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ABSTRACT 

Genetic perturbations of cerebral cortical 
development can lead to neurodevelopmental disease, 
including autism spectrum disorder (ASD). To 
identify genomic regions crucial to corticogenesis, we 
mapped the activity of gene-regulatory elements 
generating a single-cell atlas of gene expression and 
chromatin accessibility both independently and 
jointly. This revealed waves of gene regulation by key 
transcription factors (TFs) across a nearly continuous 
differentiation trajectory into glutamatergic neurons, 
distinguished the expression programs of glial 
lineages, and identified lineage-determining TFs that 
exhibited strong correlation between linked gene-
regulatory elements and expression levels. These 
highly connected genes adopted an active chromatin 
state in early differentiating cells, consistent with 
lineage commitment. Basepair-resolution neural 
network models identified strong cell-type specific 
enrichment of noncoding mutations predicted to be 
disruptive in a cohort of ASD subjects and identified 
frequently disrupted TF binding sites. This approach 
illustrates how cell-type specific mapping can provide 
insights into the programs governing human 
development and disease.  
 
 

 

INTRODUCTION 

Dynamic changes in the activity of cis-regulatory DNA 
elements, driven by changes in transcription factor (TF) 
binding, underlie the complex phenotypic transformations 
that occur during development (Buenrostro et al., 2018; 
Stergachis et al., 2013). Single cell methods for probing 
chromatin accessibility have emerged as a sensitive probe 
for this activity, and, combined with tools to measure 
single-cell transcriptomes, have the potential to decipher 
how combinations of transcription factors drive 
developmental gene expression programs (Kelsey et al., 
2017; Klemm et al., 2019). Quantifying the dynamic 
activity of regulatory elements also enables the principled 
inference of the time-point or cell type wherein disease-
associated genetic variation may impact a developmental 
process. For instance, it is still unknown how genetic 
variants associated with neurodevelopmental disease, 
such as autism spectrum disorder (ASD), interfere with 
the genetic programs underlying the development of the 
human cerebral cortex (Rubenstein, 2011; Zhou et al., 
2019).  

Corticogenesis is a highly orchestrated and dynamic 
process that results in the formation of the cerebral cortex, 
and is characterized by the expansion of apical and basal 
radial glia (RG) and intermediate progenitors in the 
ventricular and subventricular zones (VZ, SVZ), the 
inside-out generation of excitatory glutamatergic neurons, 
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and the differentiation of astrocytes and oligodendrocytes 
(Greig et al., 2013; Molnár et al., 2019; Silbereis et al., 
2016). Cell types derived from outside of the dorsal 
forebrain, including GABAergic neurons, microglia, and 
some oligodendrocytes, also migrate and integrate into 
the cerebral cortex during this period (Wonders and 
Anderson, 2006). Resolving the gene-regulatory 
dynamics associated with these diverse developmental 
trajectories and highly heterogeneous cell states requires 
investigation of both chromatin and gene expression 
states at single-cell resolution.  

To map the gene regulatory logic of human 
corticogenesis, we generated single-cell chromatin 
accessibility and RNA expression profiles from human 
fetal cortical samples spanning 8 weeks during mid-
gestation. The paired maps revealed a class of genes with 
comparatively large numbers of nearby putative 
enhancers whose accessibility was strongly predictive of 
gene expression. These genes with predictive chromatin 
(GPCs) are frequently TFs, and we observed that their 
local accessibility precedes lineage-specific gene 
expression in cycling progenitors. We validated these 
findings using single cell accessibility and expression 
profiles derived from the same cell (multiomics). Next, 
we defined a developmental trajectory for cortical 
glutamatergic neurons, revealing a continuous 
progression of TF motif activities associated with 
neuronal specification and migration. We explored the 
tendency of certain TF motifs to co-occur along this 
trajectory and derived a network of key TFs that appear to 
co-regulate one another. In addition, we characterized the 
lineage potential of glial progenitors and provided 
evidence for two transcriptionally and epigenetically 
distinct astrocyte precursor subtypes. Finally, we trained 
a deep-learning model to infer base pair-resolved, cell 
type-specific chromatin accessibility profiles from DNA 
sequence. These models identified sequence motifs that 
contribute to cell type-specific accessibility and allowed 
prediction of the potential impact of genetic variants on 
the chromatin landscape. The predictions prioritized rare 
de novo noncoding genetic variants associated with ASD, 
which were enriched in case subjects at levels 
approaching those seen for deleterious protein-coding 
mutations. We connected these cell type-specific, high-
impact mutations to putative downstream effects on gene 
expression, demonstrating the ability to map the genetic 
basis of disease with single cell and single base-resolution 
at key stages of human cortical development.   

RESULTS 

A single-cell regulatory atlas of the developing human 
cerebral cortex 

To capture cellular heterogeneity in the developing 
cerebral cortex, we created a gene-regulatory atlas using 
the Chromium platform (10x Genomics) to generate 

single-cell ATAC-seq (scATAC) and single-cell RNA-
seq (scRNA) libraries from four primary human cortex 
samples at post-conceptional week (PCW) 16, PCW20, 
PCW21, and PCW24 (Figure 1A). Overall, we obtained 
57,868 single-cell transcriptomes and 31,304 single-cell 
epigenomes after quality control and filtering (Tables 
S1–S4, Figure S1). Consistent with previous studies 
(Fietz et al., 2010; Hansen et al., 2010; Kang et al., 2011; 
Pollen et al., 2015; Trevino et al., 2020), 
immunohistochemical analysis of select tissue samples 
revealed CTIP2+ cells in the cortical plate (CP; Figures 
1B inset 1 and S2A) and SOX9+ cells in the VZ (inset 3), 
SVZ, and outer SVZ (oSVZ, inset 2), as well as GFAP+ 
scaffolding spanning the neocortex at PCW17 and 
PCW21 (Figures 1C and S2B). As expected, the 
proliferation marker KI67 colocalized with both GFAP+ 
cells and with PPP1R17+ intermediate progenitor cells 
(IPCs) in the SVZ and oSVZ (Figures 1C and S2B). 

To assess global similarities and differences between 
individual cells, we performed dimension reduction using 
uniform manifold approximation and projection (UMAP) 
and clustering. For scATAC, we employed an iterative 
approach (Granja et al., 2019)  to obtain a low-
dimensional embedding, cell clustering, and a consensus 
set of 657,930 accessible peaks representing potential cis 
regulatory elements (CREs; Methods). Broadly, the 
structures of the resulting manifolds for scATAC and 
scRNA were similar, and they exhibited variation related 
to gestational time (Figure 1D) and cell types (see 
below). Performing both assays on the same samples 
enabled us to dissect complementary aspects of gene 
regulation, including the relationship between gene 
expression (scRNA) and gene activity (scATAC) – a 
metric defined by the aggregate local chromatin 
accessibility of genes (Methods) (Pliner et al., 2018), as 
well as aggregate TF motif activity scores (Schep et al., 
2017). Key corticogenesis factors such as SOX9, EOMES, 
NEUROD2, and DLX2 showed strong cluster-specific 
enrichments in these three metrics (Figure 1E) consistent 
with their ascribed roles in radial glia (RG), intermediate 
progenitor cells (IPCs), cortical glutamatergic neurons 
GluN), and GABAergic neurons (interneuron; IN), 
respectively. 

We next called clusters in both data sets (Figure 1F; 
Methods), and annotated these clusters using gene 
expression and gene activities (Figures 1G–H and S3A, 
Tables S5–S7, Methods). In scRNA, we observed a 
cluster of cycling cells (Cyc) expressing TOP2A, KI67, 
CLSPN and AURKA. We also found that radial glia 
clusters (RG), expressing SOX9, HES1 and ATP1A2, 
included both ventricular radial glia (vRG: FBXO32, 
CTGF, CYR61) and outer radial glia (oRG: MOXD1, 
HOPX, FAM107A, MT3), and these were separated 
according to gestational time (early RG, PCW16: NPY, 
FGFR3; late RG, PCW20–24: CD9, GPX3, TNC). Cells 
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in one scRNA cluster expressed markers for truncated RG 
(tRG) and ependymal cells (tRG: CRYAB, NR4A1, 
FOXJ1). In addition to these RG clusters, we identified a 
cluster expressing genes associated with both RGs and 
oligodendrocyte lineage precursors (ASCL1, OLIG2, 
PDGFRA, EGFR). This cluster, which we named 
oligodendrocyte intermediate progenitor cells (oIPC), 
was different from the oligodendrocyte and 
oligodendrocyte progenitor cell (OPC/Oligo) cluster that 
expressed SOX10, NKX2.2 and MBP. Astrocytes did not 
appear to group into a separate cluster, but genes 
associated with astrocyte identity (AQP4, APOE, AGT) 

were observed in the oIPC cluster and the late RG cluster. 
A large domain in both representations was composed of 
neuronal intermediate progenitor cells (nIPC: EOMES, 
PPP1R17, PENK, NEUROG1, NEUROG2), and 
glutamatergic excitatory neurons (GluN) expressing 
NEUROD2, TBR1, BCL11B/CTIP2, SATB2, 
SLC17A7/VGLUT1. Among the glutamatergic neuron 
clusters, we found one group of cells expressing subplate 
markers (SP: NR4A2, CRYM, ST18, CDH18). We also 
identified distinct clusters of GABAergic interneurons 
expressing DLX2, DLX5 and GAD2: one of them 
expressed markers associated with medial ganglionic 

Figure 1: A single cell epigenomic atlas of the developing human neocortex. (A) Schematic of gestational sample time (post-conception week, 
PCW), genome wide profiling methods and cell types represented in this study. (B) Immunohistochemistry in human cerebral cortex at PCW17 showing 
expression of SOX9 in VZ, SVZ, and oSVZ, and CTIP2 in cortical plate. Hoechst staining shows nuclei. VZ = ventricular zone, SVZ = subventricular 
zone, IFL = inner fiber layer, oSVZ = outer SVZ, OFL = outer fiber layer, SP = subplate, CP = cortical plate. (C) Immunohistochemistry in human 
cerebral cortex at PCW17 showing expression of GFAP, KI67+ proliferating cells, and PPP1R17+ intermediate progenitor cells. Hoechst staining shows 
nuclei. (D) Uniform Manifold Approximation and Projection (UMAP) of cells based on gene expression (scRNA-seq, left) and peak accessibility 
(scATAC-seq, right). Cells are colored according to sample gestational time. (E) Multimodal profiling of SOX9, EOMES, NEUROD2, and DLX2 
including gene expression (scRNA-seq), gene activity and TF motif activity (scATAC-seq). (F) UMAP of cells colored by cluster. Cell types labels 
were assigned based on cluster-specific gene expression and chromatin accessibility. (G) Dot plot showing the percent of cells expressing selected 
markers across scRNA clusters. (H) Dot plot showing marker gene activity scores derived from chromatin accessibility across scATAC clusters. 
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eminence (MGE)-derived interneurons (MGE: LHX6, 
SST) and the other expressed markers associated with 
both caudal ganglionic eminence (CGE) and pallial-
subpallial boundary (PSB)-derived interneurons (CGE: 
SP8, NR2F2; PSB: MEIS2, PAX6, ETV1). In addition, we 
observed clusters of microglia (MG: AIF1, CCL3), and 
vascular cells including endothelial cells (EC: CLDN5, 
PECAM1), pericytes (Peric: FOXC2, PDGFRB), vascular 
leptomeningeal cells (VLMC: FOXC2, COL1A1, LUM), 
and red blood cells (RBC: HEMGN). Many of the above 

markers exhibited dynamic gene activity scores in 
corresponding clusters in scATAC space (Figure 1H). 
While most clusters contained cells representing all 
gestational time points, some clusters were strongly 
biased for earlier or later stages (Figure S3B). For 
example, oIPC and tRG clusters were only present in 
PCW20–24 samples. Projection of another scRNA 
dataset of the cerebral cortex (Bhaduri et al., 2020) into 
our scRNA UMAP further corroborated cell type 
identities and gestational time (Figure S4).  

