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Monitoring the spread of SARS-CoV-2 and reconstructing
transmission chains has become a major public health focus
for many governments around the world. The modest muta-
tion rate and rapid transmission of SARS-CoV-2 prevents the
reconstruction of transmission chains from consensus genome
sequences, but within-host genetic diversity could theoretically
help identify close contacts. Here we describe the patterns of
within-host diversity in 1,181 SARS-CoV-2 samples sequenced
to high depth in duplicate. 95% of samples show within-host
mutations at detectable allele frequencies. Analyses of the mu-
tational spectra revealed strong strand asymmetries suggestive
of damage or RNA editing of the plus strand, rather than repli-
cation errors, dominating the accumulation of mutations during
the SARS-CoV-2 pandemic. Within and between host diversity
show strong purifying selection, particularly against nonsense
mutations. Recurrent within-host mutations, many of which
coincide with known phylogenetic homoplasies, display a spec-
trum and patterns of purifying selection more suggestive of mu-
tational hotspots than recombination or convergent evolution.
While allele frequencies suggest that most samples result from
infection by a single lineage, we identify multiple putative ex-
amples of co-infection. Integrating these results into an epi-
demiological inference framework, we find that while sharing
of within-host variants between samples could help the recon-
struction of transmission chains, mutational hotspots and rare
cases of superinfection can confound these analyses.
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Introduction

The SARS-CoV-2 pandemic has caused global disruption and
more than one million deaths (1). Genomic analysis has
yielded important insights into the origins and spread of the
pandemic, and has been an integral part of efforts to mon-
itor viral transmission in the UK, with over 100,000 viral
genomes sequenced as of December 2020 by the COVID-19

Genomics UK Consortium (COG-UK) (2).

For purposes of genomic epidemiology, a consensus genome
sequence is derived from each sample but deep sequencing
data invariably reveal some level of within-host variation (3)
and minor alleles are commonly filtered out prior to phyloge-
netic analysis (4). It has been suggested that SARS-CoV-2,
like SARS-CoV-1 evolves within an infected host as a qua-
sispecies, with many mutations (within-host variants) arising
which may be beneficial for the virus (3, 5, 6). Although
there have been several previous reports on the within-host
diversity of SARS-CoV-2 (3, 7, 8) a number of key questions
remain to be resolved. Examples of underexplored ques-
tions include understanding the extent of sequencing artefacts
among within-host variants, the mutational processes dom-
inating SARS-CoV-2 evolution, the action of selection on
within-host variants and the extent to which superinfection
or co-transmission of multiple lineages confound within-host
diversity analyses (9). Better understanding of these ques-
tions can shed light on the evolution of SARS-CoV-2 and
could inform efforts to reconstruct transmission chains with
genomic data.

To address these questions, we performed Illumina deep se-
quencing of over a thousand SARS-CoV-2 samples collected
in March and April 2020 in the East of England. Two li-
braries were sequenced for each sample with separate reverse
transcription (RT), PCR amplification and library preparation
steps in order to evaluate the quality and reproducibility of
within-host variant calls. To develop reliable methods for
analysing within-host variation in the context of ongoing ge-
nomic epidemiological studies, we used the ARTIC protocol
which is a common method used for SARS-CoV-2 genome
sequencing by many labs around the world (10). Analyses of
the data provided insights into the extent of within-host diver-
sity, the patterns of mutagenesis and the extent of selection,
and suggested that amplification biases, hypermutable sites
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and co-infection complicate the use of within-host diversity
for epidemiological purposes.

Results
Reliable detection of within-host mutations from am-
plicon sequencing. We generated sequencing data for
1,181 samples in duplicate at a median sequencing coverage
ranging from 998 to 49,025 read depth per replicate sam-
ple (Supplementary Figure 1; Supplementary Table 1). To
study variable sites within an individual, including errors
and within-host mutations, for each sample we first identi-
fied all variable sites with variant allele frequency > 0.5%
and at least 5 supporting reads. Comparison of calls between
replicates revealed that, while some samples showed highly-
concordant variants between replicates, others showed high
discordance (Supplementary Figure 2). The discordance be-
tween some replicates suggested that a small number of
molecules may be disproportionately amplified in some sam-
ples, amplifying both RT/PCR errors and rare within-host
mutations to high allele frequencies. We quantified the dis-
cordance between replicates using a beta-binomial model
(Methods) and correlated this with the diagnostic qPCR Ct
values, which are inversely related to the number of viral
molecules within the samples. Samples with Ct≥ 24 showed
considerable discordance in allele frequencies between repli-
cates (Supplementary Figure 3) but the vast majority of sam-
ples with Ct< 24 showed good concordance between repli-
cates. This indicated that as the viral loads decrease, am-
plification biases and artefacts are common and can im-
pact within-host diversity analyses using RT-PCR protocols.
For all subsequent analyses we used only those within-host
variants that were statistically supported by both replicates
(Methods). To reliably detect within-host variants with the
ARTIC protocol, we used ShearwaterML, an algorithm de-
signed to detect variants at low allele frequencies using a
site-specific error model learned from a collection of refer-
ence samples (11, 12) (Methods). Two samples were ex-
cluded, as they had an unusually high number of minor vari-
ant calls unlikely to be of biological origin, leaving 1,179
samples for analysis, comprising 1,121 infected individuals
of whom 49 had multiple samples. Within each sample,
we classified variant calls into major variants (≥ 95% al-
lele frequency) and within-host variants (< 95%). In total,
we identified 18,888 putative variants (Supplementary Table
2), including 7,190 major variants (affecting 948 sites) and
11,698 within-host variants (affecting 5,625 sites). Within-
host variants included 7,561 single-nucleotide substitutions,
3,235 small deletions, 548 small insertions and 354 putative
multi-nucleotide variants (Methods). The allele frequency
spectrum was dominated by fixed mutations that were com-
mon to all viral RNA molecules in a sample, and a tail of
mostly low frequency variants, as previously described (Lyth-
goe et al. 2020) (Figure 1A-C). The mean and median allele
frequencies of within-host variants was 7.2% and 1.9%, re-
spectively. Overall, within-host variants were detected in the
vast majority of samples (95.2%), with a median of 8 within-
host variants per sample. This is likely to be an underestimate

due to low sensitivity to within-host variants at lower allele
frequencies and due to the stringent requirement that a variant
is detected as significant in both replicates.

The mutational spectra reveal strong strand asym-
metries. Analysis of the mutational spectrum can yield in-
sights into the dominant mutational mechanisms underlying
the evolution of SARS-CoV-2 during the pandemic. Con-
sistent with previous reports (13), the mutational spectrum
of within-host variant closely resembles that of major vari-
ants (Figure 2). The spectrum shows two striking features:
a dominance of C>U and G>U changes with weak extended
sequence context, and a large asymmetry between the plus
and minus strands, inferred from the high C>U/G>A and
G>U/C>A ratios when mutations are mapped to the refer-
ence (plus) strand. C>U mutations account for 47% of all
within-host point mutations compared to 5.9% for G>A mu-
tations (C>U mutations in the minus strand), and G>U mu-
tations for 14.5% of mutations compared to 2.2% of C>A
mutations (Methods). Normalised for sequence composition,
the plus/minus strand ratios of the rates of C>U and G>U are
9.9-fold and 8.2-fold, respectively.
These asymmetries appear difficult to explain if mutations
were direct replication errors. Since any given viral RNA
molecule has undergone the same number of plus-to-minus
and minus-to-plus replication steps, replication errors are
only expected to cause these asymmetries if both steps have
very different error rates. For example, if the polymerase had
a high C>U error rate in both strands, we would expect a sym-
metric number of C>U and G>A mutations in the plus strand,
as C>Us would be introduced at equal rates when copying the
plus or the minus strands (Figure 2E). Within a cell, the fact
that minus templates are copied many times could theoret-
ically lead to a viral population with fewer G>A mutations
but at higher frequencies (14, 15). However, the fact that
the same asymmetries are observed for major variants, which
typically represent the fixation of a single genotype, makes
this an unlikely factor. Thus, unless the error rates of the
RNA-dependent RNA-polymerase in SARS-CoV-2 are very
different on both strands, which may be possible given its
multisubunit structure (16), replication errors seem unlikely
to explain the observed asymmetries.
The strong strand asymmetries observed may be more con-
sistent with RNA damage or RNA editing of the plus strand
dominating the accumulation of mutations in SARS-CoV-2.
The plus strand is the infectious genome, exported from the
replication organelles, where minus molecules reside, into
the cytoplasm (17), translated, packaged into particles and
transmitted between cells and hosts. The plus strand is also
present within cells in much larger numbers than the minus
strand (14). Thus, the plus strand may be expected to ac-
cumulate higher rates of damage or editing, which would
manifest as strand asymmetries. If we accept this hypothe-
sis, the dominance of C>U over G>A and G>U over C>A,
when mapped to the plus strand, suggests that the dominant
forms of RNA editing or damage are C>U and G>U.
RNA-editing enzymes in human cells are able to mutagenise
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Fig. 1. Allele frequencies and mutation burden. (A) Number of variants per sample (y-axis) for a random selection of 100 samples (x-axis). Black and green dots respectively
indicate the number of major and within-host variants in each sample. (B) VAF of the variants detected in the 100 samples, coloured by mutation type. (C) Histogram of the
VAFs of all mutation calls. Note that variants shared across samples are counted multiple times and that the 7,190 major variants correspond to 961 different changes in 948
different sites. (D) Histogram of the lower bound estimates of the mean number of within-host variants per viral genome per sample.

