproj 1.2-450, 426 
gplots_2.17.040 and mapplots_1.551. We also plotted phosphate and temperature (Supplementary Fig. 427 
4a-f) obtained from the Csiro Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using 428 
the phosphate_cars2009.nc and temprerature_cars2009a.nc files and the R package RNetCDF52. 429 
 430 
Comparison of genomic provinces to previous ocean divisions 431 
To evaluate the spatial similarity between the clusters obtained in our study for each size fraction and 432 
previous biogeographic divisions, we performed an analysis of similarity (ANOSIM, Fathom toolbox, 433 
matlab®). First, we collected coordinates for three spatial divisions at a resolution of 0.5° x 0.5°: 434 
biomes, biogeochemical provinces (BGCPs)11,28 and objective global ocean biogeographic provinces 435 
(OGOBPs)53. Second, we assigned Tara Oceans stations to biomes, BGCPs, and OGOBPs based on their 436 
GPS coordinates. Third, for each size fraction we performed an ANOSIM with the metagenomic 437 
dissimilarity matrix calculated by Simka, using biogeographic clusters (biome, BGCP, OGOBP) as group 438 
membership for each station. Each ANOSIM was bootstrapped 1,000 times to evaluate the interval of 439 
confidence around the strength of the relationships we detected (Supplementary Fig. 4a-f). 440 
 441 
Environmental differences among genomic provinces 442 
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For each size fraction, we tested which environmental parameters significantly discriminated among 443 
genomic provinces (Supplementary Fig. 7). A total of 12 parameters characterizing each sample, 444 
grouped by genomic provinces, were evaluated with a Kruskal-Wallis test within each size fraction 445 
with a significance threshold of p < 10-5. Selected parameters for each size fraction were then used to 446 
perform a principal components analysis of the samples using the R package vegan_1.17-1142. Samples 447 
were plotted with the same PCoA-RGB colors used in the genomic province maps above and each 448 
genomic province surrounded by a grey polygon. In analyses where Southern Ocean (including 449 
Antarctic) stations were considered independently from other stations, the following were considered 450 
Southern Ocean stations: 82, 83, 84, 85, 86, 87, 88, 89. 451 
 452 
Ocean circulation simulations 453 
We derived travel times from the MITgcm Darwin simulation54 based on an optimized global ocean 454 
circulation model from the ECCO2 group55. The horizontal resolution of the model was approximately 455 
18 km, with 1,103,735 total ocean cells. We ran the model for six continuous years in order to smooth 456 
anomalies that might occur during any single year. We used surface velocity simulation data to 457 
compute trajectories of floats originating in ocean cells containing all Tara Oceans stations, and 458 
applied the following stitching procedure to generate a large number of trajectories for each initial 459 
position. (The use of surface velocity data implies that Ekman transport also influences trajectories 460 
within the simulation.) 461 
First, we precomputed a set of monthly trajectories: for each of the 72 months in the dataset, we 462 
released floats in every ocean cell of the model grid and simulated transport for one month. We used 463 
a fourth-order Runge-Kutta method with trilinearly interpolated velocities and a diffusion of 100 m²/s.  464 
Second, following previous studies14, we stitched together monthly trajectories to create 10,000 year 465 
trajectories: for each float released within a 200 km radius of a Tara station, we constructed 1,000 466 
trajectories, each 10,000 years long. To avoid seasonal effects, we began by selecting a random 467 
starting month. We followed the trajectory of a float released within that month to the grid cell 468 
containing its end point at the end of the month. Next, we randomly selected a trajectory starting on 469 
the following month (e.g., February would follow January) from that grid cell, and repeated until 470 
reaching a 10,000 year trajectory. 471 
We searched the resulting 50.8 million trajectories for those that connected pairs of Tara Oceans 472 
stations. To ensure robustness of our results, we only included pairs of stations that were connected 473 
by more than 1,000 trajectories. For each pair of stations, Tmin was defined as the minimum travel time 474 
of all trajectories (if any) connecting the two stations. The travel time matrix we produced (measured 475 
in years) is available as Supplementary Table 15. Standard minimum geographic distance without 476 
traversing land56 is available as Supplementary Table 16. 477 
 478 
Correlations of β-diversity, Tmin and environmental parameters 479 
We excluded stations that were not from open ocean locations from correlation analyses to avoid 480 
sites impacted by coastal processes (those numbered 54, 61, 62, 79, 113, 114, 115, 116, 117, 118, 119, 481 
120, and 121). In analyses where Southern Ocean (including Antarctic) stations were considered 482 
independently from other stations, the following were considered Southern Ocean (including 483 
Antarctic) stations: 82, 83, 84, 85, 86, 87, 88, 89. We calculated rank-based Spearman correlations 484 
between β-diversity, Tmin and environmental parameters (either differences in temperature or the 485 
Euclidean distance composed of differences in NO3 + NO2, PO4 and Fe, see above) for surface samples 486 
with a Mantel test with 1,000 permutations and a nominal significance threshold of p < 0.01. For the 487 
correlations presented in Fig. 2a, Fig. 3 and Supplementary Fig. 9 correlation values were derived from 488 
pairs of stations connected by Tmin up to the value on the x-axis. We calculated partial correlations of 489 
metagenomic and OTU dissimilarity and Tmin by controlling for differences in temperature and for 490 
differences in nutrient concentrations, and partial correlations of dissimilarity with temperature or 491 
nutrient variation by controlling for Tmin.  492 
 493 
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Community turnover in the North Atlantic 494 
Tara Oceans stations numbered 72, 76, 142, 143, 144, and all stations from 146 to 151 were located 495 
along the main current system connecting South Atlantic and North Atlantic oceans and continuing to 496 
the strait of Gibraltar. In addition, we included stations 4, 7, 18, and 30 located on the main current 497 
system in the Mediterranean Sea (Supplementary Fig. 10). As the Tara Oceans samples within the 498 
subtropical gyre of the North Atlantic and in the Mediterranean Sea were all collected in winter, 499 
seasonal variations should not play a role in the variability in community composition that we 500 
observed (see Supplementary Table 2). We calculated genomic e-folding times (the time after which 501 
the detected genomic similarity between plankton communities changes by 63%) over scales from 502 
months to years based on an exponential fit of metagenomic dissimilarity to Tmin with the form y = C0 503 
e-x/τ  (where C0 is a constant and τ  the folding time). Exponential fits for size fractions 0-0.2 µm and 5-504 
20 µm were not calculated due to an insufficient number of sampled stations in the North Atlantic 505 
(Supplementary Information 6).  506 
The synthetic map (Supplementary Fig. 10a) was generated with the R packages maps_3.0.0.2, 507 
mapproj 1.2.4, gplots_2.17.0 and mapplots_1.5. We derived dynamic sea surface height from the Csiro 508 
Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using the hgt2000_cars2009a.nc 509 
file and plotted with the R package RNetCDF. 510 
 511 
Imaging methods 512 
Plankton were also collected using WP2 (200 µm mesh) nets, using vertical tows (0-100 m) and 513 
preserved with borax-buffered formaldehyde. Taxonomic classification was performed using the 514 
ZooScan imaging system57 and identified with an automatic recognition algorithm to the finest 515 
possible taxonomic resolution using Ecotaxa58. The resulting identifications were manually visualized 516 
by taxonomic specialists and either validated or corrected. Resolution of the taxonomic 517 
identifications depended on morphological heterogeneity within taxonomic groups. Hence, 518 
identifications reached different taxonomic levels, from species to phylum, and most of them 519 
reached family level. All images and their taxonomic assignation are accessible within Ecotaxa 520 
(https://ecotaxa.obs-vlfr.fr/prj/377). Since all genomic data were collected during day-time, we 521 
restricted our analysis on day-collected samples. We also discarded non-living objects in our 522 
analyses. We estimated β-diversity by calculating Bray-Curtis dissimilarities between pairs of stations 523 
based on the relative abundances of each annotated taxonomic unit. Bray-Curtis dissimilarities are 524 
available as Supplementary Table 17. 525 
 526 
Metagenome-assembled genomes (MAGs) analysis 527 
MAG relative abundances in metagenomic samples were retrieved from Delmont et al21. β-diversity 528 
was estimated by calculating the Bray-Curtis dissimilarities between pairs of stations based on the 529 
relative abundances of each of the 713 MAGs calculated by read mapping in the metagenomes of 530 
size fraction 20-180 µm (the size fraction in which MAGs recruit the largest relative share of all 531 
reads). We represented PCoA-RGB color of the Bray-Curtis dissimilarity matrix for each sample on a 532 
world map (Supplementary Fig. 4g) following the methodology described above. The Spearman ρ 533 
correlation coefficient was calculated between MAG-based β-diversity and metagenomic based β-534 
diversity from the size fraction 20-180 μm. MAG-derived Bray-Curtis dissimilarities for the 20-180 535 
µm size fraction are available as Supplementary Table 18. 536 
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Supplementary Information 755 
 756 
Supplementary Information 1. Comparison of metagenomes and OTUs 757 
 758 