Figure 2: Integrative and 
multiomic gene regulatory 
dynamics in the developing 
human cerebral cortex (A) 
Schematic showing the generation 
and integration of singleome 
scATAC-seq and scRNA-seq data. 
Matching is performed by mapping 
cells into a low-dimensional space 
using Canonical Correlation 
Analysis (CCA) and finding 
nearest-neighbors in that space. (B) 
UMAPs of scRNA and scATAC 
cells colored by cluster assignment 
of matched cells in the respective 
complementary data modality. (C) 
Heatmap showing chromatin 
accessibility and gene expression of 
64,878 significantly linked CRE-
gene pairs (rows, left CRE 
accessibility, right linked gene 
expression) across 200 pseudobulk 
samples (Methods). Rows were 
clustered using k-means clustering 
(k=20). For visualization, 10,000 
rows were randomly sampled. (D) 
Scatterplot showing the correlation 
between single-cell gene expression 
and chromatin-derived gene activity 
(GA), and the number of linked 
CREs per gene. Transcription 
factors are labeled. (E) Gene 
Ontology (GO) enrichment analysis 
of the 185 genes with predictive 
chromatin (GPCs) identified in D. 
(F) Schematic showing the 
generation of scATAC-seq and 
scRNA-seq data from the same cells 
(multiome data) in human cerebral 
cortex. (G) Projection of multiome 
scATAC into singleome scATAC 
UMAP space, and multiome scRNA 
into singleome scRNA UMAP 
space. (H) Venn diagram showing 
overlap of CRE-gene linkages 
identified in singleome versus 
multiome data. (I) Correlation 
scatterplot showing the 
correspondence between predictive 
chromatin in singleome versus 
multiome data. Pearson r = 0.62, P 
< 2.2e-16. 
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We next integrated the derived gene activity scores 
with gene expression levels, using canonical correlation 
analysis (CCA) to match cells from one data modality to 
their nearest neighbors in the other (Figure 2A) (Stuart et 
al., 2019). Cluster annotations of matched cells were 
consistent across both modalities, except for the cycling 
progenitor cluster in scRNA, which did not directly map 
to cells in the chromatin landscape (Figures 2B and S5A, 
B). Using pseudobulk aggregates of these matched 
annotations, we applied a correlation-based approach that 
links gene-distal CRE accessibility to gene expression 
(Corces et al., 2018; Ma et al., 2020; Trevino et al., 2020), 
identifying 64,878 CRE-gene pairs that represent 
potential regulatory interactions (Table S8). Genes in this 
analysis had a median of 5 linked CREs per gene, with a 
long-tailed distribution of the number of links. Co-
variation of CRE accessibility and gene expression 
distinguished the identified cell types in both scRNA and 
scATAC (Figure 2C). Clustering of the associated CRE 
accessibility revealed particularly high variability across 
clusters corresponding to glial cell populations, 
corroborated the distinctiveness of GABAergic neuron 
clusters, and indicated dynamic patterns of gene 
regulation across glutamatergic neuron clusters.  

We then asked if there were genes whose expression 
could be well-predicted from chromatin accessibility 
signals by ranking single-cell gene activity-expression 
correlations for each gene. Unsurprisingly, given the 
relative sparsity of single-cell ATAC-seq and RNA-seq 
data, few genes exhibited high correlations by this metric 
(Figure 2D). However, the most robustly correlated 
genes included factors with central roles in 
corticogenesis, such as SOX2 and HES1, and these genes 
were linked to greater numbers of putative enhancers (P 
< 2.2e-16). We hypothesized that these comprised a class 
of highly regulated genes that play a driving role in 
establishing cell identities in the developing cerebral 
cortex. Therefore, we defined a set of 185 genes with 
predictive chromatin (GPCs), which were in the top decile 
of gene activity-expression correlations and were linked 
to a minimum of 10 CREs (Table S9, Figure 2D). In this 
gene set, gene ontology (GO) enrichment analysis 
revealed a strong enrichment of transcription regulator 
activity and DNA-binding TF activity (Figure 2E).  

To validate these inferences, we generated joint 
scATAC and scRNA data in the PCW21 human cerebral 
cortex (multiome) (Figure 2F). Filtering across both data 
modalities resulted in 8,981 cells with high-quality 
transcriptome and epigenome profiles (Tables S10–12, 
Figure S6). We projected these multiomic scATAC and 
scRNA profiles into the corresponding individually 
generated landscapes and confirmed that our cell type 
annotations were well represented in the joint data 
(Figure 2G). When we applied our CRE-gene linking 
approach to the true cell-to-cell matches, we found that 

40,181 inferred peak-gene linkages (53%) were validated 
from this single timepoint measurement, and an additional 
23,849 were identified (Figure 2H, Table S13). Thus, the 
majority of inferred CRE-gene interactions were observed 
when accessibility and expression measurements were 
made in the same individual single cells. The multiome 
data allowed us to validate our set of GPCs, and we found 
a strong concordance of gene activity-expression 
correlations between separate cells linked in ATAC-seq 
and RNA-seq by our analysis and correlations observed 
when RNA-seq and ATAC-seq are generated from the 
same cell (Pearson r = 0.62, P < 2.2e-16; Figure 2I). 
Therefore, GPCs are also readily apparent in this joint 
data set, underlining the correspondence between their 
local accessibility and their transcription within the same 
cell. 

Continuous trajectories of gene regulation across 
cortical neuron differentiation 

Glutamatergic projection neurons comprise ~80% of 
neurons in the cerebral cortex, and distinct subtypes are 
born in a specific sequence during development. 
Although several key factors controlling cell fate in  
corticogenesis have been described (Greig et al., 2013), 
the gene-regulatory logic that governs specification, 
migration, and maturation of neural cells has not yet been 
resolved in human development. Our paired single-cell 
atlas provided an opportunity to infer the dynamics of 
these molecular processes in an unbiased fashion. We 
therefore focused our analysis on glutamatergic neuron 
clusters, first annotating each cell with a developmental 
pseudotime, which was inferred by anchoring a 
differentiation starting point in the Cyc cluster and 
applying an algorithm based on diffusion through cell-
similarity networks derived from RNA velocities (Bergen 
et al., 2020; La Manno et al., 2018) (Figures 3A and 
S7A–D). To test how the architecture of the adult cerebral 
cortex mapped onto this trajectory, we projected an 
independent scRNA-seq data comprising neurons from 
human cerebral cortex (Hodge et al., 2019) into the 
developmental landscape and identified the nearest 
neighbor cell for each adult scRNA-seq profile (Figure 
S7E). Adult glutamatergic neurons projected almost 
exclusively into the neighborhoods of developmental 
cells annotated with later pseudotimes (Figure S7F). As 
expected, we observed association of earlier and later 
gestational timepoints with deeper and upper adult 
cortical layers respectively (Figure S7G). When we 
compared the expression levels in migrating neurons from 
the early gestational timepoint (PCW16) to those from 
later timepoints (PCW20 to PCW24), we observed 
increased expression of LIMCH1, RUNX1, SNCB and 
DOK5 and decreased expression of the AP-1 TF family 
(JUN, FOS), heat shock factors HSPA1A/B and DUSP1 
(Figures S7H and S7I, Table S14). Overall, we found 
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Figure 3: Legend on next page. 
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surprisingly few differentially expressed genes in this 
analysis that have been previously implicated in 
neurogenesis, suggesting that a considerable degree of 
gene expression and regulatory variability could be 
associated with pseudotime, rather than gestational time. 
We therefore decided to investigate the regulatory 
dynamics along the pseudotime axis. 

To connect expression trajectories to the accessibility 
dynamics of specific regulatory elements, we transferred 
pseudotime values from RNA cells to their nearest ATAC 
cell neighbors, confirming that this produced a smooth 
continuum of pseudotime in the chromatin manifold 
(Figure 3B). By applying our correlation-based peak-to-
gene linking approach to the glutamatergic neuronal 
lineage, we identified 13,989 dynamic interactions across 
pseudotime and grouped these interactions into five 
clusters (Figure 3C, Table S15). Linked genes active 
early in pseudotime exhibited GO enrichments for cell 
division and neural precursor proliferation, whereas later 
interactions were associated with morphogenesis, cell 
migration and maturation (Figure 3D). Interestingly, 
genes encoding TFs and DNA-binding proteins were 
particularly enriched in intermediate interactions, while 
genes from the SFARI database (Abrahams et al., 2013) 
were more likely to be linked later in pseudotime.  

To nominate TFs that may control these dynamic 
expression programs, we identified TF motifs that were 
enriched in the different clusters of linked regulatory 
elements. Motifs enriched in interactions early in the 
trajectory included ZNF740, KLF16, SP1/2, and ASCL1 
(Figure 3E). Conversely, interaction clusters associated 
with intermediate and late pseudotime were associated 
with motifs of neuronal TFs (NEUROD1/2, NEUROG1, 
MEF2C). These enrichments represent the putative 
regulatory vocabulary of individual CREs and their target 
genes. To characterize the TF-driven regulatory dynamics 
of neurogenesis over pseudotime in more detail, we 
linked specific TF genes to TF motifs by correlating TF 
expression with chromVAR-derived TF motif activity 
scores. To avoid correlation biases between similar 
putative binding motifs, we assigned variable TFs to 24 
previously defined clusters of motifs (Vierstra et al., 
2020) (Figure 3F). We observed synchronized TF 
expression and motif activity for dynamic regulators 
along neuronal developmental pseudotime, starting with 

PAX6, SOX2/6/9, GLI3 and ASCL1 motifs, followed by 
intermediate stage factor motifs (EOMES, NFIA, NFIB, 
NEUROD1), and finally late-stage motifs (NEUROD2, 
BHLHE22, MEF2C). Together, these data describe 
cohesive, sequential waves of motif activations during 
human corticogenesis that are consistent across 
gestational time points.  

To better understand how TFs are coordinated during 
human corticogenesis, we next computed the genome-
wide synergy and correlation patterns of motif family 
accessibility (Figures 3G and 3H; Methods) (Schep et 
al., 2017). We found three broad classes of motifs 
associated with accessibility and TF expression over 
pseudotime (Figure 3G–I): (i) early activity motifs 
exhibiting moderate synergies (SOX, GLI, PAX) (ii) 
intermediate activity motifs (NFI/TBX/EOMES) that are 
highly synergetic within their class, and (iii) late activity 
motifs that are less cooperative and generally appear to 
operate more independently (NEUROD2/BHLHE22, 
MEF2). These findings are broadly consistent with a 
higher degree of TF motif coordination early in 
neurogenesis and regulation of later neuronal maturation 
by a smaller set of more independent TFs. Finally, we 
derived a TF regulatory network by linking factor-
specific motif activity in regulatory elements to TF gene 
expression (Figure 3J; Methods). This network indicates 
that key factors of neurogenesis such as PAX6, SOX2, 
EOMES and NFIA could regulate effector TFs like 
NEUROD2, POU2F2 and GLI3 thereby driving later 
neuronal differentiation, maturation and migration. 

