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Abstract 1 

Background: Epigenome-wide association studies (EWAS) and differential 2 

gene expression analyses are generally performed on tissue samples, which 3 

consist of multiple cell types. Cell-type-specific effects of a trait, such as 4 

disease, on the omics expression are of interest but difficult or costly to 5 

measure experimentally. By measuring omics data for the bulk tissue, cell 6 

type composition of a sample can be inferred statistically. Subsequently, cell-7 

type-specific effects are estimated by linear regression that includes terms 8 

representing the interaction between the cell type proportions and the trait. 9 

This approach involves two issues, scaling and multicollinearity. 10 

Results: First, although cell composition is analyzed in linear scale, 11 

differential methylation/expression is analyzed suitably in the logit/log scale. 12 

To simultaneously analyze two scales, we applied nonlinear regression. 13 

Second, we show that the interaction terms are highly collinear, which is 14 

obstructive to ordinary regression. To cope with the multicollinearity, we 15 

applied ridge regularization. In simulated data, nonlinear ridge regression 16 

attained well-balanced sensitivity, specificity and precision. Marginal model 17 

attained the lowest precision and highest sensitivity and was the only 18 

algorithm to detect weak signal in real data. 19 

Conclusion: Nonlinear ridge regression performed cell-type-specific 20 

association test on bulk omics data with well-balanced performance. The 21 

omicwas package for R implements nonlinear ridge regression for cell-type-22 

specific EWAS, differential gene expression and QTL analyses. The software 23 

is freely available from https://github.com/fumi-github/omicwas 24 

 25 

Keywords 26 

Epigenome-wide association study, Differential gene expression analysis, Cell 27 

type, Nonlinear regression, Ridge regression, mQTL, eQTL 28 
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Background 30 

Epigenome-wide association studies (EWAS) and differential gene expression 31 

analyses elucidate the association of disease traits (or conditions) with the 32 

level of omics expression, namely DNA methylation and gene expression. 33 

Thus far, tissue samples, which consist of heterogeneous cell types, have 34 

mainly been examined, because cell sorting is not feasible in most tissues 35 

and single-cell assay is still expensive. Nevertheless, the cell type 36 

composition of a sample can be quantified statistically by comparing omics 37 

measurement of the target sample with reference data obtained from sorted 38 

or single cells [1,2]. By utilizing the composition, the disease association 39 

specific to a cell type was statistically inferred for gene expression [3-10] and 40 

DNA methylation [11-14]. 41 

For the imputation of cell type composition, omics markers are usually 42 

analyzed in the original linear scale, which measures the proportion of mRNA 43 

molecules from a specific gene or the proportion of methylated cytosine 44 

molecules among all cytosines at a specific CpG site [15]. The proportion can 45 

differ between cell types, and the weighted average of cell-type-specific 46 

proportions becomes the proportion in a bulk tissue sample. Using the fact 47 

that the weight equals the cell type composition, the cell type composition of 48 

a sample is imputed. In contrast, gene expression analyses are performed in 49 

the log-transformed scale because the signal and noise are normally 50 

distributed after log-transformation [16]. In DNA methylation analysis, the 51 

logit-transformed scale, which is called the M-value, is statistically valid [17], 52 

although the linear scale could yield comparable performance under large 53 

sample size [18]. Consequently, the optimal scales for analyzing differential 54 

gene expression or methylation can differ from the optimal scale for analyzing 55 

cell type composition. 56 

Aiming to perform cell-type-specific EWAS or differential gene expression 57 

analyses by using unsorted tissue samples, we study two issues that have 58 

been overlooked. Whereas previous studies were performed in linear scale, 59 

we develop a nonlinear regression, which simultaneously analyzes cell type 60 

composition in linear scale and differential expression/methylation in log/logit 61 

scale. The second issue is multicollinearity. Cell-type-specific effects of a trait, 62 
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such as disease, on omics expression are usually estimated by linear 63 

regression that includes terms representing the interaction between the cell 64 

type proportions and the trait. We show that the interaction terms can 65 

mutually be highly correlated, which obstructs ordinary regression. To cope 66 

with the multicollinearity, we implement ridge regularization. Our methods 67 

and previous ones are compared in simulated and real data. 68 

 69 

Results 70 

Multicollinearity of interaction terms 71 

Typically, cell-type-specific effects of a trait on omics marker expression is 72 

analyzed by the linear regression in equation (2). For each omics marker, the 73 

goal is to estimate 𝛽!,#, the effect of trait k on the expression level in cell type 74 

h. This is estimated based on the relation between the bulk expression level 75 

𝑌$ of sample i and the regressor 𝑊!,$𝑋$,#, which is an interaction term defined 76 

as the product of the cell type proportion 𝑊!,$ and the trait value 𝑋$,# of the 77 

sample. We assume that 𝑌$, 𝑊!,$ and 𝑋$,# are given as input data. 78 

The variable 𝑊!,$ for cell type composition cannot be mean-centered for 79 

our purpose. If 𝑊!,$  were centered, we would obtain, instead of 𝛽!,# , the 80 

deviation of 𝛽!,# from the average across cell types. In general, interaction 81 

terms involving uncentered variables can become collinear [19]. We first 82 

survey the extent of multicollinearity in real data for cell-type-specific 83 

association. 84 

In peripheral blood leukocyte data from a rheumatoid arthritis study 85 

(GSE42861), the proportion of cell types ranged from 0.59 for neutrophils to 86 

0.01 for eosinophils (Table 1A). The proportion of neutrophils was negatively 87 

correlated with the proportion of other cell types (apart from monocytes) with 88 

correlation coefficient of –0.68 to –0.46, whereas the correlation was weaker 89 

for other pairs (Table 1B). Rheumatoid arthritis status was modestly 90 

correlated with proportions of cell types. The product of the disease status 91 

𝑋#, centered to have zero mean, and the proportion of a cell type becomes 92 

an interaction term. The correlation coefficients between the interaction 93 
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terms were mostly >0.8, apart from eosinophils (Table 1C). The coefficient 94 

of variation (CV), which is the ratio of standard deviation to mean, of the 95 

proportion was low for all cell types apart from eosinophils (Table 1A). The 96 

interaction terms for low-CV cell types were strongly correlated with 𝑋# , 97 

which in turn caused strong correlation between the relevant interaction 98 

terms. 99 

The situation was the same for the interaction with age in GTEx data. The 100 

granulocytes (which include neutrophils and eosinophils) were the most 101 

abundant (Table 2A). The proportion of granulocytes was negatively 102 

correlated with other cell types (apart from monocytes) with correlation 103 

coefficient of –0.89 to –0.41, and the correlation between other pairs was 104 

generally weaker (Table 2B). Age was modestly correlated with proportions 105 

of cell types. In this dataset, the CV of the proportion was low in all cell types 106 

(Table 2A), which caused strong mutual correlation between interaction 107 

terms (Table 2C). 108 

In the above empirical data, multicollinearity between interaction terms 109 

seemed to arise not due to the correlation between cell type proportions or 110 

𝑋#, but due to the low CV in the cell type proportions. Subsequently, this 111 

property was derived mathematically. As we derived in equation (19), the 112 

correlation between interaction terms 𝑊!𝑋# and 𝑊!!𝑋# approaches one when 113 

CV[𝑊!] and CV[𝑊!!] are low, irrespective of Cor[𝑊! ,𝑊!!] (Fig. 1). The CV was 114 

0.2 to 0.6 (apart from eosinophils) in the rheumatoid arthritis dataset and 115 

0.1 to 0.2 in the GTEx dataset. We looked up datasets of several ethnicities 116 

and found the CV to be ≤0.6 in majority of blood cell types (Additional file 1: 117 

