Supplementary materials:

Chromosomal rearrangements represent modular cassettes for local adaptation across different geographic scales

Claire Mérot^{1*}, Emma Berdan², Hugo Cayuela^{1,3}, Haig Djambazian⁴, Anne-Laure Ferchaud¹, Martin Laporte¹, Eric Normandeau¹, Jiannis Ragoussis⁴, Maren Wellenreuther^{5,6}, Louis Bernatchez¹

Contents

Supplementary Methods 1: genome assembly2
Supplementary Methods 2: transcriptome assembly3
Supplementary methods 3: linkage map construction5
Table S1: Environmental variables at sampled locations in North America
Table S2: Concordance with SNP marker
Table S3: Isolation-by-distance / Isolation-by-resistance
Table S4: Isolation-by-distance within the different genomic regions
Table S5: Enrichment in outlier SNPs associated with environment for the different GEA methods 10
Table S6: Gene ontology enrichment for SNPs associated with size by GWAS11
Table S7: Gene ontology enrichment for genes in the inversion Cf-Inv(1)
Table S8: Gene ontology enrichment for genes in the inversion Cf-Inv(4.1) 12
Fig. S1: F_{ST} differentiation between the heterokaryotypes and each homokaryotypes13
Fig. S2: Multidimensional scaling of local PCAs14
Fig. S3: The inversion(s) <i>Cf-Inv(4.2)</i> and <i>Cf-Inv(4.3)</i> on LG415
Fig. S4: Genetic diversity along the genome and as a function of recombination16
Fig. S5: The low-recombining region on LG2 <i>Cf-Lrr(2)</i> 17
Fig. S6: The low-recombining region on LG3 <i>Cf-Lrr(3)</i> 18
Fig. S7: The low-recombining region on LG5 <i>Cf-Lrr(5)</i> 19
Fig. S8: Pairwise F _{ST} between geographic populations along the genome and as a function of recombination20
Fig. S9: Isolation-by-Resistance full models comparing each region of interest to collinear regions21
Fig. S10: Latitudinal cline of frequencies for the major inversions22
Fig S11: Correlations between environmental variables and summary variables by PCA23
Fig S12: Environmental associations with Baypass (uncontrolled for population structure)24
Fig S13: Environmental associations with LFMM (K=4)25
Fig S14: Environmental associations with the thermal component of climatic variation26
Fig S15: GWAS on wing size within each homokaryotypes group27
Fig S16: QTL for chill-coma recovery

Supplementary Methods 1: genome assembly

• Sequencing

To generate a reference genome, we sequenced sibling *Coelopa frigida* females from a 3generation inbred family, obtained by crossing descendants from a pair of wild *Coelopa frigida* collected in St Irénée (QC, Canada). The inbred family was genotyped as homozygous for the α arrangement at the inversion *Cf-Inv(1R)* with a PCR assignment test developed in Mérot et al (2018). DNA was extracted individually from each sibling with a Phenol-Chloroform-Isopropanol extraction protocol adapted to preserve high-molecular weight DNA.

On a pool of DNA from three female siblings, long-read sequencing was performed on 4 cells of Pacific Biosystems Sequel sequencer at McGill University following standard procedures. It produced a total of 16.1 Gbp (~64x coverage) of sequencing data. One additional female from the same inbred family was sequenced following the 10xGenomics approach. High-molecular-weight DNA, with fragment size between 50 and 200kb, was loaded onto a Chromium controller chip, along with 10x Chromium reagents and gel beads following manufacturers recommended protocols. The resulting library was sequenced on one lane of an Illumina HiSeqXTen sequencer at McGill University. Sequencing yield 82 Gbp (~300x of coverage). The resulting linked-reads are illumina paired-end reads of 150bp, with barcode information linking short-reads along long molecules over long distances.

• Assembling and polishing

An initial assembly was carried out on the PacBio long reads using the Smrt Analysis v3.0 pbsmrtpipe analysis workflow tool from SMRT Link v5.0 (smrtlink-release 5.0.0.6792, pbsmrtpipe version: 0.51.2). The genome assembly and polishing was run with FALCON (Chin et al 2013), using the polished falcon fat pipeline option along with sequencing read metadata (data.xml), pipeline settings (preset.json) and output directory. From the default json settings the genome size was set to 255Mb (HGAP_GenomeLength_str) and seed coverage (HGAP_SeedCoverage_str) was set to 30X. The Falcon assembly method operates in two phases: First, overlapping sequence reads were compared to generate accurate consensus sequences with read N50 greater than 10Kbp. Next, overlaps between the corrected longer reads are used to generate a string graph. The graph is reduced so that multiple edges formed by heterozygous structural variation are replaced to represent a single haplotype. Contigs are formed by using the sequences of nonbranching paths. Two supplemental graph cleanup operations are defined so as to improve assembly quality by removing spurious edges from the string graph: tip removal and chimeric duplication edge removal. Tip removal discards sequences with errors that prevent 5' or 3' overlaps. Chimeric duplication edges may result from the raw sequence information or during the first sequence cleanup step and artificially increase the copy number of a duplication. In a second and final workflow stage the polished falcon fat workflow will use the Quiver/Arrow consensus tool to perform final error correction of the assembly and generated the polished assembly. This assembly yielded 2959 contigs (N50 = 320 kb), for a total assembly size of 233.7 Mbp.

This initial assembly was subsequently polished by using the linked reads. First, the contigs were corrected locally for sequence errors by running Pilon (Walker et al. 2014) with the following parameters (--changes --tracks --diploid --fix indels,gaps,local --mindepth 5) using Illumina paired-end short reads from the 10Xgenomics sequencing (~300X of the *C. frigida* genome) aligned with BWA-MEM on the initial assembly. Second, the information on long-range links provided by short-read barcodes was extracted using LongRanger (10xGenomics) and used by Tigmint (Jackman et al. 2018) with default parameters to correct misassemblies or break contigs. The resulting assembly accounted 3096 contigs with a N50 of 320 kb.

• Scaffolding

To scaffold the genome assembly, we used the program ARKS (D=true) and LINKS (Coombe et al. 2018; Yeo et al. 2018) with the following parameters (-k 30 -e 0.5 -l 3 -v 1), which relies on linked-reads to scaffold contigs. The resulting assembly accounted 2539 scaffolds with a N50 of 735 kb. At this stage, some scaffolds were manually broken following the identification of misassemblies in early analysis of the population genomic data and of the genetic map. Finally, scaffolds were assembled into chromosomes using *Chromonomer* (Catchen et al. 2020), which anchors and orientates scaffolds based on the order of markers in a linkage map (see below). The default parameters were used. The final assembly accounted 6 chromosomes and 1832 unanchored scaffolds with a N50 of 37.7Mb for a total of 239.7Mb (195.4 Mb into chromosomes). The completeness of this reference was assessed with BUSCO version 3.0.1 (Simão et al. 2015).

Supplementary Methods 2: transcriptome assembly

• Rearing and crosses

Larvae of *C. frigida* were collected from the field in May 2017 from Skeie (58.69733, 5.54083) and Østhassel (58.07068, 6.64346), Norway. All larvae were brought back the Tjärnö Marine Laboratory in Strömstad, Sweden where they were raised to adulthood at 25°C. Eclosed adults from Østhassel were used to generate a development time series. Adults were introduced to three replicate containers with 50% *Saccharina latissima* and 50% *Fucus spp.* substrate. They were left for 24 hours to lay eggs after which they were removed. At this time egg samples were taken and samples were taken every subsequent 48 hours. Samples were stored in RNAlater in -20°C until extraction. The eclosed adults from Skeie were used to generate homokaryotypic crosses. Adult virgins were collected and one of the hind legs was removed for genotyping. DNA extraction and genotyping was performed as described in (Mérot et al. 2018) Three separate successful $\alpha \alpha x \alpha \alpha$ and three separate successful $\beta \beta x \beta \beta$ crosses were obtained. Thirty individuals (15 \Im and 15 σ) spread over these crosses were introduced to new containers containing 90 g *Saccharina latissima* and 45 g *Fucus spp.* to make an $\alpha \alpha$ and a $\beta \beta$ line. Six days after the creation of these lines, two replicates of 3 larvae each were flash frozen in liquid nitrogen and stored at -80°C until extraction. The adults that eclosed from these lines were

used to make subsequent crosses (not described here) and then were flash frozen in liquid nitrogen and stored at -80°C until extraction.

