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ABSTRACT

Genetic  perturbations of cerebral cortical
development can lead to neurodevelopmental disease,
including autism spectrum disorder (ASD). To
identify genomic regions crucial to corticogenesis, we
mapped the activity of gene-regulatory elements
generating a single-cell atlas of gene expression and
chromatin accessibility both independently and
jointly. This revealed waves of gene regulation by key
transcription factors (TFs) across a nearly continuous
differentiation trajectory into glutamatergic neurons,
distinguished the expression programs of glial
lineages, and identified lineage-determining TFs that
exhibited strong correlation between linked gene-
regulatory elements and expression levels. These
highly connected genes adopted an active chromatin
state in early differentiating cells, consistent with
lineage commitment. Basepair-resolution neural
network models identified strong cell-type specific
enrichment of noncoding mutations predicted to be
disruptive in a cohort of ASD subjects and identified
frequently disrupted TF binding sites. This approach
illustrates how cell-type specific mapping can provide
insights into the programs governing human
development and disease.

INTRODUCTION

Dynamic changes in the activity of cis-regulatory DNA
elements, driven by changes in transcription factor (TF)
binding, underlie the complex phenotypic transformations
that occur during development (Buenrostro et al., 2018;
Stergachis et al., 2013). Single cell methods for probing
chromatin accessibility have emerged as a sensitive probe
for this activity, and, combined with tools to measure
single-cell transcriptomes, have the potential to decipher
how combinations of transcription factors drive
developmental gene expression programs (Kelsey et al.,
2017; Klemm et al., 2019). Quantifying the dynamic
activity of regulatory elements also enables the principled
inference of the time-point or cell type wherein disease-
associated genetic variation may impact a developmental
process. For instance, it is still unknown how genetic
variants associated with neurodevelopmental disease,
such as autism spectrum disorder (ASD), interfere with
the genetic programs underlying the development of the
human cerebral cortex (Rubenstein, 2011; Zhou et al.,
2019).

Corticogenesis is a highly orchestrated and dynamic
process that results in the formation of the cerebral cortex,
and is characterized by the expansion of apical and basal
radial glia (RG) and intermediate progenitors in the
ventricular and subventricular zones (VZ, SVZ), the
inside-out generation of excitatory glutamatergic neurons,
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and the differentiation of astrocytes and oligodendrocytes
(Greig et al., 2013; Molnar et al., 2019; Silbereis et al.,
2016). Cell types derived from outside of the dorsal
forebrain, including GABAergic neurons, microglia, and
some oligodendrocytes, also migrate and integrate into
the cerebral cortex during this period (Wonders and
Anderson, 2006). Resolving the gene-regulatory
dynamics associated with these diverse developmental
trajectories and highly heterogeneous cell states requires
investigation of both chromatin and gene expression
states at single-cell resolution.

To map the gene regulatory logic of human
corticogenesis, we generated single-cell chromatin
accessibility and RNA expression profiles from human
fetal cortical samples spanning 8 weeks during mid-
gestation. The paired maps revealed a class of genes with
comparatively large numbers of nearby putative
enhancers whose accessibility was strongly predictive of
gene expression. These genes with predictive chromatin
(GPCs) are frequently TFs, and we observed that their
local accessibility precedes lineage-specific gene
expression in cycling progenitors. We validated these
findings using single cell accessibility and expression
profiles derived from the same cell (multiomics). Next,
we defined a developmental trajectory for cortical
glutamatergic  neurons, revealing a continuous
progression of TF motif activities associated with
neuronal specification and migration. We explored the
tendency of certain TF motifs to co-occur along this
trajectory and derived a network of key TFs that appear to
co-regulate one another. In addition, we characterized the
lineage potential of glial progenitors and provided
evidence for two transcriptionally and epigenetically
distinct astrocyte precursor subtypes. Finally, we trained
a deep-learning model to infer base pair-resolved, cell
type-specific chromatin accessibility profiles from DNA
sequence. These models identified sequence motifs that
contribute to cell type-specific accessibility and allowed
prediction of the potential impact of genetic variants on
the chromatin landscape. The predictions prioritized rare
de novo noncoding genetic variants associated with ASD,
which were enriched in case subjects at levels
approaching those seen for deleterious protein-coding
mutations. We connected these cell type-specific, high-
impact mutations to putative downstream effects on gene
expression, demonstrating the ability to map the genetic
basis of disease with single cell and single base-resolution
at key stages of human cortical development.

RESULTS

A single-cell regulatory atlas of the developing human
cerebral cortex

To capture cellular heterogeneity in the developing
cerebral cortex, we created a gene-regulatory atlas using
the Chromium platform (10x Genomics) to generate

single-cell ATAC-seq (scATAC) and single-cell RNA-
seq (scRNA) libraries from four primary human cortex
samples at post-conceptional week (PCW) 16, PCW20,
PCW21, and PCW24 (Figure 1A). Overall, we obtained
57,868 single-cell transcriptomes and 31,304 single-cell
epigenomes after quality control and filtering (Tables
S1-S4, Figure S1). Consistent with previous studies
(Fietz et al., 2010; Hansen et al., 2010; Kang et al., 2011;
Pollen et al, 2015, Trevino et al, 2020),
immunohistochemical analysis of select tissue samples
revealed CTIP2" cells in the cortical plate (CP; Figures
1B inset 1 and S2A) and SOX9" cells in the VZ (inset 3),
SVZ, and outer SVZ (0SVZ, inset 2), as well as GFAP"
scaffolding spanning the neocortex at PCW17 and
PCW21 (Figures 1C and S2B). As expected, the
proliferation marker KI67 colocalized with both GFAP"
cells and with PPPIR17" intermediate progenitor cells
(IPCs) in the SVZ and oSVZ (Figures 1C and S2B).

To assess global similarities and differences between
individual cells, we performed dimension reduction using
uniform manifold approximation and projection (UMAP)
and clustering. For scATAC, we employed an iterative
approach (Granja et al., 2019) to obtain a low-
dimensional embedding, cell clustering, and a consensus
set of 657,930 accessible peaks representing potential cis
regulatory elements (CREs; Methods). Broadly, the
structures of the resulting manifolds for scATAC and
scRNA were similar, and they exhibited variation related
to gestational time (Figure 1D) and cell types (see
below). Performing both assays on the same samples
enabled us to dissect complementary aspects of gene
regulation, including the relationship between gene
expression (scCRNA) and gene activity (scATAC) — a
metric defined by the aggregate local chromatin
accessibility of genes (Methods) (Pliner et al., 2018), as
well as aggregate TF motif activity scores (Schep et al.,
2017). Key corticogenesis factors such as SOX9, EOMES,
NEUROD?2, and DLX2 showed strong cluster-specific
enrichments in these three metrics (Figure 1E) consistent
with their ascribed roles in radial glia (RG), intermediate
progenitor cells (IPCs), cortical glutamatergic neurons
GluN), and GABAergic neurons (interneuron; IN),
respectively.

We next called clusters in both data sets (Figure 1F;
Methods), and annotated these clusters using gene
expression and gene activities (Figures 1G—H and S3A,
Tables S5-S7, Methods). In scRNA, we observed a
cluster of cycling cells (Cyc) expressing TOP24, K167,
CLSPN and AURKA. We also found that radial glia
clusters (RG), expressing SOXY, HESI and ATPIA2,
included both ventricular radial glia (VRG: FBXO32,
CTGF, CYR61) and outer radial glia (o0RG: MOXDI,
HOPX, FAMI1074, MT3), and these were separated
according to gestational time (early RG, PCW16: NPY,
FGFR3; late RG, PCW20-24: CD9, GPX3, TNC). Cells
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in one scRNA cluster expressed markers for truncated RG
(tRG) and ependymal cells (tRG: CRYAB, NR4Al,
FOXJI). In addition to these RG clusters, we identified a
cluster expressing genes associated with both RGs and
oligodendrocyte lineage precursors (ASCLI, OLIG2,
PDGFRA, EGFR). This cluster, which we named
oligodendrocyte intermediate progenitor cells (oIPC),
was different from the oligodendrocyte and
oligodendrocyte progenitor cell (OPC/Oligo) cluster that
expressed SOX10, NKX2.2 and MBP. Astrocytes did not
appear to group into a separate cluster, but genes
associated with astrocyte identity (AQP4, APOE, AGT)