single-stranded DNA and RNA molecules and are known
anti-viral mechanisms (18, 19). Two families of RNA-editing
enzymes in particular have been speculated to contribute to
the mutational spectrum of SARS-CoV-2, APOBEC cyto-
sine deaminase enzymes causing cytosine to uracil transitions
and ADAR enzymes causing adenosine-to-inosine changes
(A>G/U>C mutations) (19). While we see a high rate of C>U
changes in the SARS-CoV-2 spectra, we see much lower
rates of A>G/U>C mutations than previously suggested (20).
While the mutational spectrum induced by all APOBEC en-
zymes is not fully understood, the activity of the better-
understood APOBEC3A and 3B enzymes in human cancers
is distinctly characterised by a strong sequence context, lead-

ing to C>T and C>G changes almost solely at TpC sites (21).
This contrasts with the weak context dependence observed
in the SARS-CoV-2 spectrum. While RNA-editing enzymes
may contribute to SARS-CoV-2 mutagenesis, direct damage
of cytosine and guanine bases could also be consistent with
the observed spectrum. For example, spontaneous cytosine
deamination would cause C>U transitions while oxidation of
guanine bases could explain G>U transversions (22). Both
forms of damage are common mutagenic processes in human
cells (23).
Having described the mutational spectrum, we can also de-
rive approximate estimates of the average number of within-
host mutations per viral genome in a sample. Since the al-
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lele frequency of a mutation represents the fraction of viral
RNA molecules in a sample carrying a mutation, we can es-
timate the mean within-host mutation load by summing the
allele frequencies of all observed within-host variants in a
sample (12). Importantly, this is an approximation as it as-
sumes that each RNA molecule sequenced, originated from
the entire viral genome which is not always the case given
the abundance of viral sgRNAs (24, 25). These estimates
are also likely to be a conservative lower-bound as they only
include mutations at detectable allele fractions in both repli-
cates. Across samples, we found a mean within-host muta-
tion load per viral genome of 0.72 mutations (median 0.37)
(Figure 1D). Phylogenetic studies estimate a mutation rate
in SARS-CoV-2 of 0.001 mutations/bp/year (26), or 0.082
mutations/genome/day. Thus, the observed within-host mu-
tation load would be consistent with the expected acquisition
of mutations during a relatively short span of several days.
To investigate the possible accumulation of de novo muta-
tions during the course of an infection, we studied 43 individ-
uals for whom we had multiple samples collected at different
timepoints (Figure 3A, Supplementary Figure 4). Overall the
number of within-host variants tended to increase over time
and this trend was significant using a Poisson mixed model
to control for host-specific effects (p=0.007; Figure 3B). To
put this finding in context, there was considerable variation
in the observed number of within-host variants among sam-
ples from the same individual, even if taken on the same day,
possibly as a result of bottlenecks caused by the different
sampling methods which included sputum, swabs and bron-
choalveolar lavage (Supplementary Figure 5). High variabil-
ity between longitudinal samples has also been observed in
six out of nine hospitalised patients in Austria (13). Using
data from nine patients with longitudinal samples, the authors
found that the divergence in variant frequencies between se-
rial samples from the same patient was on average greater
than that between donor-recipient transmission pairs. The au-
thors observed multiple instances of the fixation of a variant
over the course of an infection. In contrast, we observed no
change in the consensus genome sequence in any of the in-
dividuals from whom multiple samples were collected. It is
possible that the accumulation of within-host mutations could
in future be used to estimate time since infection. However,
determining if a consistent signal could be observed given
the extensive variation observed between repeated samples
on the same day would require analysis of time-series data
in a larger number of individuals with high quality epidemi-
ological data.

Within-host variants display strong purifying selection
against nonsense mutations. To study the extent of se-
lection acting on within-host variants and major variants, we
calculated dN/dS ratios using the dNdScv package (Meth-
ods). Most commonly-used software to calculate dN/dS use
simple substitution models (often using a single transition-
transversion ratio), which can lead to considerable biases and
false signals of selection under neutrality (28, 29). dNdScv

uses a Poisson framework allowing for complex substitu-
tion models including context dependence, strand asymme-
try, non-equilibrium of substitutions and estimation of dN/dS
ratios for missense and nonsense mutations separately. This
model is particularly suitable for datasets with low mutation
density in lowly- or non-recombining populations, as it is the
case in SARS-CoV-2 genomic data (28).
As expected, dN/dS ratios for major variants are under clear
purifying selection (Figure 4A), with particularly strong se-
lection against nonsense mutations. Within-host variants
reaching moderately high allele frequencies (VAF>10%) dis-
play similarly strong purifying selection against missense
and nonsense mutations as major variants (Figure 4A), while
within-host variants at low allele frequencies appear to be un-
der more relaxed purifying selection, as it may be expected.
Purifying selection against nonsense mutations can also be
observed at the level of allele frequencies (Figure 4B). Over-
all, the similarity of dN/dS ratios for major and moderate-
VAF within-host variants suggests that selection within hosts,
rather than during transmission, may explain a considerable
fraction of the extent of purifying selection observed in con-
sensus sequences.

Many recurrently mutated sites appear to represent
mutational hotspots. Some sites across the SARS-CoV-
2 genome appear to have mutated independently multiple
times, resulting in homoplasic sites across the viral phy-
logeny (30). Some of these sites have also been reported
to recurrently appear as within-host variants, although it re-
mains unclear to what extent these events represent recurrent
sequencing errors, contamination between samples, coinfec-
tion of a sample by multiple lineages, recombination, muta-
tional hotspots or convergent positive selection (3, 13, 30).
Coinfection by multiple lineages could possibly arise from
superinfection, where an individual acquires infection from
multiple sources, or by co-transmission of multiple lineages
from host to host following an episode of superinfection.
Figure 4C represents the distribution of recurrent within-host
variants across the genome. 190 sites are observed as within-
host variants in at least 5 (0.4%) of our samples. Sequencing
or PCR errors are unlikely to contribute substantially to the
recurrent variants observed in our dataset thanks to the use of
replicates and the ShearwaterML algorithm. One mechanism
by which the same within-host variant can be observed across
multiple closely-related samples is transmission of within-
host variants between contacts, when a population of virions
is transmitted between hosts. Under this scenario, sharing of
within-host variants will be expected between samples with
identical major variants, as the preservation of a within-host
variant is incompatible with the simultaneous fixation of new
major variants (the within-host allele would either be purged
or hitchhike and become fixed). Instead, we find that most
recurrent within-host variants occur across lineages, indepen-
dently of the genomic background of major variants present
in a sample (Figure 4E). This pattern is suggestive of recur-
rent mutation, although it could also be consistent with com-
plex histories of superinfection and recombination.
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in the reference (plus) strand and below it if the pyrimidine base is in the minus strand. Within-host variants observed across more than one sample can represent a single
ancestral event or multiple independent events. To prevent highly-recurrent events from distorting the spectrum, within-host variants observed across multiple samples were
counted a maximum of 5 times in (C) and (D). (E) A diagram illustrating how asymmetrical mutation rates of C>U and G>A could be driven by viral sequences spending a
longer time as plus strand molecules.
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Fig. 3. (A) Frequencies of within-host variants for three selected hosts where mul-
tiple samples were taken over consecutive days. Samples taken on the same day
have been offset by a small distance. Plots for all hosts with multiple samples are
given in Supplementary Figure 4 (B) The difference in the number of within-host
variants between pairwise combinations of samples taken from the same host.The
order for samples taken on the same day was randomised.