Metagenomic comparisons reflect fine-scale differences in genome content at the community level 759 
as a function of diversity, genome size and organismal abundance, and also depend on the rate of 760 
evolution of each specific lineage. With exhaustive sampling, metagenomic dissimilarity could 761 
theoretically distinguish among genomes in a sample separated by a single mutation. However, our 762 
metagenomic sequencing level was likely not able to reach saturation due to the number of genomes 763 
per sample and their putative large size (metatranscriptomes, which contain fewer sequences per 764 
species than do metagenomes, did not reach saturation within Tara Oceans samples59). For example, 765 
if for a pair of samples we sequence 50% of the total amount of the unique genomic DNA present, we 766 
expect the maximum similarity of the two samples to be roughly 25% (0.5 x 0.5). Therefore, the 767 
pairwise metagenomic dissimilarities we calculated between samples probably reflected a 768 
combination of genomic differences weighted towards more abundant organisms. In contrast, OTUs, 769 
obtained by sequencing single marker genes, approach biodiversity saturation8,18,19. However, OTU 770 
resolution depends on the choice of the marker to be used, the threshold of similarity for the marker, 771 
and its lineage-specific substitution rate, and may therefore confound evolutionarily and/or 772 
ecologically distant organisms60–64. We observed a significant agreement between the two proxies 773 
(Supplementary Fig. 2), although dissimilarities based on OTUs were generally lower than those 774 
computed from metagenomic data (Supplementary Fig. 3a). 775 

Analyses of plankton biogeography produced consistent results based on metagenomic and OTU 776 
data (Supplementary Fig. 4, Supplementary Fig. 5, Supplementary Fig. 8, Supplementary Fig. 9). For 777 
simplicity, in the main text, we chose to highlight results based on metagenomes rather than on OTUs 778 
for three reasons. First, the metagenomic sequencing protocol and subsequent measurement of 779 
dissimilarity was uniform across size fractions, whereas OTUs were defined differently for the viral-780 
enriched, bacterial-enriched and eukaryote-enriched size fractions (Methods). Second, the 781 
biogeographical patterns we obtained (see below) may be more evident in comparisons among 782 
metagenomic sequences (our data source in identifying genomic provinces), as genomes  accumulate 783 
single-base changes and other variants more quickly than a single ribosomal gene marker. Third, β-784 
diversity estimated by metagenomic dissimilarity generally displayed higher correlation values with 785 
minimum travel time (Tmin; Supplementary Fig. 8). 786 
 787 
Supplementary Information 2. Robustness of genomic provinces 788 
 789 