were observed in the oIPC cluster and the late RG cluster.
A large domain in both representations was composed of
neuronal intermediate progenitor cells (nIPC: EOMES,
PPPIR17, PENK, NEUROGI, NEUROG2), and
glutamatergic excitatory neurons (GluN) expressing
NEUROD?2, TBRI, BCL11B/CTIP2, SATB2,
SLCI74A7/VGLUTI. Among the glutamatergic neuron
clusters, we found one group of cells expressing subplate
markers (SP: NR442, CRYM, ST18, CDHI8). We also
identified distinct clusters of GABAergic interneurons
expressing DLX2, DLX5 and GAD2: one of them
expressed markers associated with medial ganglionic
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Figure 1: A single cell epigenomic atlas of the developing human neocortex. (A) Schematic of gestational sample time (post-conception week,
PCW), genome wide profiling methods and cell types represented in this study. (B) Immunohistochemistry in human cerebral cortex at PCW17 showing
expression of SOX9 in VZ, SVZ, and o0SVZ, and CTIP2 in cortical plate. Hoechst staining shows nuclei. VZ = ventricular zone, SVZ = subventricular
zone, IFL = inner fiber layer, oSVZ = outer SVZ, OFL = outer fiber layer, SP = subplate, CP = cortical plate. (C) Immunohistochemistry in human
cerebral cortex at PCW 17 showing expression of GFAP, KI67" proliferating cells, and PPP1R 17" intermediate progenitor cells. Hoechst staining shows
nuclei. (D) Uniform Manifold Approximation and Projection (UMAP) of cells based on gene expression (scRNA-seq, left) and peak accessibility
(scATAC-seq, right). Cells are colored according to sample gestational time. (E) Multimodal profiling of SOX9, EOMES, NEUROD2, and DLX2
including gene expression (scRNA-seq), gene activity and TF motif activity (scATAC-seq). (F) UMAP of cells colored by cluster. Cell types labels
were assigned based on cluster-specific gene expression and chromatin accessibility. (G) Dot plot showing the percent of cells expressing selected
markers across scRNA clusters. (H) Dot plot showing marker gene activity scores derived from chromatin accessibility across scATAC clusters.
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eminence (MGE)-derived interneurons (MGE: LHXG,
SST) and the other expressed markers associated with
both caudal ganglionic eminence (CGE) and pallial-
subpallial boundary (PSB)-derived interneurons (CGE:
SP8, NR2F2; PSB: MEIS2, PAX6, ETVI). In addition, we
observed clusters of microglia (MG: AIFI, CCL3), and
vascular cells including endothelial cells (EC: CLDNS3,
PECAM]I), pericytes (Peric: FOXC2, PDGFRB), vascular
leptomeningeal cells (VLMC: FOXC2, COLIA1, LUM),
and red blood cells (RBC: HEMGN). Many of the above
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markers exhibited dynamic gene activity scores in
corresponding clusters in scATAC space (Figure 1H).
While most clusters contained cells representing all
gestational time points, some clusters were strongly
biased for earlier or later stages (Figure S3B). For
example, o[PC and tRG clusters were only present in
PCW20-24 samples. Projection of another scRNA
dataset of the cerebral cortex (Bhaduri et al., 2020) into
our scRNA UMAP further corroborated cell type
identities and gestational time (Figure S4).

Figure 2:

multiomic

Integrative  and
gene regulatory
dynamics in the developing
human cerebral cortex (A)
Schematic showing the generation
and integration of singleome
scATAC-seq and scRNA-seq data.
Matching is performed by mapping
cells into a low-dimensional space
using Canonical Correlation
Analysis (CCA) and finding
nearest-neighbors in that space. (B)
UMAPs of scRNA and scATAC
cells colored by cluster assignment
of matched cells in the respective
complementary data modality. (C)
Heatmap  showing  chromatin
accessibility and gene expression of
64,878 significantly linked CRE-
gene pairs (rows, left CRE
accessibility, right linked gene
expression) across 200 pseudobulk
samples (Methods). Rows were
clustered using k-means clustering
(k=20). For visualization, 10,000
rows were randomly sampled. (D)
Scatterplot showing the correlation
between single-cell gene expression
and chromatin-derived gene activity
(GA), and the number of linked
CREs per gene. Transcription
factors are labeled. (E) Gene
Ontology (GO) enrichment analysis
of the 185 genes with predictive
chromatin (GPCs) identified in D.
(F)  Schematic  showing the
generation of ScATAC-seq and
scRNA-seq data from the same cells
(multiome data) in human cerebral
cortex. (G) Projection of multiome
scATAC into singleome scATAC
UMAP space, and multiome scRNA
into singleome scRNA UMAP
space. (H) Venn diagram showing
overlap of CRE-gene linkages

identified in singleome versus
multiome data. (I) Correlation
scatterplot showing the

correspondence between predictive
chromatin in singleome versus
multiome data. Pearson r = 0.62, P
<2.2e-16.
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We next integrated the derived gene activity scores
with gene expression levels, using canonical correlation
analysis (CCA) to match cells from one data modality to
their nearest neighbors in the other (Figure 2A) (Stuart et
al., 2019). Cluster annotations of matched cells were
consistent across both modalities, except for the cycling
progenitor cluster in scRNA, which did not directly map
to cells in the chromatin landscape (Figures 2B and SSA,
B). Using pseudobulk aggregates of these matched
annotations, we applied a correlation-based approach that
links gene-distal CRE accessibility to gene expression
(Corces et al., 2018; Ma et al., 2020; Trevino et al., 2020),
identifying 64,878 CRE-gene pairs that represent
potential regulatory interactions (Table S8). Genes in this
analysis had a median of 5 linked CREs per gene, with a
long-tailed distribution of the number of links. Co-
variation of CRE accessibility and gene expression
distinguished the identified cell types in both scRNA and
scATAC (Figure 2C). Clustering of the associated CRE
accessibility revealed particularly high variability across
clusters corresponding to glial cell populations,
corroborated the distinctiveness of GABAergic neuron
clusters, and indicated dynamic patterns of gene
regulation across glutamatergic neuron clusters.

We then asked if there were genes whose expression
could be well-predicted from chromatin accessibility
signals by ranking single-cell gene activity-expression
correlations for each gene. Unsurprisingly, given the
relative sparsity of single-cell ATAC-seq and RNA-seq
data, few genes exhibited high correlations by this metric
(Figure 2D). However, the most robustly correlated
genes included factors with central roles in
corticogenesis, such as SOX2 and HESI, and these genes
were linked to greater numbers of putative enhancers (P
< 2.2e-16). We hypothesized that these comprised a class
of highly regulated genes that play a driving role in
establishing cell identities in the developing cerebral
cortex. Therefore, we defined a set of 185 genes with
predictive chromatin (GPCs), which were in the top decile
of gene activity-expression correlations and were linked
to a minimum of 10 CREs (Table S9, Figure 2D). In this
gene set, gene ontology (GO) enrichment analysis
revealed a strong enrichment of transcription regulator
activity and DNA-binding TF activity (Figure 2E).

To validate these inferences, we generated joint
ScATAC and scRNA data in the PCW21 human cerebral
cortex (multiome) (Figure 2F). Filtering across both data
modalities resulted in 8,981 cells with high-quality
transcriptome and epigenome profiles (Tables S10-12,
Figure S6). We projected these multiomic scATAC and
scRNA profiles into the corresponding individually
generated landscapes and confirmed that our cell type
annotations were well represented in the joint data
(Figure 2G). When we applied our CRE-gene linking
approach to the true cell-to-cell matches, we found that

40,181 inferred peak-gene linkages (53%) were validated
from this single timepoint measurement, and an additional
23,849 were identified (Figure 2H, Table S13). Thus, the
majority of inferred CRE-gene interactions were observed
when accessibility and expression measurements were
made in the same individual single cells. The multiome
data allowed us to validate our set of GPCs, and we found
a strong concordance of gene activity-expression
correlations between separate cells linked in ATAC-seq
and RNA-seq by our analysis and correlations observed
when RNA-seq and ATAC-seq are generated from the
same cell (Pearson r = 0.62, P < 2.2e-16; Figure 2I).
Therefore, GPCs are also readily apparent in this joint
data set, underlining the correspondence between their
local accessibility and their transcription within the same
cell.