If we accept the hypothesis of recurrent mutation, there re-
mains the question of whether this is caused by mutational
hotspots or convergent positive selection. We observed that
25% (51/205) of recurrent (n ≥ 5) within-host variants are
predicted to cause synonymous mutations and estimates of
the dN/dS ratio corrected for the trinucleotide sequence con-
text indicate that, as a group, these recurrent variants are
under some purifying selection (Figure 4A). This suggests
that most recurrent within-host variants are likely to repre-
sent hypermutable sites rather than convergent positive selec-
tion. Their mutational spectrum suggests an enrichment for
C>U changes, particularly at sites preceded by a pyrimidine,
but the mechanisms behind their apparent hypermutability
remain unclear (Supplementary Figure 6). Still, this analy-
sis does not rule out the possibility that a minority of recur-
rent within-host variants are the result of convergent posi-
tive selection. A plausible example is the spike glycoprotein
mutation D614G, which has rapidly increased in frequency
throughout the world: this appears as a within-host vari-
ant in 12 of our samples, and typically with a higher allele
frequency than other recurrent within-host variants (median
VAF 0.56 vs 0.036, Wilcoxon test P=3.98e-4).

Extensive sharing of minority variants across a
diverse genomic background suggests caution is
needed when using within-host variants for the infer-
ence of transmission. In order to investigate the genetic
background of our samples we generated a maximum likeli-
hood phylogeny of all consensus genomes produced by the
COG-UK consortium by the end of May 2020, including
those for the samples on our dataset (Figure 5A). This showed
that our samples represent a broad range of the SARS-CoV-2
genetic diversity found in the UK at that time, and that the di-
versity observed among our samples was not primarily driven

by geographical location.
To explore the relationship between within-host variants and
the consensus phylogeny, we identified within-host variants
that are shared between samples, as illustrated by links be-
tween the tips of the phylogenetic tree in Figure 5B. This
confirmed that within-host variants are often shared between
samples that are distant on the consensus phylogeny. Both a
high level of recombination and a large transmission bottle-
neck would be required for within-host variants to be main-
tained across long transmission chains in order to explain the
simultaneous preservation of some within-host variants with
the fixation of others. While, recent studies have suggested
that the bottleneck in SARS-CoV-2 transmission can be on
the order of 102-103 virions, they also identified substantial
overlaps in the fraction of shared minority variants between
samples unrelated by close transmission (13, 31). The shar-
ing of within-host variants between consensus genomes as di-
vergent as 10 SNPs, indicating multiple months of separation
between the samples suggests that a more likely explanation
is that many of these shared within-host variants are the result
of recurrent mutation or co-infection (Fig 6D).
To further investigate the correspondence between shared
within-host variants and transmission, we used the tran-
scluster algorithm to infer the probability distribution of
the number of intermediate hosts that separate each pair of
samples(32). This pairwise approach accounts for the serial
interval of the virus as well as its evolutionary rate using the
difference in the number of SNPs between each pair of con-
sensus genomes. Fig 6B illustrates the relationship between
the mean number of shared within-host variants and the prob-
ability that the respective infections were a result of direct
transmission. A weak correlation with transmission proba-
bility was found for shared within-host variants of high allele
frequency, but not for those of low allele frequency.

Co-infections correlate with the consensus phylogeny
consistent with cases of superinfection induced
by population structure. It has been proposed that co-
infection by different lineages is a significant source of
within-host variation in SARS-CoV-2 (3). Co-infection by
multiple lineages would result in the allele frequencies of di-
vergent bases to appear as within-host variants and reflect
the proportions of either haplotype. Detecting instances of
co-infection is important in the context of both transmission
and to accurately characterise the within-host mutation rate
(9, 33). To identify possible co-infected samples we com-
pared the site frequency spectrum for each of our samples
with all of the consensus genomes in the COG-UK dataset
at the end of May 2020. A linear model was used to iden-
tify mixtures of two consensus genomes that could explain
the allele frequencies of variants within a sample better than
a single consensus genome. Additional mixtures were con-
sidered if two consensus genomes could explain at least two
additional within-host variants over that of a single consensus
genome. In this case the additional consensus genome was
restricted to have at most one variant that was not found in
the sample. Samples identified by the model as being a pos-
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Fig. 4. Patterns of selection and recurrent within-host variants. (A) Genome-wide dN/dS ratios for missense and nonsense mutations (Methods). Error bars depict 95%
confidence intervals from the Poisson maximum-likelihood model. (B) VAFs of within-host variants as a function of their predicted coding impact. P-values were calculated
with Wilcoxon tests. (C) The top panel depicts the coordinates of the annotated peptides in the reference genome, coloured according to their ORF. The bottom panel depicts
the frequency at which recurrent within-host variants (defined as those seeing in 5 or more samples) occur in the dataset. (D) Frequency of recurrent within-host variants (as
in panel C) across different genomic backgrounds in the dataset (defined as the set of major variants in the sample). (E) Heatmaps of variant allele frequencies in samples
containing three common within-host variants are shown. The diversity of major variants (black tiles) across samples is better explained by independent acquisitions of the
minority variant rather than transmission
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Fig. 5. (A) Left panel - a maximum likelihood phylogeny of all COG-UK consensus genomes available on the 29th May 2020. Red dots indicate the location of those samples
that were deep sequenced in replicate. Middle panel - the same phylogeny restricted to those samples taken for deep sequencing. Right panel - the region each patient’s
home address was located. (B) Left panel - maximum likelihood phylogeny of samples deep sequenced to investigate minority variants. Middle panel - links are drawn
between tips of the phylogeny that share within-host minority. Right panel - links restricted to those variants seen in less than 2% of individuals.

sible mixture of consensus genomes were then visually in-
spected to determine whether the putative co-infections were
convincing. This resulted in 36 putative co-infected samples,
with a representative example shown in Figure 6A. The fre-
quencies of within-host variants of all 36 samples, along with
consensus genomes that comprise the putative mixture, are
shown in Supplementary Figure 7. To determine the poten-
tial impact of co-infections on transmission inference we ex-
cluded all 36 samples and re-ran the pairwise transmission
analysis using the transcluster algorithm on the remaining
samples. Figure 6C indicates that the remaining within-host
variants no longer correlate as well with the probability of
direct transmission, suggesting that much of the correlation
observed previously was potentially driven by co-infections.

It has been suggested that correlations between co-infections

and the consensus phylogeny could be driven by the co-
transmission of multiple strains (3). However, as the trans-
mission signal in the minority variants in the remaining
samples has reduced; a more likely explanation is that co-
infection of certain strains is driven by multiple episodes
of superinfection (co-infection from two different infection
sources). As these samples and those from the Lythgoe study
were acquired from hospitalised patients, the correspondence
with the consensus phylogeny could then be driven by struc-
tured superinfection within hospital COVID-19 wards. The
prevalence of infection within hospitals, particularly during
the first ‘wave’ of the COVID-19 pandemic was often con-
siderably higher than in the community with up to 50% of the
consultant A&E workforce at one Welsh hospital testing pos-
itive in April, 2020 (34). This contrasts with the finding that
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approximately 6% of the UK population had been infected
with SARS-CoV-2 by the end of June, 2020 (35). Within
hospital transmission was also common in the early stages of
the outbreak in Wuhan with 41% of 138 patients were found
to have contracted SARS-CoV-2 in hospital (36). While it
is not possible to rule out cross-contamination between sam-
ples, this contamination would have to be structured to ex-
plain the correlations between the inferred co-infections and
the consensus phylogeny. Batch effects were carefully con-
trolled for by Lythgoe et al., and as we identified a similar
signal using an independent dataset with samples sequenced
in replicate, structured superinfection provides a better ex-
planation. In cases of higher prevalence, repeated episodes
of superinfection rather than co-transmission could compli-
cate the use of within-host minority variants in transmission
inference (Figure 6D).

