
Cell-type-specific alternative polyadenylation (APA) genes reveal the function of dynamic 

APA in complex tissues  

Yulong Bai1, Yidi Qin1, Zhenjiang Fan2, Robert M. Morrison5,6,7, KyongNyon Nam3, Hassane 

Mohamed Zarour5,6, Radosveta Koldamova3, Quasar Saleem Padiath1,4, Soyeon Kim7,8†, Hyun 

Jung Park1† 

1 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 

Pittsburgh, USA 

2 Department of Computer Science, School of Computing and Information, University of 

Pittsburgh, Pittsburgh, USA 

3Department of Environmental and Occupational Health, Graduate school of Public Health, 

University of Pittsburgh, Pittsburgh, USA 

4Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, USA 

5Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, 

School of Medicine, Pittsburgh, USA 

6Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, USA 

7Department of Computational and Systems Biology, University of Pittsburgh Medical Center, 

Pittsburgh, USA 

8Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, USA 

9Division of Pulmonary Medicine, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, 

Pennsylvania, USA 

†senior author; Correspondence: hyp15@pitt.edu (H.J.P.) 

 

 

ABSTRACT 

Alternative polyadenylation (APA) causes shortening or lengthening of the 3ʹ-untranslated 

region (3ʹ-UTR) of genes across multiple cell types. Bioinformatic tools have been developed to 

identify genes that are affected by APA (APA genes) in single-cell RNA-Seq (scRNA-Seq) data. 

However, they suffer from low power, and they cannot identify APA genes specific to each cell 

type (cell-type-specific APA) when multiple cell types are analyzed. To address these 

limitations, we developed scMAPA that systematically integrates two novel steps. First, 

scMAPA quantifies 3ʹ-UTR long and short isoforms without requiring assumptions on the read 

density shape of input data. Second, scMAPA estimates the significance of the APA genes for 

each cell type while controlling confounders. In the analyses on our novel simulation data and 

human peripheral blood mono cellular data, scMAPA showed enhanced power in identifying 
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APA genes. Further, in mouse brain data, scMAPA identifies cell-type-specific APA genes, 

improving interpretability for the cell-type-specific function of APA. We further showed that this 

improved interpretability helps to understand a novel role of APA on the interaction between 

neurons and blood vessels, which is critical to maintaining the operational condition of brains. 

With high sensitivity and interpretability, scMAPA shed novel insights into the function of 

dynamic APA in complex tissues. 
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Key Points 

• We developed a bioinformatic tool, scMAPA, that identifies dynamic APA across 

multiple cell types and a novel simulation pipeline to assess performance of such tools in 

APA calling.  

• In simulation data of various scenarios from our novel simulation pipeline, scMAPA 

achieves sensitivity with a minimal loss of specificity.  

• In human peripheral blood monocellular data, scMAPA identifies APA genes accurately 

and robustly, finding unique associations of APA with hematological processes.  

• scMAPA identifies APA genes specific to each cell type in mouse brain data while 

controlling confounders that sheds novel insights into the complex molecular processes.  

 

INTRODUCTION 

The majority of mammalian messenger RNAs contain multiple polyadenylation (pA) sites, such 

as proximal and distal, in their 3ʹ-untranslated region (3ʹ-UTR) 1,2. By transcribing with various 

pA sites, alternative polyadenylation (APA) produces distinct isoforms with various lengths of 

the 3ʹ-UTRs (long and short 3ʹ-UTR isoforms using distal and proximal pA sites, respectively). 