Table S1). Thus, multicollinearity can be a common problem for cell-type-118 

specific association analyses. Biologically, in tissues where cell type 119 

composition is tightly controlled, the CV of cell type proportion becomes low 120 

and the multicollinearity is exacerbated. 121 

Evaluation in simulated data 122 

By using simulated data, we evaluated previous methods and new 123 

approaches of the omicwas package. In order to simultaneously analyze two 124 

scales, the linear scale for heterogeneous cell mixing and the log/logit scale 125 
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for trait effects, we applied nonlinear regression (equations (4) and (5)). To 126 

cope with the multicollinearity of interaction terms, we applied ridge 127 

regularization (formula (10)). 128 

Previous regression type methods are based either on the full model of 129 

linear regression (equation (2)) or the marginal model (equation (3)). The 130 

full model fits and tests cell-type-specific effects for all cell types 131 

simultaneously, and its variations include TOAST, csSAM.lm and CellDMC. The 132 

marginal model fits and tests cell-type-specific effect for one cell type at a 133 

time, and its variations include csSAM.monovariate and TCA. We also 134 

examined a hybrid of the two models (Marginal.Full005), which becomes 135 

positive when the models agree. 136 

The simulation data was generated from real datasets of DNA methylation 137 

(658 samples; 451,725 CpG sites) and gene expression (389 samples; 138 

14,038 genes). The original cell type composition was retained for all samples, 139 

and the case-control status was randomly assigned. Ninety-five percent of 140 

omics markers were set to be unassociated with disease status, 2.5% were 141 

up-regulated in cases at one cell type, and 2.5% were similarly down-142 

regulated. The cell-type-specific effect-size was fixed in a simulation trial, 143 

either to methylation odds ratio (OR) of 1.3, 1.6 or 1.9 or to gene expression 144 

fold change of 1.7, 3.0 or 5.0. The significance level was set to P < 2.4 ´ 10–145 
7 for DNA methylation and false discovery rate <5% for gene expression. In 146 

each simulation trial, the sensitivity, specificity and precision for detecting 147 

cell-type-specific association was calculated for each cell type. To compare 148 

algorithms, the performance measures for the same effect-size and cell type 149 

were averaged over the simulation trials. 150 

Overall, in the simulation for DNA methylation the sensitivity (Fig. 2) was 151 

higher under large effect-size (bottom row of panels) and in abundant cell 152 

types (left columns of panels). The average specificity (Fig. 3) was high 153 

across the effect-size settings and across cell types, being >0.97 for the 154 

Marginal model, >0.98 for TCA and >0.999 for other algorithms. The 155 

precision (Fig. 4) was higher in abundant cell types within each effect-size 156 

setting. As effect-size increased, the precision decreased in neutrophils but 157 

increased in the other minor cell types. Excluding the cases where all 158 
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algorithms lacked sensitivity (monocytes and B cells under methOR=1.3 and 159 

eosinophils), the average precision of omicwas.logit.ridge was >0.79 and was 160 

the highest in 13/16 of the cases. 161 

There was trade-off between sensitivity and precision. Among the 162 

algorithms, the Marginal model attained the highest sensitivity and the lowest 163 

precision. TCA, which is a variation of the marginal model, had relatively high 164 

sensitivity and relatively low precision. Marginal.Full005 attained the second 165 

highest sensitivity and moderate precision. The ridge regressions 166 

(omicwas.logit.ridge and omicwas.identity.ridge) attained moderate 167 

sensitivity and high precision. The full models without ridge regularization 168 

(omicwas.logit, omicwas.identity, Full, TOAST and CellDMC) had the lowest 169 

sensitivity. 170 

The overall tendency was similar in the simulation for gene expression. 171 

The sensitivity (Fig. 5) was higher under large effect-size and in abundant 172 

cell types. The average specificity (Fig. 6) was high across the effect-size 173 

settings and across cell types, being >0.96 for the marginal models (Marginal 174 

and csSAM.monovariate), >0.98 for the nonlinear and ridge regressions 175 

(omicwas.log.ridge, omicwas.identity.ridge, omicwas.log) and >0.996 for 176 

other algorithms. The precision (Fig. 7) was higher in abundant cell types 177 

within each effect-size setting. As effect-size increased, the precision 178 

decreased in granulocytes but increased in the other minor cell types. 179 

Excluding the full models (omicwas.identity, Full, TOAST, csSAM.lm) that 180 

lacked sensitivity, the algorithms that were frequently top in average 181 

precision were omicwas.identity.ridge (5 cases), omicwas.log (5 cases), 182 

omicwas.log.ridge (3 cases) and Marginal.Full005 (3 cases). 183 

There again was trade-off between sensitivity and precision. Among the 184 

algorithms, the marginal models attained the highest sensitivity but relatively 185 

low precision. The nonlinear and ridge regressions and Marginal.Full005 186 

attained moderate sensitivity and highest precision. The full models had very 187 

low average sensitivity of <0.01. 188 

For gene expression, we also simulated a scenario where cell-type-specific 189 

disease effect occurred in cell type “marker” genes (Additional files 2, 3, 4: 190 

Figs. S1, S2, S3). In other words, the expression level in the target cell type 191 
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differed between cases and controls, and the expression level in other cell 192 

types was zero (in linear scale). Thus, non-target cell types did not introduce 193 

noise to bulk expression level. The Marginal model attained the highest 194 

average sensitivity of >0.93 but relatively low average precision of ~0.16. As 195 

equal number of differentially expressed genes were generated in the six cell 196 

types, picking up signals for all such genes, including those not for the tested 197 

cell type, would result in precision of 1/6 = 0.16. The full models had low 198 

sensitivity. The nonlinear and ridge regressions and Marginal.Full005 attained 199 

moderate sensitivity and moderate precision. With regards to the frequency 200 

of being the top in average precision, the algorithms were ordered 201 

Marginal.Full005 (9 cases), omicwas.log.ridge (6 cases), 202 

omicwas.identity.ridge (2 cases) and omicwas.log (1 case), excluding the full 203 

models that lacked sensitivity. 204 

Cell-type-specific association with rheumatoid arthritis and age 205 

The detection of cell-type-specific association in bulk tissue was evaluated by 206 

using physically sorted cells. In principle, sorted cells should serve as genuine 207 

verification, however, due to the relatively small sample size (94 or 203 for 208 

rheumatoid arthritis and 214 or 1202 for age) the available datasets were 209 

underpowered to generate a gold standard list of differentially expressed 210 

omics markers [20]. Instead, we generated a benchmark set of differentially 211 

expressed markers by imposing a relaxed significance level of P < 0.05; the 212 

set would be enriched for true differentially expressed markers yet also 213 

include unassociated markers. The benchmark set was cross-checked with 214 

the prediction by each algorithm; in the same manner as the simulation 215 

analysis, we assessed the sensitivity, specificity and precision. 216 

The cell-type-specific association of DNA methylation with rheumatoid 217 

arthritis was predicted using bulk peripheral blood leukocyte data and was 218 

evaluated in sorted monocytes and B cells (Fig. 8). The input bulk methylation 219 

data was normalized by applying the logit-transformation for the 220 

Marginal.logit algorithm, which otherwise was the same as Marginal. Although 221 

the sensitivity was extremely low for all algorithms, it was positive in both 222 

cell types for Marginal (0.8–1.1 ´ 10–4), Marginal.logit (1.2–1.4 ´ 10–4), TCA 223 
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(0.5–1.2 ´ 10–4) and omicwas.logit (0.5 ´ 10–4). The cell-type-specific 224 

association of DNA methylation with age was predicted using the same bulk 225 

dataset and was evaluated in sorted CD4+T cells and monocytes (Fig. 8). The 226 

Marginal and Marginal.logit models attained by far the highest sensitivity 227 

(both 0.15–0.27) in both cell types, and moderate precision (0.59–0.68 and 228 

0.60–0.68 respectively). 229 

The cell-type-specific association of gene expression with age was 230 

predicted using whole blood data and was evaluated in sorted CD4+ T cells 231 

and monocytes (Fig. 9). The input bulk gene expression data was normalized 232 

by applying the log-transformation for the Marginal.log algorithm, which 233 

otherwise was the same as Marginal. Although the sensitivity was low for all 234 

algorithms, it was positive in both cell types for Marginal (0.02–0.07), 235 

Marginal.log (0.07–0.11), omicwas.identity.ridge (0.01–0.22) and 236 

omicwas.log (0.03–0.05). The precision was modest for Marginal (0.06–0.31), 237 

Marginal.log (0.07–0.28), omicwas.identity.ridge (0.03–0.21) and 238 

omicwas.log (0.04–0.17). The dataset of sorted CD4+ T cells (214 samples) 239 

is smaller than the monocyte dataset (1202 samples) thus could be 240 

underpowered to pick enough true differentially expressed genes into the 241 

benchmark set. 242 

For DNA methylation dataset GSE42861 and for GTEx gene expression 243 

dataset, the omicwas.logit.ridge and omicwas.log.ridge models of the 244 

omicwas package was computed in 8.1 and 0.7 hours respectively, using 8 245 

cores of a 2.5 GHz Xeon CPU Linux server. 246 

 247 

Discussion 248 

Aiming to elucidate cell-type-specific trait association in DNA methylation and 249 

gene expression, this article explored two aspects, multicollinearity and scale. 250 