Clustering approach to link gene expression programs 
to cell fate decisions  

We observed extensive heterogeneity in glial cell 
populations, corresponding to distinct yet partially 
overlapping expression programs in the identified cell 
clusters (Figures S8A and S8B). To develop a high-
resolution map of glial populations, we adopted an 
analysis to identify modules of co-expressed genes. We 
generated pseudobulk data sets from a k-nearest neighbor 
(KNN) graph of glial cells, then performed fuzzy c-means 
clustering on the most variable genes to fractionally 
assign genes to modules (Figures 4A and S8C left; Table 
S16). This approach allowed for cells to be annotated with 
module activities, and for genes to be shared between 

Figure 3: Molecular signatures of excitatory projection neuron generation, migration, and maturation. (A) UMAP of scRNA cells highlighting 
the glutamatergic neuron trajectory and pseudotime. (B) scATAC UMAP with transferred pseudotime annotation. (C) Heatmap showing accessibility 
and expression of 13,989 linked CRE-gene pairs (rows, left CRE accessibility, right linked expression) across 363 pseudobulk samples. Interactions 
(rows) were clustered using k-means clustering (k=5). (D) Gene set enrichment analysis of interaction clusters. Gene ontology (top) and hypergeometric 
test (bottom) P-values are shown along with the number of matched genes or the enrichment odds ratio. (E) Enrichment of TF motifs in peaks 
represented in interaction clusters. Color represents the odds ratio and size represents the -log10 (P-value). (F) Heatmaps showing z-score normalized 
expression (left) and motif activity (right) of TFs in pseudobulk aggregates. Shown are 31 dynamic TFs associated with 24 motif clusters (Methods). 
(G) TF motif correlation coefficients (upper triangular heatmap) and synergy z-scores (lower triangular heatmap) of motif clusters in F. Scores were 
computed using chromVAR. Motifs were hierarchically clustered on synergy z-scores, and this dendrogram was cut to obtain three clusters. (H) 
Correlation coefficients of TF motif cluster activity and expression. Cluster lists were truncated to the top 6 best correlated genes. (I) Scatterplot 
showing aggregate gene expression pseudotime versus mean motif synergy. Point colors denote the cluster assignments in G. (J) Network of inferred 
regulatory interactions (Methods) between TFs in F. Network nodes are colored according to expression weighted pseudotime. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 30, 2020. ; https://doi.org/10.1101/2020.12.29.424636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.29.424636


 8 

multiple modules (Figures S8C and S8D; Tables S17 and 
S18). This enabled us to explore the relationships between 
modules and to explore how cells may progress from one 

module to another across differentiation. To visualize 
these relationships, we further embedded these cell 
loadings into a low-dimensional representation of the 

Figure 4: Regulatory logic of glial cell specification (A) Schematic illustrating the approach used for clustering and reprojection of glial cells by their 
gene expression. Points in the bott om panel correspond to pseudobulk aggregates of 50 cells. (B) Heatmap of module expression across pseudobulk 
aggregates, showing variation by cluster, sample age, and pseudotime. (C) Heatmap showing the expression of selected genes across the same 
pseudobulks. (D) The mean scaled expression of selected gene modules is shown in the low-dimensional UMAP embedding.  Figure S9B shows all 
modules. (E) Projection of module centroids into UMAP space. Pseudobulk samples are colored by pseudotime. Module overlap is shown by lines 
between centroids and was computed by thresholding the pairwise Jaccard index at  > 0.2. (F) Module membership and expression values for factors 
associated with the three main differentiation programs observed through the glial modules. Module membership scores denote the respective gene’s 
quantile of membership after zero values are excluded. (G) As in F, for ASCL1, HES4 and OLIG1, factors associated with neuronal intermediate 
progenitors, astrocytes and oligodendrocytes, which appear as endpoints in this clustering approach. (H) As in F for genes associated with the oIPC 
cluster of cells and modules m12, m4 and m1. (I) IHC of PCW21 human cerebral cortex showing expression and colocalization (white arrowheads) of 
ASCL1, OLIG2, and EGFR in cells of the SVZ, oSVZ, outer and inner fiber layers (OFL, IFL) and SP. (J) Module membership and expression values 
for PDGFRA and SPARCL1, associated with modules m4 and m1, respectively. (K) IHC of PCW21 human cerebral cortex showing expression and 
colocalization (white arrowheads) of SPARCL1 and PDGFRA in cells of the SVZ, oSVZ and outer and inner fiber layers (OFL, IFL).  
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differentiation landscape (Figure 4A, bottom). The 
structure of this embedding and the underlying module 
assignments was stable to fuzzy clustering parameters 
(Methods). 

To understand the biological basis of these modules, 
we first examined their expression across cell clusters, 
developmental stage, and pseudotime (Figure 4B), which 
was rooted in cycling (“Cyc”) cells and correlated with 
developmental time (Pearson r = 0.67, P < 2e-16; Figure 
S8E; Methods). Glial maturation genes FOXJ1, AQP4, 
and MBP, which are markers for ciliated ependymal cells, 
astroglia, and oligodendrocytes, respectively (Barbarese 
et al., 1988; Jacquet et al., 2009; Zhang et al., 2016), were 
expressed in late-pseudotime cells and assigned primarily 
to modules m5, m2, and m7. In contrast, the expression of 
genes associated with cell division and progenitor states, 
such as TOP2A, NR2F1, and NFIC, peaked early in 
pseudotime and were assigned primarily to modules m10, 
m6, and m3 (Figures 4C and S9A). Some modules 
spanned many pseudobulk samples and developmental 
ages, such as m6 and m8, indicative of sustained 
longitudinal expression programs, while others were 
restricted to a few samples or stages, like m5 and m14 
(Figures 4B, 4D and S9B). Modules exhibited distinct 
GO enrichments, including “cation and metal ion 
binding” in m6, which may be related to the role of human 
astrocytes in metal ion homeostasis (Vasile et al., 2017; 
Zhang et al., 2016), and disease associations (Figures 
S9C and S9D). Module m5, comprising FOXJ1+ cells, 
was enriched for dynein binding and microtubule activity, 
consistent with the role of ependymal cilia in circulating 
the cerebrospinal fluid (Ransom, 2012). When we 
assessed the expression of some of the genes found in 
these modules by immunohistochemistry, we found that 
the transcription factor TFAP2C, which associated with 
module m6, was expressed in progenitors in the VZ and 
SVZ (Figures S10A and S10B). Similarly, PBXIP1, 
which was associated with m2, was expressed in radial 
glia in the VZ and SVZ, but not in more mature astrocytes 
in the CP (Figures S10C and S10D). CRYAB, associated 
with m9, was expressed in tRG in the VZ, as previously 
described  (Figures S10E and S10F) (Nowakowski et al., 
2016). 

Our clustering and reprojection approach enabled us 
to compute the degree of gene overlap between modules, 
which provided a measure of module similarity across our 
glial landscape (Figure S10G). To visualize these 
relationships, we computed the weighted average of 
module gene expression across pseudobulk aggregates 
and plotted these “module centroids” and their 
connectivity (Jaccard  index > 0.2) in the embedding, 
along with pseudobulks and their pseudotime values 
(Figure 4E). Investigation of module memberships in this 
representation revealed three broad programs emanating 
from the cycling cluster: (1) an ASCL1+ program 

associated with m3 and m8 and terminating in EOMES+ 
nIPCs, (2) a HES4+ program associated with module m6 
and terminating in astrocytes and ependymal cells, and (3) 
an ASCL1+/OLIG1+ program associated with m12, m1, 
and m4, branching into two endpoints (Figures 4F and 
4G). The ASCL1+/OLIG1+ program was of particular 
interest, as it corresponded to the oIPC cluster of cells, 
which expressed markers associated with both astroglia 
(GFAP, HOPX, EGFR, ASCL1) and oligodendrocyte 
progenitors (OLIG2, PDGFRA),  suggestive of a common 
multipotent glial progenitor (Figures 4H and 4J). To 
validate the presence of these cells in situ, we performed 
immunohistochemistry for ASCL1, OLIG2 and EGFR in 
PCW21 cerebral cortex (Figures 4I, S11 and S12). We 
found that these proteins were often colocalized in the 
SVZ/IFL, oSVZ/OFL and SP. Next, we reasoned that, if 
generated from a common glial progenitor, astrocyte and 
oligodendrocyte precursors might also share expression 
of markers associated with more differentiated states. To 
test this, we performed immunohistochemistry for 
PDGFRA and OLIG2, markers associated with 
oligodendrocyte progenitors, and SPARCL1, which is a 
marker associated with mature astrocyte identity (Zhang 
et al., 2016) (Figures 4K and S13), and found that they 
indeed also colocalized in the SVZ/IFL and oSVZ/OFL. 
We speculate that a subpopulation representing a 
common multipotent glial progenitor, competent to 
differentiate into both astrocytes and dorsal forebrain-
derived oligodendrocytes, could explain this substantial 
overlap of expression programs. 

Chromatin and gene expression profiles identify two 
astrocyte precursor populations 

Human cortical astrocytes are larger, more 
morphologically complex (Oberheim et al., 2009; Zhang 
et al., 2016), and likely more diverse than those of other 
mammals (Vasile et al., 2017). However, the 
developmental steps underlying the diversification of 
human astrocytes are unknown. We observed three 
interconnected fuzzy gene modules, largely derived from 
PCW24 tissue, expressing AQP4, TNC, ALDH2, and 
APOE, and other genes specifically expressed in 
astrocytes (m2, m13, m14) (Sloan et al., 2017; Wiese et 
al., 2012; Zhang et al., 2016) (Figures 5A, S14A and 
S14B). To test whether these transcriptionally related yet 
distinct subpopulations are associated with different 
regulatory factors, we computed differential motif 
enrichments between enhancers linked to genes in two of 
the modules: m13 versus m14. We found that the bHLH 
factor motifs ASCL1 and NHLH1 were enriched in 
module m13, while SOX21 was enriched in m14 (Figure 
5B). In our glial cells, the accessibility of ASCL1 and 
NHLH1 motifs correlated best with the gene expression 
of bHLH factor OLIG1 (Spearman rho = 0.34 and 0.36, 
respectively), and we have previously nominated SOX21 
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as a potential regulator of astrocyte maturation in long-
term cortical organoid cultures (Trevino et al., 2020). 
Thus, two distinct astrocyte-like expression patterns 
could be distinguished by the chromatin accessibility of 
OLIG1 versus SOX21 motifs.  

To examine the differences between cells expressing 
these modules in more detail, we clustered pseudobulk 
aggregates to compare cell subsets, and computed 
differential gene expression between the astrocytic cell 
clusters A1-HES and A2-OLIG, corresponding to 
expression of modules m2/14 and m13, respectively 
(Figures 5C and 5D; Table S19). Cluster A1-HES 
exhibited significantly higher expression of HES4 and 
CAV2, while A2-OLIG was characterized by increased 
SPARCL1, ID3, and IGFBP7 expression (Figures 5D and 
S14C). To determine if these distinct astrocyte precursor 
subtypes were due to the sampling of different cortical 
areas, we used an independent, previously published 
scRNA-seq dataset of the developing human cortex 
(Bhaduri et al., 2020) to generate a low-dimensional 
representation of astroglia (Figures 5E and S14D). Using 

this dataset, we visualized the expression of genes 
identified in our analysis, either from astrocytic modules 
(m13, m14) or by taking the top 200 most differentially 
expressed genes from glial cell populations. We found 
that these gene sets were expressed in distinct cell 
populations in the independent data set and that this 
different was not explained by differences in cortical area 
(Figure 5F).  