Continuous trajectories of gene regulation across
cortical neuron differentiation

Glutamatergic projection neurons comprise ~80% of
neurons in the cerebral cortex, and distinct subtypes are
born in a specific sequence during development.
Although several key factors controlling cell fate in
corticogenesis have been described (Greig et al., 2013),
the gene-regulatory logic that governs specification,
migration, and maturation of neural cells has not yet been
resolved in human development. Our paired single-cell
atlas provided an opportunity to infer the dynamics of
these molecular processes in an unbiased fashion. We
therefore focused our analysis on glutamatergic neuron
clusters, first annotating each cell with a developmental
pseudotime, which was inferred by anchoring a
differentiation starting point in the Cyc cluster and
applying an algorithm based on diffusion through cell-
similarity networks derived from RNA velocities (Bergen
et al.,, 2020; La Manno et al., 2018) (Figures 3A and
S7A-D). To test how the architecture of the adult cerebral
cortex mapped onto this trajectory, we projected an
independent scRNA-seq data comprising neurons from
human cerebral cortex (Hodge et al., 2019) into the
developmental landscape and identified the nearest
neighbor cell for each adult scRNA-seq profile (Figure
S7E). Adult glutamatergic neurons projected almost
exclusively into the neighborhoods of developmental
cells annotated with later pseudotimes (Figure S7F). As
expected, we observed association of earlier and later
gestational timepoints with deeper and upper adult
cortical layers respectively (Figure S7G). When we
compared the expression levels in migrating neurons from
the early gestational timepoint (PCW16) to those from
later timepoints (PCW20 to PCW24), we observed
increased expression of LIMCHI, RUNXI, SNCB and
DOKS5 and decreased expression of the AP-1 TF family
(JUN, FOS), heat shock factors HSPA1A4/B and DUSPI
(Figures STH and S71, Table S14). Overall, we found
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Figure 3: Molecular signatures of excitatory projection neuron generation, migration, and maturation. (A) UMAP of scRNA cells highlighting
the glutamatergic neuron trajectory and pseudotime. (B) scATAC UMAP with transferred pseudotime annotation. (C) Heatmap showing accessibility
and expression of 13,989 linked CRE-gene pairs (rows, left CRE accessibility, right linked expression) across 363 pseudobulk samples. Interactions
(rows) were clustered using k-means clustering (k=5). (D) Gene set enrichment analysis of interaction clusters. Gene ontology (top) and hypergeometric
test (bottom) P-values are shown along with the number of matched genes or the enrichment odds ratio. (E) Enrichment of TF motifs in peaks
represented in interaction clusters. Color represents the odds ratio and size represents the -logio (P-value). (F) Heatmaps showing z-score normalized
expression (left) and motif activity (right) of TFs in pseudobulk aggregates. Shown are 31 dynamic TFs associated with 24 motif clusters (Methods).
(G) TF motif correlation coefficients (upper triangular heatmap) and synergy z-scores (lower triangular heatmap) of motif clusters in F. Scores were
computed using chromVAR. Motifs were hierarchically clustered on synergy z-scores, and this dendrogram was cut to obtain three clusters. (H)
Correlation coefficients of TF motif cluster activity and expression. Cluster lists were truncated to the top 6 best correlated genes. (I) Scatterplot
showing aggregate gene expression pseudotime versus mean motif synergy. Point colors denote the cluster assignments in G. (J) Network of inferred
regulatory interactions (Methods) between TFs in F. Network nodes are colored according to expression weighted pseudotime.

surprisingly few differentially expressed genes in this
analysis that have been previously implicated in
neurogenesis, suggesting that a considerable degree of
gene expression and regulatory variability could be
associated with pseudotime, rather than gestational time.
We therefore decided to investigate the regulatory
dynamics along the pseudotime axis.

To connect expression trajectories to the accessibility
dynamics of specific regulatory elements, we transferred
pseudotime values from RNA cells to their nearest ATAC
cell neighbors, confirming that this produced a smooth
continuum of pseudotime in the chromatin manifold
(Figure 3B). By applying our correlation-based peak-to-
gene linking approach to the glutamatergic neuronal
lineage, we identified 13,989 dynamic interactions across
pseudotime and grouped these interactions into five
clusters (Figure 3C, Table S15). Linked genes active
early in pseudotime exhibited GO enrichments for cell
division and neural precursor proliferation, whereas later
interactions were associated with morphogenesis, cell
migration and maturation (Figure 3D). Interestingly,
genes encoding TFs and DNA-binding proteins were
particularly enriched in intermediate interactions, while
genes from the SFARI database (Abrahams et al., 2013)
were more likely to be linked later in pseudotime.

To nominate TFs that may control these dynamic
expression programs, we identified TF motifs that were
enriched in the different clusters of linked regulatory
elements. Motifs enriched in interactions early in the
trajectory included ZNF740, KLF16, SP1/2, and ASCLI1
(Figure 3E). Conversely, interaction clusters associated
with intermediate and late pseudotime were associated
with motifs of neuronal TFs (NEUROD1/2, NEUROGI,
MEF2C). These enrichments represent the putative
regulatory vocabulary of individual CREs and their target
genes. To characterize the TF-driven regulatory dynamics
of neurogenesis over pseudotime in more detail, we
linked specific TF genes to TF motifs by correlating TF
expression with chromVAR-derived TF motif activity
scores. To avoid correlation biases between similar
putative binding motifs, we assigned variable TFs to 24
previously defined clusters of motifs (Vierstra et al.,
2020) (Figure 3F). We observed synchronized TF
expression and motif activity for dynamic regulators
along neuronal developmental pseudotime, starting with

PAX6, SOX2/6/9, GLI3 and ASCL1 motifs, followed by
intermediate stage factor motifs (EOMES, NFIA, NFIB,
NEURODI1), and finally late-stage motifs (NEUROD?2,
BHLHE22, MEF2C). Together, these data describe
cohesive, sequential waves of motif activations during
human corticogenesis that are consistent across
gestational time points.

To better understand how TFs are coordinated during
human corticogenesis, we next computed the genome-
wide synergy and correlation patterns of motif family
accessibility (Figures 3G and 3H; Methods) (Schep et
al., 2017). We found three broad classes of motifs
associated with accessibility and TF expression over
pseudotime (Figure 3G-I): (i) early activity motifs
exhibiting moderate synergies (SOX, GLI, PAX) (ii)
intermediate activity motifs (NFI/TBX/EOMES) that are
highly synergetic within their class, and (iii) late activity
motifs that are less cooperative and generally appear to
operate more independently (NEUROD2/BHLHE22,
MEF2). These findings are broadly consistent with a
higher degree of TF motif coordination early in
neurogenesis and regulation of later neuronal maturation
by a smaller set of more independent TFs. Finally, we
derived a TF regulatory network by linking factor-
specific motif activity in regulatory elements to TF gene
expression (Figure 3J; Methods). This network indicates
that key factors of neurogenesis such as PAX6, SOX2,
EOMES and NFIA could regulate effector TFs like
NEUROD2, POU2F2 and GLI3 thereby driving later
neuronal differentiation, maturation and migration.