• RNA extraction and library prep

RNA from all samples were extracted using a TriZOL protocol. Briefly 500 μ l of TriZOL was added to each sample and then the sample was homogenized in a shaker using glass beads. The sample was then incubated at room temperature for 5 minutes after which it was centrifuged at 12,000 rcf 4°C for 10 minutes. The supernatent was transferred to a new tube and 100 μ l of chloroform was added. After shaking the tube was incubated at room temperature for 3 minutes after which it was centrifuged at 10,000 rcf 4°C for 15 minutes. The upper aqueous phase was transferred to a new tube and 100 μ l of phenol and 100 μ l of chloroform were added. After shaking the sample was centrifuged for 7 minutes at 10,000 rcf 4°C. Then 500 μ l of isopropanol was added and the sample was incubated for 10 minutes at room temperature. After a centrifugation of 10 minutes at 12,000 rcf 4°C the pellet was washed with 500 μ l of 75% EtOH, centrifuged at 7,500 rcf 4°C for 5 minutes, and air-dried for 10 minutes. Samples were resuspended in 50 μ l H20. After at least 24 hours all samples were further cleaned using the Zymo Clean & Concentrator Kit following manufacturers instructions.

• Library preparation and Sequencing

For the ontogeny series we extracted RNA from 6 time points (eggs, 48 hours, 96 hours, 192 hours, 288 hours, and 384 hours). For each time point we separately extracted samples from two of the three replicates. Concentration of these extractions was measured using a QBIT and equal amounts of RNA from each time point from one of the two samples were pooled to make a pool. Thus we had two pooled samples covering the same time distribution but not created from any of the same samples.

These pooled samples as well as the 2 larval $\alpha\alpha$ pooled samples, 2 larval $\beta\beta$ pooled samples, 2 $\alpha\alpha$ adult males, 2 $\alpha\alpha$ adult females, 2 $\beta\beta$ adult males, 2 $\beta\beta$ adult females were submitted to SciLifeLab in Uppsala, Sweden for library preparation and sequencing. All RNA was purified with Agencourt RNA clean XP before library preparation. Library preparation was done with the TruSeq stranded mRNA library preparation kit including polyA selection. Samples were sequenced along with 36 other libraries (not described here) on a NovaSeq S1 flowcell with 100 bp paired end reads (v1 sequencing chemistry).

• Transcriptome assembly

Individual assemblies for each of the adult samples, both of the ontogenetic pools, both of the $\alpha\alpha$ larval pools, and both of the $\beta\beta$ larval pools were done using Trinity v2.9.1 (11 assemblies total) (Haas et al. 2013). Prior to assembly all reads were trimmed and adaptors removed using cutadapt 2.3 with Python 3.7.2. All assemblies were run through TransRate 1.0.1 (Smith-Unna et al. 2016) a quality assessment tool for *de novo* transcriptomes that looks for artefacts, such as chimeras and incomplete assembly, and provides individual transcript and overall assembly scores. We retained all transcripts from each assembly classified by TransRate as 'good'. These contigs were then merged using CD-hit V4.8.1 (Fu et al. 2012) with a sequence identity threshold of 0.95, a word size of 10, and local sequence alignment coverage for the longer

sequence at 0.005. Finally, the transcriptome was mapped to the genome assembly using GMAP version 2018-07-04 (Wu and Watanabe 2005). The mapping coordinates for each transcript were extracted and in the event that two transcripts mapped to the same coordinates, only the longer transcript was retained. The final transcriptome was annotated using the Trinotate pipeline (Grabherr et al. 2011).

Supplementary methods 3: linkage map sequencing

• Sequencing and genotyping

We generate an outbred F2 family of 136 progenies by crossing two F1 individuals of Coelopa frigida from different crosses obtained from wild individuals collected in Gaspésie (QC, Canada). The mother of the F2 family was genotyped homozygous for the α arrangement at the inversion Cf-Inv(1). DNA from the progeny, both parents, and two paternal grandparents, was extracted following a salt-based extraction protocol (Aljanabi and Martinez 1997) with a RNAase A treatment. DNA was quantified using QuantiT Picogreen dsDNA Assay Kit (Invitrogen) and concentration was normalized to 10 ng/µl. Libraries were prepared and sequenced at the plateforme d'analyses génomiques of the Institut de Biologie Intégrative et des Systèmes (IBIS, Université Laval, Québec, Canada). Libraries were constructed following the procedure described by Elshire (Elshire et al. 2011) adapted for Ion proton sequencing as reported in Abed et al 2019 (Abed et al. 2019). Briefly, genomic DNA was digested with the restriction enzyme ApeK1 by incubating at 37°C for two hours followed by enzyme inactivation by incubation at 65°C for 20 min. Sequencing adaptors and a unique individual barcode were ligated to each sample using a ligation master mix including T4 ligase. The ligation reaction was completed at 22°C for 2 hours followed by 65°C for 20 min to deactivate the enzymes. Libraries were size-selected using a BluePippin prep (Sage Science), amplified by PCR. Libraries were prepared for sequencing using a Ion CHEF, Hi-Q reagents and P1 V3 chips and the sequencing was performed for 300 flows on the Ion Proton (ThermoFisher). After an initial run of sequencing (96-plex for the progeny and one chip for the parents/grand-parents), all libraries were re-pooled in 96-plex and sequenced again to normalized read depth between individuals. Parents were sequenced at greater depth than progeny to make an accurate catalogue of diploid genotypes possible in the cross. The father was very poorly sequenced, likely because of low-quality DNA, so the grand-parents were both re-sequenced at great depth to infer the father genotype when possible.

The library sequences for the 136 offspring and their parents were trimmed using cutadapt (-e 0.2, -m 50) and then split per sample using process_radtags (-c -r -t 80 -q -s 0 --barcode_dist_1 2 -E phred33 -e apekI). This resulted in an average of 1.23 million reads (stdev = 0.198 million reads) of 80bp per offspring, as well as 2940951 reads for the male and 5173632 reads for the female. The paternal grandparents had 4496703 and 4513732 for the male and female, respectively. These prepared reads were aligned on the scaffolded assembly with bwa mem (-k 19 -c 500 -O 0,0 -E 2,2 -T 0) and SAMtools (samtools view -Sb -q 1 -F 4 -F 256 -F 2048). Genotype likelihoods were obtained with SAMtools mpileup following the pipeline and parameters provided in lep-map3 documentation. Only markers with at least 3X of coverage in all individuals were kept. We explored more stringent filtering such as 6X and 10X, which led to

very similar and collinear maps albeit with less marker density, an aspect which was the priority for efficient scaffolding.