These APA events are involved in diverse physiological and pathological processes 3. For 

example, global 3ʹ-UTR shortening events promote tumorigenesis by removing microRNA 

binding sites in several types of cancer4–6. Notably, these events occur in tissue-specific and cell-

type-specific manners 1,7. To identify genes with APA events (APA genes) specific to each cell 

type (cell-type-specific APA genes), analyzing single-cell RNA sequencing (scRNA-Seq) data is 

essential, since the data present transcriptome of various cell types.  
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For scRNA-Seq data, several tools have been developed to identify APA genes across cell types 

(dynamic APA genes), such as scDAPA8, Sierra 9 and scAPA10. While they have different 

strengths in identifying dynamic APA, several limitations remain to identify cell-type-specific 

APA genes in scRNA-Seq data. First, they are based on assumptions on the input read density 

shape: since several scRNA-Seq utilize 3ʹ selection and enrichment steps in library construction, 

accumulation of the reads that originate from a common pA site forms a peak. Based on that, the 

APA identification methods assumed that signal shapes are different from noise in their peak 

calling. However, these assumptions are not guaranteed to hold for all genes. For example, for 

FLT3, a critical gene whose abnormality leads to blood disorders 11, 3ʹ tags form peaks with 

different shapes and lengths between pDC/HSPC and B/NK cells (S. Fig. 1A) in the scRNA-Seq 

data on Peripheral Blood Monocellular Cells (PBMC) of a healthy donor (10k in 

https://www.10xgenomics.com/), complicating the quantification process. Due to the reason, 

with existing methods, FLT3 can hardly be detected. 

Second, APA genes cannot be identified for each cell cluster in multi-cluster settings, even 

though it is critical to study the impact of APA events for each cell type. scDAPA and Sierra 

identify APA genes mainly between two cell clusters and are not directly applicable for more 

than two clusters. While scAPA is the only method to identify APA genes in more than two 

clusters, it statistically tests if the APA usage (the ratio of long and short 3ʹ-UTR isoforms) of 

each gene is similar across cell clusters and does not estimate the statistical significance in each 

cell cluster.  

Third, the existing methods do not control confounding factors, which is critical to identify APA 

genes from complex tissues. Confounding arises when cells are affected by factors that are not 

parts of the research hypothesis under investigation. For example, since brain transcriptome is 

known to be specific to regions (e.g. cortex and dorsal midbrain) and cell types (e.g. neuron and 

astrocyte) 12–14, one may need to control brain region as confounders depending on how brain 

cells are clustered and the research question.  

Fourth, there is no simulation platform to compare statistical power and specificity of the 

methods that identify dynamic APA in scRNA-Seq data. Although such a platform is necessary 

to evaluate those methods with ground truths, it has been challenging since it is not clear how the 

read density shapes differ between APA and non-APA genes. 

To address the first limitation and identify dynamic APA without the assumptions on the read 

density shape, we hypothesize that formulating an optimization problem instead of a signal 

processing problem could greatly increase the power since the optimization problem can 

consider those genes that do not fit the assumptions required by signal processing steps. For the 

second and the third limitation, we hypothesize that a modeling of each transcript with covariates 

explicitly representing the cell clusters and all confounders could determine cell-type-specific 

APA genes while controlling confounders. For the fourth limitation, we hypothesize that the read 

density shape mainly consists of the ratio of 3ʹ-UTR long and short isoforms.  

scMAPA systematically incorporates solving the optimization problem and building the 

statistical model. Using our novel simulation data and human peripheral blood mono cellular 
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data, we will show how scMAPA enhances statistical power in identifying APA genes. Further, 

using mouse brain data, we will demonstrate how scMAPA facilitates to understand cell-type-

specific functional relevance of APA in a statistically rigorous way.  

 

RESULTS 

Alternative Polyadenylation identification across multiple cell groups of single-cell RNA-

Seq data (scMAPA) 