Discussion
We find a considerable amount of genetic diversity within in-
dividual SARS-CoV-2 infections that cannot be explained by
technical artefacts. This is consistent with the quasispecies
population structure typically found in RNA viruses (5, 37),
including related betacoranaviruses SARS-CoV-1 and MERS
(38, 39). By analysing the frequency of variants within indi-
vidual samples, we estimate that each viral genome has an
average of 0.72 variants relative to the consensus genome se-
quence for that sample. Since most of these samples were
probably collected more than a week after the time of infec-
tion, and since the SARS-CoV-2 genome is known to acquire
approximately one mutation every two weeks, these findings
are broadly consistent with the hypothesis that within-host
variation is largely due to the accumulation of de novo mu-
tations within the host. Further support for this hypothesis
comes from our analysis of hosts sampled at multiple time-
points, showing that the number of within-host variants tends
to increase during the course of an infection. Increased num-
bers of within-host variants have also been observed in im-
munocompromised patients: consistent with the acquisition
of de novo mutations within the host (40).
These data show that within-host variants have a similar
mutational spectrum to major variants that define between-
host variation. Both are characterised by clear purifying
selection, as would be expected if virions with disadvanta-
geous mutations failed to survive or propagate within the
host. Strikingly, the mutational spectrum of SARS-CoV-2
exhibits a near complete asymmetry between the plus and mi-
nus strands, and is dominated by C>U and G>U mutations.
This seems consistent with RNA-damage or RNA-editing of
the plus strand. Whilst mutagenesis by APOBEC enzymes
could play a role, the spectrum we observe is very different
to that seen in human cells. Instead, direct damage of cy-
tosine and guanine bases could also be consistent with the
observed spectrum. Many of the within-host variants that we
have identified are shared between infected individuals lo-
cated on distant branches of the consensus phylogeny, and
this is congruent with previous reports that the SARS-CoV-

2 consensus phylogeny has many homoplasies that also ap-
pear as within-host variants (3). It appears likely that this is
largely due to recurrent mutation although co-infection be-
tween lineages could also be a relevant factor in high trans-
mission settings. The vast majority of our samples appear
to comprise a single lineage but we find evidence of puta-
tive co-infection by multiple lineages in approximately 3-4%
of samples, which is likely an underestimate of the extent of
co-infection in our dataset.
In other viral and bacterial diseases, within-host variants
provide a valuable source of information for the inference
of transmission chains (33, 41–43) and have been shown
to improve the accuracy of inferences based on consensus
genomes (44–47). In the case of SARS-CoV-2, Lythgoe and
colleagues have reported a geographical structure to the shar-
ing of within-host variants, and have proposed that this might
be explained by localised episodes of superinfection (where
an individual acquires infection from multiple sources) and
subsequent co-transmission of multiple lineages and their re-
combinants through the local host population (3). We find
some evidence of a correlation between sharing of within-
host variants and the probability of direct transmission, a sig-
nal that we find is partially driven by co-infection, but the
current dataset lacks the epidemiological resolution to eval-
uate the utility of this in reconstructing transmission chains,
which might depend on the prevalence of infection and other
local circumstances such as superinfection within COVID-19
hospital wards.
In summary, these data show that much of the genetic diver-
sity of the SARS-CoV-2 viral population resides within indi-
vidual hosts. Within-host diversity is generated by the accu-
mulation of de novo mutations during the course of infection
but can also result from co-infection with different lineages.
Analysis of within-host variation could potentially be used
to improve the inference of transmission chains, but this ap-
proach requires caution because of the confounding effects of
recurrent mutation and unrelated episodes of superinfection.
More detailed studies are required to evaluate the transmis-
sion bottlenecks that govern the propagation of within-host
variants from host to host, and to examine the patterns of
within-host variation associated with different epidemiologi-
cal circumstances.

Methods

Sample selection and ethics. The 1,181 samples were
taken as a random subset from a larger prospective study into
SARS-CoV-2 infections at Cambridge University Hospitals
National Health Service Foundation Trust (CUH; Cambridge,
UK), a secondary care provider and tertiary referral centre in
the East of England (4, 48). This study was done as part of
surveillance for COVID-19 under the auspices of Section 251
of the National Health Service Act 2006. It therefore did not
require individual patient consent or ethical approval. The
COVID-19 Genomics UK (COG-UK) study protocol was ap-
proved by the Public Health England Research Ethics Gover-
nance Group.
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Fig. 6. (A) An example of three samples identified as potential mixtures. The consensus lineage is given first and coloured blue while the potentially co-infecting lineage
is given second and coloured red. Minority variants that do not match the co-infecting lineage are coloured grey. (B) The median number of shared iSNVs shared by each
pair of samples binned by the probability they were the result of a direct transmission according to the model of Stimson et al., 2019. Results, with a minimum minor allele
frequency of 0.01, 0.02, 0.05 and 0.1 are shown in each of the facets. (C) The same plot as 3B but having removed all samples that were inferred to be mixed infections. (D) A
diagram demonstrating the four scenarios that can lead to shared within-host variants. (i) Super-infection of a common strain. (ii) Super-infection followed by co-transmission
(iii) Transmission of the within-host variants through a large bottleneck. (iv) Independent de novo acquisitions of the same within-host variants. Shared within-host variants in
scenarios (ii, iii) are concordant with the transmission tree while (i, iv) are discordant, potentially confounding transmission inference efforts.
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Variant calling. Variant calling was performed using Shear-
waterML, which is available as part of the deepSNV R pack-
age (11, 12). In order to create a base-specific error model for
the SARS-CoV-2 genome, we randomly selected sequencing
data from 100 samples (50 from each set of duplicates) from
the 468 samples that met the following criteria: (1) ρ value
from beta-binomial model ≤ 0.02; (2) proportion of genome
with at least 500× coverage ≥ 0.9 for both duplicates; (3)
absolute difference in median coverage between replicates
≤ 20,000; and (4) only one sample sequenced from a given
donor. For each sample, non-reference sites with VAF ≥ 0.01
were set as uninformative (i.e. depth for all base types were
set to 0) in order to enable calling of recurrent, high VAF
mutations. However, two sites (11074 and 25202) were ef-
fectively excluded from variant calling as they were set as
uninformative for all samples in the normal panel.
Variants were called separately for each set of duplicates.
The initial ShearwaterML calls were filtered using the fol-
lowing criteria: (1) total depth at variant site ge100×; and (2)
Benjamini-Hochberg False Discovery Rate q-value ≤ 0.05 in
one duplicate and unadjusted p-value ≤ 0.01 in the other du-
plicate. The adjustment of p-values was performed by con-
sidering the five mutation types (three non-reference bases,
insertions and deletions) at all sites with ≥ 100× coverage in
the 1,181 samples from a given duplicate set. Variants at con-
secutive sites were merged into single events if the difference
in VAFs ≤ 0.05.