- Abed A, Légaré G, Pomerleau S, St-Cyr J, Boyle B, Belzile FJ. 2019. Genotyping-by-sequencing on the ion torrent platform in barley. In: Barley. Springer. p. 233–252.
- Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. *Nucleic acids research* 25:4692–4693.
- Catchen J, Amores A, Bassham S. 2020. Chromonomer: a tool set for repairing and enhancing assembled genomes through integration of genetic maps and conserved synteny. *bioRxiv*.
- Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, Warren RL. 2018. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers. *BMC bioinformatics* 19:234.
- Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. *PLOS ONE* 6:e19379.
- Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28:3150–3152.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature biotechnology* 29:644–652.
- Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li
 B, Lieber M. 2013. De novo transcript sequence reconstruction from RNA-seq using the
 Trinity platform for reference generation and analysis. *Nature protocols* 8:1494–1512.
- Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, Xue Z, Mohamadi H, Bohlmann J, Jones SJ. 2018. Tigmint: correcting assembly errors using linked reads from large molecules. *BMC bioinformatics* 19:1–10.
- Mérot C, Berdan EL, Babin C, Normandeau E, Wellenreuther M, Bernatchez L. 2018. Intercontinental karyotype–environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly. *Proc Biol Sci* [Internet] 285. Available from: http://rspb.royalsocietypublishing.org/content/285/1881/20180519.abstract
- Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31:3210–3212.
- Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S. 2016. TransRate: reference-free quality assessment of de novo transcriptome assemblies. *Genome research* 26:1134–1144.
- Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PloS one* 9.
- Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. *Bioinformatics* 21:1859–1875.
- Yeo S, Coombe L, Warren RL, Chu J, Birol I. 2018. ARCS: scaffolding genome drafts with linked reads. *Bioinformatics* 34:725–731.

Table S1: Environmental variables at sampled locations in North America

The "other seaweeds" category includes red, brown and green algae that did not belong to Fucaceae or Laminariceae. From Mérot et al, 2018

		GPS coord	inates	Climatic and abiotic van databases		variables extracted from		Wrackbed abiotic characteristics			Wrackbed composition (%				lgal	
	Location	Latitude (°)	Longitude (°)	Air T° (°C)	Precipitations (mm)	Sea T° (°C)	Sea Salinity (‰)	Tidal Amplitude (m)	Mean depth (m)	Mean T° (°C)	Salinity	Fucaceae	Laminariaceae	Plant Debris	Other Seaweeds	Zoosteraceae
AG	Anse du Griffon (QC, C.)	48.93491	-64.30589	2.7	104.6	5.1	28.4	1.36	0.55	18.7	154	5	90	0	5	0
BP	Black Point (ME, USA)	43.53059	-70.32209	8.1	113.9	8.8	31.5	3.06	0.2	16.2	8	25	5	0	20	50
BS	Blanc Sablon (QC, C.)	51.41545	-57.15290	0.8	112.6	3.6	31.0	1.40	0.4	10.0		68	30	0	2	0
BT	Baie Trinité (QC, C)	49.41716	-67.30285	1.4	97.3	5.4	28.8	2.89	0.75	40.9	164	98	2	0	0	0
CB	Cow Bay (NS, C.)	44.62190	-63.42112	6.4	140.9	7.1	30.3	1.46	0.35	17.1	10	5	70	0	25	0
CE	Cap Espoir (QC)	48.43087	-64.32778	3.4	109.6	6.1	29.8	1.12	0.15	18.8	114	3	95	5	2	0
GM	Grands Méchins (QC, C)	49.00427	-66.97155	2.8	96.2	5.1	28.9	2.44	0.3	11.9	44	40	40	20	0	0
HA	Hampton (NH, USA)	42.92098	-70.79826	8.7	114.4	9.3	31.4	2.87	0.45	37.3	179	50	2	0	50	0
KA	Kamouraska (QC, C.)	47.56294	-69.87375	3.9	94.4	5.4	15.5	4.72	0.35	17.3	19	75	5	20	0	0
MA	Manomet Point (MA, USA)	41.92654	-70.54451	9.8	119.9	10.0	31.8	3.13	0.15	12.0	9	90	2	0	2	5
ME	Métis (QC, C)	48.66408	-68.07221	2.4	93.0	4.4	24.6	3.06	0.3	19.4	95	60	0	14	1	25
NB	Naufrage Beach (PEI, C.)	46.46795	-62.41561	5.7	109.2	8.3	30.0	0.73	0.65	11.1	14	70	2	0	1	0
RB	Rivière du Bouleau (QC)	50.28161	-65.51516	1.3	98.9	4.9	30.2	1.53	0.2	17.0	80	80	20	0	0	0
RC	Rivière à Claude (QC)	49.22086	-65.89794	2.3	98.2	5.1	29.4	2.40	0.5	20.7	53	45	5	50	0	0
SI	Saint Irénée (QC)	47.55973	-70.20425	2.7	105.1	5.4	15.5	4.72	0.15	6.8	0	80	15	0	5	0
SS	Saint Siméon (QC)	48.06991	-65.56586	4.2	103.3	7.0	29.1	1.66	0.2	14.9	113	20	50	0	5	25

Table S2: Concordance with SNP marker

Individuals genotyped with the PCA on the whole-genome data for the inversion Cf-Inv(1) were all consistent with the genotype obtained in the lab in (Mérot et al. 2018), except for the ones listed below. They were re-verified in the lab with an independent PCR, and corrected for 2 of them (BS16-0088 and SI16-0021). For the all the others, PCA genotyping was concordant with genotyping based on the enzymatic test with Alul but not Dral.

		PCA	Initial	Initial	Verification of	Verification
		genotype	genotype	genotype	genotype with	of genotype
			with Alul	with Dral	Alul	with Dral
North	BS16-0088	αβ	αβ	ββ	αβ	αβ
Gaspesie	SI16-0021	αβ	αα	NA	αβ	αβ
	GM16-0056	αβ	αβ	ββ	αβ	ββ
	KA16-0037	αβ	αβ	ββ	αβ	ββ
USA	BP16-0035	αβ	αβ	ββ	αβ	ββ
	BP16-0042	αβ	αβ	ββ	αβ	ββ
	BP16-0071	αβ	αβ	ββ	αβ	ββ
	BP16-0080	αβ	αβ	ββ	αβ	ββ
	BP16-0090	αβ	αβ	ββ	αβ	ββ
	HA16-0009	αβ	αβ	ββ	αβ	ββ
	HA16-0034	αβ	αβ	ββ	αβ	ββ
	HA16-0084	αβ	αβ	ββ	αβ	ββ
	HA16-0090	αβ	αβ	ββ	αβ	ββ
	HA16-0101	αβ	αβ	ββ	αβ	ββ
	MA16-0006	αβ	αβ	ββ	αβ	ββ
	MA16-0032	αβ	αβ	ββ	αβ	ββ
	MA16-0037	αβ	αβ	ββ	αβ	ββ
	MA16-0055	αβ	αβ	ββ	αβ	ββ
	MA16-0057	αβ	αβ	ββ	αβ	ββ
	MA16-0073	αβ	αβ	ββ	αβ	ββ
	MA16-0083	αβ	αβ	ββ	αβ	ββ
	MA16-0088	αβ	αβ	ββ	αβ	ββ
	MA16-0090	αβ	αβ	ββ	αβ	ββ
	MA16-0096	αβ	αβ	ββ	αβ	ββ
	MA16-0100	αβ	αβ	ββ	αβ	ββ
	MA16-0107	αβ	αβ	ββ	αβ	ββ

Table S3: Isolation-by-distance / Isolation-by-resistance

Linear models testing the association between genetic distance (calculated on LD-pruned SNPs) and geographic distances measured as Euclidian distances or least-cost distances along the shoreline.