We observed multicollinearity in real data and derived mathematically how it 251 

emerges. To cope with the multicollinearity, we applied ridge regularization. 252 

To properly handle multiple scales simultaneously, we applied nonlinear 253 

regression. Among the examined algorithms, nonlinear ridge regression 254 

attained moderate sensitivity and highest precision in simulated data. We also 255 
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developed an algorithm that combines full and marginal models, which 256 

attained balanced sensitivity and precision in simulation. In real benchmark 257 

data, all algorithms performed poorly yet the marginal models tended to 258 

attain the highest sensitivity. 259 

The statistical methods discussed in this article are applicable, in principle, 260 

to any tissue. For validation of the methods, we need datasets for bulk tissue 261 

as well as sorted cells, ideally of several hundred samples. Currently, the 262 

publicly available data is limited to peripheral blood. By no means, the 263 

rheumatoid arthritis EWAS datasets [21-23] or the datasets for age 264 

association of gene expression [24,25] are representative. Nevertheless, we 265 

think verification in real data is valuable. 266 

By the performance in simulated and real data, we can roughly divide 267 

algorithms into three groups: full (and its variations), marginal (and its 268 

variations) and the third group that includes ridge regressions and the hybrid 269 

Marginal.Full005. In marginal models, we test one cell type at a time. If we 270 

knew in advance that one particular cell type is associated with the trait, 271 

which would be a rare situation, testing that cell type with the marginal model 272 

is the most simple and correct approach. However, when the test target cell 273 

type is not associated, but instead another cell type is associated, the 274 

marginal models can pick up false signals due to the collinearity between 275 

regressor variables. Indeed, marginal models attained highest sensitivity 276 

(Figs. 2, 5) and relatively low precision (Figs. 4, 7), which could lead to 277 

unstable performance. The full model fits and tests all cell types 278 

simultaneously, by which it adjusts for the effects of other cell types. Due to 279 

the simultaneous inclusion of collinear predictors, the sensitivity was low (Figs. 280 

2, 5). The ridge regressions (omicwas.identity.ridge, omicwas.logit.ridge and 281 

omicwas.log.ridge) were in the middle between full and marginal models with 282 

regards to the sensitivity (Figs. 2, 5), while attaining the highest specificity 283 

(Figs. 4, 7). The hybrid Marginal.Full005 algorithm is intended to gain 284 

sensitivity by the marginal model while keeping precision by incorporating 285 

the full model. It attained moderate sensitivity (Figs. 2, 5) and moderate 286 

precision (Figs. 4, 7) in simulation. In real data, all algorithms performed 287 

poorly yet Marginal, Marginal.logit and Marginal.log tended to attain the 288 
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highest sensitivity. With regards to the performance measures of all 289 

algorithms, the association of DNA methylation with age (Fig. 8) was roughly 290 

similar to the simulation setting of methylation OR = 1.6 for B cells (Figs. 2–291 

4), and the association of gene expression with age (Fig. 9) was roughly 292 

similar to the simulation setting of fold change = 1.7 for CD8+T cells (Figs. 293 

5–7). For the respective simulation settings, the median coefficient of 294 

determination for the Marginal model was 0.020 and 0.007, indicating weak 295 

association. 296 

A limitation of our simulation is that only one cell type was assumed to be 297 

associated with disease status at each marker. In reality, two or more cell 298 

types can be associated with disease under homogeneous or heterogeneous 299 

effect. In the physically sorted cells, the association of DNA methylation with 300 

rheumatoid arthritis tended to be consistent between monocytes and B cells; 301 

the association statistics across CpG sites were positively correlated with 302 

Spearman’s rank correlation coefficient of 0.20 (P-value < 2.2 ´ 10–16). 303 

Similarly, the association with age tended to be consistent between CD4+T 304 

cells and monocytes with correlation coefficient of 0.27 and 0.07 (P-value < 305 

2.2 ´ 10–16), respectively, for DNA methylation and gene expression. The 306 

consistency suggests that multiple cell types tend to be associated under 307 

homogeneous effect. If the association is completely consistent, the effect-308 

size is uniform across cell types. As there is no cell-type-specific effect, a 309 

simple regression by disease (or relevant trait), ignoring the cell type 310 

composition, becomes the appropriate modeling (formula (8)). Moreover, 311 

when cell type composition has low CV (as observed in Tables 1 and 2), the 312 

marginal model with normalized input (formula (9)) becomes almost identical 313 

to the simple regression. In other words, the marginal model can pick up 314 

signal in cases where effect-size is homogeneous across cell types. 315 

Correspondingly, in real data of DNA methylation Marginal.logit performed 316 

the best and was slightly better than Marginal (Fig. 8), and in gene expression 317 

Marginal.log performed mostly the best and was better than Marginal (Fig. 318 

9). 319 

 320 
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Conclusions 321 

For cell-type-specific differential expression analysis by using unsorted tissue 322 

samples, we recommend trying the nonlinear ridge regression as a first choice 323 

because it balances sensitivity and precision. Although marginal models can 324 

be powerful when the tested cell type actually is the only one associated with 325 

the trait, caution is needed in its low precision. Under the idea of first scanning 326 

by the marginal model and then reanalyzing in full model, we developed the 327 

hybrid Marginal.Full005 algorithm, which attained balanced sensitivity and 328 

precision but was not corroborated in experimental data. Ridge regression is 329 

preferable compared to the full model without ridge regularization because 330 

ridge estimator of the effect-size has smaller mean squared error (equation 331 

(15)). The number of cell types associated with disease at each marker was 332 

restricted to one in our simulation but could be two or more with 333 

homogeneous or heterogeneous effect. If the effect-size is uniform across all 334 

cell types, a simple regression by disease status is suitable, which can be 335 

substituted with the marginal model that takes normalized input. We do not 336 

claim the ridge regression to substitute previous algorithms. Indeed, we think 337 

none of the current algorithms is superior to others in all aspects, indicating 338 

possibility for future improvement. 339 

 340 

Methods 341 

Linear regression 342 

We begin by describing the linear regressions used in previous studies. Let 343 

the indexes be h for a cell type, i for a sample, j for an omics marker (CpG 344 

site or gene), k for a trait that has cell-type-specific effects on marker 345 

expression, and l for a trait that has a uniform effect across cell types. The 346 

input data is given in four matrices. The matrix 𝑊!,$  represents cell type 347 

composition. The matrices 𝑋$,# and 𝐶$,% represent the values of the traits that 348 

have cell-type-specific and uniform effects, respectively. We assume the two 349 

matrices are centered: ∑ 𝑋$,#$ = ∑ 𝐶$,%$ = 0. For example, 𝑋$,# = 0.5 for disease 350 

cases and 𝑋$,# = −0.5 for controls when the number of cases and controls are 351 
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equal. The matrix 𝑌$,& represents the omics marker expression level in tissue 352 

samples. 353 

The parameters we estimate are the cell-type-specific trait effect 𝛽!,&,#, 354 

tissue-uniform trait effect 𝛾&,%, and basal marker level 𝛼!,& in each cell type. 355 

For the remaining of the first five sections (up to “Multicollinearity of 356 

interaction terms”), we focus on one marker j, and omit the index for 357 

readability. For cell type h, the marker level of sample i is 358 

𝛼! +6 𝛽!,#𝑋$,#
#

.			(1) 359 

This is a representative value rather than a mean because we do not model 360 

a probability distribution for cell-type-specific expression. By averaging the 361 

value over cell types with weight 𝑊!,$, and combining with the tissue-uniform 362 

trait effects, we obtain the mean marker level in bulk tissue of sample i, 363 

𝜇$ =6 𝛼!𝑊!,$
!

+6 𝛽!,#𝑊!,$𝑋$,#
!,#

+6 𝛾%𝐶$,%
%

. 364 

With regards to the statistical model, we assume the error of the marker 365 

level to be normally distributed with variance 𝜎' , independently among 366 

samples, as 367 

𝑌$ = 𝜇$ + 𝜀$ , 368 

𝜀$ 	~	𝑁(0, 𝜎'). 369 

The statistical significance of all parameters is tested under the full model of 370 

linear regression, 371 

𝑌$ =6 𝛼!𝑊!,$
!

+6 𝛽!,#𝑊!,$𝑋$,#
!,#

+6 𝛾%𝐶$,%
%

+ 𝜀$ ,			(2) 372 

or its variations [5,9,13]. Alternatively, the cell-type-specific effects of traits 373 

can be fitted and tested for one cell type h at a time by the marginal model, 374 

𝑌$ =6 𝛼!!𝑊!!,$
!!