We assessed the robustness of genomic provinces in five separate ways. First, we tested 5 different 790 
hierarchical clustering algorithms from the R-package pvclust_1.3-245 (UPGMA - Unweighted Pair 791 
Group Method with Arithmetic mean; McQuitty’s method; Complete linkage; Ward’s method; Single 792 
linkage) on the metagenomic pairwise dissimilarities produced by Simka separately for the six 793 
organismal size fractions, followed by multiscale bootstrap resampling. We used the cophenetic 794 
correlation coefficient from the R-package dendextend_1.5.265 to measure how accurately the 795 
dendrograms produced by each method preserved the pairwise distances within the input 796 
dissimilarity matrices66,67. The ranking of the cophenetic correlation coefficient for different clustering 797 
methods within each size fraction (Supplementary Table 19) was consistent with a published large-798 
scale methodological comparison of clustering methods for biogeography, which considered UPGMA 799 
agglomerative hierarchical clustering to have consistently the best performance44. Second, we 800 
compared clustering results among all size fractions using Baker’s Gamma Index68 from the R-package 801 
corrplot_0.7769, which is a measure of association (similarity) between two trees based on hierarchical 802 
clustering (dendrograms). The Baker’s Gamma Index is defined as the rank correlation between the 803 
stages at which pairs of objects combine in each of the two trees. For each type of correlation, the 804 
UPGMA was consistently the most correlated with other clustering methods (Supplementary Table 805 
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20). This allowed us to conclude, in agreement with previous results44, that the UPGMA method is 806 
likely more robust than the other methods we tested. 807 

Third, we compared the genomic provinces found by our UPGMA hierarchical clustering approach 808 
to those found by two different non-hierarchical methods: K-means on the positions found by 809 
multidimensional scaling and spectral clustering on the nearest-neighbor graph. Both methods rely on 810 
(i) a dissimilarity matrix and (ii) a tuning parameter (dimension of the projection space for K-means, 811 
and number of neighbors for spectral clustering). K-means uses the numeric values of the 812 
dissimilarities, whereas spectral relies only on their ordering (e.g., community A is closer to B than to 813 
C). We compared the genomic provinces to clusters found by K-means and spectral clustering for all 814 
values of the tuning parameter using the Rand Index (RI; from the GARI function of the loe R package 815 
version 1.170), a score of agreement between partitions. Results are reported as mean +/- s.d. of the 816 
RI: 1 means perfect agreement and 0 complete disagreement. Fourth, in order to assess the 817 
significance of the genomic provinces, we performed a multivariate ANOVA to partition metagenomic 818 
dissimilarity across regions, using the adonis function of the vegan R package version 2.5-442. Note, 819 
however, that since the same data were used both to construct the genomic provinces and to assess 820 
their significance, the p-values estimated by ADONIS might be anti-conservative. The results of the 821 
third and fourth analyses are presented in Supplementary Table 21. 822 

Fifth, we found that clustering of samples in genomic provinces was consistent with a 823 
complementary visualization based on the same data: RGB colors derived from the first three axes of 824 
a principal coordinates analysis (PCoA-RGB) of β-diversity, in which similar colors represent similar 825 
communities (Supplementary Fig. 4; see Methods). Samples within the same genomic province 826 
generally shared the same range of PCoA-RGB colors. Because the clustering approach was 827 
hierarchical, samples sharing some similarity could have been assigned to different genomic provinces 828 
due to binary decisions during the clustering process. This was also reflected in the PCoA-RGB colors, 829 
where the boundaries of genomic provinces did not indicate a complete change of communities 830 
among genomic provinces (and, conversely, belonging to the same genomic province did not imply 831 
identical communities). Nonetheless, samples with similar PCoA-RGB colors were generally situated 832 
in closely-related branches in the UPGMA tree (Supplementary Fig. 6). An illustrative example is 833 
genomic province F5 (of the 180-2000 µm size fraction; Supplementary Fig. 4f), which encompassed 834 
stations in the Atlantic, Mediterranean Sea and some subtropical stations in the Indo-Pacific. In this 835 
wide region, the PCoA-RGB colors indicate the variation in community composition within the 836 
genomic province, and also reflect the relatedness of F5 to its adjacent samples, in particular those in 837 
the subtropical Atlantic/Pacific region F4, its neighbor in the UPGMA tree (Supplementary Fig. 6f). 838 

 839 
Supplementary Information 3. Comparison of genomic provinces to previous biogeographical 840 
divisions 841 
 842 

Current approaches in biogeographic theory divide the ocean into regions based either on expert 843 
knowledge applied to satellite data, as in the hierarchical nesting by Longhurst11 into biomes (macro-844 
scale, essentially representing a division of the world’s oceans into cold and warm waters, and coastal 845 
upwelling zones) and biogeochemical provinces (BGCPs, areas within biomes defined by observable 846 
boundaries and predicted ecological characteristics), or, alternatively, into the objective provinces of 847 
Oliver and Irwin53, which are based solely on statistical analyses. Longhurst BGCPs are based upon, 848 
primarily, monthly variations of chlorophyll a, the geography of the seasonal cycle of physical factors 849 
(such as the depth of the upper ocean mixed layer) and surface temperatures. In turn, these ocean 850 
properties are strongly modulated by oceanic currents (for example, moderate to large mixed layer 851 
depths are observed generally on the poleward side of the subtropical gyres). In contrast, the objective 852 
global ocean biogeographic provinces proposed by Oliver and Irwin53 were based upon clustering 853 
temporal variability of chlorophyll concentration and surface temperatures, both measured from 854 
satellite data. They combined a proxy for the intensity of primary productivity with water 855 
temperature, therefore emphasizing regions similar in their temporal variability for both properties 856 
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(which essentially corresponds to the seasonal cycle). None of these ocean partitionings directly 857 
considered organismal community composition. 858 