Chromatin state links GPCs to lineage determination 
in cycling cells 

We next examined how the chromatin state of progenitor 
cells could potentially affect the acquisition of expression 
programs characteristic of more differentiated cell states. 
We therefore focused on the heterogeneity among cells 
that expressed gene modules strongly associated with cell 
cycle signatures (Figure 6A; Pearson r = 0.89, 0.91 
respectively). To link chromatin accessibility to the glial-
centric expression map, we generated pseudobulk data 
sets by sampling local neighborhoods (50-cells) from 
13,378 glial scATAC cells. We projected these ATAC-

Figure 5: Astrocyte precursor heterogeneity. (A) Module membership and scaled gene expression of astrocyte-associated genes AQP4, TNC, 
ALDH2 and APOE showing that modules m2, m13 and m14 connect astrocytes. (B) Motif enrichments in peaks linked to module 13 genes relative to 
peaks linked to module 14. (C) Re-clustering of samples in fuzzy clustering embedding. AQP4 positive clusters are highlighted and defined as A1-
HES and A2-OLIG. (D) Differential gene expression between A1-HES and A2-OLIG clusters, calculated using DESeq2. A threshold of Benjamini-
Hochberg corrected FDR of 1e-20 was used for visualization (blue). (E) Reanalysis of an orthogonal human fetal scRNA-seq dataset (Bhaduri et al., 
2020). Shown is a UMAP of astrocytes colored by cortical area. (F) Mean scaled expression of modules m13 and m2 in orthogonal data, showing 
partition of module expression into unbiased divisions in the astrocyte UMAP (top), and of the top 200 differential genes from D (bottom).  
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seq pseudo-bulk samples into our gene expression 
module-derived manifold using accessibility-derived 
gene activity scores. Consistent with our CCA cluster 
matching analysis (Figures 2B and S5), pseudobulks 
comprised mainly of cells from ATAC cluster c15 
(OPC/Oligo) projected into the oligodendrocyte endpoint 
of this map; cluster c10 (oIPC) data projected into the 
ASCL1+/OLIG2+ astrocyte compartment; and cluster c9 
(late RG) data projected into both ependymal and HES4+ 
astrocyte endpoints (Figure 6B). However, while no 
distinct cycling cluster was formed in the independent 
ATAC-seq clustering, a subset of these ATAC-seq 
pseudobulk samples projected into the cycling, early-
pseudotime compartment of the RNA-seq embedding. 
These samples partitioned into three distinct branches 
defined by their scATAC cluster assignments (Figure 
6C; branches A, B, and C). We speculate that strong cell 
cycle signatures in RNA-seq may have diminished these 
distinctions that are more clearly seen in ATAC-seq data, 
and that analyzing these separate branches might allow us 
to determine if cycling progenitors are poised towards 
distinct post-mitotic fates, and what factors influence 
these fate decisions.  

To explore factors that influence these fate decisions, 
we identified the 50 most unique genes for each branch 
based on their gene activity scores (Methods). Strikingly, 
we observed a strong overlap of these genes with the set 
of GPCs, including HES1, RFX4, OLIG1, OLIG2, 
NEUROD6, and EOMES. Overall, differential chromatin 
activity in all three branches of cycling cells was enriched 
for GPCs (Kolmogorov-Smirnov test, P = 1.6e-13, 1.8e-
1, and 5.1e-15, respectively; Figure 6D). For TF GPCs, 
we computed target motif enrichments across branches, 
as well as matching gene expression values (Figure 6E). 
Each branch contained at least one basic helix-loop-helix 
(bHLH) GPC TF in the top 5 most unique genes 
(BHLHE40, OLIG1, OLIG2, NEUROD6, NEUROD4). 
The similarity of annotated motifs for these factors is 
consistent with the hypothesis that they can compete for 
similar binding sites to drive multiple distinct cell fates, 
as has been previously suggested (Imayoshi et al., 2013; 
Zhou and Anderson, 2002). Together, these results 
suggest that differential chromatin activity as well as gene 
expression of GPCs appear to be prominent features that 
distinguish different types of cycling glial progenitor 
cells.  

Figure 6: Chromatin state links GPCs to cell fates. (A) Pearson correlation of a cell cycle signature (MSigDB) with module expression signature 
across pseudobulks. (B) Schematic of ATAC-seq projection into fuzzy clustering embedding. (C) Projection of ATAC-seq pseudobulks into Cyc 
cluster, and in the neighborhood of cycling-associated modules. Branches are defined. (D) Heatmap showing the 50 most uniquely active genes in 
branches A, B and C. Gene activities are row-scaled. GPCs are shown to the right of heatmap as orange bars. Select GPCs, which are also TFs, are 
highlighted. The P-value of a Kolmogorov-Smirnov test for enrichment of GPCs in differential, branch-specific genes is shown, *** indicates that P < 
1e-10. (E) Dynamics of GPC motifs and gene expression across three branches of cycling cells. Heatmaps represent enrichment of GPC TF motifs 
(left) and gene expression levels (right) in branch aggregates. (F) Reprojection of branch A, B, and C using only chromatin accessibility associated 
with GPCs, showing specific alignment into more mature states. (G) Projection of multiome scRNA data into fuzzy clustering embedding. Cells (points) 
are colored by the corresponding multiome scATAC cluster.  
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We investigated if these GPCs, which were both 
highly connected to dense collections of regulatory 
elements and highly enriched for lineage-defining 
transcription factors, might be indicators of the eventual 
differentiation end point, and thus possibly drive 
differentiation in the pseudotime trajectory.  When we re-
projected ATAC-seq pseudobulk samples from A, B, and 
C cycling population branches by only using GPC-
associated chromatin signals, we observed that samples 
remapped to more mature expression states, which were 
associated with later pseudotime annotations (Figure 6F). 
In contrast, reprojections using random gene subsets or 
modules of genes moved non-specifically towards the 
center of the manifold (Figure S15). This observation 
suggests that chromatin patterns linked to GPC genes in 
these cycling cells already exhibit a signature of an 
advanced transcriptional cell state. We then projected the 
scRNA data from the joint multiome data set into the 
module-based manifold, and then transferred the 
corresponding scATAC cluster labels to these cells. 
Consistent with the singleome data, cells projecting to the 
cycling domain exhibited distinct accessibility signatures 
of more terminally differentiated cells from each branch 
in the same cells (Figure 6G). Based on these results, we 
propose that during corticogenesis, progenitors entering 
the cell cycle may be epigenetically primed toward future 
cell fates, and that this information is encoded specifically 
in GPCs, a set of genes with large numbers of linked 
enhancers that is enriched for lineage-defining TFs.   

Deep learning models prioritize disruptive noncoding 
mutations in ASD 

We next aimed to use this accessibility and gene 
expression atlas to interpret non-coding de novo 
mutations in ASD using data from the Simons Simplex 
Collection, which includes a catalog of over 200,000 such 
mutations in 1,902 families (An et al., 2018) (Table S20). 
Naïve overlap of mutations with cluster-specific scATAC 
peaks produced no enrichment for mutations in ASD 
subject relative to those in unaffected siblings (odds ratio 
(OR) = 1.02 for GluN6 cluster, Fisher’s Exact Test P = 
1.0; Figure S16A), indicating that peak-level annotations 
alone are insufficient to resolve a sparse set of causal 
mutations.  

Deep learning models trained to relate genomic 
sequence to chromatin accessibility have proven useful 
for prioritizing disease-relevant non-coding genetic 
variants based on their predicted regulatory impact 
(Kelley et al., 2016, 2018; Zhou and Troyanskaya, 2015). 
We therefore trained convolutional neural networks, 
based on the recent BPNet architecture, to learn models 
that could predict base-resolution, pseudo-bulk chromatin 
accessibility profiles for each of our scATAC-seq derived 
cell types (Figure 7A) (Avsec et al., 2020). These models 
utilize DNA sequence across 1000 bp flanking each peak 

summit to predict 5’ Tn5 insertion counts profiles at 
single-nucleotide resolution (Methods). To correct for 
potential sequence composition biases, we trained the 
models on peak regions and genomic backgrounds 
matched for GC content and motif density (Figure S16B). 
The models showed high and stable correlation between 
total predicted and observed Tn5 insertion count coverage 
across all peak regions in held-out chromosomes across 
five-folds of cross-validated models (e.g., GluN6, mean 
Spearman rho = 0.58; Figure S16C, Table S21). Next, to 
predict cell context-specific effects of a candidate 
mutation on chromatin accessibility, we used our cluster-
specific BPNet models to compute local disruption score 
based on the allelic fold-change in predicted counts in a 
200 bp window around the mutation (Methods). We 
computed cluster-specific enrichment of high-effect size 
mutations in cases versus controls and observed 
significant enrichments (> 1.2-fold) for GluN2/3/4/6/9, as 
it has been previously indicated (Gandal et al., 2018; Li et 
al., 2018a; Parikshak et al., 2013; Trevino et al., 2020; 
Willsey et al., 2013). Moreover, we found an association 
with IN2/3/4, nIPC, late RG and early RG clusters, with 
early RG cluster showing the highest enrichment (OR = 
1.909, excess of 20, Fisher’s exact P < 0.05; Figure 7B; 
Table S22). In contrast, BPNet models trained on human 
fetal heart enhancers produced no enrichment (OR = 1.01, 
P = 1.0), and naïve overlap enrichment with a set of fetal 
heart enhancers also produced no enrichment for case 
mutations (OR = 0.97, P = 1.0; Figure 7C). Together, 
these results illustrate the power for prioritizing putative 
causal non-coding mutations by utilizing mutation effect 
scores from base pair-resolution predictive models trained 
on chromatin accessibility landscapes in disease-relevant 
cell states.  

The case and control mutations prioritized by the 
BPNet models similar conservation scores and similar 
distances to the nearest TSS (Figures S16D and S16E), 
further highlighting the challenge of identifying these 
causal mutations by other means. Annotating the 
predicted high effect size mutations with their nearest 
genes (Methods), we observed a 1.4-fold enrichment for 
case mutations (n= 24) whose nearest gene was in the 
SFARI database compared to the control mutations (n = 
17); Figure 7D). Next, we identified TF motifs that 
overlapped and were predicted to be disrupted by all the 
high-effect-size mutations from the BPNet models from 
all positively enriched clusters (Methods, Figure 7E, 
Table S23). We found that CTCF, which demarcates 
topological loop boundaries, was one of the most 
frequently disrupted motifs in cases versus controls. The 
NRF1 motif was another frequently disrupted motif. NRF 
regulates the GABA receptor subunit GABRB1, which 
has been previously implicated in neuropsychiatric 
diseases (Li et al., 2018b). Other frequently disrupted 
motif families in cases relative to controls included E-
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box/bHLH family motifs (ASCL1, NEUROD6) and 
homeobox family (PAX5) motifs, with more lineage-
specific effects.  

One highly disruptive mutation in our models was 
in an intron of NFIA, a key transcription factor active 
across developmental stages (Figures 7F and S16F). 

Figure 7: Legend on next page. 
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Loss of function mutations in this gene have previously 
been implicated as causal in ASD (Iossifov et al., 
2014). The mutation was in a linked intronic enhancer 
for the NFIA target gene. We observed that this 
enhancer was specifically accessible in different types 
of cortical glutamatergic neuron clusters. The BPNet 
model for GluN6 predicts the mutation disrupting an 
NFIA motif, suggesting this mutation may dysregulate 
the NFIA gene expression via auto-regulatory 
feedback.  

In the nIPC cluster, the BPNet model predicted a 
disruptive de novo mutation in an intergenic enhancer 
linked to the neuropeptide Y gene (NPY) whose TSS 
was 90 kb away from the mutation (Figure 7G). NPY 
is expressed in the subplate (Miller et al., 2014) and in 
early RG in the mid-gestation human cortex (Figure 
S16G), and genomic deletions of the NPY receptors 
have been associated with ASD (Ramanathan et al., 
2004).  The model further predicted this de novo 
mutation to disrupt a CTCF binding site at a chromatin 
loop anchor, suggesting a potential mechanistic impact 
on the chromatin architecture of this locus.  

DISCUSSION 

Here, we generate paired transcriptome and epigenome 
atlases of corticogenesis across multiple time points 
during a critical period of cortical development, and we 
describe how molecular interactions between DNA 
binding factors and cis-regulatory elements regulate 
gene expression programs that ultimately drive 
neurogenesis and gliogenesis. Furthermore, we 
describe how rare non-coding, de novo mutations may 
act to disrupt this logic, linking human genetic 
variability to neurodevelopmental disease states. 