To identify APA genes in scRNA-Seq data without assumptions on the read density shape, 

scMAPA firstly quantifies 3ʹUTR long and short isoforms without such assumptions. Using the 

fact that each 3ʹ biased read represents the most 3ʹ end part of a transcript, scMAPA pads each 

read along the 3'UTR region from the 3'UTR start site to where the read ends (step 1 in Fig. 1, 

see Methods). This transformation enables to compare the ratio of 3ʹUTR long and short 

isoforms among cell types without assumptions on the read density shape. For example, this 

transformation reveals different 3ʹUTR isoform ratios of FLT3 between pDC/HSPC and B/NK 

cells in the PBMC data (S. Fig. 1B). Due to this transformation, inferring the proximal pA site, a 

critical step to quantify 3ʹUTR isoforms, becomes an optimization problem of minimizing the 

difference between the accumulated density shape of the quantified isoforms and the input read 

density (step 2 in Fig. 1). Since the difference can be calculated by a quadratic function, we 

incorporated quadratic programming15 to identify inferring the proximal pA site. To apply 

quadratic programming to identify APA genes in scRNA-Seq data, we extended multiple 

modules of DaPars 16. DaPars incorporated quadratic programming approach to identify APA 

genes in bulk RNA-Seq data, although it is not directly applicable for multi-cluster settings.  

To identify APA genes in each cell type based on the quantification above, scMAPA 

develops an additive regression model. While the quantified isoforms can be directly used to 

identify dynamic APA (APA genes across cell types, step 3 in Fig. 1), scMAPA further identifies 

cell-type-specific APA genes (APA genes specific to each cell type, step 4 in Fig. 1) by 

developing a model using each of the isoforms with cell type indicators (see Methods). Since this 

modeling is flexible to additionally incorporate potential confounders, such as tissue type, age, or 

sex, scMAPA can control such confounders.  
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scMAPA identifies true APA events with an enhanced statistical power 

To compare statistical power of scMAPA and scAPA with ground truth APA events, we 

simulated 3ʹ-UTR long and short isoform expressions for APA and non-APA genes. First, we 

 

Figure 1. Schematic illustration of each step of scMAPA. In Step 0 and 1, bars in solid color represent 3ʹ biased 

scRNA-Seq reads and bars in light color indicate how the 3ʹ biased reads are padded from the 3ʹ start site to the 

end of the read to represent the full-length 3ʹ UTR of the transcript. In Step 2, bars in dark blue and green 

indicate the estimated isoforms in each cell type, where solid and light coloring mode indicate 3ʹ UTR long and 

short isoforms. In Step 3 and 4, the bars represent the total number of isoforms in each case. The black bars on 

the bottom represent the grand mean of all long/short isoforms across the groups. 
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learned simulation parameters in the mouse brain scRNA-Seq data where five main cell types are 

defined (neurons, astrocytes, immune cells, oligodendrocytes and vascular) 17. In the data, we 

determined APA and non-APA genes as those detected by both scAPA, evaluated the proportion 

of the long and short isoforms in the APA and non-APA genes respectively, and calculated 

standard deviation (SD) of the proportions (𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝) across the five cell types (see Methods, S. 

Fig. 2A). The APA genes have wider distributions of the 3ʹ-UTR isoform proportions across the 

cell types than non-APA genes (0.127 vs. 0.009 on average in terms of 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝, S. Fig. 2B). 

Second, using 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝  for APA and non-APA genes as simulation parameters, we generated 

the 3ʹ-UTR isoform proportions for each of 500 APA and 4,500 non-APA genes across 5 groups, 

each of 600 cells. These isoform proportion values simulated for APA and non-APA genes were 

further used to divide the simulated gene expression values into 3ʹ-UTR long and short isoform 

expressions, where we used Splatter 18 to simulate gene expression values.  

On the simulated 3ʹ-UTR isoform expressions, we compared scMAPA and scAPA. We 

did not consider the other methods because they cannot work in multiple cell groups. Across all 

𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values simulated for APA genes (0.06 to 0.18 around the value of the mouse data 

(0.127)), scMAPA consistently outperforms scAPA with higher sensitivity (Fig. 2A) while 

having similar specificity (Fig. 2B). While the above simulation fixed the number of APA and 

non-APA genes and the cell group sizes, we then ran other simulations by varying the number of 

APA and non-APA genes and the cell group size while fixing 𝑆𝐷𝑖𝑠𝑜𝑝𝑟𝑜𝑝 values for APA and 

non-APA genes (to 0.127 and 0.09, respectively). With various number of true APA genes (250, 

500, and 1,000), scMAPA consistently outperforms that of scAPA in terms of sensitivity (Fig. 