Model	F	p-value	intercept	slope coefficient	R ² adjusted	AIC
Null model						-1078
				0.0018		
Euclidian distances	96.8	<0.001	0.006	[0.0014-0.0022]	0.45	-1148
				0.0021		
Least-cost distances	199.5	<0.001	0.006	[0.0018-0.0024]	0.63	-1195

Table S4: Isolation-by-distance within the different genomic regions

Linear models testing the association between genetic distance and geographic distances measured as Euclidian distances in the different subsets of SNPs. Numbers between brackets indicate the limits of the 95% distribution of the slope coefficient.

SNP subset	F	p- value	intercept	slope coefficient	R ² adjusted	mean pairwise Fst
All	16.3	<0.001	0.0085	0.0015 [0.0008-0.0023]	0.11	0.0084
Collinear	62.6	<0.001	0.0062	0.0015 [0.0011-0.0019]	0.34	0.0062
LD pruned	96.8	<0.001	0.0057	0.0018 [0.0014-0.0022]	0.45	0.0057
Cf-Inv(1)	0.8	0.37	0.0137	-0.0011 [-0.0036-0.0014]	0.00	0.0133
Cf-Inv(4.1)	39.6	<0.001	0.0172	0.0124 [0.0085-0.0162]	0.24	0.0164
Cf-Inv(4.2/4.3)	41.6	<0.001	0.0075	0.0022 [0.0015-0.0028]	0.25	0.0074
Cf-Lrr(2)	74.6	<0.001	0.0074	0.0026 [0.0020-0.0032]	0.38	0.0073
Cf-Lrr(3)	57.5	<0.001	0.0066	0.0016 [0.0012-0.0020]	0.32	0.0066
Cf-Lrr(5)	82.4	<0.001	0.0080	0.0028 [0.0022-0.0035]	0.41	0.0079

	GEA M	lethous																
		Tested SNP	S	Climate	5		Salinity			Bed characte		abiotic	Algal (Lamina	compo aria/Fuci		Algal (PC2)	compo	sition
		Ν	%	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR
	All	1155978		4369			1584			499			1747			2960		
	Collinear	814279	70%	913	21%	0.3	1025	65%	0.9	321	64%	0.9	1303	75%	1.1	657	22%	0.3
	Cf-Inv(1)	176963	15%	1298	30%	1.9*	112	7.1%	0.5	106	21%	1.4*	192	11%	0.7	988	33%	2.2*
olled	Cf-Inv(4.1)	57323	5.0%	362	8.3%	1.7*	44	2.8%	0.6	22	4.4%	0.9	75	4.3%	0.9	35	1.2%	0.2
ontr	Cf-Inv(4.2/4.3)	17019	1.5%	168	3.8%	2.6*	22	1.4%	0.9	12	2.4%	1.6	25	1.4%	1.0	20	0.7%	0.5
nnc	Cf-Lrr(2)	20458	1.8%	232	5.3%	3.0*	31	2.0%	1.1	17	3.4%	1.9*	22	1.3%	0.7	34	1.1%	0.6
Baypass uncontrolled	Cf-Lrr(3)	16313	1.4%	18	0.4%	0.3	97	6.1%	4.3*	3	0.6%	0.4	32	1.8%	1.3	15	0.5%	0.4
Ba)	Cf-Lrr(5)	53623	4.6%	1378	32%	6.8*	253	16%	3.4*	18	3.6%	0.8	98	5.6%	1.2	1211	41%	8.8*
		Tested SNP	S	Climate	9		Salinity			Bed characte		abiotic	Algal (Lamina	compo aria/Fuci		Algal (PC2)	compo	sition
		Ν	%	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR
	All	1155978		7230			1670			8765			1855			10713		
	Collinear	814279	70%	1223	17%	0.2	986	59%	0.8	819	9.3%	0.1	1231	66%	0.9	1747	16%	0.2
	Cf-Inv(1)	176963	15%	2521	35%	2.3*	237	14%	0.9	7772	89%	5.8*	421	23%	1.5*	6594	62%	4.0*
pa	Cf-Inv(4.1)	57323	5.0%	1195	17%	3.5*	44	2.6%	0.5	38	0.4%	0.1	54	2.9%	0.6	108	1.0%	0.2
Baypass controlled	Cf-Inv(4.2/4.3)	17019	1.5%	180	2.5%	1.7*	20	1.2%	0.8	36	0.4%	0.3	26	1.4%	1.0	70	0.7%	0.4
con	Cf-Lrr(2)	20458	1.8%	298	4.1%	2.3*	39	2.3%	1.3	43	0.5%	0.3	17	0.9%	0.5	84	0.8%	0.4
/pass	Cf-Lrr(3)	16313	1.4%	23	0.3%	0.2	99	5.9%	4.2*	6	0.1%	0.0	21	1.1%	0.8	50	0.5%	0.3
Bay	Cf-Lrr(5)	53623	4.6%	1790	25%	5.3*	245	15%	3.2*	51	0.6%	0.1	85	4.6%	1.0	2060	19%	4.1*
		Tested SNP	S	Climate	9		Salinity			Bed characte		abiotic	Algal (Lamina	compo aria/Fuci		Algal (PC2)	compo	sition
		Ν	%	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR	Ν	%	OR
	All	1155978		9712			3520			3092			2748			6240		
	Collinear	814279	70%	3571	37%	0.5	2355	67%	0.9	1810	59%	0.8	1860	68%	1.0	2534	41 %	0.6
	Cf-Inv(1)	176963	15%	2428	25%	1.6*	483	14%	0.9	890	29%	1.9*	522	19 %	1.2*	2103	34%	2.2*
	Cf-Inv(4.1)	57323	5.0%	1370	14%	2.8*	147	4.2%	0.8	134	4.3%	0.9	118	4.3%	0.9	225	3.6%	0.7
	Cf-Inv(4.2/4.3)	17019	1.5%	515	5.3%	3.6*	56	1.6%	1.1	55	1.8%	1.2	39	1.4%	1.0	71	1.1%	0.8
4	Cf-Lrr(2)	20458	1.8%	228	2.3%	1.3*	54	1.5%	0.9	45	1.5%	0.8	32	1.2%	0.7	55	0.9%	0.5
Lfmm k=4	Cf-Lrr(3)	16313	1.4%	76	0.8%	0.6	113	3.2%	2.3*	30	1.0%	0.7	23	0.8%	0.6	62	1.0%	0.7
Lfm	Cf-Lrr(5)	53623	4.6%	1524	16%	3.4*	312	8.9%	1.9*	128	4.1%	0.9	154	5.6%	1.2*	1190	19%	4.1*

Table S5: Enrichment in outlier SNPs associated with environment for the different GEA methods