We identified a set of genes (GPCs) whose local 
chromatin accessibility was predictive of expression 
levels using signals derived from single cells, possibly 
because of the large number of enhancers with 
accessibility that correlates with gene expression 
changes. These GPCs were significantly enriched for 
lineage-defining TFs. The large groups of enhancers 
linked to key cell-specific genes are evocative of other 
terms that have been used for similar phenomena, 

including “super enhancers” (Parker et al., 2013; 
Whyte et al., 2013) and “super-interactive promoters” 
(Song et al., 2020). Furthermore, chromatin 
accessibility of GPCs was consistent with a more 
differentiated cell state in a population of cycling 
progenitor cells. Recently, Ma et al. (Ma et al., 2020) 
reported a similar phenomenon by which accessibility 
at similarly-defined domains of regulatory chromatin 
delineate potential future cell states. We speculate that 
the coordinated regulatory effect of many enhancers of 
these lynchpin differentiation genes may help these 
lineage defining factors become more resistant to 
regulatory noise. We speculate that highly cooperative 
regulation of lineage determining trans-acting factors 
may be a general principle of fate determination, 
allowing cellular fate to be “locked in” by multiple 
correlated regulatory elements once the fate decision 
has been made. Effectively, such a cooperative 
transition might act as a ratchet, preventing 
backtracking along a differentiation landscape.  

Examining the trajectories of glutamatergic neuron 
migration and maturation in our data, we found a 
molecular program that was surprisingly consistent 
across 8 weeks of gestation, defined by a sequence of 
motifs that included ASCL1, GLI3, SOX family, 
EOMES, NFI family, POU3F3, NEUROD2 and 
MEF2C. Differences in neuronal regulatory activity 
across pseudotime were more pronounced than 
differences between developmental stages. We further 
found distinct patterns of co-accessibility and 
regulatory interactions between TFs early in 
pseudotime, whereas gene TFs appeared to act more 
independently later in pseudotime. 

Moreover, we found substantial sharing of TF-
regulated gene expression programs amongst glial cells 
by decomposing these programs into overlapping 
modules. Notably, we found substantial overlap 
between gene modules containing canonical markers 
for astrocytes and oligodendrocytes, suggesting a 
lineage relationship. We validated the co-expression of 
several of these genes in situ in human cerebral cortex. 
A similar relationship was true for modules associated 
with astrocytes and ependymal cells. We also provided 

Figure 7: Disease association of gene regulatory elements. (A) Schematic of deep learning mutation prioritization pipeline for ASD-associated 
mutations from the Simons Simplex Collection (SSC). Model inputs and output, bias correction, and thresholding are shown. (B) Cluster-specific 
BPNet enrichments visualized in scATAC UMAP. (C) Bar plot showing the enrichment of cases versus controls using different prioritization methods. 
Colors represent the baseline of all cleaned SSC mutations (grey), this scATAC-seq dataset (green) and a set of fetal heart enhancers (orange). BPNet 
models trained on cerebral cortex scATAC enrich for case mutations; OR = 1.909, Fisher’s exact test P = 0.01. (D) Bar plot showing the number of 
prioritized mutations whose nearest gene is a SFARI gene. All SFARI genes were included. Cases (111) versus controls (76) are compared to the total 
number of prioritized mutations in cases (2051) versus controls (1749). (E) Bar plot showing the motifs that were most frequently disrupted in case 
mutations relative to control mutations. The y-axis denotes the excess of overlaps with motifs by prioritized mutations in cases and controls. (F) 
Example showing a disruptive case mutation in an intron of NFIA. The consensus logos show the importance of residues to predicted accessibility at 
the mutation in a 100 bp window flanking the mutation. Underneath, genome tracks indicate predicted per-base counts for ref (blue) and alt (red) alleles 
in a 1000 bp window flanking the mutation. At bottom, the NFIA locus is shown. Tracks display the aggregate accessibility of scATAC clusters.  (G) 
Example showing a disruptive case mutation at the NPY locus, as above. 
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evidence for the existence of two lineages of astrocyte-
like glial precursors at or before PCW24, which could 
align with diversity of these cells in primates (Vasile et 
al., 2017). Although glial modules were broadly 
interconnected, we found that the chromatin activity of 
GPCs in cycling cells was predictive of specific 
differentiated states, suggesting that progenitors 
entering the cell cycle are already primed towards 
distinct lineages.  

Finally, our map of chromatin regulation across 
these distinct cell types provided a rich data set for 
training interpretable, cell-type specific deep-learning 
models that link DNA sequence to chromatin 
accessibility. These models can be used to read the 
potential regulatory impacts of de novo mutations, 
allowing the prioritization of high impact noncoding 
mutations and generating strong enrichments of 
mutation occurrence in cases over controls. The 
modeling of the regulatory potential of individual base 
pairs at different stages of development was crucial to 
enable the identification of these putative causal 
mutations, as simple overlap with open chromatin 
regions did not provide the required specificity. Indeed, 
using our model, we observed enrichments of 
mutations in cases versus controls that approached 
levels observed for deleterious protein-coding 
mutations (An et al., 2018). Furthermore, combining 
these models with our single-cell atlas allows for the 
principled interpretation of where in development 
highly disruptive mutations tend to occur. We 
anticipate that as more large-scale ATAC-seq and 
RNA-seq data sets across development become 
available, similar approaches will provide the means to 
accurately interpret the gene-regulatory impact of non-
coding de-novo mutations associated with a broad 
diversity of other developmental disorders. 
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MATERIALS AND METHODS 

Human tissue 

Human brain tissue was obtained under a protocol approved by the Research Compliance Office at Stanford University. 
Cortical tissue was processed immediately after arrival. 

Single cell dissociation and single cell RNA-seq data generation 

Dissociation of human tissue into single cells was performed as described with some modifications (Sloan et al., 2017; 
Trevino et al., 2020). Briefly, tissue was chopped and incubated in 30 U/ml papain enzyme solution (Worthington, LS03126) 
and 0.4% DNase (12,500 units/ml; Worthington, LS002007) at 37 °C for 45 minutes. After digestion, samples were washed 
with a protease inhibitor solution and gently triturated to achieve a single cell suspension. Cells were resuspended in 0.02% 
BSA/PBS and passed through a 70 µm filter before proceeding to single-cell sample preparation. Single-cell libraries were 
prepared using the RNA 3’ v3 protocol (10x Genomics), loading 7,000 cells per lane.  

ATAC-seq data generation 

For ATAC-seq, nuclei were prepared on ice or in a centrifuge at 4 °C. All centrifugation steps were run for 5 minutes at 500 
x g. 100,000 dissociated cells were washed in ice-cold ATAC-seq resuspension buffer (RSB, 10 mM Tris pH 7.4, 10 mM 
NaCl, 3 mM MgCl2), spun down, and resuspended in 100 µL ATAC-seq lysis buffer (RSB plus 0.1% NP-40 and 0.1% 
Tween-20 (Thermo Fisher). Lysis was allowed to proceed on ice for 5 minutes, then 900 µL RSB was added before spinning 
down again and resuspending in 50 µL 1X Nuclei Resuspension Buffer (10x Genomics). A sample of the nuclei was stained 
with Trypan Blue and inspected to confirm complete lysis. If necessary, cell concentrations were adjusted prior to starting 
single-cell droplet generation with the ATAC-seq NextGEM kit (10x Genomics). 4,000 nuclei were loaded per lane.  

Multiome data generation 

For multiome single cell data, nuclei were prepared as above for ATAC-seq with minor changes. Specifically, 0.01% 
digitonin was added to the lysis buffer, and 2 U/µL RNAse inhibitor (Roche) was added to all nuclei preparation buffers. 
After nuclei preparation, droplets and single cell libraries were prepared using the Single Cell Multiome ATAC + Gene 
Expression kit (10x Genomics) and 4,000 nuclei were loaded per lane.  

scRNA processing 

Raw sequencing data were converted to fastq format using the command ‘cellranger mkfastq’ (10x Genomics, v.3.1.0). 
scRNA-seq reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger count’ (10x 
Genomics, v.3.1.0). ‘Velocyto’ (v.0.17.17) (La Manno et al., 2018) was used to obtain splicing-specific count data for 
downstream RNA velocity analysis. 

Count data was further processed using the ‘Seurat’ R package (v.3.1.4) (Stuart et al., 2019), using Gencode v.27 for 
gene identification. We removed cells with less than 500 informative genes expressed, cells with less than 500 sequenced 
fragments and cells with more than 40% of counts corresponding to mitochondrial genes. Genes not contained in the 
Gencode annotation were excluded from further analysis. We performed doublet analysis using the ‘DoubletFinder’ R 
package (v.2.0.2) (McGinnis et al., 2019), but did not find clear evidence of cell doublets biasing our unsupervised analysis 
and therefore did not apply doublet filtering. Count data was log-normalized and scaled to 10,000. PCA analysis was based 
on the 2,000 most variable genes. The top 50 principal components (PCs) were retained for further analysis, excluding one 
component because it was strongly associated with the expression of more than 5 genes related to cell stress (HSPA, JUN, 
FOS, DUSP gene families). Nearest neighbors were computed based on the PC representation, and 23 clusters were 
identified using Louvain clustering implemented in Seurat’s ‘FindClusters’ function (‘resolution=0.5’). 2-dimensional 
representations were generated using uniform manifold approximation and projection (UMAP) (McInnes et al., 2020) as 
implemented in Seurat and the ‘uwot’ R packages (v.0.1.8; parameter settings: ‘min.dist=0.8’, ‘n.neighbors=50’, ‘cosine’ 
distance metric). 

scATAC processing 

Raw sequencing data were converted to fastq format using ‘cellranger-atac mkfastq’ (10x Genomics, v.1.2.0). scATAC-seq 
reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Genomics, 
v.1.2.0). 

Fragment data was further processed using the ‘ChrAccR’ R package (v.dev.0.9.11+). We filtered out cells with less 
than 1,000 or more than 50,000 sequencing fragments. TSS enrichment was computed as a metric of signal-to-noise ratio 
using methods described in (Granja et al., 2019) and we discarded cells with a TSS enrichment less than 4. Fragments on 
sex chromosomes and mitochondrial DNA were excluded from downstream analysis. 
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In order to obtain a low dimensional representation of single-cell ATAC datasets in terms of principal components and 
UMAP coordinates, we applied an iterative latent semantic indexing approach (Granja et al., 2019). This approach also 
identified 22 cell clusters and a consensus set of 657,930 cluster peaks. In brief, in an initial iteration clusters were identified 
based on the 20,000 most accessible 5kb-tiling regions. Here, the counts were first normalized using the term frequency - 
inverse document frequency (TF-IDF) transformation (Cusanovich et al., 2018), and singular values were computed based 
on these normalized counts. Initial clusters were identified based on the top 25 singular values using Louvain clustering (as 
implemented in the Seurat package, resolution parameter = 0.6), excluding the first singular value as it exceeded a 
correlation coefficient of 0.5 with read depth. Peak calling was then performed on the aggregated insertion sites from all 
cells of each cluster using MACS2 (v2.1.1). A consensus set of peaks uniform-length non-overlapping peaks was obtained 
by selecting the peak with highest score from each set of overlapping peaks. In a second iteration, the 50,000 peaks whose 
TF-IDF-normalized counts exhibited the highest variability across the initial clusters provide the basis for a refined 
clustering using the top 50 derived singular values. In the final iteration, the 50,000 most variable peaks across the refined 
clusters were identified as the final peak set and singular values were computed again. UMAP coordinates and ATAC 
clusters were determined based on the top 10 of these final singular values. 2-dimensional representations were generated 
using UMAP as implemented in the ‘uwot’ R package (v.0.1.8; parameter settings: ‘min.dist=0.6’, ‘n.neighbors=50’, 
‘cosine’ distance metric). 

ChromVAR (Schep et al., 2017) (v.1.6) was used to obtain TF accessibility profiles using position weight matrices from 
the JASPAR 2018 database (Khan et al., 2018). Gene activity scores were computed as the aggregated accessibility of TSS-
associated peaks using ‘ChrAccR’. For this, counts in peaks within 100,000 bp of a TSS have been summed up using weights 
assigned by a radial basis function (RBF) with a width parameter sigma=10,000 bp, setting a minimum asymptotic weight 
of 0.25. For each gene, the resulting scores were normalized by the sum of the weights. For visualization and downstream 
analysis counts from single-cells have been rescaled to 10,000 counts and have been log2-normalized. For enhanced 
visualization in 2-dimensional UMAP space, gene activity scores have been smoothed using the MAGIC diffusion algorithm 
(van Dijk et al., 2018) with cell neighborhoods determined in singular value space. 