2C and S. Fig. 2 C, E) in all three group size distributions with a slight loss of specificity (Fig. 

2D and S. Fig. 2 D, F).  
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scMAPA identification is accurate and robust 

Further, we compared scMAPA with scAPA and Sierra using real biological data sets to show 

accuracy and robustness of scMAPA. scDAPA was not included in this comparison, because it 

does not return results that are compatible for the comparison, such as pA peaks, sites, or 

intervals. In the three PBMC data sets with various numbers of cells (1k, 5k and 10k data 

representing the number of cells), we defined various numbers of cell types (6, 8 and 13 types 

respectively) based on Seurat’s graph-based clustering 19 and annotated their cell types based on 

established marker genes 20 (see Methods, S. Table 1). We checked the proportion of the pA 

sites in proximity to the known pA sites annotated in PolyASite 2.021 across various degrees of 

proximity. The higher the proportion is, the more of the method’s identified APA genes occurred 

 

Figure 2. Performance assessment on the statistical component of scMAPA (regression + LRT) and scAPA 

(Pearson’s χ2) using simulated data. With fixed number of true APA events (500 out of 5000) and uniform 

distribution of cell cluster size (600 cells in each cell type), (A) sensitivity and (B) specificity were plotted 

against varying degree of standard deviation (SD) of PDUI values across clusters (SDisoprop) for true APA 

genes. With fixed number of true APA events (500) and SD values (0.127 for true APA genes and 0.009 for 

non-APA genes), (C) sensitivity and (D) specificity in scenarios with different distributions of cell cluster size: 

(20%, 20%, 20%, 20%, 20%) for scenario a, (30%, 17.5%, 17.5%, 17.5%, 17.5%) for b, and (50%, 12.5%, 

12.5%, 12.5%, 12.5%) for c. 
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close to the annotated pA sites. In the 10k and 5k data, scMAPA identifies the highest portion 

(Fig. 3A, S. Fig. 3A, B), showing the accuracy of scMAPA in determining pA sites.  

We further evaluated the robustness of scMAPA in two ways. First, for each method, we 

identified APA genes for the PBMC data of various cell numbers (10k, 5k, and 1k). Across the 

data sets, scMAPA consistently identified similar sets of APA genes. On the other hand, scAPA, 

scDAPA and Sierra identified about half the size of APA genes across the data sets (Fig. 3B). 

Since the 1k, 5k, and 10k data are composed of a similar set of cell types from healthy adults (S. 

Table 1), the APA genes are expected to overlap across the three data sets. Thus, scMAPA 

identifying similar sets of APA genes across the data sets suggests that scMAPA identification is 

robust to the number of cells. Second, to show that scMAPA can robustly identify APA genes 

regardless of the number of cell types, we selected various numbers of cell types (5, 7, 9, and 11) 

from the 13 cell types in the 10k data. And, for each of the selections, we evaluated how many 

APA genes that were identified in the 13 cell types are recovered. Based on 50 random selections 

of various numbers of cell types (5, 7, 9, and 11), scMAPA is robust to the number of cell types 

(Fig. 3C). For example, when 5 cell types were sampled, 70.4% of all the APA genes were 

identified.  

To demonstrate biological implications, we ran Ingenuity Pathway Analysis (IPA) on 

1,432 APA genes identified only by scMAPA that are not identified by any other methods (S. 

Table 2). We checked that the genes indeed show various ratio of 3ʹUTR long and short 

isoforms across the clusters. For example, as FLT3 clearly showed a various usage of pA sites 

across the clusters (S. Fig. 1 A, B), it is included in the 1,432 scMAPA-unique APA genes. 