We tested whether genomic provinces were comparable with these partitionings by performing an 859 
analysis of similarity (ANOSIM; Supplementary Fig. 4a-f, insets; Methods). The four small size classes, 860 
0-0.2 µm, 0.22-1.6/3 µm, 0.8-5 µm, and 5-20 µm (Supplementary Fig. 4a-d) were more consistent with 861 
Longhurst BGCPs. In contrast, for the two larger size fractions 20-180 µm and 180-2000 µm, the three 862 
biogeographical divisions were not strongly different within the ANOSIM (Supplementary Fig. 4e-f). 863 

From an oceanographic point of view, plankton should be quasi-neutrally redistributed (i.e., 864 
homogenized) by currents and their biogeography should follow the structure of the main 865 
recirculations, within a range of physiologically compatible temperatures. In this point of view, our 866 
results are consistent with the large-scale geographic distributions found by Hellweger et al.14 using a 867 
neutral model.  868 
 869 
Supplementary Information 4. Differences in genomic province sizes among organismal size 870 
fractions 871 
 872 

Globally, we obtained more numerous, smaller genomic provinces in the smaller size fractions and 873 
fewer, larger genomic provinces in the larger size fractions (Supplementary Fig. 4, Supplementary Fig. 874 
7). We observed a similar pattern using OTU data (Supplementary Fig. 5). Whereas smaller size 875 
fractions generally lacked geographically widespread genomic provinces containing numerous Tara 876 
Oceans samples, the two largest size fractions were both characterized by two very widespread 877 
genomic provinces: F5 and F8 for the 180-2000 µm size fraction, and E5 and E6 for the 20-180 µm size 878 
fraction. These large genomic provinces were latitudinally limited by the boundary between the 879 
subtropics and subpolar regions, and spanned different oceanic basins. Notably, in the Southern 880 
Hemisphere the subtropical gyres actually form a single supergyre71 and there are almost no metabolic 881 
(mainly temperature) barriers between the northern and southern subtropical gyres (see 882 
Supplementary Fig. 4), potentially explaining genomic provinces in the 20-180 µm and 180-2000 µm 883 
size fraction that contain samples from the North and South Atlantic. For example, in the 180-2000 884 
µm size fraction, F5 mostly covered the North and South Atlantic Oceans and adjacent systems, and 885 
F8 covered the Indo-Pacific low- and mid-latitudes. No clear correspondence existed with 886 
biogeochemical patterns (e.g., nutrient ratios), except for the clusters coinciding with upwelling 887 
systems (F3 for the California upwelling, F7 for the Chile-Peru upwelling and F2 for the Benguela 888 
upwelling system) and for the samples collected at the deep chlorophyll maximum (DCM) in the Pacific 889 
subtropical gyres (F5); this is consistent with the comparison of genomic provinces to previous 890 
biographical divisions, in which the genomic provinces of smaller size fractions were more consistent 891 
with Longhurst BGCPs, but those of larger size fractions were not (Supplementary Information 3). A 892 
bimodal zooplankton species distribution (split into subtropical and subpolar communities, with 893 
ubiquitous warm water species) was also detected by a recent study on copepod population dynamics 894 
that used alternative approaches to analyze the same metagenomic dataset72 (see their Fig. 2). More 895 
locally, within the North Atlantic (see also Supplementary Information 6), along the northern 896 
boundary of the subtropical gyre, cold and warm copepod species overlapped because of cross-897 
current dispersal. Nonetheless, although both cold and warm species appeared to be able to travel 898 
long distances, mixing among them was not sufficient to create a local genomic province in our data. 899 

We interpret the difference in genomic province sizes between smaller and larger size fractions as 900 
the result of various factors. Plankton smaller than 20 µm (femto-, pico- and nanoplankton), which 901 
represent most of the prokaryotic and eukaryotic phototrophs18,19, are sensitive to a suite of 902 
environmental factors (i.e., temperature73, nutrients and trace elements2; see also Supplementary Fig. 903 
7) and generally have a shorter life cycle, together leading to faster fluctuations in their relative 904 
abundance in the communities we sampled. In contrast, larger plankton have longer life cycles and, if 905 
they are predators that are not strongly selective in their feeding, or are photosymbiotic hosts capable 906 
of partnering with multiple different symbionts, may cope with local fluctuations in environmental 907 
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conditions. Therefore, they should be affected primarily by large scale, mostly latitudinal, variations 908 
in the environment, leading to larger genomic provinces, whereas smaller plankton are grouped into 909 
smaller provinces more influenced by local environmental conditions. Overall, this difference in 910 
biogeography suggests a size-based decoupling between smaller and larger plankton (which may also 911 
extend to nekton such as tuna and billfish74), with implications for the structure and function of 912 
oceanic food webs and other types of biotic interactions. 913 
 914 
Supplementary Information 5. Genomic provinces as stable ecological continua 915 