Clustering approach to link gene expression programs
to cell fate decisions

We observed extensive heterogeneity in glial cell
populations, corresponding to distinct yet partially
overlapping expression programs in the identified cell
clusters (Figures S8A and S8B). To develop a high-
resolution map of glial populations, we adopted an
analysis to identify modules of co-expressed genes. We
generated pseudobulk data sets from a k-nearest neighbor
(KNN) graph of glial cells, then performed fuzzy c-means
clustering on the most variable genes to fractionally
assign genes to modules (Figures 4A and S8C left; Table
S16). This approach allowed for cells to be annotated with
module activities, and for genes to be shared between
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multiple modules (Figures S8§C and S8D; Tables S17 and module to another across differentiation. To visualize
S18). This enabled us to explore the relationships between these relationships, we further embedded these cell
modules and to explore how cells may progress from one loadings into a low-dimensional representation of the
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Figure 4: Regulatory logic of glial cell specification (A) Schematic illustrating the approach used for clustering and reprojection of glial cells by their
gene expression. Points in the bott om panel correspond to pseudobulk aggregates of 50 cells. (B) Heatmap of module expression across pseudobulk
aggregates, showing variation by cluster, sample age, and pseudotime. (C) Heatmap showing the expression of selected genes across the same
pseudobulks. (D) The mean scaled expression of selected gene modules is shown in the low-dimensional UMAP embedding. Figure S9B shows all
modules. (E) Projection of module centroids into UMAP space. Pseudobulk samples are colored by pseudotime. Module overlap is shown by lines
between centroids and was computed by thresholding the pairwise Jaccard index at > 0.2. (F) Module membership and expression values for factors
associated with the three main differentiation programs observed through the glial modules. Module membership scores denote the respective gene’s
quantile of membership after zero values are excluded. (G) As in F, for ASCL1, HES4 and OLIG1, factors associated with neuronal intermediate
progenitors, astrocytes and oligodendrocytes, which appear as endpoints in this clustering approach. (H) As in F for genes associated with the oIPC
cluster of cells and modules m12, m4 and m1. (I) IHC of PCW21 human cerebral cortex showing expression and colocalization (white arrowheads) of
ASCL1, OLIG2, and EGFR in cells of the SVZ, oSVZ, outer and inner fiber layers (OFL, IFL) and SP. (J) Module membership and expression values
for PDGFRA and SPARCLI, associated with modules m4 and ml, respectively. (K) IHC of PCW21 human cerebral cortex showing expression and
colocalization (white arrowheads) of SPARCL1 and PDGFRA in cells of the SVZ, 0SVZ and outer and inner fiber layers (OFL, IFL).
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differentiation landscape (Figure 4A, bottom). The
structure of this embedding and the underlying module
assignments was stable to fuzzy clustering parameters
(Methods).

To understand the biological basis of these modules,
we first examined their expression across cell clusters,
developmental stage, and pseudotime (Figure 4B), which
was rooted in cycling (“Cyc”) cells and correlated with
developmental time (Pearson r = 0.67, P < 2e-16; Figure
S8E; Methods). Glial maturation genes FOXJI, AQPA,
and MBP, which are markers for ciliated ependymal cells,
astroglia, and oligodendrocytes, respectively (Barbarese
et al., 1988; Jacquet et al., 2009; Zhang et al., 2016), were
expressed in late-pseudotime cells and assigned primarily
to modules m5, m2, and m7. In contrast, the expression of
genes associated with cell division and progenitor states,
such as TOP2A4, NR2F1, and NFIC, peaked early in
pseudotime and were assigned primarily to modules m10,
m6, and m3 (Figures 4C and S9A). Some modules
spanned many pseudobulk samples and developmental
ages, such as m6 and m8, indicative of sustained
longitudinal expression programs, while others were
restricted to a few samples or stages, like m5 and m14
(Figures 4B, 4D and S9B). Modules exhibited distinct
GO enrichments, including “cation and metal ion
binding” in m6, which may be related to the role of human
astrocytes in metal ion homeostasis (Vasile et al., 2017;
Zhang et al., 2016), and disease associations (Figures
S9C and S9D). Module m35, comprising FOXJI" cells,
was enriched for dynein binding and microtubule activity,
consistent with the role of ependymal cilia in circulating
the cerebrospinal fluid (Ransom, 2012). When we
assessed the expression of some of the genes found in
these modules by immunohistochemistry, we found that
the transcription factor TFAP2C, which associated with
module m6, was expressed in progenitors in the VZ and
SVZ (Figures S10A and S10B). Similarly, PBXIPI,
which was associated with m2, was expressed in radial
glia in the VZ and SVZ, but not in more mature astrocytes
in the CP (Figures S10C and S10D). CRY AB, associated
with m9, was expressed in tRG in the VZ, as previously
described (Figures S10E and S10F) (Nowakowski et al.,
2016).

Our clustering and reprojection approach enabled us
to compute the degree of gene overlap between modules,
which provided a measure of module similarity across our
glial landscape (Figure S10G). To visualize these
relationships, we computed the weighted average of
module gene expression across pseudobulk aggregates
and plotted these “module centroids” and their
connectivity (Jaccard index > 0.2) in the embedding,
along with pseudobulks and their pseudotime values
(Figure 4E). Investigation of module memberships in this
representation revealed three broad programs emanating
from the cycling cluster: (1) an ASCLI" program

associated with m3 and m8 and terminating in EOMES"
nlPCs, (2) a HES4" program associated with module m6
and terminating in astrocytes and ependymal cells, and (3)
an ASCLI'/OLIGI" program associated with m12, ml,
and m4, branching into two endpoints (Figures 4F and
4G). The ASCLI"/OLIGI" program was of particular
interest, as it corresponded to the oIPC cluster of cells,
which expressed markers associated with both astroglia
(GFAP, HOPX, EGFR, ASCLI) and oligodendrocyte
progenitors (OLIG2, PDGFRA), suggestive of acommon
multipotent glial progenitor (Figures 4H and 4J). To
validate the presence of these cells in situ, we performed
immunohistochemistry for ASCL1, OLIG2 and EGFR in
PCW21 cerebral cortex (Figures 41, S11 and S12). We
found that these proteins were often colocalized in the
SVZ/IFL, oSVZ/OFL and SP. Next, we reasoned that, if
generated from a common glial progenitor, astrocyte and
oligodendrocyte precursors might also share expression
of markers associated with more differentiated states. To
test this, we performed immunohistochemistry for
PDGFRA and OLIG2, markers associated with
oligodendrocyte progenitors, and SPARCL1, which is a
marker associated with mature astrocyte identity (Zhang
et al., 2016) (Figures 4K and S13), and found that they
indeed also colocalized in the SVZ/IFL and oSVZ/OFL.
We speculate that a subpopulation representing a
common multipotent glial progenitor, competent to
differentiate into both astrocytes and dorsal forebrain-
derived oligodendrocytes, could explain this substantial
overlap of expression programs.

Chromatin and gene expression profiles identify two
astrocyte precursor populations

Human cortical astrocytes are larger, more
morphologically complex (Oberheim et al., 2009; Zhang
et al., 2016), and likely more diverse than those of other
mammals (Vasile et al, 2017). However, the
developmental steps underlying the diversification of
human astrocytes are unknown. We observed three
interconnected fuzzy gene modules, largely derived from
PCW24 tissue, expressing AQP4, TNC, ALDH?2, and
APOE, and other genes specifically expressed in
astrocytes (m2, m13, m14) (Sloan et al., 2017; Wiese et
al., 2012; Zhang et al., 2016) (Figures SA, S14A and
S14B). To test whether these transcriptionally related yet
distinct subpopulations are associated with different
regulatory factors, we computed differential motif
enrichments between enhancers linked to genes in two of
the modules: m13 versus m14. We found that the bHLH
factor motifs ASCL1 and NHLH1 were enriched in
module m13, while SOX21 was enriched in m14 (Figure
5B). In our glial cells, the accessibility of ASCL1 and
NHLH1 motifs correlated best with the gene expression
of bHLH factor OLIGI (Spearman rho = 0.34 and 0.36,
respectively), and we have previously nominated SOX21
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Figure 5: Astrocyte precursor heterogeneity. (A) Module membership and scaled gene expression of astrocyte-associated genes AQP4, TNC,
ALDH?2 and APOE showing that modules m2, m13 and m14 connect astrocytes. (B) Motif enrichments in peaks linked to module 13 genes relative to
peaks linked to module 14. (C) Re-clustering of samples in fuzzy clustering embedding. AQP4 positive clusters are highlighted and defined as Al-
HES and A2-OLIG. (D) Differential gene expression between A1-HES and A2-OLIG clusters, calculated using DESeq?2. A threshold of Benjamini-
Hochberg corrected FDR of 1e-20 was used for visualization (blue). (E) Reanalysis of an orthogonal human fetal sScRNA-seq dataset (Bhaduri et al.,
2020). Shown is a UMAP of astrocytes colored by cortical area. (F) Mean scaled expression of modules m13 and m2 in orthogonal data, showing
partition of module expression into unbiased divisions in the astrocyte UMAP (top), and of the top 200 differential genes from D (bottom).

as a potential regulator of astrocyte maturation in long-
term cortical organoid cultures (Trevino et al., 2020).
Thus, two distinct astrocyte-like expression patterns
could be distinguished by the chromatin accessibility of
OLIG1 versus SOX21 motifs.