Beta-binomial modelling of replicate samples. To quan-
tify the level of discordance in the allele frequencies between
technical replicates, for each pair replicates we first identi-
fied a set of variable sites, which are expected to contain both
artefacts and within-host mutations. All non-reference vari-
able sites with coverage in both replicates > 100x and mean
VAF from both replicates higher than 1% and lower than 90%
were considered for the beta-binomial modelling. In Illu-
mina sequencing protocols where adapters are ligated before
amplification and PCR duplicates can be removed computa-
tionally, VAFs may be expected to show binomial variation
between technical replicates. However, amplicon sequenc-
ing can lead to preferential amplification of some molecules
leading to higher variation in VAFs. We quantified the extent
of variation above binomial sampling in the VAFs of variable
sites between replicates by fitting a beta-binomial model to
the allele counts of variable sites, obtaining a maximum like-
lihood estimate of the ρ (overdispersion) parameter for each
pair of replicate samples. Let x1,j and x2,j be the alternative
(non-reference) allele counts of variable site j in replicates
1 and 2 of a given sample, and n1,j and n2,j be the local
coverages at the site. We can calculate an approximate likeli-
hood for the beta-binomial model using the following equa-
tion, where P depicts the beta-binomial density function:

L=
∏

i∈{1,2}

∏
j

P (xi,j ,ni,j ,p= x1,j +x2,j
n1,j +n2,j

,ρ)

A maximum likelihood estimate for the overdispersion pa-
rameter was obtained by grid search. The overdispersion pa-

rameter, measuring the level of discordance in allele frequen-
cies between the replicates, was found to correlate strongly
with the Ct value of the sample.

Mutational spectrum. The mutational spectra shown in
Figure 1 were generated assuming that the allele in
the reference sequence (SARS-CoV-2 isolate Wuhan-Hu-1,
MN908947.3) represents the ancestral allele. The normalised
mutation rates (r) for each of the 192 possible changes (j) in
a trinucleotide context were calculated as:

rj = nj

Lj
∑
j
nj

Lj

Where nj is the total number of mutations observed for a
trinucleotide change j, and Lj is the total number of times
that the corresponding trinucleotide is present in the refer-
ence genome (MN908947.3). When observing the same mu-
tation in multiple samples, it is not always straightforward
to determine the number of independent mutational events
that this represents. For major variants, this can be better es-
timated using a phylogeny, although recurrent hotspots can
cause errors in the phylogenetic reconstruction. For simplic-
ity, mutations observed across samples as major variants were
counted only once for the estimation of nj . For within-host
variants, a more relaxed approach was used since, based on
our results, multiple instances of the same within-host vari-
ant across samples are more likely to represent independent
events. Within-host variants observed in more than 5 samples
were only counted 5 times for the calculation of nj , to avoid
a small number of highly-recurrent hotspots from dominating
the trinucleotide spectrum.

Selection analysis. Analyses of selection were carried out
using the dNdScv package (28). In contrast to traditional im-
plementations of dN/dS developed for divergent sequences,
which rely on Markov-chain codon substitution models (49),
dNdScv was developed for comparisons of closely related
genomes. Under low divergence rates, such as those in the
densely sampled SARS-CoV-2 phylogeny, observed changes
typically represent individual mutational events, which can
be modelled using a Poisson framework instead of Markov-
chain substitution models. This enables the use of more
complex and realistic substitution models, including context
dependence, strand asymmetry, non-equilibrium sequence
composition and separate estimation of dN/dS ratios for mis-
sense and nonsense mutations. These changes can be impor-
tant to avoid false signals of negative or positive selection
under neutrality when using simplistic substitution models
(28). Here we used the default substitution model in dNd-
Scv, which uses 192 rate parameters to model all possible
mutations in both strands separately in a trinucleotide con-
text, as well as two ω parameters to estimate dN/dS ratios for
missense and nonsense mutations separately. dNdScv files
and code needed to generate dN/dS ratios from SARS-CoV-2
data are available as Supplementary Code.
dN/dS ratios on polymorphism data need to be interpreted
with caution. This is both because dN/dS ratios can be
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time dependent (50), providing weaker signals of selection
for more recent changes, and because dN/dS ratios can be-
have non-monotonically with respect to selection coefficients
under idealised conditions of free recombination when us-
ing nucleotide diversity within a population (51). The latter
can result from strong positive selection causing a reduction
in the effective population size (and in nucleotide diversity)
of non-synonymous sites under free recombination. How-
ever, the potential loss of monotonicity should not be a con-
cern in our analyses of SARS-CoV-2 data. This is both be-
cause free recombination between adjacent sites is unrealistic
for SARS-CoV-2 and because collections of mutations were
identified by comparison of derived sequences to an ancestral
reference genome, instead of by comparison of two derived
sequences at any one time.

Consensus phylogeny construction. Consensus
genomes for each replicate were generated using the
ARCTIC SARS-CoV-2 bioinformatics pipeline. A multiple
sequence alignment was generated using MAFFTv7.464 and
any sites that were discordant between replicates were set to
be ambiguous (52). Sites that have previously been identified
to create difficulties in generating phylogenies were masked
using bedtools v2.29.2 using the VCF described in De Maio
et al, 2020 (30, 53). Fasttree v2.1.11 was used to generate a
maximum likelihood phylogeny (54).

Transmission model. To investigate transmission, samples
were only considered if both replicates produced high qual-
ity consensus genomes. When multiple samples from the
same host were available the earliest sample was used. Pair-
wise SNP distances were generated between the consensus
genomes using pairsnp v0.2.0 (55). The distribution of the
underlying number of intermediate transmission events be-
tween each pair of samples was then inferred using an imple-
mentation of the transcluster algorithm (32, 56). The serial
interval and evolutionary rate were set to 5 days and 1e-3
substitutions/site/year (26, 57).

Identification of potential mixed infections. Potential
mixed infections were identified using a linear model by test-
ing whether the allele frequencies in a sample could be better
explained by the inclusion of an additional consensus genome
from the COG-UK dataset of the 29th May 2020. Additional
samples mixtures were considered if the addition of a COG-
UK consensus genome could explain at least 2 iSNVs and
have at most 1 variant that was not found in the alleles of
the sample. This identified 54 putative mixtures which were
then screened manually to obtain 36 potentially mixed sam-
ples. The code used to run this analysis is available in the
supplementary materials.

SOFTWARE AVAILABILITY
Analysis code available from:
https://github.com/gtonkinhill/SC2_withinhost

DATA AVAILABILITY

Accession numbers for the sequence data is given in Supplementary Table 3

ACKNOWLEDGEMENTS
This work was funded by COG-UK, supported by funding from the Medical Re-
search Council (MRC) part of UK Research & Innovation (UKRI), the National In-
stitute of Health Research (NIHR) and Genome Research Limited, operating as
the Wellcome Sanger Institute; the Wellcome Trust (Senior Fellowship to IG ref:
207498/Z/17/Z and PhD Scholarship to GTH ref: 204016/Z/16/Z) ; the Academy of
Medical Sciences & the Health Foundation (Clinician Scientist Fellowship to MET;
and the Cambridge NIHR Biomedical Research Centre (MET).

References
1. World Health Organization. Weekly update on COVID-19. Technical report, World Health

Organization, October 2020.
2. COG-UK. An integrated national scale SARS-CoV-2 genomic surveillance network. The

Lancet Microbe, June 2020.
3. Katrina A Lythgoe, Matthew David Hall, Luca Ferretti, Mariateresa de Cesare, George

MacIntyre-Cockett, Amy Trebes, Monique Andersson, Newton Otecko, Emma L Wise,
Nathan Moore, Jessica Lynch, Stephen Kidd, Nicholas Cortes, Matilde Mori, Anita Justice,
Angie Green, M Azim Ansari, Lucie Abeler-Dorner, Catrin E Moore, Tim E A Peto, Robert
Shaw, Peter Simmonds, David Buck, John A Todd, David Bonsall, Christophe Fraser, and
Tanya Golubchik. Shared SARS-CoV-2 diversity suggests localised transmission of minority
variants. May 2020.

4. Luke W Meredith, William L Hamilton, Ben Warne, Charlotte J Houldcroft, Myra Hosmillo,
Aminu S Jahun, Martin D Curran, Surendra Parmar, Laura G Caller, Sarah L Caddy, and
Others. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-
care associated COVID-19: a prospective genomic surveillance study. Lancet Infect. Dis.,
2020.