 916 
As plankton communities are transported by ocean currents, they change over time due to the 917 

various processes that occur in the context of the seascape: variations in temperature, light and 918 
nutrients (where changes in the latter may also be induced by plankton communities), intra- and inter-919 
individual and species biological interactions, and mixing with neighboring water masses. Thus, a 920 
continuum of composition among nearby samples is expected as a natural consequence of community 921 
turnover within the seascape over time. We observed the effects of continuous turnover in our 922 
biogeographical analyses (Fig. 1a, Supplementary Fig. 4, Supplementary Fig. 5, Supplementary 923 
Information 2) in which nearby samples often reflected gradual, but not complete changes in 924 
community composition. 925 

We measured the time window of transport by currents separating two samples during which the 926 
changes in their community composition were maximally correlated with travel time, resulting in a 927 
global average of Tmin < roughly 1.5 years. This represents the travel time during which predictable 928 
continuous turnover occurs in our dataset. Notably, Tmin does not necessarily define the turnover rate 929 
itself, which depends on how strongly different seascape processes affect communities with differing 930 
biological characteristics (see Supplementary Information 6).  931 

The global ocean current system is composed of a series of large-scale main currents and 932 
associated recirculations (which are also referred to as gyres). Therefore, we present the following 933 
hypothesis as a potential explanation of our results: the average global timescale of 1.5 years is 934 
comparable to the crossing time of an ocean gyre (i.e., the amount of time it takes a water parcel to 935 
travel from one side of a gyre to the other), e.g., to cross the North Atlantic basin while riding the Gulf 936 
Stream system. This time scale of 1.5 years is probably an underestimate, since our sparse sampling 937 
did not cover all current systems. Within different systems, the transport by main currents leads to 938 
stable, continuous patterns of changes in community structure and nutrient concentrations, and also 939 
explains how temporally stable genomic provinces can exist in the face of ocean circulation. Within 940 
each system we have thus to expect that community turnover is long enough to allow for this long 941 
range predictability due to smooth, continuous changes. Significant heterogeneity in environmental 942 
conditions among different circulation patterns means that moving from system to another (and 943 
therefore, in our case here, beyond the 1.5 year timescale; Supplementary Fig. 9c-f) disrupts the 944 
interlinked relationship among local seascape processes, leading to a global delimitation into separate 945 
ecological continua among different gyre-scale current systems. 946 
 947 
Supplementary Information 6. Community turnover in the North Atlantic 948 
 949 

In order to characterize the impact of physical and biological processes on changes in metagenomic 950 
composition during travel along currents, we focused on the well-known current systems crossing the 951 
North Atlantic into the Mediterranean Sea (the Gulf Stream and other currents around the subtropical 952 
gyre22,75–77; Supplementary Fig. 10a). Across this region, the piconanoplankton (0.8-5 µm) were split 953 
into three genomic provinces, C5, C8 and C3, each less than 5,000 km wide (~11 months of travel time; 954 
Supplementary Fig. 4c). In contrast, mesoplankton (180-2000 µm) biogeography corresponded to a 955 
single province, F5, spanning from the Caribbean to Cyprus (> 9,700 km or ~18 months of travel time; 956 
Supplementary Fig. 4f; see also Supplementary Information 4). Metagenomic dissimilarity and Tmin 957 
were strongly correlated within the region (Spearman’s ρ between 0.44 and 0.86 depending on size 958 
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fraction, Supplementary Fig. 10b-e), which allowed us to explore the relationship of genomic province 959 
size, ocean transport and plankton community turnover over scales from months to years. We 960 
calculated metagenomic turnover times as e-folding times based on an exponential fit of 961 
metagenomic dissimilarity to Tmin (ranging from a few months to a few years, Methods). The 962 
metagenomic turnover time of smaller plankton (< 20 µm) was approximately one year. In contrast, 963 
for the larger size fractions, the metagenomic turnover time was approximately two years, suggesting 964 
that a lower turnover rate for larger plankton may explain their geographically larger genomic 965 
provinces. 966 

We note that our results on metagenomic turnover time appear different from a recently published 967 
study that also calculated turnover rates for plankton, which found faster rates for larger organisms15. 968 
This may be explained by two significant differences between our approach and theirs: first, their 969 
measurements of β-diversity were based on presence/absence (Jaccard) comparisons among either 970 
morphological species or OTUs, whereas our calculations of turnover time above were based on 971 
metagenomic sequences. As described above (Supplementary Information 1), there are significant 972 
differences in resolution between OTU-based and metagenomic data, and we would expect similar 973 
differences in resolution between organismal observation data and metagenomic sequences. In fact, 974 
due to these differences in resolution, our estimates of metagenomic turnover based on OTU rather 975 
than metagenomic data show a similar trend to those of Villarino et al.15 (Supplementary Fig. 10f-i). 976 
Second, their turnover rates were calculated separately for individual plankton groups (the 9 main 977 
groups were prokaryotes, coccolithophores, dinoflagellates, diatoms, all microbial eukaryotes, 978 
gelatinous zooplankton, mesozooplankton, macrozooplankton and myctophids), whereas our 979 
metagenomic data represent samples of the full plankton community within each size fraction. Among 980 
these, several groups (e.g., dinoflagellates or mesozooplankton) would be expected to be found across 981 
multiple Tara Oceans size fractions, blurring potential comparisons. Thus, our study and Villarino et 982 
al. calculated rates of change using broadly similar approaches, but based on very different underlying 983 
biological substrates.  984 
 985 
Supplementary Information 7. Plankton biogeography is robust to missing samples 986 
 987 