id	level	name	Outliers SNPs	All SNPs	p value	fdr
GO:0048853	3	forebrain morphogenesis	6/2412	7/17848	3.75E-05	0.030
GO:0030259	3	lipid glycosylation	6/2412	7/17848	3.75E-05	0.030
GO:0021764	3	amygdala development	5/2412	6/17848	0.000239	0.079
GO:0016477	3	cell migration	13/2412	258/17848	1.29E-05	0.024
GO:0007018	3	microtubule-based movement	9/2412	188/17848	0.000144	0.079
GO:0035148	3	tube formation	0/2412	58/17848	0.000356	0.085
GO:0048485	4	sympathetic nervous system development	5/2412	5/17848	4.49E-05	0.030
GO:0001649	4	osteoblast differentiation	9/2412	18/17848	0.000227	0.079
GO:0098597	4	observational learning	5/2412	6/17848	0.000239	0.079
GO:0048820	4	hair follicle maturation	5/2412	6/17848	0.000239	0.079
GO:0051969	4	regulation of transmission of nerve impulse	4/2412	4/17848	0.000333	0.085
GO:1902644	4	tertiary alcohol metabolic process	4/2412	4/17848	0.000333	0.085
GO:0033561	4	regulation of water loss via skin	7/2412	12/17848	0.000346	0.085
GO:1900271	4	regulation of long-term synaptic potentiation	6/2412	9/17848	0.000352	0.085
GO:0015074	5	DNA integration	47/2412	154/17848	1.15E-06	0.009
GO:0051348	5	negative regulation of transferase activity	18/2412	54/17848	0.000161	0.079
GO:0048745	5	smooth muscle tissue development	5/2412	6/17848	0.000239	0.079
GO:0014044	5	Schwann cell development	5/2412	6/17848	0.000239	0.079
GO:0061535	5	glutamate secretion, neurotransmission	5/2412	6/17848	0.000239	0.079
GO:0061534	5	gamma-aminobutyric acid secretion, neurotransmission	5/2412	6/17848	0.000239	0.079
GO:0045761	5	regulation of adenylate cyclase activity	10/2412	22/17848	0.000273	0.085
GO:0051971	5	positive regulation of transmission of nerve impulse	4/2412	4/17848	0.000333	0.085
GO:0045765	5	regulation of angiogenesis	12/2412	31/17848	0.00042	0.099

Table S6: Gene ontology enrichment for SNPs associated with size by GWAS

Table S7: Gene ontology enrichment for genes in the inversion Cf-Inv(1)

id	level	name	Inversion genes	All genes	p value	fdr
GO:0030259	3	lipid glycosylation	6/2629	7/18808	4.57E-05	0.036
GO:0009886	3	post-embryonic animal morphogenesis	5/2629	174/18808	2.47E-06	0.008
GO:0016477	3	cell migration	14/2629	264/18808	9.32E-06	0.015
GO:0048485	4	sympathetic nervous system development	5/2629	5/18808	5.32E-05	0.036
GO:0035120	4	post-embryonic appendage morphogenesis	0/2629	73/18808	2.63E-05	0.036
GO:0015074	5	DNA integration	61/2629	175/18808	1.47E-06	0.008
GO:0030073	5	insulin secretion	6/2629	7/18808	4.57E-05	0.036

id	Lev.	name	Inversion genes	All genes	p value	fdr
GO:0007613	3	memory	12/686	80/18808	3.13E-05	0.024
GO:0006810	3	transport	89/686	1622/18808	9.64E-05	0.045
GO:0008344	3	adult locomotory behavior	10/686	65/18808	0.000114	0.045
GO:0031570	3	DNA integrity checkpoint	7/686	33/18808	0.000155	0.045
GO:0021532	4	neural tube patterning	4/686	4/18808	1.75E-06	0.009
GO:0008610	4	lipid biosynthetic process	24/686	256/18808	2.39E-05	0.024
GO:0035845	4	photoreceptor cell outer segment organization	4/686	7/18808	5.62E-05	0.035
GO:000076	4	DNA replication checkpoint	5/686	14/18808	9.68E-05	0.045
GO:0048568	4	embryonic organ development	7/686	33/18808	0.000155	0.045
GO:0009111	4	vitamin catabolic process	3/686	4/18808	0.000188	0.045
GO:0043320	4	natural killer cell degranulation	3/686	4/18808	0.000188	0.045
GO:0006873	4	cellular ion homeostasis	17/686	172/18808	0.000191	0.045
GO:0007628	4	adult walking behavior	5/686	16/18808	0.000199	0.045
GO:0048678	4	response to axon injury	5/686	16/18808	0.000199	0.045
GO:000038	5	very long-chain fatty acid metabolic process	8/686	22/18808	6.11E-07	0.007
GO:0031076	5	embryonic camera-type eye development	4/686	5/18808	8.52E-06	0.012
GO:1990403	5	embryonic brain development	4/686	6/18808	2.48E-05	0.024
GO:0033559	5	unsaturated fatty acid metabolic process	7/686	33/18808	0.000155	0.045
GO:0042365	5	water-soluble vitamin catabolic process	3/686	4/18808	0.000188	0.045
GO:0002323	5	natural killer cell activation involved in immune response	3/686	4/18808	0.000188	0.045
GO:0016036	5	cellular response to phosphate starvation	3/686	4/18808	0.000188	0.045

Table S8: Gene ontology enrichment for genes in the inversion Cf-Inv(4.1)