5. M Eigen. Viral quasispecies. Sci. Am., 269(1):42–49, July 1993.
6. J Holland, K Spindler, F Horodyski, E Grabau, S Nichol, and S VandePol. Rapid evolution

of RNA genomes. Science, 215(4540):1577–1585, March 1982.
7. Nicolae Sapoval, Medhat Mahmoud, Michael D Jochum, Yunxi Liu, R A Leo Elworth,

Qi Wang, Dreycey Albin, Huw Ogilvie, Michael D Lee, Sonia Villapol, Kyle M Hernandez,
Irina Maljkovic Berry, Jonathan Foox, Afshin Beheshti, Krista Ternus, Kjersti M Aagaard,
David Posada, Christopher E Mason, Fritz Sedlazeck, and Todd J Treangen. Hidden ge-
nomic diversity of SARS-CoV-2: implications for qRT-PCR diagnostics and transmission.
July 2020.

8. Alexandra Popa, Jakob-Wendelin Genger, Michael Nicholson, Thomas Penz, Daniela
Schmid, Stephan W Aberle, Benedikt Agerer, Alexander Lercher, Lukas Endler, Hen-
rique Colaço, Mark Smyth, Michael Schuster, Miguel Grau, Francisco Martinez, Oriol
Pich, Wegene Borena, Erich Pawelka, Zsofia Keszei, Martin Senekowitsch, Jan Laine,
Judith H Aberle, Monika Redlberger-Fritz, Mario Karolyi, Alexander Zoufaly, Sabine Mar-
itschnik, Martin Borkovec, Peter Hufnagl, Manfred Nairz, Günter Weiss, Michael T Wolfin-
ger, Dorothee von Laer, Giulio Superti-Furga, Nuria Lopez-Bigas, Elisabeth Puchhammer-
Stöckl, Franz Allerberger, Franziska Michor, Christoph Bock, and Andreas Bergthaler. Mu-
tational dynamics and transmission properties of SARS-CoV-2 superspreading events in
austria. July 2020.

9. Juliana Cudini, Sunando Roy, Charlotte J Houldcroft, Josephine M Bryant, Daniel P De-
pledge, Helena Tutill, Paul Veys, Rachel Williams, Austen J J Worth, Asif U Tamuri,
Richard A Goldstein, and Judith Breuer. Human cytomegalovirus haplotype reconstruc-
tion reveals high diversity due to superinfection and evidence of within-host recombination.
Proc. Natl. Acad. Sci. U. S. A., 116(12):5693–5698, March 2019.

10. D N A Pipelines, Benjamin Farr, Diana Rajan, Emma Betteridge, Lesley Shirley, Michael
Quail, Naomi Park, Nicholas Redshaw, Iraad Bronner, Louise Aigrain, Scott Goodwin, Scott
Thurston, Stefanie Lensing, James Bonfield, Keith James, Nicholas Salmon, Charlotte
Beaver, Rachel Nelson, K David, Alex Alderton, and Ian Johnston. COVID-19 ARTIC v3
illumina library construction and sequencing protocol v4. Technical report, May 2020.

11. Moritz Gerstung, Elli Papaemmanuil, and Peter J Campbell. Subclonal variant calling with
multiple samples and prior knowledge. Bioinformatics, 30(9):1198–1204, May 2014.

12. Iñigo Martincorena, Amit Roshan, Moritz Gerstung, Peter Ellis, Peter Van Loo, Stuart
McLaren, David C Wedge, Anthony Fullam, Ludmil B Alexandrov, Jose M Tubio, Lucy Steb-
bings, Andrew Menzies, Sara Widaa, Michael R Stratton, Philip H Jones, and Peter J Camp-
bell. Tumor evolution. high burden and pervasive positive selection of somatic mutations in
normal human skin. Science, 348(6237):880–886, May 2015.

13. Alexandra Popa, Jakob-Wendelin Genger, Michael D Nicholson, Thomas Penz, Daniela
Schmid, Stephan W Aberle, Benedikt Agerer, Alexander Lercher, Lukas Endler, Henrique
Colaço, Mark Smyth, Michael Schuster, Miguel L Grau, Francisco Martínez-Jiménez, Oriol
Pich, Wegene Borena, Erich Pawelka, Zsofia Keszei, Martin Senekowitsch, Jan Laine,
Judith H Aberle, Monika Redlberger-Fritz, Mario Karolyi, Alexander Zoufaly, Sabine Mar-
itschnik, Martin Borkovec, Peter Hufnagl, Manfred Nairz, Günter Weiss, Michael T Wolfin-
ger, Dorothee von Laer, Giulio Superti-Furga, Nuria Lopez-Bigas, Elisabeth Puchhammer-
Stöckl, Franz Allerberger, Franziska Michor, Christoph Bock, and Andreas Bergthaler. Ge-
nomic epidemiology of superspreading events in austria reveals mutational dynamics and
transmission properties of SARS-CoV-2. Sci. Transl. Med., November 2020.

14. Stanley G Sawicki, Dorothea L Sawicki, and Stuart G Siddell. A contemporary view of
coronavirus transcription. J. Virol., 81(1):20–29, January 2007.

15. Philip V’kovski, Annika Kratzel, Silvio Steiner, Hanspeter Stalder, and Volker Thiel. Coron-
avirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., October
2020.

16. Y Zhao, J Sun, Y Li, Z Li, Y Xie, R Feng, J Zhao, and Y Hu. The strand-biased transcription
of SARS-CoV-2 and unbalanced inhibition by remdesivir. bioRxiv, 2020.

17. Georg Wolff, Ronald W A L Limpens, Jessika C Zevenhoven-Dobbe, Ulrike Laugks, Shawn
Zheng, Anja W M de Jong, Roman I Koning, David A Agard, Kay Grünewald, Abraham J
Koster, Eric J Snijder, and Montserrat Bárcena. A molecular pore spans the double mem-
brane of the coronavirus replication organelle. Science, 369(6509):1395–1398, September
2020.

12 | bioRχiv Tonkin-Hill et al. | Patterns of within-host genetic diversity in SARS-CoV-2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2020. ; https://doi.org/10.1101/2020.12.23.424229doi: bioRxiv preprint 

https://github.com/gtonkinhill/SC2_withinhost
https://doi.org/10.1101/2020.12.23.424229
http://creativecommons.org/licenses/by/4.0/


DRAFT

18. James I Hoopes, Luis M Cortez, Tony M Mertz, Ewa P Malc, Piotr A Mieczkowski, and
Steven A Roberts. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand
template during DNA replication. Cell Rep., 14(6):1273–1282, February 2016.

19. Salvatore Di Giorgio, Filippo Martignano, Maria Gabriella Torcia, Giorgio Mattiuz, and Silve-
stro G Conticello. Evidence for host-dependent RNA editing in the transcriptome of SARS-
CoV-2. Science Advances, 6(25):eabb5813, June 2020.

20. Zijie Shen, Yan Xiao, Lu Kang, Wentai Ma, Leisheng Shi, Li Zhang, Zhuo Zhou, Jing Yang,
Jiaxin Zhong, Donghong Yang, Li Guo, Guoliang Zhang, Hongru Li, Yu Xu, Mingwei Chen,
Zhancheng Gao, Jianwei Wang, Lili Ren, and Mingkun Li. Genomic diversity of severe acute
respiratory Syndrome–Coronavirus 2 in patients with coronavirus disease 2019, 2020.

21. Ludmil B Alexandrov, Jaegil Kim, Nicholas J Haradhvala, Mi Ni Huang, Alvin Wei Tian Ng,
Yang Wu, Arnoud Boot, Kyle R Covington, Dmitry A Gordenin, Erik N Bergstrom,
S M Ashiqul Islam, Nuria Lopez-Bigas, Leszek J Klimczak, John R McPherson, Sandro
Morganella, Radhakrishnan Sabarinathan, David A Wheeler, Ville Mustonen, PCAWG Mu-
tational Signatures Working Group, Gad Getz, Steven G Rozen, Michael R Stratton, and
PCAWG Consortium. The repertoire of mutational signatures in human cancer. Nature,
578(7793):94–101, February 2020.