Although many individual Tara Oceans stations are missing metagenomic or metabarcode 988 
sequencing data for a subset of size fractions (Supplementary Fig. 1b), all oceanic regions have broad 989 
coverage for each size fraction, with the exception of the viral-enriched size fraction in the North 990 
Atlantic. In fact, the largest source of missing data in our study is due to limited sampling of the viral-991 
enriched size fraction in this region. Nevertheless, we found a pattern for organismal biogeography 992 
and for its relation with transport time that is not dependent on the size fraction, and therefore also 993 
does not depend on the particular size fractions sampled at specific set of sampling sites. In our 994 
analyses, we found a consistently similar patterns across the 4 smaller size fractions (each fraction 995 
was sampled and analyzed independently from the others) as opposed to the two larger ones. In 996 
addition, for our results relating to ocean transport time, the fact that the sampling sites are not 997 
exactly the same among size fractions actually lends robustness to our results, since it means that the 998 
dynamics we found are not overly dependent on any one selected site, region, or subset of sampling 999 
stations. 1000 
  1001 
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 1002 
Figure 1 | Plankton biogeography, environmental variation and ocean transport among Tara Oceans 1003 
stations. Major currents are represented by solid arrows. a, Genomic provinces of Tara Oceans surface 1004 
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samples for the 0.8-5 µm size fraction, each labeled with a letter prefix (‘C’ represents the 0.8-5 µm size 1005 
fraction) and a number; samples not assigned to a genomic province are labeled with ‘-’. Maps of all six size 1006 
fractions and including DCM samples are available in Supplementary Fig. 4. Station colors are derived from an 1007 
ordination of metagenomic dissimilarities; more dissimilar colors indicate more dissimilar communities (see 1008 
Methods). b, Stations colored based on an ordination of temperature and the ratio of NO3 + NO2 to PO4 1009 
(replaced by 10-6 for 3 stations where the measurement of PO4 was 0) and of NO3 + NO2 to Fe. Colors do not 1010 
correspond directly between maps; however, the geographical partitioning among stations is similar between 1011 
the two maps. c, Simulated trajectories corresponding to the minimum travel time (Tmin) for pairs of stations 1012 
(black dots) connected by Tmin < 1.5 years. Directionality of trajectories is not represented.  1013 
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 1014 
Figure 2 | Metagenomic dissimilarity and travel time of plankton are maximally correlated up to ~1.5 years. 1015 
a, Spearman rank-based correlation by size fraction between metagenomic dissimilarity and minimum travel 1016 
time along ocean currents (Tmin) for pairs of Tara Oceans samples separated by a minimum travel time less 1017 
than the value of Tmin on the x axis. Brown line: 0-0.2 µm size fraction, red: 0.22-1.6/3 µm, blue: 0.8-5 µm, 1018 
green: 5-20 µm, purple: 20-180 µm, orange: 180-2000 µm. Shaded colored areas represent 95% confidence 1019 
intervals. Tmin >1.5 years is shaded in grey. See plots for OTU dissimilarity in Supplementary Fig. 9. b, Pairs of 1020 
Tara stations connected by Tmin <1.5 years in blue/black and >1.5 years in grey. Shading reflects metagenomic 1021 
similarity from the 0.8-5 μm size fraction. c, The relationship of metagenomic similarity to Tmin with an 1022 
exponential fit (black line, grey 95% CI), for pairs of surface samples in the 0.8-5 μm size fraction within the 1023 
North Atlantic and Mediterranean current system (see map and plots for other size fractions and OTUs in 1024 
Supplementary Fig. 10, and Supplementary Information 1 for a discussion of metagenomic similarity).  1025 
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 1026 
Figure 3 | Plankton travel time, metagenomic dissimilarity and environmental differences show different 1027 
temporal patterns of pairwise correlation. Spearman rank-based correlations between metagenomic 1028 
dissimilarity and minimum travel time (Tmin, blue), metagenomic dissimilarity and differences in NO3 + NO2, PO4 1029 
and Fe (pink), metagenomic dissimilarity and differences in temperature (red), Tmin and differences in NO3 + 1030 
NO2, PO4 and Fe (pink, dashed), and Tmin and differences in temperature (red, dashed) for pairs of Tara Oceans 1031 
samples separated by a minimum travel time less than the value of Tmin on the x axis. Shaded regions represent 1032 
standard error of the mean. Correlations represent averages across four of six size fractions represented in Fig. 1033 
2a; the 0-0.2 µm and 5-20 µm size fractions are excluded due to a lack of samples at the global level. Individual 1034 
size fractions, partial correlations, and correlations with OTU data are in Supplementary Fig. 9.  1035 
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 1036 
Supplementary Figure 1 | The seascape, plankton transport and community metagenomic samples of Tara 1037 
Oceans stations. a, A community sampled at a given location (A) changes over time as it travels along ocean 1038 
currents (dashed bold line) to a second location (B). It is affected by numerous external processes, including 1039 
mixing with water containing other communities and changes in local nutrient concentration, and by internal 1040 
processes, such as biotic interactions. In this study, the Tara schooner followed a sampling route (orange 1041 
dashed line) leading to an elapsed time between the 2 sampling sites A and B that was independent of 1042 
plankton travel time. b, Location, station number, and sequenced surface metagenomic samples.  1043 
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 1044 
 1045 