+6 𝛽!,#𝑊!,$𝑋$,#
#

+6 𝛾%𝐶$,%
%

+ 𝜀$ ,			(3) 375 

or its variations [7,8,10,11,14]. 376 

Nonlinear regression 377 

Aiming to simultaneously analyze cell type composition in linear scale and 378 

differential expression/methylation in log/logit scale, we develop a nonlinear 379 
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regression model. The differential analyses are performed after applying 380 

normalizing transformation. The normalizing function is the natural logarithm 381 

f = log for gene expression, and f = logit for methylation (see Background). 382 

Conventional linear regression can be formulated by defining f as the identity 383 

function. We denote the inverse function of f by g; g = exp for gene 384 

expression, and g = logistic for methylation. Thus, f converts from the linear 385 

scale to the normalized scale, and g does the opposite. 386 

The marker level in a specific cell type (formula (1)) is modeled in the 387 

normalized scale. The level is linearized by applying function g, then averaged 388 

over cell types with weight 𝑊!,$ , and normalized by applying function f. 389 

Combined with the tissue-uniform trait effects, the mean normalized marker 390 

level in bulk tissue of sample i becomes 391 

𝜇$ = 𝑓 C6 𝑊!,$ 	𝑔 C𝛼! +6 𝛽!,#𝑋$,#
#

E
!

E +6 𝛾%𝐶$,%
%

.			(4) 392 

We assume the normalized marker level to have an error that is normally 393 

distributed with variance 𝜎', independently among samples, as 394 

𝑓(𝑌$) = 𝜇$ + 𝜀$ ,			(5) 395 

𝜀$ 	~	𝑁(0, 𝜎'). 396 

We obtain the ordinary least squares (OLS) estimator of the parameters by 397 

minimizing the residual sum of squares, 398 

RSS =6 (𝑓(𝑌$) − 𝜇$)'
$

,			(6) 399 

and then estimate the error variance as 400 

𝜎'J =
1

𝑛 − 𝑝
RSS,			(7) 401 

where n is the number of samples and p is the number of parameters [[26], 402 

section 6.3.1]. 403 

In the special case where the marker expression is homogeneous across 404 

cell types, the formulae become simple. Suppose that 𝛼! regardless of cell 405 

type h equals 𝛼 and that 𝛽!,# equals 𝛽#. The regression formulae (4) and (5) 406 

of sample i reduces to 407 

𝑓(𝑌$) = 𝛼 +6 𝛽#𝑋$,#
#

+6 𝛾%𝐶$,%
%

+ 𝜀$ .			(8) 408 
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On the other hand, the marginal model for cell type h in formula (3) reduces 409 

to 410 

𝑌$ = 𝛼 +6 𝛽#𝑊!,$𝑋$,#
#

+6 𝛾%𝐶$,%
%

+ 𝜀$ . 411 

Moreover, when the CV for cell type composition is low, the cell type 412 

proportion 𝑊!,$ of sample i approximately equals the average 𝑊!OOOO taken over 413 

samples. Thus, the formula reduces further to 414 

𝑌$ = 𝛼 +𝑊!OOOO ∙6 𝛽#𝑋$,#
#

+6 𝛾%𝐶$,%
%

+ 𝜀$ . 415 

If we replace the input bulk expression level 𝑌$ with the normalized value 416 

𝑓(𝑌$), the model becomes 417 

𝑓(𝑌$) = 𝛼 +𝑊!OOOO ∙6 𝛽#𝑋$,#
#

+6 𝛾%𝐶$,%
%

+ 𝜀$ .			(9) 418 

Under the special case of cell-type-homogeneous expression and low-CV cell 419 

type composition, formula (8) for nonlinear regression and formula (9) for 420 

the marginal model with normalized input become almost identical. The 421 

difference is the multiplication by constant 𝑊!OOOO, which does not change the 422 

test statistics for 𝛽#. 423 

Ridge regression 424 

The parameters 𝛽!,#  for cell-type-specific effect cannot be estimated 425 

accurately by ordinary linear regression because the regressors 𝑊!,$𝑋$,# in 426 

equation (2) are highly correlated between cell types (see below). 427 

Multicollinearity also occurs to the nonlinear case in formula (4) because of 428 

local linearity. To cope with the multicollinearity, we apply ridge regression 429 

with a regularization parameter 𝜆 ≥ 0, and obtain the ridge estimator of the 430 

parameters that minimizes 431 

RSS + 𝜆6 𝛽!,#
'

!,#
,			(10) 432 

where the second term penalizes 𝛽!,# for taking large absolute values. The 433 

ridge estimator 𝜽U(𝜆) is asymptotically normally distributed (see Additional file 434 

5: Supplementary note) with 435 
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MeanZ𝜽U(𝜆)[ = 𝑄(𝜆)()	𝑄(0)	𝜽,			(11) 436 

VarZ𝜽U(𝜆)[ = 𝜎'	𝑄(𝜆)() 	C
𝜕𝝁(𝜽)
𝜕𝜽 E

*

C
𝜕𝝁(𝜽)
𝜕𝜽 E	𝑄(𝜆)(), (12) 437 

𝑄(𝜆) = C
𝜕𝝁(𝜽)
𝜕𝜽 E

*

C
𝜕𝝁(𝜽)
𝜕𝜽 E + 𝜆 _

𝑂 𝑂 𝑂
𝑂 𝐼 𝑂
𝑂 𝑂 𝑂

b − (𝑓(𝑌) − 𝝁(𝜽))* ∙ c
𝜕'𝝁(𝜽)
𝜕𝜽𝜕𝜽*

d, 438 

where 𝝁 is the vector form of 𝜇$, 𝜽 is the vector form of the parameters 𝛼!, 439 

𝛽!,#  and 𝛾%  combined, (𝜕𝝁 𝜕𝜽⁄ ) is the Jacobian matrix, (𝜕'𝝁 𝜕𝜽𝜕𝜽*⁄ ) is the 440 

array of Hessian matrices for 𝜇$  taken over samples, and superscript T 441 

indicates matrix transposition. The dot product of (𝑓(𝑌) − 𝝁(𝜽))*  and the 442 

array of Hessians is taken by multiplying for each sample and then summing 443 

up over samples. The matrix after 𝜆  has one only in the diagonal 444 

corresponding to 𝛽!,#. The assigned value 𝜽 is the true parameter value. By 445 

taking the expectation of 𝑄, we obtain a rougher approximation [27] as 446 

MeanZ𝜽U(𝜆)[ = 𝑄∗(𝜆)()	𝑄∗(0)	𝜽, (13) 447 

VarZ𝜽U(𝜆)[ = 𝜎'	𝑄∗(𝜆)() 	C
𝜕𝝁(𝜽)
𝜕𝜽 E

*

C
𝜕𝝁(𝜽)
𝜕𝜽 E	𝑄∗(𝜆)(), (14) 448 

𝑄∗(𝜆) = E[𝑄(𝜆)] = C
𝜕𝝁(𝜽)
𝜕𝜽 E

*

C
𝜕𝝁(𝜽)
𝜕𝜽 E + 𝜆 _

𝑂 𝑂 𝑂
𝑂 𝐼 𝑂
𝑂 𝑂 𝑂

b. 449 

The matrices 𝑄  and 𝑄∗  are the observed and expected Fisher matrices 450 

multiplied by 𝜎' and adapted to ridge regression, respectively. 451 

Since our objective is to predict the cell-type-specific trait effects, we 452 

choose the regularization parameter 𝜆 that can minimize the mean squared 453 

error (MSE) of 𝛽!,# . Our methodology is based on [28]. To simplify the 454 

explanation, we assume the Jacobian matrices (𝜕𝝁(𝜽) 𝜕𝜶⁄ ), (𝜕𝝁(𝜽) 𝜕𝜷⁄ ) and 455 

(𝜕𝝁(𝜽) 𝜕𝜸⁄ ) to be mutually orthogonal, where 𝜶, 𝜷 and 𝜸 are the vector 456 

forms of 𝛼!, 𝛽!,# and 𝛾%, respectively. Then, from formulae (13) and (14), the 457 

ridge estimator 𝜷U(𝜆) is asymptotically normally distributed with 458 

MeanZ𝜷U(𝜆)[ = jC
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E + 𝜆𝐼k

()

C
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E𝜷, 459 

VarZ𝜷U(𝜆)[ = 𝜎' jC
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E + 𝜆𝐼k

()