To examine the differences between cells expressing
these modules in more detail, we clustered pseudobulk
aggregates to compare cell subsets, and computed
differential gene expression between the astrocytic cell
clusters AI-HES and A2-OLIG, corresponding to
expression of modules m2/14 and ml3, respectively
(Figures 5C and SD; Table S19). Cluster A1-HES
exhibited significantly higher expression of HES4 and
CAV2, while A2-OLIG was characterized by increased
SPARCLI, ID3, and IGFBP?7 expression (Figures 5D and
S14C). To determine if these distinct astrocyte precursor
subtypes were due to the sampling of different cortical
areas, we used an independent, previously published
scRNA-seq dataset of the developing human cortex
(Bhaduri et al., 2020) to generate a low-dimensional
representation of astroglia (Figures SE and S14D). Using

this dataset, we visualized the expression of genes
identified in our analysis, either from astrocytic modules
(m13, m14) or by taking the top 200 most differentially
expressed genes from glial cell populations. We found
that these gene sets were expressed in distinct cell
populations in the independent data set and that this
different was not explained by differences in cortical area
(Figure SF).

Chromatin state links GPCs to lineage determination
in cycling cells

We next examined how the chromatin state of progenitor
cells could potentially affect the acquisition of expression
programs characteristic of more differentiated cell states.
We therefore focused on the heterogeneity among cells
that expressed gene modules strongly associated with cell
cycle signatures (Figure 6A; Pearson r = 0.89, 0.91
respectively). To link chromatin accessibility to the glial-
centric expression map, we generated pseudobulk data
sets by sampling local neighborhoods (50-cells) from
13,378 glial scATAC cells. We projected these ATAC-
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seq pseudo-bulk samples into our gene expression
module-derived manifold using accessibility-derived
gene activity scores. Consistent with our CCA cluster
matching analysis (Figures 2B and S5), pseudobulks
comprised mainly of cells from ATAC cluster cl5
(OPC/Oligo) projected into the oligodendrocyte endpoint
of this map; cluster ¢c10 (oIPC) data projected into the
ASCL17/0OLIG2" astrocyte compartment; and cluster c9
(late RG) data projected into both ependymal and HES4"
astrocyte endpoints (Figure 6B). However, while no
distinct cycling cluster was formed in the independent
ATAC-seq clustering, a subset of these ATAC-seq
pseudobulk samples projected into the cycling, early-
pseudotime compartment of the RNA-seq embedding.
These samples partitioned into three distinct branches
defined by their scATAC cluster assignments (Figure
6C; branches A, B, and C). We speculate that strong cell
cycle signatures in RNA-seq may have diminished these
distinctions that are more clearly seen in ATAC-seq data,
and that analyzing these separate branches might allow us
to determine if cycling progenitors are poised towards
distinct post-mitotic fates, and what factors influence
these fate decisions.

A B

Cell cycle signature in RNA-seq

Correlation with
cell cycle signature

1,267 ATAC

Projection of ATAC pseudobulks into FCM space

To explore factors that influence these fate decisions,
we identified the 50 most unique genes for each branch
based on their gene activity scores (Methods). Strikingly,
we observed a strong overlap of these genes with the set
of GPCs, including HESI, RFX4, OLIGI, OLIG2,
NEURODG, and EOMES. Overall, differential chromatin
activity in all three branches of cycling cells was enriched
for GPCs (Kolmogorov-Smirnov test, P = 1.6e-13, 1.8e-
1, and 5.1e-15, respectively; Figure 6D). For TF GPCs,
we computed target motif enrichments across branches,
as well as matching gene expression values (Figure 6E).
Each branch contained at least one basic helix-loop-helix
(bHLH) GPC TF in the top 5 most unique genes
(BHLHE40, OLIG1, OLIG2, NEUROD6, NEUROD#).
The similarity of annotated motifs for these factors is
consistent with the hypothesis that they can compete for
similar binding sites to drive multiple distinct cell fates,
as has been previously suggested (Imayoshi et al., 2013;
Zhou and Anderson, 2002). Together, these results
suggest that differential chromatin activity as well as gene
expression of GPCs appear to be prominent features that
distinguish different types of cycling glial progenitor
cells.
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cluster, and in the neighborhood of cycling-associated modules. Branches are defined. (D) Heatmap showing the 50 most uniquely active genes in
branches A, B and C. Gene activities are row-scaled. GPCs are shown to the right of heatmap as orange bars. Select GPCs, which are also TFs, are
highlighted. The P-value of a Kolmogorov-Smirnov test for enrichment of GPCs in differential, branch-specific genes is shown, *** indicates that P <
le-10. (E) Dynamics of GPC motifs and gene expression across three branches of cycling cells. Heatmaps represent enrichment of GPC TF motifs
(left) and gene expression levels (right) in branch aggregates. (F) Reprojection of branch A, B, and C using only chromatin accessibility associated
with GPCs, showing specific alignment into more mature states. (G) Projection of multiome scRNA data into fuzzy clustering embedding. Cells (points)

are colored by the corresponding multiome scATAC cluster.
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We investigated if these GPCs, which were both
highly connected to dense collections of regulatory
elements and highly enriched for lineage-defining
transcription factors, might be indicators of the eventual
differentiation end point, and thus possibly drive
differentiation in the pseudotime trajectory. When we re-
projected ATAC-seq pseudobulk samples from A, B, and
C cycling population branches by only using GPC-
associated chromatin signals, we observed that samples
remapped to more mature expression states, which were
associated with later pseudotime annotations (Figure 6F).
In contrast, reprojections using random gene subsets or
modules of genes moved non-specifically towards the
center of the manifold (Figure S15). This observation
suggests that chromatin patterns linked to GPC genes in
these cycling cells already exhibit a signature of an
advanced transcriptional cell state. We then projected the
scRNA data from the joint multiome data set into the
module-based manifold, and then transferred the
corresponding scATAC cluster labels to these cells.
Consistent with the singleome data, cells projecting to the
cycling domain exhibited distinct accessibility signatures
of more terminally differentiated cells from each branch
in the same cells (Figure 6G). Based on these results, we
propose that during corticogenesis, progenitors entering
the cell cycle may be epigenetically primed toward future
cell fates, and that this information is encoded specifically
in GPCs, a set of genes with large numbers of linked
enhancers that is enriched for lineage-defining TFs.

Deep learning models prioritize disruptive noncoding
mutations in ASD

We next aimed to use this accessibility and gene
expression atlas to interpret non-coding de novo
mutations in ASD using data from the Simons Simplex
Collection, which includes a catalog of over 200,000 such
mutations in 1,902 families (An et al., 2018) (Table S20).
Naive overlap of mutations with cluster-specific sScATAC
peaks produced no enrichment for mutations in ASD
subject relative to those in unaffected siblings (odds ratio
(OR) = 1.02 for GluN6 cluster, Fisher’s Exact Test P =
1.0; Figure S16A), indicating that peak-level annotations
alone are insufficient to resolve a sparse set of causal
mutations.