Supplementary Figure 2 | Scatter plots comparing β-diversity estimates from metagenomic, OTU-based and 1046 
imaging-based dissimilarity. Source data for comparisons are indicated on the axes of each plot (axis colors 1047 
correspond to size fractions or imaging data as in other figures, e.g., Supplementary Fig. 9). Axes are not 1048 
necessarily drawn on the same scales; the identity line is indicated on each plot to help interpret the 1049 
relationship between axes. Plots with a pink background are comparisons of metagenomic versus OTU-based 1050 
dissimilarity within the same size fraction. Plots with a blue background are comparisons of metagenomic 1051 
dissimilarity among size fractions, and those with an orange background compare OTU-based dissimilarity 1052 
among size fractions. Plots with a yellow or green background compare imaging-based dissimilarity to either 1053 
metagenomic or OTU-based dissimilarity, respectively. Each point within a plot represents a pairwise 1054 
comparison of β-diversity estimates between two Tara Oceans samples. Rank-based correlations (Spearman, p 1055 
≤ 10-4) are indicated in each plot.  1056 
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 1057 
Supplementary Figure 3 | Global dissimilarity and OTU occupancy. a, Distributions of dissimilarity for six 1058 
organismal size fractions (measured either as metagenomic or OTU dissimilarity; see Supplementary 1059 
Information 1). One colored point represents one pair of stations. Violin plots (horizontal line: median) 1060 
summarize each distribution. The number of stations in common between the metagenomic/OTU data sets 1061 
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within each size fraction is indicated above. b-e, OTU occupancy for different proportions of total abundance. 1062 
Fraction of stations present (occupancy) for the minimum number of OTUs (indicated above) necessary to 1063 
represent different proportions of the total abundance within each organismal size fraction. A relatively small 1064 
number of abundant and cosmopolitan taxa represents the majority of the abundance within each size 1065 
fraction; this effect is more pronounced with increasing organismal size. b, OTUs representing 50% of the total 1066 
abundance within each size fraction. c, 80%. d, 95%. e, 100% (all OTUs).  1067 
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 1068 
Supplementary Figure 4 | Genomic provinces in comparison to previous ocean divisions and to metagenome 1069 
assembled genome abundance variation, and ordination maps of environmental parameters. Colors are 1070 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 24, 2020. ; https://doi.org/10.1101/867739doi: bioRxiv preprint 

https://doi.org/10.1101/867739
http://creativecommons.org/licenses/by-nc/4.0/


 