C
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E 460 

jC
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E + 𝜆𝐼k

()

, 461 
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where the assigned values 𝜽 and 𝜷 are the true parameter values. We apply 462 

singular value decomposition 463 

C
𝜕𝝁(𝜽)
𝜕𝜷 E = 𝑈𝐷𝑉* , 464 

where U and V are orthogonal matrices, the columns of V are 𝒗), ⋯ , 𝒗,, and 465 

the diagonals of diagonal matrix D are sorted 𝑑) ≥ ⋯ ≥ 𝑑, ≥ 0. The bias, 466 

variance and MSE of the ridge estimator are decomposed as 467 

BiasZ𝜷U(𝜆)[ = EZ𝜷U(𝜆) − 𝜷[ 468 

		= −𝜆 jC
𝜕𝝁(𝜽)
𝜕𝜷 E

*

C
𝜕𝝁(𝜽)
𝜕𝜷 E + 𝜆𝐼k

()

𝜷 469 

		= u6 𝒗-
−𝜆

𝑑-
' + 𝜆

𝒗-*
,

-.)

v 𝜷, 470 

VarZ𝜷U(𝜆)[ = 𝜎' 6 𝒗-
𝑑-

'

w𝑑-
' + 𝜆x

' 𝒗-
*

,

-.)

, 471 

MSEZ𝜷U(𝜆)[ = E yz𝜷U(𝜆) − 𝜷z
'
{ 472 

		=zBiasZ𝜷U(𝜆)[z
'
+ trwVarZ𝜷U(𝜆)[x 473 

		= 6 c
𝜆

𝑑-
' + 𝜆

d
'

(𝒗-*𝜷)' + c
𝑑-

'

𝑑-
' + 𝜆

d
'

c
𝜎'

𝑑-
'd

,

-.)

.			(15) 474 

For each m in the summation of (13), the minimum of the summand is 475 

attained at 𝜆- = 𝜎' (𝒗-*𝜷)'⁄ . To minimize MSE, we need to find some 476 

“average” of the optimal 𝜆- over the range of m. Hoerl et al. [29] proposed 477 

to use the harmonic mean 𝜆 = 𝑀𝜎' ‖𝜷‖'⁄ . However, if an OLS estimator 𝜷U(0) 478 

is actually plugged into ‖𝜷‖', the denominator is biased upwards, and the 479 

computed mean is biased downwards. Indeed, with regards to the estimator 480 

of 1 �𝜆-⁄ , we notice that 481 

1
𝜎
𝒗-*𝜷U(0)	~	𝑁 c

1
𝜎
𝒗-*𝜷,

1
𝑑-

'd,	 482 

where the terms with larger m have larger variance. Thus, we take the 483 

average of (𝒗-*𝜷U(0))' 𝜎'⁄ , weighted by 𝑑-' ∑ 𝑑-
',

-.)� , and also subtract the 484 

upward bias as, 485 

𝜅 =
1

∑ 𝑑-
',

-.)
6 �

𝑑-
' �𝒗-*𝜷U(0)�

'

𝜎'
− 1�

,

-.)

.			(16) 486 
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The weighting and subtraction were mentioned in [28], where the subtraction 487 

term was dismissed, under the assumption of large effect-size 𝜷. Since the 488 

effect-size could be small in our application, we keep the subtraction term. 489 

The statistic 𝜅 can be nonpositive, and is unbiased in the sense that 490 

E[𝜅] =
1

∑ 𝑑-
',

-.)
6

𝑑-
'(𝒗-*𝜷)'

𝜎'

,

-.)

=
1

∑ 𝑑-
',

-.)
6

𝑑-
'

𝜆-

,

-.)

 491 

equals the weighted sum of 1 𝜆-⁄ . Our choice of regularization parameter is 492 

𝜆 = �
1 𝜅⁄ 			if	𝜅 > 0,
𝑑)

'			otherwise,
			(17) 493 

where 𝑑)' is taken instead of positive infinity. 494 

Implementation of omicwas package 495 

For each omics marker, the parameters 𝜶, 𝜷 and 𝜸 (denoted in combination 496 

by 𝜽) are estimated and tested by nonlinear ridge regression in the following 497 

steps. As we assume the magnitude of trait effects 𝜷 and 𝜸 to be much 498 

smaller than that of basal marker level 𝜶, we first fit 𝜶 alone for numerical 499 

stability. 500 

1. Compute OLS estimator 𝜶�(0) by minimizing formula (6) under 𝜷 = 𝜸 = 𝟎. 501 

Apply Wald test.  502 

2. Calculate 𝜎'J by formula (7). Use it as a substitute for 𝜎'. The residual 503 

degrees of freedom 𝑛 − 𝑝 is the number of samples minus the number of 504 

parameters in 𝜶. 505 

3. Compute OLS estimators 𝜷U(0) and 𝜸�(0) by minimizing formula (6) under 506 

𝜶 = 𝜶�(0). Let 𝜽U(0) = (𝜶�(0)* , 𝜷U(0)* , 𝜸�(0)*)* .  507 

4. Apply singular value decomposition w𝜕𝝁(𝜽U(0)) 𝜕𝜷⁄ x = 𝑈𝐷𝑉*. 508 

5. Calculate 𝜅 and then the regularization parameter 𝜆 by formulae (16) 509 

and (17). 510 

6. Compute ridge estimators 𝜷U(𝜆)  and 𝜸�(𝜆)  by minimizing formula (10) 511 

under 𝜶 = 𝜶�(0). Let 𝜽U(𝜆) = (𝜶�(0)* , 𝜷U(𝜆)* , 𝜸�(𝜆)*)* . 512 

7. Approximate the variance of ridge estimator, according to formula (12), 513 

by 514 
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Var �C𝜷
U(𝜆)
𝜸�(𝜆)

E� = 𝜎'J	𝑄(𝜆)() 	�
𝜕𝝁 �𝜽U(𝜆)�

𝜕 C𝜷𝜸E
�

*

�
𝜕𝝁�𝜽U(𝜆)�

𝜕 C𝜷𝜸E
�	𝑄(𝜆)(), 515 

𝑄(𝜆) = �
𝜕𝝁�𝜽U(𝜆)�

𝜕 C𝜷𝜸E
�

*

�
𝜕𝝁�𝜽U(𝜆)�

𝜕 C𝜷𝜸E
� + 𝜆 � 𝐼 𝑂

𝑂 𝑂� 516 

−C𝑓(𝑌) − 𝝁�𝜽U(𝜆)�E
*
∙

⎝

⎛
𝜕'𝝁 �𝜽U(𝜆)�

𝜕 C𝜷𝜸E 	𝜕 C
𝜷
𝜸E

*

⎠

⎞. 517 

8. Apply the “non-exact” t-type test [30]. For the s-th coordinate, 518 

C𝜷
U(𝜆)
𝜸�(𝜆)

E
/

�Var �C
𝜷U(𝜆)
𝜸�(𝜆)

E�
/,/

	~	𝑡0(1,			(18) 520 

under the null hypothesis C𝜷𝜸E/
= 0. 519 

The formula (18) is the same as a Wald test, but the test differs, because the 521 

ridge estimators are not maximum-likelihood estimators. The algorithm was 522 

implemented as a package for the R statistical language. We used the NL2SOL 523 

algorithm of the PORT library [31] for minimization. 524 

In analyses of quantitative trait locus (QTL), such as methylation QTL 525 

(mQTL) and expression QTL (eQTL), an association analysis that takes the 526 

genotypes of a single nucleotide polymorphism (SNP) as 𝑋$,# is repeated for 527 

many SNPs. In order to speed up the computation, we perform rounds of 528 

linear regression. First, the parameters 𝜶�(0) and 𝜸�(0) are fit by ordinary 529 

linear regression under 𝜷 = 𝟎, which does not depend on 𝑋$,#. By taking the 530 

residuals, we practically dispense with 𝜶�(0) and 𝜸�(0) in the remaining steps. 531 

Next, for 𝑋$,# of each SNP, 𝜷U(0) is fit by ordinary linear regression under 𝜶 =532 

𝜶�(0) , 𝜸 = 𝜸�(0).  The regularization parameter 𝜆  is computed according to 533 

steps 4 and 5 above. Finally, 𝜷U(𝜆)  is fitted and tested by linear ridge 534 

regression under 𝜶 = 𝜶�(0), 𝜸 = 𝜸�(0). 535 
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Multicollinearity of interaction terms 536 

The regressors for cell-type-specific trait effects in the full model (equation 537 

(2)) are the interaction terms 𝑊!,$𝑋$,# . To assess multicollinearity, we 538 

mathematically derive the correlation coefficient between two interaction 539 

terms 𝑊!,$𝑋$,# and 𝑊!!,$𝑋$,#. In this section, we treat 𝑊!,$, 𝑊!!,$ and 𝑋$,# as 540 

sampled instances of random variables 𝑊!, 𝑊!! and 𝑋#, respectively; note 541 

that the sample index i is omitted. For simplicity, we assume 𝑊! and 𝑊!! are 542 

independent of 𝑋#. Let E[•], Var[•], Cov[•], Cor[•] and CV[•] denote the 543 

expectation, variance, covariance, correlation and coefficient of variation, 544 

respectively. Since 𝑋#  is centered, E[𝑊!𝑋#] = E[𝑊!!𝑋#] = 0.  The correlation 545 

coefficient between interaction terms becomes 546 

Cor[𝑊!𝑋# ,𝑊!!𝑋#] =
E[𝑊!𝑋#𝑊!!𝑋#]

�EZ𝑊!
'𝑋#'[�EZ𝑊!!