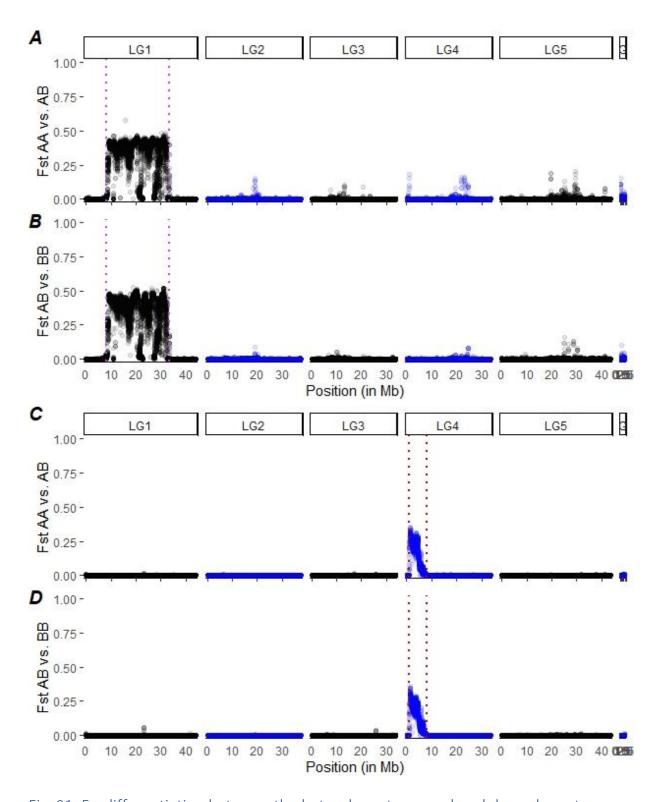
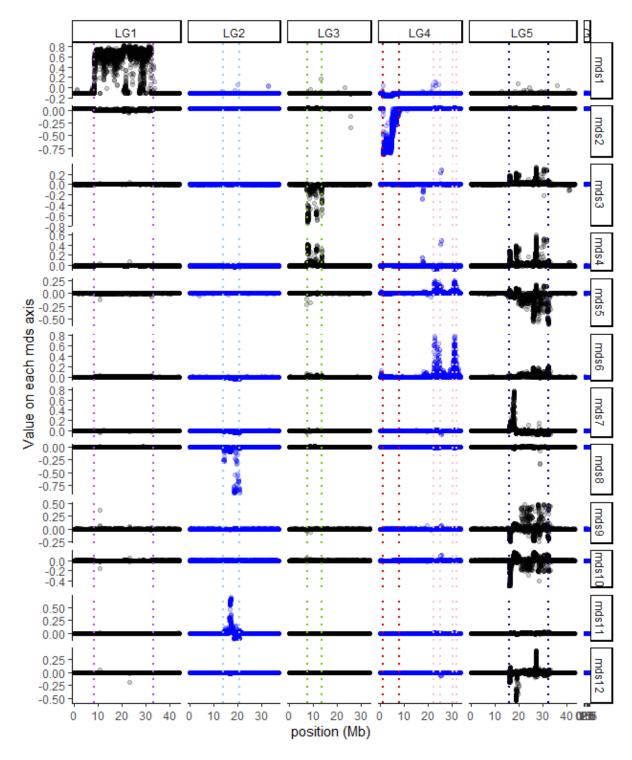
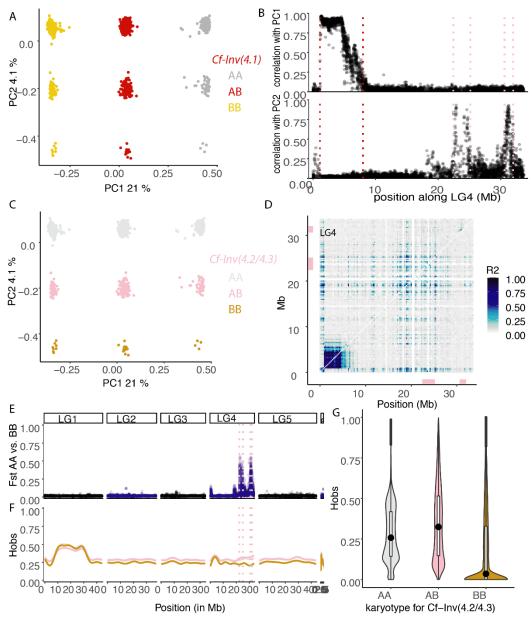
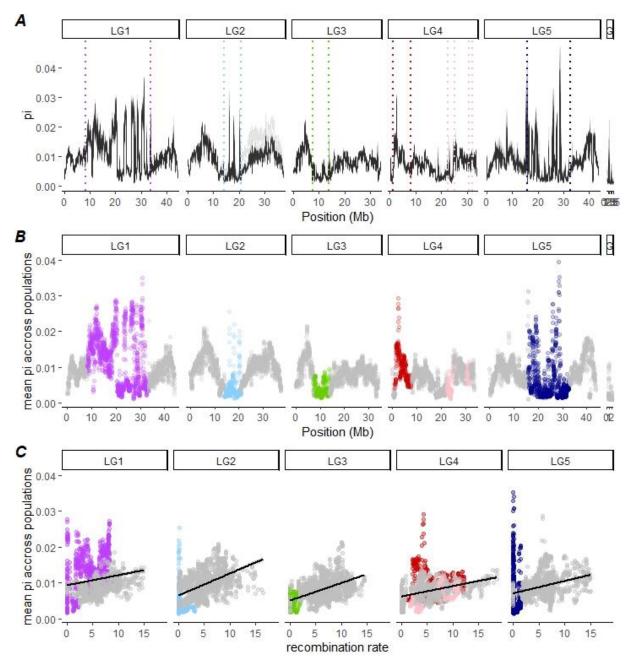
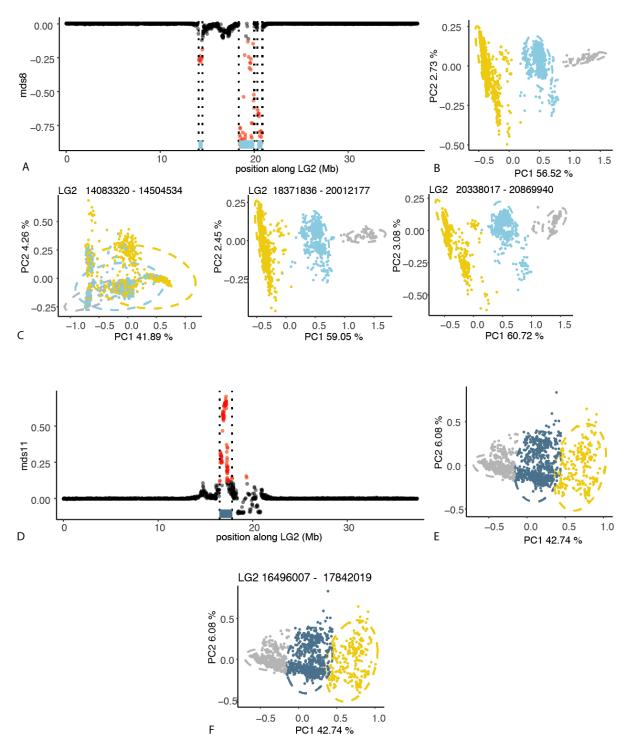




Fig. S1: F_{ST} differentiation between the heterokaryotypes and each homokaryotypes (A-B) for the inversion *Cf-In(1)* (AA stands for $\alpha\alpha$, AB for $\alpha\beta$, and BB for $\beta\beta$). (C-D) for the inversion *Cf-Inv(4.1)* (AA and BB are homokaryotes at that inversion and AB is the heterokaryote). F_{ST} are calculated by sliding-windows of 25kb.


Fig. S2: Multidimensional scaling of local PCAs.

For each MDS axis (up to 12), the Y-axis represents the MDS value of each local PCA matrix (based on windows of 100 SNPs) and the x-axis is the position along the chromosome. Dotted coloured lines denote the boundaries of the inversions and low-recombining regions.


Fig. S3: The inversion(s) Cf-Inv(4.2) and Cf-Inv(4.3) on LG4

(A-C) Principal component analysis (PCA) of genetic variation in LG4. Individuals are coloured by karyotypes at the inversions *Cf-Inv(4.1)* and *Cf-Inv(4.2/4.3)*. AA and BB stands for the homokaryotes and AB for the heterokaryotes, for each inversion. **(B)** Correlation between PC1 scores of local PCAs performed on windows of 100SNPs and PC1/PC2 scores of the PCA performed SNPs from LG4. Dashed lines represent the inferred boundaries of the inversions *Cf-Inv(4.1)* and *Cf-Inv(4.2/4.3)* **(D)** Linkage disequilibrium (LD) in LG4. The color scale shows the 2nd higher percentile of the R² value between SNPs summarized by windows of 250kb. The upper triangle includes all individuals and the lower triangle include individuals homokaryotes for the most common arrangement at inversion *Cf-Inv(4.2/4.3)*. **(E)** FST differentiation between the two homokaryotypes of *Cf-Inv(4.2/4.3)* in sliding-windows of 25kb. **(F)** Observed heterozygosity in the three karyotypic groups of *Cf-Inv(4.2/4.3)* smoothened for visualization. **(G)** Violin-plot of observed heterozygosity for SNPs located within the inversion(s) *Cf-Inv(4.2/4.3)* for its three karyotypic groups.

Fig. S4: Genetic diversity along the genome and as a function of recombination

(A) Genetic diversity (pi) along the genome for each population. Each line is a population. The lines (plotted with transparency) overlap showing that the diversity landscape followed the same pattern across populations, except on LG2, in which USA populations had a slightly higher pi. In the lower panels, Pi is average across the 16 populations and displayed along the genome (B), and then, as a function of recombination rate by sliding-windows of 100kb (C). Windows belonging to the collinear genome are plotted in grey while other windows are coloured according to the inversion or the low-recombining region they belong to.

Fig. S5: The low-recombining region on LG2 *Cf-Lrr(2)*

(A-D) MDS values of local PCAs along LG2 for the MDS axes on which they formed a cluster of outlier windows. (B-E) Principal component analysis (PCA) of genetic variation at SNPs within the cluster of outlier windows (C-F) Principal component analysis (PCA) of genetic variation at SNPs within each contiguous group of outlier windows, coloured by groups inferred from the PCA on the whole cluster.