22. Hans E Krokan, Finn Drabløs, and Geir Slupphaug. Uracil in DNA–occurrence, conse-
quences and repair. Oncogene, 21(58):8935–8948, December 2002.

23. Thomas Helleday, Saeed Eshtad, and Serena Nik-Zainal. Mechanisms underlying muta-
tional signatures in human cancers. Nat. Rev. Genet., 15(9):585–598, September 2014.

24. Roman Wölfel, Victor M Corman, Wolfgang Guggemos, Michael Seilmaier, Sabine Zange,
Marcel A Müller, Daniela Niemeyer, Terry C Jones, Patrick Vollmar, Camilla Rothe, Michael
Hoelscher, Tobias Bleicker, Sebastian Brünink, Julia Schneider, Rosina Ehmann, Katrin
Zwirglmaier, Christian Drosten, and Clemens Wendtner. Virological assessment of hospi-
talized patients with COVID-2019. Nature, 581(7809):465–469, May 2020.

25. Ranawaka A P M Perera, Eugene Tso, Owen T Y Tsang, Dominic N C Tsang, Kitty Fung,
Yonna W Y Leung, Alex W H Chin, Daniel K W Chu, Samuel M S Cheng, Leo L M Poon,
Vivien W M Chuang, and Malik Peiris. SARS-CoV-2 virus culture and subgenomic RNA for
respiratory specimens from patients with mild coronavirus disease. Emerg. Infect. Dis., 26
(11):2701–2704, November 2020.

26. Joseph R Fauver, Mary E Petrone, Emma B Hodcroft, Kayoko Shioda, Hanna Y Ehrlich,
Alexander G Watts, Chantal B F Vogels, Anderson F Brito, Tara Alpert, Anthony Muy-
ombwe, Jafar Razeq, Randy Downing, Nagarjuna R Cheemarla, Anne L Wyllie, Chaney C
Kalinich, Isabel M Ott, Joshua Quick, Nicholas J Loman, Karla M Neugebauer, Alexander L
Greninger, Keith R Jerome, Pavitra Roychoudhury, Hong Xie, Lasata Shrestha, Meei-Li
Huang, Virginia E Pitzer, Akiko Iwasaki, Saad B Omer, Kamran Khan, Isaac I Bogoch,
Richard A Martinello, Ellen F Foxman, Marie L Landry, Richard A Neher, Albert I Ko, and
Nathan D Grubaugh. Coast-to-Coast spread of SARS-CoV-2 during the early epidemic in
the united states. Cell, 181(5):990–996.e5, May 2020.

27. Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Samuel A J R Aparicio, Sam
Behjati, Andrew V Biankin, Graham R Bignell, Niccolò Bolli, Ake Borg, Anne-Lise Børresen-
Dale, Sandrine Boyault, Birgit Burkhardt, Adam P Butler, Carlos Caldas, Helen R Davies,
Christine Desmedt, Roland Eils, Jórunn Erla Eyfjörd, John A Foekens, Mel Greaves, Fu-
mie Hosoda, Barbara Hutter, Tomislav Ilicic, Sandrine Imbeaud, Marcin Imielinski, Natalie
Jäger, David T W Jones, David Jones, Stian Knappskog, Marcel Kool, Sunil R Lakhani,
Carlos López-Otín, Sancha Martin, Nikhil C Munshi, Hiromi Nakamura, Paul A North-
cott, Marina Pajic, Elli Papaemmanuil, Angelo Paradiso, John V Pearson, Xose S Puente,
Keiran Raine, Manasa Ramakrishna, Andrea L Richardson, Julia Richter, Philip Rosen-
stiel, Matthias Schlesner, Ton N Schumacher, Paul N Span, Jon W Teague, Yasushi To-
toki, Andrew N J Tutt, Rafael Valdés-Mas, Marit M van Buuren, Laura van ’t Veer, Anne
Vincent-Salomon, Nicola Waddell, Lucy R Yates, Australian Pancreatic Cancer Genome Ini-
tiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain,
Jessica Zucman-Rossi, P Andrew Futreal, Ultan McDermott, Peter Lichter, Matthew Meyer-
son, Sean M Grimmond, Reiner Siebert, Elías Campo, Tatsuhiro Shibata, Stefan M Pfister,
Peter J Campbell, and Michael R Stratton. Signatures of mutational processes in human
cancer. Nature, 500(7463):415–421, August 2013.

28. Iñigo Martincorena, Keiran M Raine, Moritz Gerstung, Kevin J Dawson, Kerstin Haase, Peter
Van Loo, Helen Davies, Michael R Stratton, and Peter J Campbell. Universal patterns of
selection in cancer and somatic tissues. Cell, 171(5):1029–1041.e21, November 2017.

29. Jimmy Van den Eynden and Erik Larsson. Mutational signatures are critical for proper
estimation of purifying selection pressures in cancer somatic mutation data when using the
dN/dS metric. Front. Genet., 8:74, June 2017.

30. Nicola De Maio, Conor Walker, and Nick Goldman. Issues with SARS-CoV-2 sequencing
data, May 2020.

31. Mara Prentiss, Arthur Chu, and Karl K Berggren. Superspreading events without super-
spreaders: Using high attack rate events to estimate n0 for airborne transmission of COVID-
19. October 2020.

32. James Stimson, Jennifer Gardy, Barun Mathema, Valeriu Crudu, Ted Cohen, and Caroline
Colijn. Beyond the SNP threshold: Identifying outbreak clusters using inferred transmis-
sions. Mol. Biol. Evol., 36(3):587–603, March 2019.

33. Chris Wymant, Matthew Hall, Oliver Ratmann, David Bonsall, Tanya Golubchik, Mariateresa
de Cesare, Astrid Gall, Marion Cornelissen, Christophe Fraser, and STOP-HCV Consor-
tium, The Maela Pneumococcal Collaboration, and The BEEHIVE Collaboration. PHY-
LOSCANNER: Inferring transmission from within- and Between-Host pathogen genetic di-
versity. Mol. Biol. Evol., November 2017.

34. James R M Black, Chris Bailey, Joanna Przewrocka, Krijn K Dijkstra, and Charles Swan-
ton. COVID-19: the case for health-care worker screening to prevent hospital transmission.
Lancet, 395(10234):1418–1420, May 2020.

35. Helen Ward, Christina J Atchison, Matthew Whitaker, Kylie E C Ainslie, Joshua Elliott,
Lucy C Okell, Rozlyn Redd, Deborah Ashby, Christl A Donnelly, Wendy Barclay, Ara Darzi,
Graham Cooke, Steven Riley, and Paul Elliott. Antibody prevalence for SARS-CoV-2 in
england following first peak of the pandemic: REACT2 study in 100,000 adults.

36. Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui
Xiang, Zhenshun Cheng, Yong Xiong, Yan Zhao, Yirong Li, Xinghuan Wang, and Zhiyong
Peng. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus–

Infected pneumonia in wuhan, china. JAMA, 323(11):1061–1069, March 2020.
37. Marco Vignuzzi, Jeffrey K Stone, Jamie J Arnold, Craig E Cameron, and Raul Andino.

Quasispecies diversity determines pathogenesis through cooperative interactions in a viral
population. Nature, 439(7074):344–348, January 2006.

38. Xiaoyan Lu, Lori A Rowe, Michael Frace, James Stevens, Glen R Abedi, Osman Elnile,
Taleb Banassir, Malak Al-Masri, John T Watson, Abdullah Assiri, and Dean D Erdman. Spike
gene deletion quasispecies in serum of patient with acute MERS-CoV infection: MERS-CoV
spike gene deletion. J. Med. Virol., 89(3):542–545, March 2017.

39. Dongping Xu, Zheng Zhang, and Fu-Sheng Wang. SARS-associated coronavirus quasis-
pecies in individual patients. N. Engl. J. Med., 350(13):1366–1367, March 2004.

40. Juliana D Siqueira, Livia R Goes, Brunna M Alves, Pedro S de Carvalho, Claudia Cicala,
James Arthos, João P B Viola, Andréia C de Melo, Marcelo A Soares, and on behalf of the
INCA COVID-19 Task Force. SARS-CoV-2 genomic and quasispecies analyses in cancer
patients reveal relaxed intrahost virus evolution. August 2020.