'𝑋#'[
 547 

		=
E[𝑊!𝑊!!]

�EZ𝑊!
'[�EZ𝑊!!

'[
 548 

		=
Cov[𝑊! ,𝑊!!] + E[𝑊!]	E[𝑊!!]

�Var[𝑊!] + E[𝑊!]'�Var[𝑊!!] + E[𝑊!!]'
 549 

		=

Cor[𝑊! ,𝑊!!]�Var[𝑊!]�Var[𝑊!!]
E[𝑊!]E[𝑊!!]

+ 1

�Var[𝑊!]
E[𝑊!]'

+ 1�Var[𝑊!!]
E[𝑊!!]'

+ 1

 550 

		=
Cor[𝑊! ,𝑊!!]	CV[𝑊!]	CV[𝑊!!] + 1
�CV[𝑊!]' + 1�CV[𝑊!!]' + 1

.			(19) 551 

If CV[𝑊!] and CV[𝑊!!] approach zero, the correlation of interaction terms 552 

approaches one, irrespective of Cor[𝑊! ,𝑊!!]. 553 

EWAS of rheumatoid arthritis and age 554 

EWAS datasets for rheumatoid arthritis were downloaded from the Gene 555 

Expression Omnibus. Using the RnBeads package (version 2.2.0) [32] of R, 556 

IDAT files of HumanMethylation450 array were preprocessed by removing 557 
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low quality samples and markers, by normalizing methylation level, and by 558 

removing markers on sex chromosomes and outlier samples. The association 559 

of methylation level with disease status was tested with adjustment for sex, 560 

age, smoking status and experiment batch; the covariates were assumed to 561 

have uniform effects across cell types. Alternatively, the association of 562 

methylation level with age was tested with adjustment for disease status , 563 

sex, smoking status and experiment batch. After quality control, dataset 564 

GSE42861 included bulk peripheral blood leukocyte data for 336 cases and 565 

322 controls [22]. 566 

The cell type composition of bulk samples was imputed using the 567 

Houseman algorithm [33] in the GLINT software (version 1.0.4) [34]. The 568 

reference data of GLINT software characterizes seven cell types [35] by 300 569 

CpG sites [36], of which 284 were measured in our data. We used prediction 570 

results for the seven cell types (Table 1). 571 

Dataset GSE131989 included sorted CD14+ monocyte data for 63 cases 572 

and 31 controls [23]. By meta-analysis of GSE131989 and GSE87095 [21], 573 

we obtained sorted CD19+ B cell data for 108 cases and 95 controls. Under 574 

the nominal significance level P < 0.05 (two-sided), the number of CpG sites 575 

up- or down-regulated in cases were 20,869 (5%) and 14,911 (3%), 576 

respectively, in CD14+ monocyte and 28,004 (6%) and 26,582 (6%) in CD19+ 577 

B cell. 578 

From the Gene Expression Omnibus dataset GSE56047 [25], we obtained 579 

sorted CD14+ monocyte data for 1200 samples and sorted CD4+ T cell data 580 

for 214 samples. Under the nominal significance level P < 0.05 (two-sided), 581 

the number of CpG sites up- or down-regulated by higher age were 45,283 582 

(10%) and 80,871 (18%), respectively, in CD14+ monocyte and 35,822 (8%) 583 

and 25,020 (5%) in CD4+ T cell. 584 

Differential gene expression by age 585 

Whole blood RNA-seq data of GTEx v7 was downloaded from the GTEx 586 

website [24]. Genes of low quality or on sex chromosomes were removed, 587 

expression level was normalized, outlier samples were removed, and 389 588 
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samples were retained. The association of read count with age was tested 589 

with adjustment for sex. 590 

The cell type composition of bulk samples was imputed using the 591 

DeconCell package (version 0.1.0) [10] of R. The reference data of DeconCell 592 

characterizes 33 cell types by two to 217 signature genes. Our data measured 593 

39% of the signature genes. We used prediction results for six main cell types 594 

(Table 2), for which the prediction performance was 44.4 to 90.9. 595 

From the Gene Expression Omnibus dataset GSE56047 [25], we obtained 596 

sorted CD14+ monocyte data for 1202 samples and sorted CD4+ T cell data 597 

for 214 samples. Under the nominal significance level P < 0.05 (two-sided), 598 

the number of genes up- or down-regulated by higher age were 2715 (11%) 599 

and 3240 (13%), respectively, in CD14+ monocyte and 1082 (4%) and 1246 600 

(5%) in CD4+ T cell. 601 

Simulation of cell-type-specific disease association 602 

Bulk tissue sample data for case-control comparison were simulated based 603 

on the above-mentioned EWAS dataset GSE42861 and GTEx gene expression 604 

dataset. We randomly assigned the case-control status to the samples. 605 

Among the omics markers, 2.5% were set to be up-regulated in cases in 606 

single cell type, 2.5% were similarly down-regulated, and 95% were 607 

unrelated to case-control status. The cell-type-specific effect-size of the 608 

differentially expressed markers was fixed within a simulation trial, and was 609 

chosen from methylation OR of 1.3, 1.6 or 1.9 for EWAS [20] and fold-change 610 

of 1.7, 3.0 or 5.0 for gene expression analysis; the effect-sizes correspond to 611 

log(1.3), log(1.6) and log(1.9) or log(1.7), log(3.0) and log(5.0) in 612 

normalized scale. If the mean methylation level of a CpG site in cases and 613 

controls are 𝜇case  and 𝜇control , respectively, the methylation odds become 614 

𝜇case (1 − 𝜇case)⁄  and 𝜇control (1 − 𝜇control)⁄ . The methylation OR represents the 615 

case-control contrast of methylation level by the ratio of odds, 616 

{𝜇case (1 − 𝜇case)⁄ } {𝜇control (1 − 𝜇control)⁄ }⁄  (see [20]). 617 

For each effect-size, we performed 50 simulation trials. In each simulation 618 

trial, we randomly assigned half of the samples as cases (𝑋$,# = 0.5) and the 619 
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other half as controls (𝑋$,# = −0.5). We retained the covariates matrix 𝐶$,% and 620 

the cell type composition matrix 𝑊!,$ from the original data. From the original 621 

bulk expression level matrix 𝑌$,&, 95% of the markers were randomly chosen 622 

and retained; these markers had no association with disease because the 623 

case-control status was randomized. Cell-type-specific association was 624 

introduced into the remaining 5% of markers, such that an equal number of 625 

markers were up- or down-regulated in each cell type. For example, in the 626 

EWAS dataset, 451,725	 × 	0.05	 × 0.5 ÷ 7 = 1613 CpG sites were up-regulated in 627 

neutrophils of cases. 628 

The bulk expression level of a marker j with normalized-scale effect-size 629 

𝛽 specific to a cell type h was generated as follows. First, the average 𝜇 and 630 

the variance 𝜎' of the normalized bulk expression level 𝑓(𝑌$,&) in the original 631 

data was measured. Next, we generated normalized expression level in each 632 

cell type. For cases, the expression level in cell type h was randomly sampled 633 

from the normal distribution 𝑁(𝜇 + 𝛽, 𝜎') and the expression level in each of 634 

the other cell types was sampled from 𝑁(𝜇, 𝜎'). For controls, the expression 635 

level in each cell type was sampled from 𝑁(𝜇, 𝜎'). Finally, for each individual, 636 

the expression levels in cell types were converted to the linear scale, 637 

multiplied by the cell type composition and added, to obtain the bulk 638 

expression level in linear scale. 639 

In the truly disease-associated cell type h, we introduced signal 𝛽 and 640 

noise 𝜎'. The signal level was fixed in a simulation trial, for example to 641 

methylation OR = 1.3. Since the noise level was taken from real data, the 642 

level varied between markers. In the process of obtaining bulk expression the 643 

expression of all cell types was mixed, which dilutes the signal. The signal 644 

dilution becomes stronger if h is a minor cell type. The mixing process adds 645 

noise from other cell types, which becomes stronger if h is a minor cell type. 646 