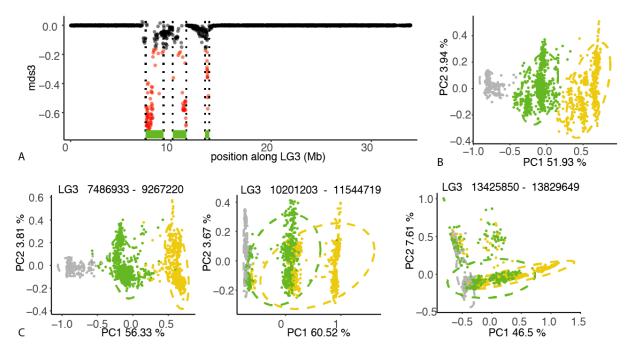
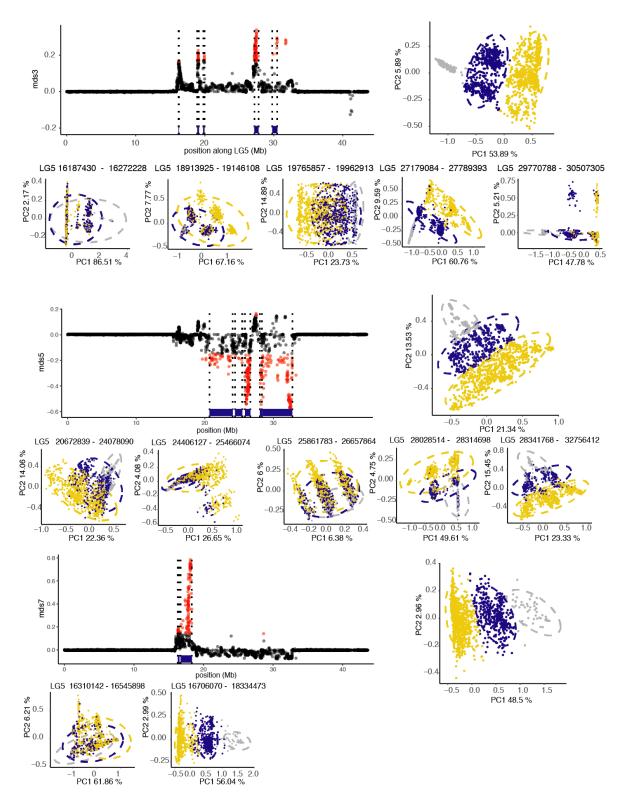
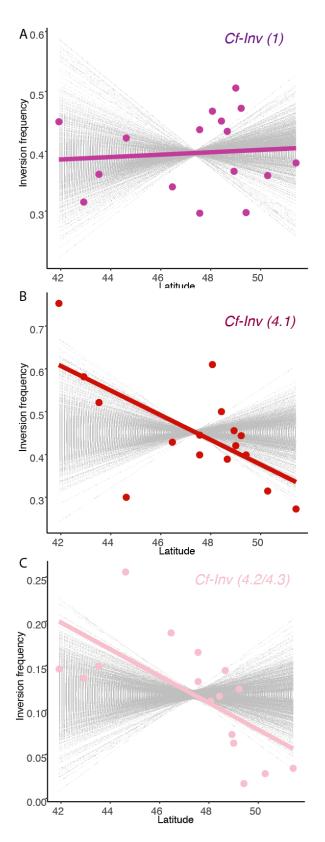



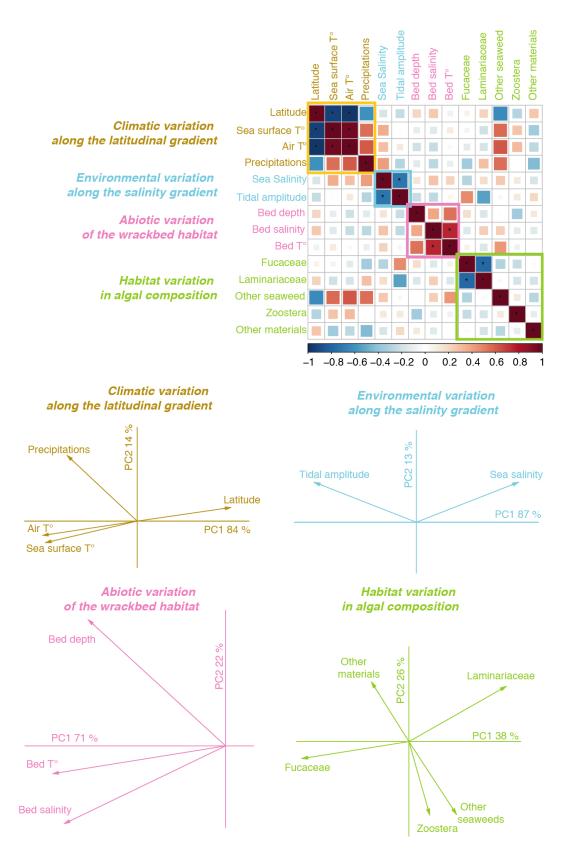
Fig. S6: The low-recombining region on LG3 Cf-Lrr(3)

(A) MDS values of local PCAs along LG3 for the MDS axis on which they formed a cluster of outlier windows. (B) Principal component analysis (PCA) of genetic variation at SNPs within the cluster of outlier windows (C) Principal component analysis (PCA) of genetic variation at SNPs within each contiguous group of outlier windows, coloured by groups inferred from the PCA on the whole cluster.

(A-D-G) MDS values of local PCAs along LG5 for the MDS axes on which they formed a cluster of outlier windows. (B-E-H) Principal component analysis (PCA) of genetic variation at SNPs within the cluster of outlier windows (C-F-I) Principal component analysis (PCA) of genetic variation at SNPs within each contiguous group of outlier windows, coloured by groups inferred from the PCA on the whole cluster. Clusters of windows from LG5 which were outliers along other MDS axis are not shown because they overlap with the same region and display similar patterns as mds3 or mds5.



(A) Pairwise F_{ST} along the genome for each pair of populations. Each line is a pair of populations (plotted with transparency) hence darker colours appear when the values for the different pairs of populations overlap. (B) Pairwise F_{ST} averaged across pairs of populations along the genome and coloured for the inversions and low-recombining regions. (C) Pairwise F_{ST} for each pair of populations as a function of recombination rate. All points are sliding-windows of 100kb.



(A-C-E-G-I-K) Distribution of the p-value of the interaction terms in 100 models explaining genetic distance by physical distance with genomic region (given inversion or collinear region) as co-variable. The red line indicates p=0.05. (B-D-F-J-L) Distribution of the slope coefficient of the interaction terms in 100 models explaining genetic distance by physical distance with genomic region (given inversion or collinear region) as co-variable. The red line indicates a null slope (no interaction) A positive slope indicates that the IBR signal is stronger in the inversion/low-recombining region than in the collinear genome. A null slope indicates a comparable signal while a negative slope indicates a weaker signal.