We created ATAC signal tracks by summing insertion counts in cluster pseudobulk samples in 200bp genomic tiling 
windows and provide trackhub compatible with the WashU Epigenome Browser (http://epigenomegateway.wustl.edu) 
containing these profiles in addition to inferred CRE-gene links. 

Multiome data processing 

Raw sequencing data were converted to fastq format using ‘cellranger-arc mkfastq’ (10x Genomics, v.1.0.0). scATAC-seq 
reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger -arc count’ (10x Genomics, 
v.1.0.0). 

RNA count data was further processed using ‘Seurat’ as described above, with the exception that all 50 principal 
components were retained. This resulted in 9,818 cells after filtering, which were assigned to 14 clusters in the unsupervised 
analysis. ATAC fragment data was further processed using ‘ChrAccR’ as described above, resulting in 9,091 cells post-
filtering, assigned to 16 clusters and a consensus peak set of 467,315 elements. Jointly applying ATAC and RNA filters 
resulted in 8,981 cells with high-quality measurements across both modalities. 

Matching of single-cell transcriptomes and epigenomes 

Canonical correlation analysis (CCA) as implemented in Seurat has been applied to matched single-cell RNA and ATAC 
data from each gestational time point individually. For this purpose, we computed log-normalized and scaled gene activity 
scores as surrogates for gene expression in the cells profiled by scATAC-seq. As integration features, we used the union of 
the 2,000 most variable genes in each modality as input to Seurat’s ‘FindTransferAnchors’ function with reduction method 
‘cca’ and parameter ‘k.anchor=10’. For each cell profiled by scRNA-seq and each cell profiled by scATAC-seq we 
identified the nearest neighbor cell in the respective other modality by applying nearest-neighbor search in the joint CCA 
L2 space. Nearest neighbors were determined using the ‘FNN’ R package employing the ‘kd_tree’ algorithm with Euclidean 
distance. These nearest-neighbor-based cell matches from all gestational time points were concatenated to obtain dataset-
wide cell matches across both modalities. 

Linking gene regulatory elements and gene expression across all cell types 

We identified peak-to-gene links using a correlation-based approach (Corces et al., 2018) applied to pseudobulk samples 
aggregating scATAC and scRNA counts. These pseudobulk samples were defined by randomly sampling 200 cells from 
the entire scATAC-seq dataset. These 200 seed cells were combined with their respective 99 nearest neighbor cells in 
ATAC-PC space, such that each pseudobulk sample comprised 100 cells in total. Pseudobulk ATAC insertion counts for 
peaks were obtained by summing peak insertion counts across the respective single-cell members. Matching RNA cells 
were obtained by selecting the 100 scRNA cells that resembled nearest neighbors to the 100 ATAC cells in CCA space. 
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Pseudobulk RNA gene counts were obtained by summing gene counts across the respective single-cell members. Similarly 
in the multiome dataset, 200 pseudobulk samples of 100 cells each were sampled from the ATAC modalitity, and the same 
cells were aggregated in RNA space. Each matched pseudobulk sample was annotated with the majority cluster and age 
assignments of its contingent RNA and ATAC cells respectively. 

We then obtained candidate peak-gene pairs by associating peaks with a genomic distance between 1 and 250 kb to the 
TSS of protein coding and lincRNA genes to the respective genes. For each candidate peak-gene pair we computed the 
Pearson correlation coefficient of CPM-normalized counts of accessibility and gene expression data and computed FDR-
adjusted P-values for these coefficients based on their t-statistic. We defined a set of 64,878 high-confidence peak-to-gene 
links by only retaining pairs with |PCC| > 0.4 and FDR-adjusted P-value < 0.05. Using the same method, a corresponding 
set of 76,374 links was obtained for the multiome data. Overlap between inferred and multiome peak-gene links was 
computed by creating “GenomicInteraction” objects for each, with the peak as the first anchor and the gene promoter as the 
second, then applying the function ‘findOverlaps’ with parameter “use.region = ‘both’”. 

Projection of external datasets into the scRNA landscape 

We retrieved scRNA data from the developing human cerebral cortex (Bhaduri et al., 2020). We downloaded the normalized 
data from the UCSC Cell Browser (https://cells.ucsc.edu; dataset ID: ‘organoidreportcard/primary10X’) and the data was 
read into a Seurat object using custom R scripts. We then projected the data into our scRNA UMAP space using the ‘uwot’ 
model stored in our dataset, i.e. we used an identical principal component gene loadings and ‘uwot’ model parametrization. 
This UMAP space representation allowed us to assign a nearest neighbor from our scRNA cells to each cell in the external 
dataset. Cell annotation (pseudotime, cell cluster, etc.) were transferred from these nearest neighbors. Jaccard indices were 
computed between the transferred annotation and the downloaded external metadata. 

Similarly, we downloaded 10x Genomics scRNA data from the Allen Brain Map (https://portal.brain-map.org/atlases-
and-data/rnaseq). The downloaded raw count data was read into a Seurat object and processed using the same steps and 
parameters used for processing our scRNA data. Projection and annotation transfer were done in the same way as for the 
external developing brain dataset. For Figure S7, we restricted the projection to cells labelled as excitatory neurons (‘Exc’) 
in the external cell metadata. 

Projection of multiome data into the scRNA and scATAC landscapes 

Based on the RNA-based gene counts, we projected the multiome data into our scRNA UMAP space using the ‘uwot’ model 
stored in our scRNA dataset, i.e. we used an identical principal component gene loadings and ‘uwot’ model parametrization. 
Similarly, multiome cells were projected into scATAC UMAP space based on the ‘uwot’ model derived from the scATAC 
dataset using the same peak loadings. We used these projections to assign a nearest neighbor from our scRNA cells or 
scATAC cells to each cell in the multiome dataset. Cell annotation (pseudotime, cell cluster, etc.) were transferred from 
these nearest neighbors. 

Identification of genes with predictive chromatin (GPCs) 

The definition of GPCs is primarily based on high gene activity-expression correlations across single cells. To make this 
analysis more robust to technical variation, we restricted our analysis to the most variable genes across dorsal forebrain cells 
(1999 genes). Specifically, we used the “findVariableGenes” function from the URD package with parameters 
“diffCV.cutoff = .15, mean.min = 0.004” (Farrell et al., 2018).  For each variable gene, we computed Spearman’s correlation 
coefficients between the vector of gene activity scores for ATAC cells and the vector of expression scores in the 
corresponding nearest neighbor cells in RNA data.  We also compared these correlations to the number of linked enhancers 
per gene (see above).  From this subset, we defined GPCs as genes in the top 10% of gene activity-expression correlations 
that were linked to a minimum of 10 CREs.  

Definition of RNA velocity and pseudotime in excitatory neuron trajectories 

Excitatory neuron trajectories were defined based on RNA cells in selected clusters (cf. Table S6). We computed RNA 
velocity using custom R scripts interfacing with the ‘scVelo’ toolkit (v.0.1.25) (Bergen et al., 2020) via the ‘reticulate’ R-
Python interface. For this, we exported the Velocyto-derived spliced and unspliced counts along with Seurat-derived PC 
and UMAP representations of single cells as ‘AnnData’ objects. We filtered the dataset using the scVelo function 
‘pp.filter_and_normalize’ (parameters: min_shared_counts=10, n_top_genes=2,000) and computed moments using 
‘pp.moments’ (n_pcs=30, n_neighbors=30). We then used ‘tl.velocity’ with mode=’stochastic’ to compute cell velocities 
and ‘tt.velocity_graph’ to compute a velocity graph. Potential root and end point cells for the trajectory were computed 
using ‘tt.terminal_states’. To compute cell pseudotime scores, we employed a modified version of the scVelo function 
‘tt.velocity_pseudotime’. In contrast to the original version of the function which combines diffusion estimates from a 
forward pass starting in the root cells and a backwards pass starting in the end point cells, this modified version only applies 
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the forward pass starting in the root cells. This was necessary because scVelo-identified end point cells that were inconsistent 
with our notion of trajectory. We re-imported the scVelo-derived cell annotations (velocity vectors, pseudotime, root and 
end point probabilities) into the metadata of the R-based Seurat objects. Finally, cell pseudotime scores were rescaled to 
their quantiles using the R function ‘ecdf’.  

Additionally, in order to quantify when in pseudotime a gene is expressed we computed a weighted average pseudotime 
value. We define this ‘gene pseudotime’ for each gene j as  

𝜏" = ∑ 𝑡&
'()

∑ '*)+
*,-

.
&/0  , 

where N=363 is the number pseudobulk samples used for linking regulatory elements to genes (see below),  𝑡& is the mean 
pseudotime across all cells in pseudobulk sample i, and 𝑐&" is the aggregate RNA count for pseudobulk sample i in gene j. 

Pseudotime of cells profiled using scATAC-seq were defined as the pseudotime of their nearest RNA-cell neighbor in 
CCA space. 

Linking gene regulatory elements and gene expression in the excitatory neuron trajectory 

To facilitate aggregate analysis along pseudotime, we obtained pseudobulk samples by sorting cells based on their 
pseudotime scores and merging bins of 100 cells. The same correlation-based approach as used on all cell types (see above) 
was applied to these pseudobulk samples, linking peaks to cluster-specific genes. These cluster-specific genes were 
identified from the scRNA data of cells included in the excitatory neuron trajectory employing a Wilcoxon test as 
implemented in Seurat’s ‘FindAllMarkers’ function and applying thresholds of 0.01 and 0 for test-derived P-values and 
log(fold-changes) respectively. We retained links with accessibility-gene expression correlation coefficients with PCC > 
0.4 and FDR-adjusted P-value < 0.05, which resulted in 13,989 high-confidence positively correlated peak-to-gene links 
with specificity to the excitatory neuron trajectory. These links were clusters using k-means (k=5) clustering based on the 
z-score-scaled expression levels of the associated genes. Enrichment analysis for these clusters were performed using the 
‘topGO’ (v.2.36.0) R/Bioconductor package (Gene Ontology enrichment), Fisher’s exact tests on manually curated gene 
sets and Fisher’s exact tests as implemented in the R/Bioconductor package ‘LOLA’ (Sheffield and Bock, 2016) (v.1.14.0) 
for peak TF motif occurrences (based on genome-wide scans of JASPAR 2018 PWMs using the ‘motifmatchr’  R package). 

Matching TF motifs to expressed TF genes in the excitatory neuron trajectory 

To avoid correlation biases in closely-related TF motifs, we used a database of previously annotated clusters of putative 
binding motifs (Vierstra et al., 2020). For each motif cluster, we computed the pairwise Pearson correlation coefficients 
between chromVAR motif activity scores (computed from the annotated genome-wide sites of that cluster) and gene 
expression of all genes attributed to motifs in that cluster (Figure 3H). These PCCs were computed across the same 
pseudotime-pseudobulk samples that were used for CRE-gene linking. We then matched each gene to the motif cluster that 
exhibited the highest correlation with that gene (Figure 3F). We identified 24 dynamic motifs clusters representing 31 TFs 
whose gene loci are linked with at least one CRE and that exhibit high correlation coefficients of motif cluster activity and 
TF expression (PCC ≥ 0.4) for downstream analysis (Figure 3F–J). 

Calculation of motif synergy and correlation scores 

We used chromVAR to compute synergy and correlation scores for the above 24 dynamic motifs clusters. (Schep et al., 
2017). We used the ‘getAnnotationSynergy’ chromVAR function to compute synergy scores, which represent the excess 
variability of chromatin accessibility in CREs that contain binding sites from two different motif clusters compared to a 
random sub-sample of CREs which contains binding sites from only one of the motif clusters (the one with greater 
variability). It thus suggests a co-dependence of TFs belonging to the two motif clusters. In order to assist in the 
discrimination between this co-dependence and co-expression, we also computed motif correlation coefficients using the 
‘getAnnotationCorrelation’ function in chromVAR, defined as the correlation between the deviation scores for the CREs 
that only contain binding sites from only one or the other motif cluster. 