Consequently, minor cell types tend to manifest weaker association in bulk 647 

tissue. We empirically measured the strength of association by the coefficient 648 

of determination, 𝑅', for the marginal model. The coefficient of determination 649 

is defined as the proportion of variance explained by the model, and 650 

𝑅' (1 − 𝑅')⁄  equals the signal-to-noise ratio. Under methylation OR of 1.3, 1.6, 651 

1.9 for EWAS simulation, the median 𝑅'  was 0.322, 0.589, 0.712 for 652 
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neutrophils, 0.010, 0.033, 0.057 for NK cells, and 0.001, 0.003, 0.005 for 653 

eosinophils. Under fold-change of 1.7, 3.0 or 5.0 for gene expression 654 

simulation, the median 𝑅' was 0.135, 0.331, 0.434 for granulocytes, 0.007, 655 

0.026, 0.049 for CD8+ T cells, and 0.001, 0.003, 0.007 for B cells. 656 

For gene expression, we also simulated a scenario where cell-type-specific 657 

disease effect occurs in cell type marker genes. The simulation procedure is 658 

same as above except that the expression level was set to zero (in linear 659 

scale) in all cell types other than the target cell type h, for both cases and 660 

controls. 661 

Evaluation of statistical methods 662 

Cell-type-specific effects of traits was statistically tested by using bulk tissue 663 

data as input. We applied the omicwas package with the normalizing function 664 

f = log, logit, identity without ridge regularization (omicwas.log, 665 

omicwas.logit, omicwas.identity) or under ridge regression 666 

(omicwas.log.ridge, omicwas.logit.ridge, omicwas.identity.ridge). The 667 

omicwas package was used also for conventional linear regression under the 668 

full and marginal models. We also developed a hybrid of marginal and full 669 

models (Marginal.Full005): if the effect direction agreed in two models and if 670 

P < 0.05 in the full model, we adopted the Z-score of the marginal model; 671 

otherwise, the Z-score was set to zero. 672 

Among previous methods, we evaluated those that accept cell type 673 

composition as input and compute test statistics for cell-type-specific 674 

association. For DNA methylation data, we applied TOAST (version 1.2.0) [9], 675 

CellDMC (version 2.0.2) [13] and TCA (version 1.0.0) [14]. For gene 676 

expression data, we applied TOAST and csSAM (version 1.4) [5]. For csSAM, 677 

we either fitted all cell types together or one cell type at a time, and denoted 678 

the results as csSAM.lm and csSAM.monovariate, respectively. The csSAM 679 

method is applicable to binomial traits but not to quantitative traits. 680 

For simulated data of EWAS dataset GSE42861, we adopted the 681 

significance level P < 2.4 ´ 10–7, which accounts for the correlation among 682 

the probes on HumanMethylation450 array [37]. For the GTEx gene 683 
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expression dataset, multiple testing was controlled by the Benjamini-684 

Hochberg procedure with the false discovery rate <5% in each cell type [38]. 685 

The performance of an algorithm for the simulated data was assessed by 686 

sensitivity, specificity and precision. The performance measures were 687 

obtained from each simulation trial. For a target cell type h, we counted the 688 

four possible outcomes, true positives (TP! ), true negatives (TN! ), false 689 

positives (FP! ) and false negatives (FN! ). The sum TP! + TN! + FP! + FN! 690 

equals the total number of omics markers (which was 451,725 CpG sites for 691 

DNA methylation and 14,038 genes for gene expression). For 5% of the 692 

markers, one randomly selected cell type ℎ∗ was set to be truly associated 693 

with disease status at data generation. The remaining 95% of the markers 694 

were null cases with no truly associated cell types. The outcome counts can 695 

be subtotaled according to the truly associated cell type, which is denoted in 696 

superscript, 697 

TP! = TP!!
∗.! , 698 

TN! =6 TN!!
∗

!∗;!
+ TN!Null, 699 

FP! =6 FP!!
∗

!∗
+ FP!Null, 700 

FN! = FN!!
∗.! . 701 

Remark that FP! can occur when in cell type h a marker is truly up-regulated 702 

in disease cases but an algorithm predicts the marker to be down-regulated 703 

in h. The performance measures can be represented as 704 

sensitivity! =
TP!

TP! + FN!
=

TP!!
∗.!

TP!!
∗.! + FN!!

∗.! , 705 

specificity! =
TN!

TN! + FP!
=

∑ TN!!
∗

!∗;! + TN!Null

FP!!
∗.! + ∑ wTN!!

∗ + FP!!
∗x!∗;! + wTN!Null + FP!Nullx

, 706 

precision! =
TP!

TP! + FP!
=

TP!!
∗.!

wTP!!
∗.! + FP!!

∗.!x + ∑ FP!!
∗

!∗;! + FP!Null
. 707 

Whereas sensitivity is obtained solely from markers that are truly associated 708 

in the target cell type h, the specificity and precision are obtained by 709 

aggregating with the markers associated in other cell types and the null 710 

markers. 711 
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For the association with rheumatoid arthritis and age, “true” association 712 

was determined from the measurements in physically sorted blood cells, 713 

under the nominal significance level P < 0.05 (two-sided). In the same 714 

manner as the simulation analysis, we assessed the sensitivity, specificity 715 

and precision. 716 
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TABLES 877 

 878 

Table 1A Blood cell type proportion in rheumatoid arthritis dataset    

Cell type   Neu CD4+T CD8+T NK Mono Bcells Eos  

Mean  0.59 0.10 0.08 0.08 0.07 0.07 0.01  

SD  0.11 0.06 0.05 0.04 0.02 0.03 0.02  

CV   0.2 0.6 0.6 0.5 0.3 0.4 2.7  

SD, standard deviation; CV, coefficient of variation  

          

Table 1B Correlation between blood cell type proportion and rheumatoid arthritis (Xk)   

r   Neu CD4+T CD8+T NK Mono Bcells Eos Xk=Disease 

Neu  1 -0.68 -0.60 -0.46 -0.06 -0.49 -0.48 0.44 

CD4+T  -0.68 1 0.14 0.05 -0.17 0.38 0.26 -0.33 

CD8+T  -0.60 0.14 1 0.08 -0.05 0.19 0.13 -0.27 

NK  -0.46 0.05 0.08 1 -0.04 0.01 0.11 -0.27 

Mono  -0.06 -0.17 -0.05 -0.04 1 -0.17 0.05 0.10 

Bcells  -0.49 0.38 0.19 0.01 -0.17 1 0.11 -0.22 

Eos   -0.48 0.26 0.13 0.11 0.05 0.11 1 -0.10 
          

Table 1C Correlation between interaction terms      

r   Neu*Xk CD4+T*Xk CD8+T*Xk NK*Xk Mono*Xk Bcells*Xk Eos*Xk  

Neu*Xk  1 0.83 0.80 0.85 0.93 0.90 0.27  

CD4+T*Xk  0.83 1 0.78 0.78 0.83 0.88 0.42  

CD8+T*Xk  0.80 0.78 1 0.77 0.82 0.83 0.35  

NK*Xk  0.85 0.78 0.77 1 0.85 0.83 0.35  

Mono*Xk  0.93 0.83 0.82 0.85 1 0.88 0.35  

Bcells*Xk  0.90 0.88 0.83 0.83 0.88 1 0.36  

Eos*Xk   0.27 0.42 0.35 0.35 0.35 0.36 1  

Neu, neutrophils; Mono, monocytes; Eos, eosinophils.     
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 880 

Table 2A Blood cell type proportion in GTEx dataset     

Cell type   Gran CD4+T CD8+T Mono NK Bcells  

Mean  0.53 0.22 0.10 0.07 0.05 0.03  

SD  0.037 0.020 0.013 0.004 0.012 0.003  

CV   0.1 0.1 0.1 0.1 0.2 0.1  

SD, standard deviation; CV, coefficient of variation  

         