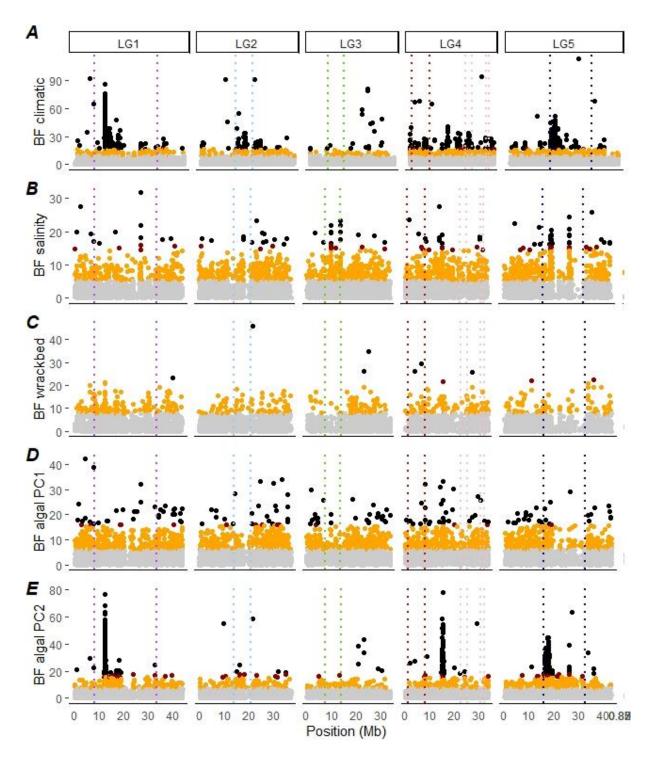
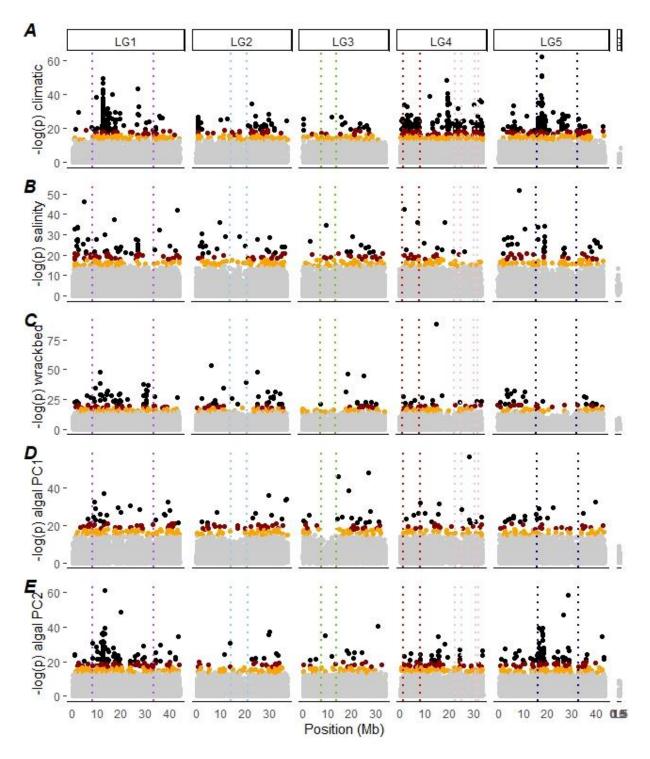


Fig. S10: Latitudinal cline of frequencies for the major inversions

Coloured points depicted the frequencies of the rarest inversion arrangement for each location, plotted by latitude, the coloured line depicting a linear cline. Grey lines represent approximated latitudinal clines of frequencies for 1,000 random SNPs chosen to have the same average frequency as the inversion across the whole area.



The manhattan plot shows the Bayesian factor from the environmental association analysis performed in Baypass, without controlling for population structure. Points are coloured according to false-discovery rate (black: <0.00001, red: <0.0001, orange: <0.001)

The manhattan plot shows log of the pvalue from the environmental association analysis performed in LFMM, controlling for K=4 latent factors. Points are coloured according to false-discovery rate (black: <0.00001, red: <0.0001, orange: <0.001)

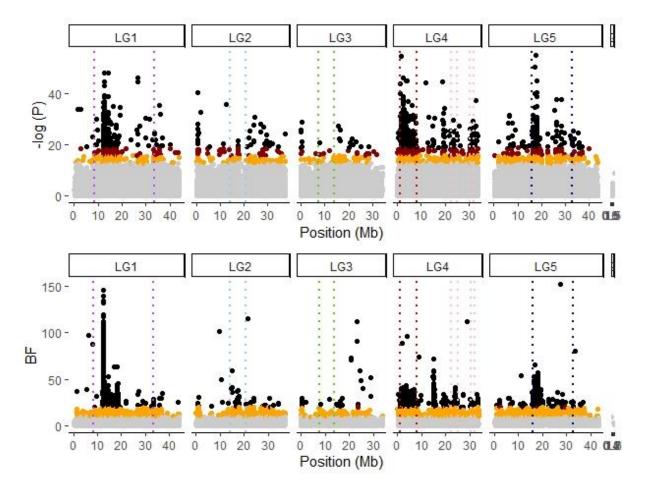
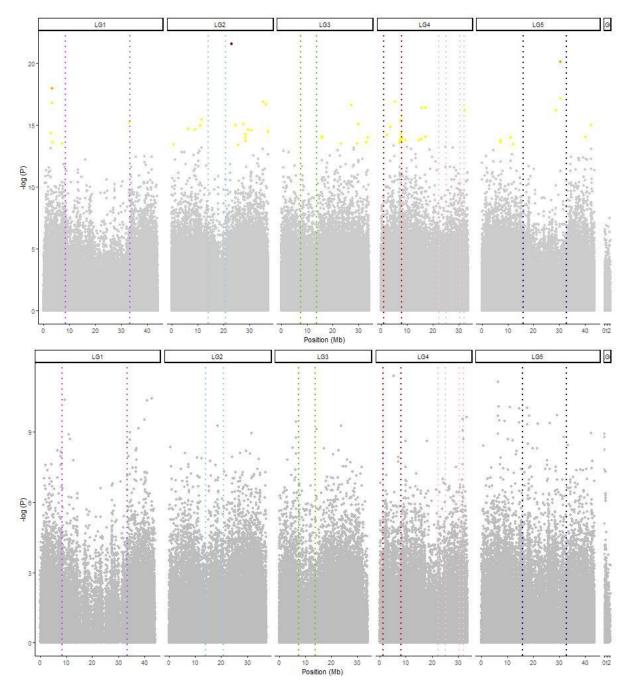
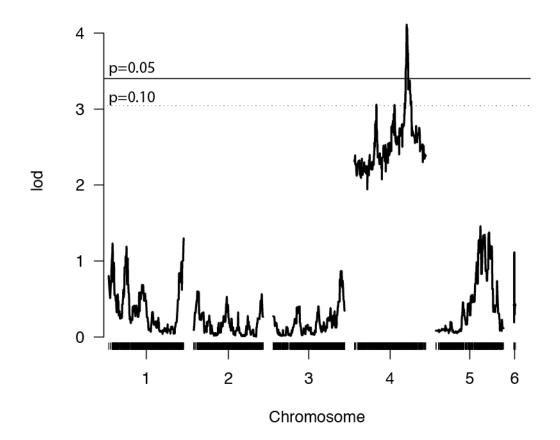




Fig S14: Environmental associations with the thermal component of climatic variation In this analysis, we removed precipitations, which was only partially correlated to temperature) from the summary predictor obtained by PCA (see Fig. S11). (A) Environmental association analysis performed in LFMM, displaying the log of the pvalue and controlling for K=4 latent factors while the one (below). (B) Environmental association analysis performed in Baypass, displaying the Bayesian factor controlling for population structure. Points are coloured according to false-discovery rate (black: <0.00001, red: <0.0001, orange: <0.001). Joint outliers were enriched in the inversion *Cf*-*Inv(1)* (2049 outliers representing 31%, with an odds-ratio of 2.0), in the inversion *Cf*-*Inv(4.1)* (2402 outlier SNPs representing 36% with an odds-ratio of 7.3) and in the low-recombining region of LG5 (1268 outliers representing 19% with an odds-ratio of 4.1)

Above: GWAS for $\beta\beta$ (N= 436 sized individuals). Below: GWAS for $\alpha\alpha$ (N=140 sized individuals). SNPs coloured show significant association with size with a fdr of 0.05 (yellow), 0.01 (orange), 0.001 (red). No SNP significantly associated with size was found on the AA subset.

Fig S16: QTL for chill-coma recovery

Scale on y-axis depicts the LOD score (Logarithm of odds) for an association between each genetic marker and recovery after a cold-induced coma. The horizontal line represents the LOD genome-wide significance threshold determined through permutations with alpha = 0.05.