Inference of TF regulatory networks 

We established a network of TF regulatory linkages by testing whether CREs with TF motif occurrences exhibited 
significantly better peak-to-gene linkages than CREs without the motif. In this network the nodes correspond to the 31 
dynamic TFs in the excitatory neuron trajectory. We draw a directed edge between TF1 and TF2 iff the regulatory elements 
linked to TF2 that contain binding sites for the motif cluster that TF1 belongs to exhibit significantly larger correlation 
coefficients than regulatory elements that do not contain a binding site for TF1 (one-side Wilcoxon Rank Sum test P-value 
< 0.01). 
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Fuzzy c-means: clustering and re-projection approach 

For fuzzy clustering analysis, 1,267 seed cells were first selected at random from glial clusters (10% of single cells), with 
the number selected proportional to the cluster size. Pseudobulk data sets were sampled by combining these cells with their 
50 nearest neighbors in scRNA PCA space. Next, 1,957 variably expressed genes were determined using the function 
‘findVariableGenes’ from the R package ‘URD’. A pseudobulk counts matrix was made by summing feature counts across 
the respective single cell members comprising each aggregate.  

Fuzzy c-means clustering was performed on this pseudobulk matrix using the function “cmeans” from the R package 
‘e1071’ with parameters c = 14 and m = 1.25, resulting in a gene-by-module “membership matrix” and a sample-by-module 
“centers matrix”. To determine a ‘fixed’ or binarized module membership for downstream analyses, we defined a threshold 
membership score as the maximum score at which all genes were assigned to a cluster (threshold = 0.06). Gene ontology 
enrichments for each module were computed using the function ‘enrichGO’ from the R package ‘clusterProfiler’. Module 
connectivity was computed between all module pairs using the Jaccard index, and modules were linked by applying a 
threshold of 0.2 of the Jaccard index of gene sharing. This threshold was chosen by applying the elbow method. To visualize 
the connections between modules, the centers matrix (sample-by-module) was used as the basis for dimensionality reduction 
with UMAP, using the R package ‘umap’.  

Finally, this process was repeated, sweeping the clustering parameters (c, m) and the membership threshold across a 
range of values; from c = 6 to c = 30, and from m = 1 to 2; to ensure that the structure of the resulting embedding was not 
overly sensitive to the clustering parameters. 

Projecting ATAC-seq data into fuzzy clustering space 

Pseudobulk samples of scATAC cells were generated using the same approach described above for gene activity scores. 
This matrix was subsetted to match the features (genes) of the RNA fuzzy clustering analysis. In the case of missing features, 
values were imputed using their median gene activity. To project ATAC-seq cells into the RNA fuzzy clustering embedding, 
we transposed the membership matrix and multiplied it with the gene activity-by-pseudobulk matrix. Finally, we used the 
“predict” function in R ‘stats’, with the fuzzy clustering UMAP model as the first argument, and the resulting transposed 
product matrix as the second, to determine the UMAP coordinates of ATAC pseudobulks. 

Differential branch activity analysis 

Branches were defined by grouping ATAC-seq pseudobulks projecting into the early part of the fuzzy clustering UMAP 
(into the Cyc cluster) according to their full-dataset cluster annotation, resulting in three branches. Differential gene 
activities were calculated using Wilcoxon rank sum tests to compare branch A to B and C, B to A and C, and C to A and B. 
Genes for each branch were ranked by their average log2 fold change in the differential test. The 50 most unique genes for 
each branch were visualized in a row-scaled heatmap.  

Gene set enrichment analysis of GPCs was performed using the Kolmogorov-Smirnov test for GPC ranks in the 
differential test, relative to non-GPC ranks. 

Motif enrichments for GPC TFs were derived by computing a Chi-square test for the enrichment of motifs in peaks 
linked to differential gene activities. To find the TF motifs that best correspond to GPC TF genes, the best-correlated TF 
motif activity (chromVAR) for each GPC TF across glial pseudobulks was used. 

Characterization of astrocyte heterogeneity 

We computed motif enrichments between peaks linked to modules 13 and module 14, which both contained AQP4, APOE, 
and ALDH1 as members, using a chi-squared test. Resulting P-values were adjusted for multiple testing using a Bonferroni 
correction. Next, to define groups of astrocyte cells (samples in contrast to astrocytic gene signatures (modules)), we re-
clustered the RNA-derived glial pseudobulk samples, and performed unbiased differential expression testing using 
“DESeq2” between clusters c0 and c5, which highly expressed astrocyte genes (Zhang et al., 2016). A stringent FDR 
(Benjamini-Hochberg) of 1e-20 was invoked to call differential genes, since applying the DESeq2 (Love et al., 2014) 
framework to pseudobulks deflated P-values. The top 200 most differential genes were used to plot aggregate differential 
gene expression within the alternative dataset.  

De novo Mutation Filtering 

De novo mutations from 1902 children with Autism and their unaffected siblings from the Simons Simplex Collection was 
obtained from (An et al., 2018). From the list all mutations of coding or splice consequence as annotated by Gencode v27 
(https://www.gencodegenes.org/human/release_27.html)  were ignored from final analysis. Additionally, de novo mutation 
calls that are observed in gnomAD (Karczewski et al., 2020), in nonstandard chromosomes, within the low complexity 
repeat regions from the UCSC browser table RepeatMasker 
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(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/rmsk.txt.gz) were removed from downstream analysis. Also, de 
novo mutations appearing in both affected and unaffected siblings and multiple SSC families (that is, non-singleton de novo 
mutations) were removed. 

A deep learning model to predict cell-type specific chromatin accessibility from DNA sequence 

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded DNA sequence (A=[1,0,0,0], 
C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]) as input to predict single nucleotide-resolution read count profiles. The models take 
in the sequence context around the summit of an ATAC-seq peak and predict the ATAC counts of cluster-pseudobulk 
samples for the peak. The BPNet model is very similar in architecture to that employed by (Avsec et al., 2020). We trained 
the models with GC matched negative regions. 

This model is trained across 5 folds, each fold having different combinations of training, validation, and test 
chromosomes. The model’s performance is evaluated using two different metrics for the two output tasks separately. For 
the total counts predicted for the peak region, the model’s performance is computed with the Spearman correlation of 
predicted counts to actual counts. The per-base read count track is evaluated using the Jensen-Shannon divergence distance, 
which computes the divergence between two probability distributions; in this case the actual per base read profile for the 
peak region and the predicted per base read profile for the peak region.  
Once trained, we interpreted the model using the Shap.deep_explainer. This tool uses a modified version of the DeepLift 
algorithm (Shrikumar et al., 2019) to understand the features learned by the neural network models. DeepLift computes the 
feature attribution of each base in an input sequence to a specific output prediction from the neural network model. In this 
case, the DeepLift computes the per base importance scores in the input sequence to predict the per base read count and 
total counts in the peaks separately.  

Prioritizing ASD de novo mutations using a cell type specific neural network model 

The filtered de novo mutations from both the affected and unaffected siblings, described in the previous section, is first 
overlapped with the open chromatin peak regions identified in the specific cell type. For each of the mutations overlapped, 
first the reference sequence centered around the mutation (2114 bp) is fed into the cell type specific neural network models 
across all 5 folds and the prediction of the total counts and the per base read probabilities are obtained. Next, the mutation 
is installed in the middle of the modeled region keeping the rest of the context sequence the same. Output predictions are 
obtained from the 5-fold trained models. We then compute the sum of perturbation in the per-base read count predicted by 
the model for the mutation for 100 bp around the mutation using the formula: 
∑ 𝑎3 − 𝑏3066
3/7066 , 

where 
𝑎3 = 	exp(log counts predicted for ref. allele)×softmax(read count for ref. allele at base k),  

and 
𝑏3 = 	exp(log counts predicted for alt. allele)×softmax(read count for alt. allele at base k).  

 
Because we predict the log of the total counts, we first exponentiate it and multiply it by the SoftMax of the per base logits 
predicted by the model for the reference and the alternate sequence to compute the sum of their per base differences. This 
is carried out across all the 5 folds to obtain a mean score for the perturbation effect of each overlapping de novo mutation 
in the specific cluster. We prioritized mutations across all clusters with a local perturbation in counts > 20 and observed that 
the odds ratio for the models improves as we further increase the threshold. 

Calculating enrichments of motifs at predicted high effect size mutations 

We overlapped all the predicted high effects case and controls mutations with JASPAR motif instances and called motif 
instances for mutations. To resolve ties among multiple motifs matching a mutation, we scored the motif instances 
overlapping a mutation with the cluster specific model that scored the mutation the highest, the per base importance scores 
using DeepLift normalized by the length of the mutation and picked the motif with the highest score as the disrupted motif 
for the mutation. 