Deep learning models trained to relate genomic
sequence to chromatin accessibility have proven useful
for prioritizing disease-relevant non-coding genetic
variants based on their predicted regulatory impact
(Kelley et al., 2016, 2018; Zhou and Troyanskaya, 2015).
We therefore trained convolutional neural networks,
based on the recent BPNet architecture, to learn models
that could predict base-resolution, pseudo-bulk chromatin
accessibility profiles for each of our scATAC-seq derived
cell types (Figure 7A) (Avsec et al., 2020). These models
utilize DNA sequence across 1000 bp flanking each peak

summit to predict 5° Tn5 insertion counts profiles at
single-nucleotide resolution (Methods). To correct for
potential sequence composition biases, we trained the
models on peak regions and genomic backgrounds
matched for GC content and motif density (Figure S16B).
The models showed high and stable correlation between
total predicted and observed Tn5 insertion count coverage
across all peak regions in held-out chromosomes across
five-folds of cross-validated models (e.g., GluN6, mean
Spearman rho = 0.58; Figure S16C, Table S21). Next, to
predict cell context-specific effects of a candidate
mutation on chromatin accessibility, we used our cluster-
specific BPNet models to compute local disruption score
based on the allelic fold-change in predicted counts in a
200 bp window around the mutation (Methods). We
computed cluster-specific enrichment of high-effect size
mutations in cases versus controls and observed
significant enrichments (> 1.2-fold) for GluN2/3/4/6/9, as
it has been previously indicated (Gandal et al., 2018; Li et
al., 2018a; Parikshak et al., 2013; Trevino et al., 2020,
Willsey et al., 2013). Moreover, we found an association
with IN2/3/4, nIPC, late RG and early RG clusters, with
early RG cluster showing the highest enrichment (OR =
1.909, excess of 20, Fisher’s exact P < 0.05; Figure 7B;
Table S22). In contrast, BPNet models trained on human
fetal heart enhancers produced no enrichment (OR = 1.01,
P =1.0), and naive overlap enrichment with a set of fetal
heart enhancers also produced no enrichment for case
mutations (OR = 0.97, P = 1.0; Figure 7C). Together,
these results illustrate the power for prioritizing putative
causal non-coding mutations by utilizing mutation effect
scores from base pair-resolution predictive models trained
on chromatin accessibility landscapes in disease-relevant
cell states.

The case and control mutations prioritized by the
BPNet models similar conservation scores and similar
distances to the nearest TSS (Figures S16D and S16E),
further highlighting the challenge of identifying these
causal mutations by other means. Annotating the
predicted high effect size mutations with their nearest
genes (Methods), we observed a 1.4-fold enrichment for
case mutations (n= 24) whose nearest gene was in the
SFARI database compared to the control mutations (n =
17); Figure 7D). Next, we identified TF motifs that
overlapped and were predicted to be disrupted by all the
high-effect-size mutations from the BPNet models from
all positively enriched clusters (Methods, Figure 7E,
Table S23). We found that CTCF, which demarcates
topological loop boundaries, was one of the most
frequently disrupted motifs in cases versus controls. The
NRF1 motif was another frequently disrupted motif. NRF
regulates the GABA receptor subunit GABRBI, which
has been previously implicated in neuropsychiatric
diseases (Li et al., 2018b). Other frequently disrupted
motif families in cases relative to controls included E-
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box/bHLH family motifs (ASCL1, NEUROD6) and
homeobox family (PAXS5) motifs, with more lineage-

One highly disruptive mutation in our models was
in an intron of NFIA, a key transcription factor active

specific effects.

across developmental stages (Figures 7F and S16F).
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Figure 7: Legend on next page.
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Figure 7: Disease association of gene regulatory elements. (A) Schematic of deep learning mutation prioritization pipeline for ASD-associated
mutations from the Simons Simplex Collection (SSC). Model inputs and output, bias correction, and thresholding are shown. (B) Cluster-specific
BPNet enrichments visualized in scATAC UMAP. (C) Bar plot showing the enrichment of cases versus controls using different prioritization methods.
Colors represent the baseline of all cleaned SSC mutations (grey), this sScATAC-seq dataset (green) and a set of fetal heart enhancers (orange). BPNet
models trained on cerebral cortex scATAC enrich for case mutations; OR = 1.909, Fisher’s exact test P = 0.01. (D) Bar plot showing the number of
prioritized mutations whose nearest gene is a SFARI gene. All SFARI genes were included. Cases (111) versus controls (76) are compared to the total
number of prioritized mutations in cases (2051) versus controls (1749). (E) Bar plot showing the motifs that were most frequently disrupted in case
mutations relative to control mutations. The y-axis denotes the excess of overlaps with motifs by prioritized mutations in cases and controls. (F)
Example showing a disruptive case mutation in an intron of NFIA. The consensus logos show the importance of residues to predicted accessibility at
the mutation in a 100 bp window flanking the mutation. Underneath, genome tracks indicate predicted per-base counts for ref (blue) and alt (red) alleles
in a 1000 bp window flanking the mutation. At bottom, the NFIA4 locus is shown. Tracks display the aggregate accessibility of SCATAC clusters. (G)

Example showing a disruptive case mutation at the NPY locus, as above.

Loss of function mutations in this gene have previously
been implicated as causal in ASD (lossifov et al.,
2014). The mutation was in a linked intronic enhancer
for the NFIA target gene. We observed that this
enhancer was specifically accessible in different types
of cortical glutamatergic neuron clusters. The BPNet
model for GluN6 predicts the mutation disrupting an
NFIA motif, suggesting this mutation may dysregulate
the NFIA gene expression via auto-regulatory
feedback.

In the nIPC cluster, the BPNet model predicted a
disruptive de novo mutation in an intergenic enhancer
linked to the neuropeptide Y gene (NPY) whose TSS
was 90 kb away from the mutation (Figure 7G). NPY
is expressed in the subplate (Miller et al., 2014) and in
early RG in the mid-gestation human cortex (Figure
S16G), and genomic deletions of the NPY receptors
have been associated with ASD (Ramanathan et al.,
2004). The model further predicted this de novo
mutation to disrupt a CTCF binding site at a chromatin
loop anchor, suggesting a potential mechanistic impact
on the chromatin architecture of this locus.

DISCUSSION

Here, we generate paired transcriptome and epigenome
atlases of corticogenesis across multiple time points
during a critical period of cortical development, and we
describe how molecular interactions between DNA
binding factors and cis-regulatory elements regulate
gene expression programs that ultimately drive
neurogenesis and gliogenesis. Furthermore, we
describe how rare non-coding, de novo mutations may
act to disrupt this logic, linking human genetic
variability to neurodevelopmental disease states.

We identified a set of genes (GPCs) whose local
chromatin accessibility was predictive of expression
levels using signals derived from single cells, possibly
because of the large number of enhancers with
accessibility that correlates with gene expression
changes. These GPCs were significantly enriched for
lineage-defining TFs. The large groups of enhancers
linked to key cell-specific genes are evocative of other
terms that have been used for similar phenomena,

including “super enhancers” (Parker et al., 2013;
Whyte et al., 2013) and “super-interactive promoters”
(Song et al, 2020). Furthermore, chromatin
accessibility of GPCs was consistent with a more
differentiated cell state in a population of cycling
progenitor cells. Recently, Ma et al. (Ma et al., 2020)
reported a similar phenomenon by which accessibility
at similarly-defined domains of regulatory chromatin
delineate potential future cell states. We speculate that
the coordinated regulatory effect of many enhancers of
these lynchpin differentiation genes may help these
lineage defining factors become more resistant to
regulatory noise. We speculate that highly cooperative
regulation of lineage determining trans-acting factors
may be a general principle of fate determination,
allowing cellular fate to be “locked in” by multiple
correlated regulatory elements once the fate decision
has been made. Effectively, such a cooperative
transition might act as a ratchet, preventing
backtracking along a differentiation landscape.

Examining the trajectories of glutamatergic neuron
migration and maturation in our data, we found a
molecular program that was surprisingly consistent
across 8 weeks of gestation, defined by a sequence of
motifs that included ASCLI1, GLI3, SOX family,
EOMES, NFI family, POU3F3, NEUROD2 and
MEF2C. Differences in neuronal regulatory activity
across pseudotime were more pronounced than
differences between developmental stages. We further
found distinct patterns of co-accessibility and
regulatory interactions between TFs early in
pseudotime, whereas gene TFs appeared to act more
independently later in pseudotime.

Moreover, we found substantial sharing of TF-
regulated gene expression programs amongst glial cells
by decomposing these programs into overlapping
modules. Notably, we found substantial overlap
between gene modules containing canonical markers
for astrocytes and oligodendrocytes, suggesting a
lineage relationship. We validated the co-expression of
several of these genes in situ in human cerebral cortex.
A similar relationship was true for modules associated
with astrocytes and ependymal cells. We also provided
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evidence for the existence of two lineages of astrocyte-
like glial precursors at or before PCW24, which could
align with diversity of these cells in primates (Vasile et
al., 2017). Although glial modules were broadly
interconnected, we found that the chromatin activity of
GPCs in cycling cells was predictive of specific
differentiated states, suggesting that progenitors
entering the cell cycle are already primed towards
distinct lineages.