30 

based on PCoA-RGB (Methods) and do not correspond directly among maps. a-f, Geographical maps of 1071 
genomic provinces by organismal size fraction (see Supplementary Information 2). Circles denote stations with 1072 
data available for the size fraction and contain the corresponding genomic province identifiers (one letter 1073 
prefix per size fraction (A-F); stations not assigned to genomic provinces are shown as ‘-’). The top portion of 1074 
each circle represents samples collected at the surface and the bottom portion represents the deep 1075 
chlorophyll maximum (stations missing metagenomic data for one of the two depths are drawn as half circles). 1076 
Major currents are shown with solid black arrows, wind transport with dashed grey arrows. Blue zones 1077 
indicate temperature < 14 °C. Hashed zones indicate phosphate concentration > 0.4 mmol. Hierarchical 1078 
dendrograms that were used to build genomic provinces are shown in Supplementary Fig. 6. Maps with colors 1079 
based on OTU dissimilarity are shown in Supplementary Fig. 5. a, ‘A’ prefix, 0-0.2 µm size fraction. b, ‘B’ prefix, 1080 
0.22-1.6/3 µm. c, ‘C’ prefix, 0.8-5 µm. d, ‘D’ prefix, 5-20 µm. e, ‘E’ prefix, 20-180 µm. f, ‘F’ prefix, 180-2000. 1081 
Insets, Results of ANOSIM to determine, independently for each size fraction, the ability of three nested levels 1082 
of ocean partitioning to explain metagenomic dissimilarities among stations (blue, Longhurst biomes; red, 1083 
Longhurst biogeochemical provinces; green, Oliver and Irwin objective provinces; see Methods and 1084 
Supplementary Information 3). g, Geographical map for the 20-180 µm size fraction, for comparison with panel 1085 
e, generated from metagenome assembled genome (MAG) dissimilarity among stations. h, The distribution of 1086 
temperature and nutrient variations matches the biogeography of small plankton (< 20 µm). Stations are 1087 
colored based on an ordination of Euclidean distances in temperature, NO3 + NO2, PO4 and Fe. i, The 1088 
distribution of temperature matches the biogeography of large plankton (> 20 µm). Stations are colored 1089 
following a Box-Cox transformation (Methods).  1090 
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 1091 
Supplementary Figure 5 | Biogeography based on an ordination of OTU dissimilarity. a-f, Principal 1092 
coordinates analysis (PCoA)-RGB color maps for OTUs (see Methods). The top of each half circle represents 1093 
samples collected at the surface and the bottom portion represents the deep chlorophyll maximum (stations 1094 
missing OTU data for one of the two depths are drawn as half circles). Station colors do not correspond among 1095 
size fractions. a, 0-0.2 µm size fraction. b, 0.22-1.6/3 µm. c, 0.8-5 µm. d, 5-20 µm. e, 20-180 µm. f, 180-2000 1096 
µm.  1097 
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 1098 
Supplementary Figure 6 | Hierarchical trees illustrating how samples were partitioned into genomic 1099 
provinces. Dendrograms resulted from UPGMA clustering. Each sample (SUR: surface, DCM: deep chlorophyll 1100 
maximum) is shown as a leaf. Genomic provinces are shown with their identifiers in blue polygons; identifiers 1101 
are composed of one letter prefix per size fraction (A-F) and a number. Bootstrap values in red show the 1102 
support at the key nodes that separate genomic provinces from one another. See also Supplementary 1103 
Information 2 on the robustness of genomic provinces. a, ‘A’ prefix, 0-0.2 µm size fraction. b, ‘B’ prefix, 0.22-1104 
1.6/3 µm. c, ‘C’ prefix, 0.8-5 µm. d, ‘D’ prefix, 5-20 µm. e, ‘E’ prefix, 20-180 µm. f, ‘F’ prefix, 180-2000 µm.  1105 
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 1106 
Supplementary Figure 7 | Environmental parameters that distinguish genomic provinces. a-b, Environmental 1107 
parameters that significantly differentiate among genomic provinces (Kruskal-Wallis test, grey box indicates p 1108 
values > 10-5). SI = Seasonality Index. a, all stations. b, Antarctic stations removed (see Methods). Eliminating 1109 
Antarctic stations does not result in a large change in the parameters that significantly differentiate among 1110 
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provinces. c-h, Two types of visualizations of the relationships between genomic provinces and environmental 1111 
parameters. Sample colors are those from Supplementary Fig. 4a-f. Top plots within panels c-h: principal 1112 
components analysis-based visualization. Samples, and environmental parameters differing significantly (p ≤ 1113 
10-5) among genomic provinces, are projected onto the first two axes of variation. Grey polygons enclose 1114 
different genomic provinces. Bottom plots within panels c-h: network-based visualization. Each genomic 1115 
province is represented as a node, with the individual samples composing the province within the node. Edges 1116 
between nodes represent differences in temperature, nitrate + nitrite, phosphate and iron that significantly 1117 
differentiate (p ≤ 10-5) among genomic provinces, that are statistically significantly different between 1118 
individual pairs of genomic provinces (post hoc Tukey test, p < 0.01) and whose difference in median 1119 
parameter values is ≥ 1 standard deviation (calculated from the parameter values of all samples in the size 1120 
fraction). Thicker edges represent larger differences. c, 0-0.2 µm size fraction. d, 0.22-1.6/3 µm. e, 0.8-5 µm. f, 1121 
5-20 µm. g, 20-180 µm. h, 180-2000 µm.  1122 
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 1123 
Supplementary Figure 8 | Global correlations of dissimilarity with minimum travel time (Tmin). Scatter plots 1124 
of dissimilarity versus Tmin. One point represents a pair of samples. a, metagenomic dissimilarity. b, OTU 1125 
dissimilarity. Global Spearman correlation values are indicated within each panel.  1126 
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 1127 
Supplementary Figure 9 | Plankton travel time, dissimilarity, environmental distance and geographic 1128 
distance show different temporal patterns of pairwise correlation. Spearman correlation values are shown 1129 
separately by organismal size fraction. Non-significant correlations (p > 0.01) are shown with dashed lines. a-e, 1130 
Correlations for pairs of Tara Oceans samples separated by a minimum travel time less than the value of Tmin 1131 
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on the x axis. Tmin >1.5 years is shaded in grey. Left panels: correlation of dissimilarity with Tmin; middle panels, 1132 
dissimilarity with temperature; right panels: dissimilarity with differences in NO3 + NO2, PO4 and Fe. a-c, 1133 
metagenomic dissimilarity. d-e, OTU dissimilarity. Correlations for imaging dissimilarity are superimposed on 1134 
plots in a and c-e, for comparison. There is a maximum correlation of dissimilarity with Tmin (and, for most size 1135 
fractions, of dissimilarity with nutrients) for Tmin <~1.5 years, but the correlation between dissimilarity and 1136 
temperature does not display a similar maximum. b displays only the 0.8-5 µm (blue) and 180-2000 µm 1137 
(orange) size fractions from a, to highlight that for smaller plankton, correlations with differences in nutrient 1138 
concentrations were stronger for Tmin  up to ~1.5 years, but  for larger plankton, correlations were stronger 1139 
with temperature variations for Tmin beyond ~1.5 years. c and e, Partial correlations to estimate the 1140 
independent effects of Tmin and environmental distances on β-diversity. Left panels: controlling for differences 1141 
in temperature and for differences in NO3 + NO2, PO4 and Fe; middle and right panels: controlling for Tmin. 1142 
Partial correlations do not affect the maximum correlation of dissimilarity with Tmin for Tmin <~1.5 years. f, 1143 
Correlation of geographic distance (without traversing land; CGD) with metagenomic dissimilarity or imaging 1144 
dissimilarity for pairs of Tara Oceans samples separated by a geographic distance less than the value on the x 1145 
axis.  1146 
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 1147 
Supplementary Figure 10 | Plankton community composition turnover through the North Atlantic. a, Map of 1148 
Tara Oceans stations, currents (solid lines), temperature by station (colored circles) and sea surface 1149 
climatological dynamic height from CARS2009 (http://www.cmar.csiro.au/cars). Each station label has a color 1150 
corresponding to a sub-region: South Atlantic in orange, Gulf Stream in red, Recirculation/Gyre in green and 1151 
Mediterranean Sea in blue. b-e, Scatter plots of metagenomic similarity versus minimum travel time (Tmin) for 1152 
these stations in the b, 0.22-3 µm; c, 0.8-5 µm; d, 20-180 µm; and e, 180-2000 µm size fractions. f-i, Scatter 1153 
plots of OTU community similarity for the f, 0.22-3 µm; g, 0.8-5 µm; h, 20-180 µm; and i, 180-2000 µm size 1154 
fractions. The black line represents an exponential fit, with a light grey shaded 95% confidence interval. The 1155 
resulting turnover times using metagenomic similarity are τ = 0.91 y for 0.22-3 µm, τ = 0.91 y for 0.8-5 µm, τ = 1156 
2.22 y for 20-180 µm and τ = 1.99 y for 180-2000 µm. Turnover times using the OTU community similarity are τ 1157 
= 4.23 y for 0.22-3 µm, τ = 4.08 y for 0.8-5 µm, τ = 2.6 y for 20-180 µm and τ = 2.1 y for 180-2000 µm. The viral-1158 
enriched 0-0.2 µm and the nanoplanktonic 5-20 µm size fractions are not shown due to insufficient sampling 1159 
of these stations. 1160 
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