Immunohistochemistry 

Immunohistochemistry was performed as described (Trevino et al., 2020). Briefly, PCW17 and PCW21 human cortical 
tissue was fixed overnight at 4°C in 4% paraformaldehyde (PFA, Electron Microscopy Sciences). Samples were then 
washed with PBS and transferred to a 30% sucrose solution for 48-72 hours, then embedded in OCT (Tissue-Tek OCT 
Compound, 4583, Sakura Fenetek) and 30% sucrose at a 1:1 ration, and snap-frozen in dry ice. Cryosections were obtained 
using a cryostat (Leica) set at 30 µm and mounted on Superfrost Plus Micro slides (VWR, 48311-703). Next, sections were 
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blocked and permeabilized for 1 hour at room temperature in blocking solution (10% normal donkey serum, 0.3% Triton-
X in PBS) and incubated with primary antibodies diluted in the same solution overnight at 4°C. The following primary 
antibodies were used: anti-ASCL1(Mouse, 1:100, BD Biosciences, 556604), anti-CTIP2 (Rat, 1:300, Abcam, ab18465), 
anti-EGFR (Rat, 1:200, Abcam, ab231), anti-GFAP (Rabbit, 1:1,000, Dako, Z0334), anti-GFAP (Rat, 1:1000, Thermo 
Fisher Scientific, 13-0300), anti-HOPX (Mouse, 1/50, Santa Cruz, sc-398703), anti-KI67 (Mouse, 1:500, BD Biosciences, 
550609), anti-OLIG2 (Rabbit, 1:200, Millipore, AB9610), anti-PBXIP1 (Rabbit, 1:100, Abcam, ab84752), anti-PDGFRA 
(Rabbit, 1:200, Santa Cruz, sc-338), anti-PPP1R17 (Rabbit, 1:200, Atlas Antibodies, HPA047819), anti-SOX9 (Goat, 1:500, 
R&D Systems, AF3075), anti-SPARCL1 (Goat, 1:300, Novus Biologicals, AF2728), anti-TFAP2C (Rabbit, 1:100, Thermo 
Fisher Scientific, 14572-1). PBS was used to wash off the primary antibodies, and sections were then incubated with Alexa 
Fluor secondary antibodies (1:1,000, Life Technologies) for 1 hour at room temperature. Hoechst 33258 was used to 
visualize the nuclei. Sections were mounted for microscopy with glass coverslips using Aquamount (Thermo Scientific). 
Images were taken using a Leica TCS SP8 confocal microscope and processed using ImageJ (Fiji). Cortical images spanning 
from VZ to CP were obtained using a tiling approach in the Leica TCS SP8 and automatically stitched using the Leica 
software.   
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SUPPLEMENTARY FIGURES 
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Supplementary Figure S1: Data quality of scATAC-seq and scRNA-seq libraries. (A) scRNA-seq quality metrics 
showing the distribution of the number of reads, number of genes, and mitochondrial (MT) gene fraction per cell in each 
sample. Technical replicates are merged. PCW = postconceptional weeks. (B) scATAC-seq quality metrics showing the 
distribution of the number of fragments, transcription start site (TSS) enrichment, and fraction of reads in peaks (FRIP) per 
cell in each sample. (C) scATAC-seq cell thresholding on TSS enrichment and fragment counts. (D) UMAP plot showing 
the TSS enrichment of each cell. (E) Aggregate normalized fragment count around TSSs for each scATAC-seq sample. (F) 
Aggregate fragment size distributions for each scATAC-seq sample. (G) Correlation of technical replicates for each scRNA-
seq sample. (H) Correlation of technical replicates for each scATAC-seq sample. 
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Supplementary Figure S2: Immunohistochemistry of human cerebral cortex architecture. (A) Immunohistochemistry 
in PCW21 human fetal cerebral cortex, showing expression of SOX9, CTIP2, and HOPX in the ventricular zone (VZ), 
subventricular zone (SVZ), outer SVZ (oSVZ), intermediate zone / subplate (IZ/SP), and cortical plate (CP). (B) 
Immunohistochemistry in PCW21 human fetal cerebral cortex, showing expression of GFAP, PPP1R17, and KI67. Scale 
bars, 500 µm (A, B), 50 µm (insets A, B). 
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Supplementary Figure S3: Expression of cell-type specific markers in scRNA-seq data. (A) UMAP plots showing gene 
expression of cell-type and cluster-specific markers (B) Bar plot showing the sample age composition in each of the scRNA-
seq clusters. 
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Supplementary Figure S4: Comparison with external scRNA-seq dataset from human cerebral cortex. (A) Projection 
of alternate data from Bhaduri et al., 2020 into this scRNA-seq manifold, showing alignment of broad cell types. (B) Jaccard 
index of genes expressed in clusters from this scRNA-seq dataset and annotated cell types from Bhaduri et al., 2020.  
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Supplementary Figure S5: Canonical correlation analysis links scRNA-seq and scATAC-seq datasets in a unified 
manifold. (A) Ribbon plot showing correspondence of scRNA-seq and scATAC-seq clusters in a shared canonical 
correlation analysis (CCA) landscape. CCA was derived from expression values in scRNA-seq data matched to gene activity 
scores from scATAC-seq. (B) Confusion matrix showing the correspondence of cluster annotations across datasets in the 
CCA. Upper triangles indicate how ATAC clusters match to RNA clusters; lower triangles indicate how RNA clusters 
match to ATAC clusters. Coloring indicates the proportion of cells mapping for a given pair.  
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Figure S6: Data quality of scATAC-seq and scRNA-seq multiome data. (A) scATAC-seq cell thresholding on TSS 
enrichment and fragment counts. (B) scRNA-seq quality metrics showing the distribution of the number of reads, number 
of genes, and mitochondrial (MT) gene fraction per cell in each biological replicate. Technical replicates are merged. (C) 
scATAC-seq quality metrics showing the distribution of the number of fragments, transcription start site (TSS) 
enrichment, and fraction of reads in peaks (FRiP) per cell in each biological replicate. (D) Aggregate normalized fragment 
count around TSSs for each scATAC-seq biological replicate. (E) Aggregate fragment size distributions for each 
scATAC-seq biological replicate. (F) UMAP embeddings for multiome scATAC (left panels) and multiome scRNA (right 
panels). Cells are colored by unsupervised clustering of scATAC counts (top panels) and scRNA data (bottom panels). 
(G) Projection of multiome scATAC and scRNA data into singleome scATAC (top) and scRNA (bottom) UMAP 
manifolds.  
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Supplementary Figure S7: Supplemental analyses to glutamatergic neuron developmental trajectories. (A) RNA 
velocity streamplot in UMAP space. Aggregate velocities for cells in clusters for glutamatergic neuron trajectories were 
computed and plotted using scVelo. (B) scVelo root probability in UMAP space. (C) Density plot of sample age for 
individual cells along the excitatory neuron trajectory pseudotime. (D) Density plot of cell clusters along the excitatory 
neuron trajectory pseudotime. (E) Projection of adult glutamatergic neurons (Allen Brain Atlas) into scRNA UMAP space. 
(F) Distribution of excitatory neuron trajectory pseudotime for annotated cortical layers. Fetal cell pseudotime annotation 
was transferred to adult neurons by nearest-neighbor matching in UMAP space. (G) Correspondence between fetal sample 
age and annotated adult cortical layers. The heatmap shows Jaccard indices of annotation in adult neurons with fetal 
gestational age annotation by nearest neighbor matching in UMAP space. (H) MA plot of differential expression between 
PCW16 and PCW20-24 cells. Genes identified as differentially expressed are shown in red (adjusted p-value < 0.05, 
|log2(fold-change)| > 2). Cells with 0.2 ≤ annotated pseudotime ≤ 0.8 were compared in PCW16 vs PCW20, PCW21 and 
PCW24. (I) GO enrichment for genes upregulated (top) and downregulated (bottom) in PCW16 vs PCW20-24 neurons. 
Enrichments were computed for the gene sets shown in H and the top 6 enrichments are shown for each direction.  
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Supplementary Figure S8: Glial cell characterization using fuzzy c-means clustering. (A) Bubble plot showing gene 
expression of glial subtype markers in annotated glial clusters. The expression of identifying markers is sometimes evident 
in several clusters. For each group of markers, the dot size indicates the mean fraction of cells expressing the markers. Color 
indicates mean expression level. (B) UMAP showing expression of selected glial genes in the scRNA-seq manifold.(C) 
Membership matrix for fuzzy clustering, showing the fractional membership of each gene (columns) in each module (rows). 
The right-hand panel shows the memberships, now binarized at a membership threshold of 0.06. (D) Bar plot showing how 
many genes belong to “n” modules after thresholding. (E) Plot of glial scRNA-seq pseudobulk aggregates. For each 
aggregate, the sample-of-origin age in postconceptional weeks (PCW) is compared with the pseudotime values (Methods). 
Pseudotime was strongly correlated with developmental time. Pearson r = 0.67, P = 2.2e-16.  
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Supplementary Figure S9: Characterization of fuzzy clusters. (A) Module membership and expression values for genes 
depicted in Figure 4C across pseudotime aggregates. (B) UMAP plots showing the mean, scaled expression of all genes in 
each module (m1-m14). (C) Gene ontology (GO) enrichments for each module, including the term description. Bar plots 
represent the -Log10 (P), with P values adjusted by the Bonferroni method. Bar color indicates the log2 fold enrichment for 
each term. (D) Enrichment of SFARI genes (gene score < 3) in each fuzzy module. Enrichments indicated by color, are 
shown as the log2 odds ratio (OR), and plotted with module centroids in the UMAP of fuzzy clustering cell loadings.  
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Supplementary Figure S10: Immunohistochemistry of genes in fuzzy modules. (A) Module membership and 
expression values for TFAP2C. (B) Immunohistochemistry in PCW21 human cerebral cortex showing expression of 
module m6 transcription factor TFAP2C in the SVZ and oSVZ. (C) Module membership and expression values for 
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PBXIP1. (D) Immunohistochemistry in PCW21 human cerebral cortex showing expression of module m2 marker 
PBXIP1 and colocalization with the astroglia marker GFAP in radial glia in the VZ and oSVZ. (E) Module membership 
and expression values for CRYAB. (F) Immunohistocjemistry in PCW21 human cerebral cortex showing expression 
of module m9 marker CRYAB in truncated radial glia in the VZ. (G) Plot of the total number of module-module 
connections at a given Jaccard index threshold. Higher Jaccard thresholds mean fewer connections are “allowed” in 
the downstream analysis. This plot shows a clear “elbow” behavior at Jaccard > 0.2, which was used to select that 
threshold. Scale bars, 200 µm (B, D, F), 200 µm (inset B). 
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Supplementary Figure S11: colocalization of OLIG2 and ASCL1 in the human cerebral cortex. (A) 
Immunohistochemistry in PCW21 human fetal cortex showing expression of ASCL1, OLIG2 and GFAP. ASCL1 and 
OLIG2 colocalize in the inner and outer fiber layers (IFL, OFL) and SVZ and oSVZ mainly. GFAP shows the radial glial 
scaffolding. Scale bar, 500 µm (A). 
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Supplementary Figure S12: colocalization of OLIG2, ASCL1 and EGFR in the human cerebral cortex. (A) 
Immunohistochemistry in PCW21 human fetal cortex showing expression and colocalization of modules m1, m4 and m12 
genes ASCL1, OLIG2 and EGFR representing oIPCs. Scale bars, 500 µm (A), 50 µm (insets A). 
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Supplementary Figure S13: colocalization of astrocyte- and oligodendrocyte-associated markers in the human 
cerebral cortex. (A) Immunohistochemistry in PCW21 human fetal cortex showing colocalization of the astroglia markers 
SPARCL1 and GFAP in the cortical plate and subplate. (B) UMAP plot showing SPARCL1 gene expression. (C) 
Immunohistochemistry in PCW21 human fetal cortex showing colocalization (white arrowheads) of OLIG2, associated 
with oligodendrocyte progenitors, and the astrocyte marker SPARCL1 in SVZ/IFL and oSVZ/OFL. (D) 
Immunohistochemistry in PCW21 human fetal cortex showing colocalization of PDGFRA, SPARCL1 and EGFR. Scale 
bars, 500 µm (A, D), 50 µm (C, and insets A, D).  
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Supplementary Figure S14: Heterogeneity of astrocyte precursors. (A) Fuzzy clustering-derived UMAP showing 
pseudobulk aggregates plotted by sample age. (B) Mean scaled expression of human mature astrocyte genes (Zhang et al. 
2016) in fuzzy clustering-derived UMAP of scRNA-seq pseudobulk aggregates. (C) Expression of selected differential 
genes from Figure 4D. (E) UMAP of Bhaduri et al., 2020 fetal astrocyte scRNA-seq dataset, showing sample age. 
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Supplementary Figure S15: Projection of scATAC-seq aggregates into fuzzy embedding using different gene sets – 
gene set controls related to GPC analysis. UMAP plots showing the projection of aggregates into the fuzzy clustering-
derived low-dimensional embedding. The origin of the arrows represents the original projection coordinates of a particular 
scATAC-seq aggregate; the arrows point to the new projection coordinates when using only a given subset of genes to make 
the projection (other genes are imputed as zero-variance features). Colors indicate the scATAC-seq cluster from which the 
aggregates derive. Panels show projection with only GPC genes (A); random gene sets (B, 100 permuted trials); module m2 
genes only (C); module m5 genes (D); module m7 genes (E); module m13 genes (F).  
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Supplementary Figure S16: Supplementary characterization of BPNet model performance and mutation vignettes. 
(A) Enrichment of cases versus control mutations using naïve overlap with cluster-specific ATAC-seq peaks, showing rele 
vance of the deep learning model to capture pathogenic disruptions. (B) Distribution of disruption scores for case and control 
mutations using different training paradigms. Data are shown for the oIPC cluster. On the left, using only scATAC-seq 
peaks as the basis for training, there is a systematic difference between cases and controls (Wilcoxson test P = 6.2e-7). On 
the right, when training is given GC-matched negatives, disruption scores are substantially more conservative, and the 
distributions are matched (P = 0.27). (C) Performance evaluation of BPNet cluster-specific models, computed by calculating 
the rank correlation between true counts in the cluster and predicted counts. Data are from 5-fold cross-validated training. 
(D) Conservation scores in cases versus controls, showing that trivial genomics metrics do not explain the observed 
prioritized mutations. (E) Distance to the nearest gene in cases versus controls, showing that trivial genomics metrics do not 
explain the observed prioritized mutations. (F) UMAP plots of gene expression (magenta) and gene activity (viridis) for 
NFIA. (G) UMAP plots of gene expression (magenta) and gene activity (viridis) for NPY. 
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