Finally, our map of chromatin regulation across
these distinct cell types provided a rich data set for
training interpretable, cell-type specific deep-learning
models that link DNA sequence to chromatin
accessibility. These models can be used to read the
potential regulatory impacts of de novo mutations,
allowing the prioritization of high impact noncoding
mutations and generating strong enrichments of
mutation occurrence in cases over controls. The
modeling of the regulatory potential of individual base
pairs at different stages of development was crucial to
enable the identification of these putative causal
mutations, as simple overlap with open chromatin
regions did not provide the required specificity. Indeed,
using our model, we observed enrichments of
mutations in cases versus controls that approached
levels observed for deleterious protein-coding
mutations (An et al., 2018). Furthermore, combining
these models with our single-cell atlas allows for the
principled interpretation of where in development
highly disruptive mutations tend to occur. We
anticipate that as more large-scale ATAC-seq and
RNA-seq data sets across development become
available, similar approaches will provide the means to
accurately interpret the gene-regulatory impact of non-
coding de-novo mutations associated with a broad
diversity of other developmental disorders.
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MATERIALS AND METHODS
Human tissue

Human brain tissue was obtained under a protocol approved by the Research Compliance Office at Stanford University.
Cortical tissue was processed immediately after arrival.

Single cell dissociation and single cell RNA-seq data generation

Dissociation of human tissue into single cells was performed as described with some modifications (Sloan et al., 2017;
Trevino et al., 2020). Briefly, tissue was chopped and incubated in 30 U/ml papain enzyme solution (Worthington, LS03126)
and 0.4% DNase (12,500 units/ml; Worthington, LS002007) at 37 °C for 45 minutes. After digestion, samples were washed
with a protease inhibitor solution and gently triturated to achieve a single cell suspension. Cells were resuspended in 0.02%
BSA/PBS and passed through a 70 pum filter before proceeding to single-cell sample preparation. Single-cell libraries were
prepared using the RNA 3’ v3 protocol (10x Genomics), loading 7,000 cells per lane.

ATAC-seq data generation

For ATAC-seq, nuclei were prepared on ice or in a centrifuge at 4 °C. All centrifugation steps were run for 5 minutes at 500
x g. 100,000 dissociated cells were washed in ice-cold ATAC-seq resuspension buffer (RSB, 10 mM Tris pH 7.4, 10 mM
NaCl, 3 mM MgCl,), spun down, and resuspended in 100 pL. ATAC-seq lysis buffer (RSB plus 0.1% NP-40 and 0.1%
Tween-20 (Thermo Fisher). Lysis was allowed to proceed on ice for 5 minutes, then 900 pL RSB was added before spinning
down again and resuspending in 50 uL 1X Nuclei Resuspension Buffer (10x Genomics). A sample of the nuclei was stained
with Trypan Blue and inspected to confirm complete lysis. If necessary, cell concentrations were adjusted prior to starting
single-cell droplet generation with the ATAC-seq NextGEM kit (10x Genomics). 4,000 nuclei were loaded per lane.

Multiome data generation

For multiome single cell data, nuclei were prepared as above for ATAC-seq with minor changes. Specifically, 0.01%
digitonin was added to the lysis buffer, and 2 U/uL. RNAse inhibitor (Roche) was added to all nuclei preparation buffers.
After nuclei preparation, droplets and single cell libraries were prepared using the Single Cell Multiome ATAC + Gene
Expression kit (10x Genomics) and 4,000 nuclei were loaded per lane.

scRNA processing

Raw sequencing data were converted to fastq format using the command ‘cellranger mkfastq’ (10x Genomics, v.3.1.0).
scRNA-seq reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger count’ (10x
Genomics, v.3.1.0). “Velocyto’ (v.0.17.17) (La Manno et al., 2018) was used to obtain splicing-specific count data for
downstream RNA velocity analysis.

Count data was further processed using the ‘Seurat’ R package (v.3.1.4) (Stuart et al., 2019), using Gencode v.27 for
gene identification. We removed cells with less than 500 informative genes expressed, cells with less than 500 sequenced
fragments and cells with more than 40% of counts corresponding to mitochondrial genes. Genes not contained in the
Gencode annotation were excluded from further analysis. We performed doublet analysis using the ‘DoubletFinder’ R
package (v.2.0.2) (McGinnis et al., 2019), but did not find clear evidence of cell doublets biasing our unsupervised analysis
and therefore did not apply doublet filtering. Count data was log-normalized and scaled to 10,000. PCA analysis was based
on the 2,000 most variable genes. The top 50 principal components (PCs) were retained for further analysis, excluding one
component because it was strongly associated with the expression of more than 5 genes related to cell stress (HSPA, JUN,
FOS, DUSP gene families). Nearest neighbors were computed based on the PC representation, and 23 clusters were
identified using Louvain clustering implemented in Seurat’s ‘FindClusters’ function (‘resolution=0.5"). 2-dimensional
representations were generated using uniform manifold approximation and projection (UMAP) (Mclnnes et al., 2020) as
implemented in Seurat and the ‘uwot’ R packages (v.0.1.8; parameter settings: ‘min.dist=0.8’, ‘n.neighbors=50’, ‘cosine’
distance metric).

scATAC processing

Raw sequencing data were converted to fastq format using ‘cellranger-atac mkfastq’ (10x Genomics, v.1.2.0). scATAC-seq
reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Genomics,
v.1.2.0).

Fragment data was further processed using the ‘ChrAccR’ R package (v.dev.0.9.11+). We filtered out cells with less
than 1,000 or more than 50,000 sequencing fragments. TSS enrichment was computed as a metric of signal-to-noise ratio
using methods described in (Granja et al., 2019) and we discarded cells with a TSS enrichment less than 4. Fragments on
sex chromosomes and mitochondrial DNA were excluded from downstream analysis.
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In order to obtain a low dimensional representation of single-cell ATAC datasets in terms of principal components and
UMAP coordinates, we applied an iterative latent semantic indexing approach (Granja et al., 2019). This approach also
identified 22 cell clusters and a consensus set of 657,930 cluster peaks. In brief, in an initial iteration clusters were identified
based on the 20,000 most accessible Skb-tiling regions. Here, the counts were first normalized using the term frequency -
inverse document frequency (TF-IDF) transformation (Cusanovich et al., 2018), and singular values were computed based
on these normalized counts. Initial clusters were identified based on the top 25 singular values using Louvain clustering (as
implemented in the Seurat package, resolution parameter = 0.6), excluding the first singular value as it exceeded a
correlation coefficient of 0.5 with read depth. Peak calling was then performed on the aggregated insertion sites from all
cells of each cluster using MACS2 (v2.1.1). A consensus set of peaks uniform-length non-overlapping peaks was obtained
by selecting the peak with highest score from each set of overlapping peaks. In a second iteration, the 50,000 peaks whose
TF-IDF-normalized counts exhibited the highest variability across the initial clusters provide the basis for a refined
clustering using the top 50 derived singular values. In the final iteration, the 50,000 most variable peaks across the refined
clusters were identified as the final peak set and singular values were computed again. UMAP coordinates and ATAC
clusters were determined based on the top 10 of these final singular values. 2-dimensional representations were generated
using UMAP as implemented in the ‘uwot’ R package (v.0.1.8; parameter settings: ‘min.dist=0.6’, ‘n.neighbors=50’,
‘cosine’ distance metric).

ChromVAR (Schep et al., 2017) (v.1.6) was used to obtain TF accessibility profiles using position weight matrices from
the JASPAR 2018 database (Khan et al., 2018). Gene activity scores were computed as the aggregated accessibility of TSS-
associated peaks using ‘ChrAccR’. For this, counts in peaks within 100,000 bp of a TSS have been summed up using weights
assigned by a radial basis function (RBF) with a width parameter sigma=10,000 bp, setting a minimum asymptotic weight
of 0.25. For each gene, the resulting scores were normalized by the sum of the weights. For visualization and downstream
analysis counts from single-cells have been rescaled to 10,000 counts and have been log;-normalized. For enhanced
visualization in 2-dimensional UMAP space, gene activity scores have been smoothed using the MAGIC diffusion algorithm
(van Dijk et al., 2018) with cell neighborhoods determined in singular value space.