Further, GATA2 also showed various pA usages across the clusters and is included in the 

scMAPA-unique APA genes (S. Fig. 1 C, D). Interestingly, GATA2 was polyadenylated in the 

scRNA-Seq data of bone marrow mononuclear cell from acute myeloid leukemia patients22. Due 

to the developmental relationship between bone marrow and peripheral blood, GATA2 can 

undergo APA events also in the PBMC using similar molecular mechanisms. Collectively, the 

scMAPA-unique APA genes are significantly enriched (B-H p-value < 0.05) for multiple IPA 

Cellular Growth terms with implication for hematology developmental processes, including 9 

with keyword “hemato” or “blood”. As “hemato” terms refer to diverse developmental processes 

of hematopoietic progenitor cells, previous reports on the role of APA in the hematopoietic stem 

cell differentiation23 supports the use of scMAPA. Altogether, scMAPA enables accurate and 

robust identification of dynamic APA in complex tissues.  
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scMAPA identifies APA genes specific to each cell type 

A novel function of scMAPA is to identify APA genes specific to each cell type (cell-type-

specific APA genes) in the multi-group setting. To demonstrate this function in complex tissues, 

we analyzed the mouse brain scRNA-Seq data consisting of five major cell types: neurons, 

astrocytes, immune cells, oligodendrocytes and vascular 17 (see Methods). scMAPA identified 

438 APA genes in neurons, 891 in immune, 374 in astrocyte, 422 in vascular and 430 in oligos, 

with some overlaps (Fig. 4A). Significant numbers of APA genes (35.4% on average, p-

value<2.2e-16 by hypergeometric test) are differentially expressed (see Methods, Fig. 4B). Since 

APA genes are more likely differentially expressed than non-APA genes (supplemental 

material)24,25, this result suggests that scMAPA identified APA genes are indeed functional APA 

genes.  

For each cell type, we further investigated which genes undergo APA events in which direction 

(shortening/lengthening) and to which degree. For each APA gene, the degree was estimated by 

the regression coefficients and the direction of APA events was estimated by the sign of the 

coefficients (see Methods). First, by implementing hierarchical clustering to the coefficients 

(Fig. 4C), scMAPA found that immune and neuron cells are most distinguished from the other 

cell types, systematically confirming the previous finding of scAPA that immune and neuron 

cells are most different in the APA pattern 26. Second, by identifying the direction of the 

significant APA events (shortening/lengthening) by cell type, scMAPA found that neuron cells 

are characterized with 3ʹ-UTR lengthening (Fig. 4D), which is consistent with previous findings 

of the dominance of 3ʹ-UTR lengthening in neuron cells 27–30. Third, by running IPA on the 438 

neuron-specific APA genes, scMAPA brings insights to identify the functional role of APA on 

the neuron-specific biological functions. For example, the neuron-specific APA genes (S. Table 

5) are significantly (B-H p-value < 0.05) and exclusively enriched for the neuron-specific 

biological terms, including 11 blood or blood vessel disease terms, such as Proliferation/Survival 

 

Figure 3. Performance assessment of scMAPA and scAPA using PBMC data. (A) Percentage of pA sites each 

method identified in the 10k data that are in proximity to known pA sites annotated in PolyASite 2.0 by the 

distance defining the proximity. (B) Ratio of significant APA genes found in all three PBMC data (10k, 5k, and 

1k) in blue bar and in any combination but all three in orange by each method (C). Boxplot representing the 

number of APA genes identified by scMAPA by the number of clusters sampled from the 13 clusters of the 10k 

data.  
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of blood cells and Area/Size of blood vessel (Fig. 4E, S. Fig. 4). Neuron and blood cells interact 

to allow ready exchange of nutrients and waste products, enabling the high metabolic activity of 

the brain despite its limited intrinsic energy storage31. Although this interaction is believed to 

play critical function in maintaining the operational condition of brains, little is known as to how 

this highly dynamic process is tightly regulated. Our findings on the neuron-specific APA genes 

suggest that APA contributes to the tight regulation of this intricate biological mechanism. 