41. Nicola De Maio, Colin J Worby, Daniel J Wilson, and Nicole Stoesser. Bayesian reconstruc-
tion of transmission within outbreaks using genomic variants. PLoS Comput. Biol., 14(4):
e1006117, April 2018.

42. Colin J Worby, Marc Lipsitch, and William P Hanage. Shared genomic variants: Identifica-
tion of transmission routes using pathogen Deep-Sequence data. Am. J. Epidemiol., 186
(10):1209–1216, November 2017.

43. Armando Arias, Simon J Watson, Danny Asogun, Ekaete Alice Tobin, Jia Lu, My V T Phan,
Umaru Jah, Raoul Emeric Guetiya Wadoum, Luke Meredith, Lucy Thorne, Sarah Caddy,
Alimamy Tarawalie, Pinky Langat, Gytis Dudas, Nuno R Faria, Simon Dellicour, Abdul Ka-
mara, Brima Kargbo, Brima Osaio Kamara, Sahr Gevao, Daniel Cooper, Matthew New-
port, Peter Horby, Jake Dunning, Foday Sahr, Tim Brooks, Andrew J H Simpson, Elisabetta
Groppelli, Guoying Liu, Nisha Mulakken, Kate Rhodes, James Akpablie, Zabulon Yoti, Mar-
garet Lamunu, Esther Vitto, Patrick Otim, Collins Owilli, Isaac Boateng, Lawrence Okoror,
Emmanuel Omomoh, Jennifer Oyakhilome, Racheal Omiunu, Ighodalo Yemisis, Donatus
Adomeh, Solomon Ehikhiametalor, Patience Akhilomen, Chris Aire, Andreas Kurth, Nicola
Cook, Jan Baumann, Martin Gabriel, Roman Wölfel, Antonino Di Caro, Miles W Carroll,
Stephan Günther, John Redd, Dhamari Naidoo, Oliver G Pybus, Andrew Rambaut, Paul
Kellam, Ian Goodfellow, and Matthew Cotten. Rapid outbreak sequencing of ebola virus
in sierra leone identifies transmission chains linked to sporadic cases. Virus Evol, 2(1):
vew016, January 2016.

44. Colin J Worby, Marc Lipsitch, and William P Hanage. Within-host bacterial diversity hin-
ders accurate reconstruction of transmission networks from genomic distance data. PLoS
Comput. Biol., 10(3):e1003549, March 2014.

45. Matthew Hall, Mark Woolhouse, and Andrew Rambaut. Epidemic reconstruction in a phylo-
genetics framework: Transmission trees as partitions of the node set. PLoS Comput. Biol.,
11(12):e1004613, December 2015.

46. Nicola De Maio, Chieh-Hsi Wu, and Daniel J Wilson. SCOTTI: Efficient reconstruction of
transmission within outbreaks with the structured coalescent. PLoS Comput. Biol., 12(9):
e1005130, September 2016.

47. Finlay Campbell, Camilla Strang, Neil Ferguson, Anne Cori, and Thibaut Jombart. When
are pathogen genome sequences informative of transmission events? PLoS Pathog., 14
(2):e1006885, February 2018.

48. William L Hamilton, Gerry Tonkin-Hill, Emily Smith, Charlotte Houldcroft, Ben Warne, Luke
Meredith, Myra Hosmillo, Aminu Jahun, Martin Curran, Surendra Parmar, Laura Caller,
Sarah Caddy, Fahad Khokhar, Anna Yakovleva, Grant Hall, Theresa Feltwell, Malte Pinck-
ert, Iliana Georgana, Yasmin Chaudhry, Nicholas Brown, Sonia Goncalves, Roberto Am-
ato, Ewan Harrison, Mathew Beale, Michael Spencer Chapman, David Jackson, Ian John-
ston, Alex Alderton, John Sillitoe, Cordelia Langford, Gordon Dougan, Sharon Peacock,
Dominic Kwiatowski, Ian Goodfellow, M Estee Torok, and COVID-19 Genomics Consortium
UK. COVID-19 infection dynamics in care homes in the east of england: a retrospective
genomic epidemiology study. medRxiv, page 2020.08.26.20182279, September 2020. doi:
10.1101/2020.08.26.20182279.

49. N Goldman and Z Yang. A codon-based model of nucleotide substitution for protein-coding
DNA sequences. Mol. Biol. Evol., 11(5):725–736, September 1994.

50. Eduardo P C Rocha, John Maynard Smith, Laurence D Hurst, Matthew T G Holden, Jes-
sica E Cooper, Noel H Smith, and Edward J Feil. Comparisons of dN/dS are time dependent
for closely related bacterial genomes. J. Theor. Biol., 239(2):226–235, March 2006.

51. Sergey Kryazhimskiy and Joshua B Plotkin. The population genetics of dN/dS. PLoS
Genet., 4(12):e1000304, December 2008.

52. Kazutaka Katoh, Kazuharu Misawa, Kei-Ichi Kuma, and Takashi Miyata. MAFFT: a novel
method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids
Res., 30(14):3059–3066, July 2002.

53. Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841–842, March 2010.

54. Morgan N Price, Paramvir S Dehal, and Adam P Arkin. FastTree 2 – approximately
Maximum-Likelihood trees for large alignments. PLoS One, 5(3):e9490, March 2010.

55. Gerry Tonkin-Hill. pairsnp, August 2018.
56. Gerry Tonkin-Hill. fasttranscluster, 2020.
57. Juanjuan Zhang, Maria Litvinova, Wei Wang, Yan Wang, Xiaowei Deng, Xinghui Chen, Mei

Li, Wen Zheng, Lan Yi, Xinhua Chen, Qianhui Wu, Yuxia Liang, Xiling Wang, Juan Yang,
Kaiyuan Sun, Ira M Longini, Jr, M Elizabeth Halloran, Peng Wu, Benjamin J Cowling, Ste-
fano Merler, Cecile Viboud, Alessandro Vespignani, Marco Ajelli, and Hongjie Yu. Evolv-
ing epidemiology and transmission dynamics of coronavirus disease 2019 outside hubei
province, china: a descriptive and modelling study. Lancet Infect. Dis., April 2020.

Tonkin-Hill et al. | Patterns of within-host genetic diversity in SARS-CoV-2 bioRχiv | 13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 25, 2020. ; https://doi.org/10.1101/2020.12.23.424229doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.23.424229
http://creativecommons.org/licenses/by/4.0/


DRAFT

Supplementary Figures:

run2

run1

0 10000 20000 30000

30000

60000

90000

120000

20000

40000

60000

80000

position

m
ea

n 
co

ve
ra

ge

comparison across runs

Supplementary Figure 1: Barplots indicating the mean sequencing depth across the SARS-CoV-2 reference genome for the two replicate runs of the 1,181
samples.
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Supplementary Figure 2: Dot plots indicating the concordance between variant allele frequency estimates across sequencing replicates in four samples.
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Supplementary Figure 3: (A) Histogram of estimated log10(ρ) values. Green line represents ρ= 0.02 in (A) and (C), as a suggested acceptable level of discordance
between replicates. 58% of all samples in the cohort had rho≤ 0.02. (B) Histogram of Ct values in the cohort. (C) Estimated ρ value as a function of Ct.
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Supplementary Figure 4: Frequencies of within-host variants for all hosts where multiple samples were taken over consecutive days. Samples taken on the same
day have been offset by a small distance to allow for comparison.
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Supplementary Figure 5: Proportion of shared variants between each pair of samples taken from the same host on the same day. Pairs are split by sampling
method which included sputum, swabs and bronchoalveolar lavage.
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Supplementary Figure 6: The mutational spectra in a 96-trinucleotide context of recurrent within-host variants.
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Supplementary Figure 8: All samples identified as potential mixtures. The consensus lineage is given first and coloured blue while the potentially co-infecting
lineage is given second and coloured red. Minority variants that do not match the co-infecting lineage are coloured grey.
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