Table 2B Correlation between blood cell type proportion and age (Xk)   

r   Gran CD4+T CD8+T Mono NK Bcells Xk=Age 

Gran  1 -0.89 -0.83 0.56 -0.76 -0.41 -0.23 

CD4+T  -0.89 1 0.59 -0.64 0.50 0.51 0.14 

CD8+T  -0.83 0.59 1 -0.40 0.59 0.15 0.15 

Mono  0.56 -0.64 -0.40 1 -0.44 -0.42 0.02 

NK  -0.76 0.50 0.59 -0.44 1 0.13 0.31 

Bcells   -0.41 0.51 0.15 -0.42 0.13 1 -0.03 
         

Table 2C Correlation between interaction terms     

r   Gran*Xk CD4+T*Xk CD8+T*Xk Mono*Xk NK*Xk Bcells*Xk  

Gran*Xk  1 0.99 0.98 1.00 0.96 0.99  

CD4+T*Xk  0.99 1 1.00 0.99 0.98 1.00  

CD8+T*Xk  0.98 1.00 1 0.99 0.98 0.99  

Mono*Xk  1.00 0.99 0.99 1 0.96 0.99  

NK*Xk  0.96 0.98 0.98 0.96 1 0.97  

Bcells*Xk   0.99 1.00 0.99 0.99 0.97 1  

Gra, granulocytes; Mono, monocytes.      
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FIGURE LEGENDS 882 

Figure 1 883 

Contour plot of the correlation coefficient between interaction terms 𝑊!𝑋# 884 

and 𝑊!!𝑋#. 𝑊! and 𝑊!! represent proportions of cell types ℎ and ℎ>, and 𝑋# 885 

represents the value of trait k. For this plot, we assume the coefficient of 886 

variation CV[𝑊!] and CV[𝑊!!] to be equal. As the CV decreases 0.6, 0.4 to 887 

0.2, the correlation coefficient raises >0.5, >0.7 to >0.9, over most range of 888 

Cor[𝑊! ,𝑊!!]. 889 

Figure 2 890 

Sensitivity for detecting cell-type-specific association in simulated data for 891 

DNA methylation. Panels are aligned in rows according to the simulation 892 

settings with the methylation odds ratio of 1.3, 1.6 or 1.9. In each row, panels 893 

for different cell types are aligned in decreasing order of proportion. The 894 

vertical axis indicates sensitivity. In each panel, results from different 895 

algorithms are aligned horizontally in different colors. Results from 20 896 

simulation trials are summarized in a box plot. The middle bar of the box plot 897 

indicates the median, and the lower and upper hinges correspond to the first 898 

and third quartiles. The whiskers extend to the value no further than 1.5 ´ 899 

inter-quartile range from the hinges. MethOR, methylation odds ratio; Neu, 900 

neutrophils; Mono, monocytes; Eos, eosinophils. 901 

Figure 3 902 

Specificity for detecting cell-type-specific association in simulated data for 903 

DNA methylation. The figure format is same as Fig. 3. 904 

Figure 4 905 

Precision (positive predictive value) for detecting cell-type-specific 906 

association in simulated data for DNA methylation. The figure format is same 907 

as Fig. 3. 908 
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Figure 5 909 

Sensitivity for detecting cell-type-specific association in simulated data for 910 

gene expression. Panels are aligned in rows according to the simulation 911 

settings with the gene expression fold change of 1.7, 3.0 or 5.0. In each row, 912 

panels for different cell types are aligned in decreasing order of proportion. 913 

The vertical axis indicates sensitivity. In each panel, results from different 914 

algorithms are aligned horizontally in different colors. Results from 50 915 

simulation trials are summarized in a box plot. The middle bar of the box plot 916 

indicates the median, and the lower and upper hinges correspond to the first 917 

and third quartiles. The whiskers extend to the value no further than 1.5 ´ 918 

inter-quartile range from the hinges. FC, fold change; Gran, granulocytes; 919 

Mono, monocytes. 920 

Figure 6 921 

Specificity for detecting cell-type-specific association in simulated data for 922 

gene expression. The figure format is same as Fig. 5. 923 

Figure 7 924 

Precision (positive predictive value) for detecting cell-type-specific 925 

association in simulated data for gene expression. The figure format is same 926 

as Fig. 5. 927 

Figure 8 928 

Performance of the predictions for cell-type-specific association of DNA 929 

methylation. For the association with rheumatoid arthritis in monocytes and 930 

B cells and the association with age in CD4+ T cells and monocytes, sensitivity 931 

(top), specificity (middle) and precision (bottom) are plotted. In each panel, 932 

results from different algorithms are aligned horizontally in different colors. 933 

Precision is not plotted when there were no positive CpG sites. RA, 934 

rheumatoid arthritis; Mono, monocytes. 935 
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Figure 9 936 

Performance of the predictions for cell-type-specific association of gene 937 

expression. For the association with age in CD4+ T cells and monocytes, 938 

sensitivity (top), specificity (middle) and precision (bottom) are plotted. In 939 

each panel, results from different algorithms are aligned horizontally in 940 

different colors. Precision is not plotted when there were no positive genes. 941 

Mono, monocytes. 942 

  943 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


0.1

0.2

0.3

0.4

0.5
0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

Cor[ Wh Xk , Wh' Xk ]

Cor[ Wh , Wh' ]

C
V[

W
h

]
Figure 1

0.9

1.00.8

0.7
0.6
0.5

0.40.3
0.20.1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 2

Neu CD4+T CD8+T NK Mono Bcells Eos

m
ethO

R
=

1.3
m

ethO
R

=
1.6

m
ethO

R
=

1.9
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

Algorithm
Marginal

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 3

Neu CD4+T CD8+T NK Mono Bcells Eos

m
ethO

R
=

1.3
m

ethO
R

=
1.6

m
ethO

R
=

1.9

0.980

0.985

0.990

0.995

1.000

0.980

0.985

0.990

0.995

1.000

0.980

0.985

0.990

0.995

1.000

Sp
ec

ifi
ci

ty

Algorithm
Marginal

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 4

Neu CD4+T CD8+T NK Mono Bcells Eos

m
ethO

R
=

1.3
m

ethO
R

=
1.6

m
ethO

R
=

1.9
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n

Algorithm
Marginal

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 5

Gran CD4+T CD8+T Mono NK Bcells

FC
=

1.7
FC

=
3.0

FC
=

5.0
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

Algorithm
Marginal

csSAM.monovariate

omicwas.log.ridge

omicwas.identity.ridge

omicwas.log

omicwas.identity

Full

TOAST

csSAM.lm

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 6

Gran CD4+T CD8+T Mono NK Bcells

FC
=

1.7
FC

=
3.0

FC
=

5.0

0.925

0.950

0.975

1.000

0.925

0.950

0.975

1.000

0.925

0.950

0.975

1.000

Sp
ec

ifi
ci

ty

Algorithm
Marginal

csSAM.monovariate

omicwas.log.ridge

omicwas.identity.ridge

omicwas.log

omicwas.identity

Full

TOAST

csSAM.lm

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 7

Gran CD4+T CD8+T Mono NK Bcells

FC
=

1.7
FC

=
3.0

FC
=

5.0
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n

Algorithm
Marginal

csSAM.monovariate

omicwas.log.ridge

omicwas.identity.ridge

omicwas.log

omicwas.identity

Full

TOAST

csSAM.lm

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 8

RA in Mono RA in Bcells Age in CD4+T Age in Mono

0.0

0.1

0.2

Se
ns

iti
vi

ty

RA in Mono RA in Bcells Age in CD4+T Age in Mono

0.97

0.98

0.99

1.00

Sp
ec

ifi
ci

ty

RA in Mono RA in Bcells Age in CD4+T Age in Mono

0.00

0.25

0.50

0.75

1.00

Pr
ec

is
io

n

Algorithm

Marginal

Marginal.logit

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/


Figure 9

Age in CD4+T Age in Mono

0.00

0.05

0.10

0.15

0.20

Se
ns

iti
vi

ty

Age in CD4+T Age in Mono

0.7

0.8

0.9

1.0

Sp
ec

ifi
ci

ty

Age in CD4+T Age in Mono

0.0

0.1

0.2

0.3

Pr
ec

is
io

n

Algorithm

Marginal

Marginal.log

omicwas.log.ridge

omicwas.identity.ridge

omicwas.log

omicwas.identity

Full

TOAST

Marginal.Full005

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.06.18.158758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.158758
http://creativecommons.org/licenses/by/4.0/