Together, scMAPA’s cell-type-specific APA genes facilitate investigating functional 

implications of APA in a cell-type-specific manner.  
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Figure 4. A novel module of scMAPA Cluster-specific APA identification on mouse brain data. (A) Upset plot 

showing APA genes specific to each cell type. (B) Ratio of DE genes in the APA genes specific to each cell 

type. (C) Heatmap of coefficients of cell type-specific APA genes. Coefficients were estimated in logistic 

regression model. (D) Bar plot shows the number of 3ʹ-UTR lengthening and shortening detected in each cell 

type. (E) Bar plot shows the enrichment (-log10(B-H p-value)) of brain cell-type-specific APA genes (blue for 

astrocyte, orange for immune, green for oligos, red for vascular, and violet for neurons). Only the highest bar for 

each term is displayed.  
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scMAPA controls confounding factors  

To demonstrate how scMAPA controls confounders, we will identify cell-type-specific APA 

genes and brain regions as confounder. For this, we first split the mouse brain scRNA-Seq data 

by both cell type (neurons, immune cells, astrocytes, oligos, and vascular cells) and brain region 

(cortex and midbrain dorsal) information that is annotated17. Since the cell type and the brain 

region are independent to each other (Fig. 5A, B), we quantified 3ʹ-UTR long and short isoforms 

in each combination (5 cell types ×2 brain regions) using scMAPA. To first show how brain 

region information confounds cell-type-specific APA analysis, we set scMAPA in two different 

runs: one where only the cell type is set as covariate and the other where the cell type is as 

covariate and brain region is as confounder. In the model with the cell type covariate and the 

brain region confounder, 113 APA genes were excluded as compared to the model only with the 

cell type covariate (S. Table 6). To confirm that the 113 genes play roles specific to the brain 

regions, we investigated whether the genes are up-regulated in the Genotype-Tissue Expression 

(GTEx)32 brain and non-brain tissues (see Methods). Indeed, the genes are up-regulated in brain 

samples than in non-brain (p-value=6.57e-105, Fig. 5C). In addition, we checked whether the 113 

genes are especially up-regulated in brain cortex samples than brain non-cortex samples (p-

value=5.86e-7, Fig. 5D). Since the 113 genes are not enriched in down-regulated genes in GTEx 

tissues (S. Fig. 5A, B). On the other hand, when we investigated 2,715 APA genes that are 

identified when both the cell types and brain region are used as covariates, we found that these 

genes are up-regulated in brain tissues, but not necessarily in cortex tissues (S. Fig. 5C, D). 

Ingenuity Pathway Analysis (IPA) upstream regulator analysis on the 113 genes (S. Table 7) 

further validates the relevance of 113 APA genes to brain cortex. For example, IL1B, LRRC4, 

and TREX1 are three of the most significant upstream regulators of the 113 genes. All three 

genes are known to express specifically in the cortex region, heavily involved in the 

development of brain cortex 33–35. The results suggest that scMAPA can control brain regions as 

confounders in identifying APA and remove confounders that may conflict functional analyses 

on the cell-type-specific roles of APA.  
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Figure 5. tSNE plot showing the cell type (A) and brain region (B) of the mouse brain scRNA-Seq data. (C) 

Significance of overlap between the 113 brain-region-specific APA genes and the up-regulated genes in GTEx 

samples whether they are from brain (red) or not (green). A higher overlap significance indicates a more 

significant overlap, calculated by Enrichr.  (D) Significance of overlap between the 113 genes and the up-

regulated genes in GTEx brain samples whether they are from cortex (red) or not (green).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 29, 2020. ; https://doi.org/10.1101/2020.07.30.229096doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229096
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION 

To identify APA genes in scRNA-seq data, we developed scMAPA that is novel in several ways. 

First, while existing methods operate with assumptions on the shape of input scRNA-Seq data, 

scMAPA quantifies 3ʹ-UTR long and short isoforms without posing such assumptions. Thus, 

scMAPA enables an accurate and robust APA identification by considering genes that may not 

follow the assumptions of the existing methods. As a result, scMAPA outperforms existing 

methods in identifying APA genes in various simulation (Fig. 2) and the PBMC data (Fig. 3) 

while it returns consistent results with existing methods (see Supplemental Material). As the 

second novelty, it identifies APA genes specific to each cell type using a sophisticated statistical 

model, enhancing interpretability on the APA genes. This novel analytical layer further 

elucidates cell-type-specific function of APA in the mouse brain data (Fig. 4, 5). For example, 

APA genes unique to neuron cells suggest the potential role of APA for the interaction between 

neurons and blood vessels, which is critical to maintain the operational condition of brains. The 

sophistication of the model helps control confounding factors by allowing to incorporate 

confounders directly in the model. In our cell-type-specific APA identification in the mouse 

brain data with brain region as the confounder, scMAPA can factor out the 113 APA genes that 

are likely related to a specific brain region (brain cortex). By factoring out such biological signal 

that is not likely specific to any brain cell type, scMAPA can accurately conduct functional 

analyses on the cell-type-specific roles of APA. Lastly, we developed a simulation platform 

based on the distribution of 3ʹ-UTR long and short isoforms in which to assess performance of 

APA identification methods. This simulation platform enables to not only compare performance 

of APA identification methods, scMAPA and scAPA, but also break down their performance by 

3ʹ-UTR isoform distribution across cells.  

Especially, it is important to note that scMAPA makes point estimations of the pA sites. 

Although point estimations are more directly relevant than interval estimations for further 

analyses, e.g. conducting omics analyses and designing experiments, point estimation methods 

are generally disadvantageous in checking the distance with the annotated pA sites (S. Fig. 3A 

and S. Fig. 3B), because it returns a single point to calculate the proximity while interval 

estimation returns two points (start and end of the interval). Still, scMAPA outperforms the 

interval estimation results of Sierra and scAPA, while the interval estimation results are better 

than point estimation results of Sierra and scAPA (S. Fig. 3A, B). Also, it is worth noting that 

scMAPA identifications are consistent with the results of the other methods. After identifying 

APA genes in multi-group settings, with minimal modifications for scDAPA and Sierra (see 

Methods), scMAPA identifies an intermediate number of APA genes between scDAPA and 

Sierra/scAPA (10k in Fig. 3C and 5k in S. Fig. 3D), more than half of the scMAPA’s findings 

are found in other methods (59.9% for 10k and 51.9% for 5k). This shows that, although 

scMAPA is the only method designed with an optimization criterion, rather than with signal 

processing steps, this high overlaps with other methods validate the use of scMAPA.  

With the improved accuracy/robustness and enhanced interpretability, scMAPA is 

extendible in the following directions. First, while scMAPA assumes two types of 3ʹ-UTR 

isoforms: long and short, and assumes no pA sites on the introns, recent works reported genes 
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with more than two 3ʹ-UTR isoforms21 and pA sites on the introns3. With these studies, scMAPA 

can be extended to incorporate such cases. Second, as we transform 3ʹ-biased reads to represent 

full-length 3ʹUTR of the transcripts, this transformation allows to apply other established 

methods developed for bulk RNA-Seq data, which represent full-length transcripts, such as 

APATrap36, TAPAS37, and DaPars24 for scRNA-Seq data analysis. Third, due to this 

transformation, scMAPA is directly amenable for other scRNA-Seq data that are not 3ʹtag-based 

(e.g. Smart-seq238). scMAPA is also applicable for bulk RNA-Seq data sets that are collected 

from multiple biological conditions. 

Altogether, we developed a statistical method to identify APA genes in the multi-group 

setting. With high sensitivity and interpretability, scMAPA allows to understand cell-type-

specific function of APA events, which is essential to shed novel insights into the functional 

roles of dynamic APA in complex tissues. 
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