We created ATAC signal tracks by summing insertion counts in cluster pseudobulk samples in 200bp genomic tiling
windows and provide trackhub compatible with the WashU Epigenome Browser (http://epigenomegateway.wustl.edu)
containing these profiles in addition to inferred CRE-gene links.

Multiome data processing

Raw sequencing data were converted to fastq format using ‘cellranger-arc mkfastq’ (10x Genomics, v.1.0.0). scATAC-seq
reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger -arc count’ (10x Genomics,
v.1.0.0).

RNA count data was further processed using ‘Seurat’ as described above, with the exception that all 50 principal
components were retained. This resulted in 9,818 cells after filtering, which were assigned to 14 clusters in the unsupervised
analysis. ATAC fragment data was further processed using ‘ChrAccR’ as described above, resulting in 9,091 cells post-
filtering, assigned to 16 clusters and a consensus peak set of 467,315 elements. Jointly applying ATAC and RNA filters
resulted in 8,981 cells with high-quality measurements across both modalities.

Matching of single-cell transcriptomes and epigenomes

Canonical correlation analysis (CCA) as implemented in Seurat has been applied to matched single-cell RNA and ATAC
data from each gestational time point individually. For this purpose, we computed log-normalized and scaled gene activity
scores as surrogates for gene expression in the cells profiled by scATAC-seq. As integration features, we used the union of
the 2,000 most variable genes in each modality as input to Seurat’s ‘FindTransferAnchors’ function with reduction method
‘cca’ and parameter ‘k.anchor=10’. For each cell profiled by scRNA-seq and each cell profiled by scATAC-seq we
identified the nearest neighbor cell in the respective other modality by applying nearest-neighbor search in the joint CCA
L2 space. Nearest neighbors were determined using the ‘FNN’ R package employing the ‘kd_tree’ algorithm with Euclidean
distance. These nearest-neighbor-based cell matches from all gestational time points were concatenated to obtain dataset-
wide cell matches across both modalities.

Linking gene regulatory elements and gene expression across all cell types

We identified peak-to-gene links using a correlation-based approach (Corces et al., 2018) applied to pseudobulk samples
aggregating scATAC and scRNA counts. These pseudobulk samples were defined by randomly sampling 200 cells from
the entire scATAC-seq dataset. These 200 seed cells were combined with their respective 99 nearest neighbor cells in
ATAC-PC space, such that each pseudobulk sample comprised 100 cells in total. Pseudobulk ATAC insertion counts for
peaks were obtained by summing peak insertion counts across the respective single-cell members. Matching RNA cells
were obtained by selecting the 100 scRNA cells that resembled nearest neighbors to the 100 ATAC cells in CCA space.
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Pseudobulk RNA gene counts were obtained by summing gene counts across the respective single-cell members. Similarly
in the multiome dataset, 200 pseudobulk samples of 100 cells each were sampled from the ATAC modalitity, and the same
cells were aggregated in RNA space. Each matched pseudobulk sample was annotated with the majority cluster and age
assignments of its contingent RNA and ATAC cells respectively.

We then obtained candidate peak-gene pairs by associating peaks with a genomic distance between 1 and 250 kb to the
TSS of protein coding and lincRNA genes to the respective genes. For each candidate peak-gene pair we computed the
Pearson correlation coefficient of CPM-normalized counts of accessibility and gene expression data and computed FDR-
adjusted P-values for these coefficients based on their #-statistic. We defined a set of 64,878 high-confidence peak-to-gene
links by only retaining pairs with |PCC| > 0.4 and FDR-adjusted P-value < 0.05. Using the same method, a corresponding
set of 76,374 links was obtained for the multiome data. Overlap between inferred and multiome peak-gene links was
computed by creating “Genomiclnteraction” objects for each, with the peak as the first anchor and the gene promoter as the
second, then applying the function ‘findOverlaps’ with parameter “use.region = ‘both’”’.

Projection of external datasets into the scRNA landscape

We retrieved scRNA data from the developing human cerebral cortex (Bhaduri et al., 2020). We downloaded the normalized
data from the UCSC Cell Browser (https://cells.ucsc.edu; dataset ID: ‘organoidreportcard/primary10X’) and the data was
read into a Seurat object using custom R scripts. We then projected the data into our scRNA UMAP space using the ‘uwot’
model stored in our dataset, i.e. we used an identical principal component gene loadings and “‘uwot’ model parametrization.
This UMAP space representation allowed us to assign a nearest neighbor from our scRNA cells to each cell in the external
dataset. Cell annotation (pseudotime, cell cluster, etc.) were transferred from these nearest neighbors. Jaccard indices were
computed between the transferred annotation and the downloaded external metadata.

Similarly, we downloaded 10x Genomics scRNA data from the Allen Brain Map (https://portal.brain-map.org/atlases-
and-data/rnaseq). The downloaded raw count data was read into a Seurat object and processed using the same steps and
parameters used for processing our scRNA data. Projection and annotation transfer were done in the same way as for the
external developing brain dataset. For Figure S7, we restricted the projection to cells labelled as excitatory neurons (‘Exc’)
in the external cell metadata.

Projection of multiome data into the scRNA and scATAC landscapes

Based on the RNA-based gene counts, we projected the multiome data into our scRNA UMAP space using the ‘uwot’ model
stored in our scRNA dataset, i.e. we used an identical principal component gene loadings and ‘uwot’ model parametrization.
Similarly, multiome cells were projected into sScATAC UMAP space based on the ‘uwot’ model derived from the scATAC
dataset using the same peak loadings. We used these projections to assign a nearest neighbor from our scRNA cells or
scATAC cells to each cell in the multiome dataset. Cell annotation (pseudotime, cell cluster, etc.) were transferred from
these nearest neighbors.

Identification of genes with predictive chromatin (GPCs)

The definition of GPCs is primarily based on high gene activity-expression correlations across single cells. To make this
analysis more robust to technical variation, we restricted our analysis to the most variable genes across dorsal forebrain cells
(1999 genes). Specifically, we used the “findVariableGenes” function from the URD package with parameters
“diffCV.cutoff = .15, mean.min = 0.004” (Farrell et al., 2018). For each variable gene, we computed Spearman’s correlation
coefficients between the vector of gene activity scores for ATAC cells and the vector of expression scores in the
corresponding nearest neighbor cells in RNA data. We also compared these correlations to the number of linked enhancers
per gene (see above). From this subset, we defined GPCs as genes in the top 10% of gene activity-expression correlations
that were linked to a minimum of 10 CREs.

Definition of RNA velocity and pseudotime in excitatory neuron trajectories

Excitatory neuron trajectories were defined based on RNA cells in selected clusters (cf. Table S6). We computed RNA
velocity using custom R scripts interfacing with the ‘scVelo’ toolkit (v.0.1.25) (Bergen et al., 2020) via the ‘reticulate’ R-
Python interface. For this, we exported the Velocyto-derived spliced and unspliced counts along with Seurat-derived PC
and UMAP representations of single cells as ‘AnnData’ objects. We filtered the dataset using the scVelo function
‘pp.filter and normalize’ (parameters: min_shared counts=10, n top genes=2,000) and computed moments using
‘pp-moments’ (n_pcs=30, n_neighbors=30). We then used ‘tl.velocity’ with mode="stochastic’ to compute cell velocities
and ‘tt.velocity graph’ to compute a velocity graph. Potential root and end point cells for the trajectory were computed
using ‘tt.terminal states’. To compute cell pseudotime scores, we employed a modified version of the scVelo function
‘tt.velocity pseudotime’. In contrast to the original version of the function which combines diffusion estimates from a
forward pass starting in the root cells and a backwards pass starting in the end point cells, this modified version only applies
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the forward pass starting in the root cells. This was necessary because scVelo-identified end point cells that were inconsistent
with our notion of trajectory. We re-imported the scVelo-derived cell annotations (velocity vectors, pseudotime, root and
end point probabilities) into the metadata of the R-based Seurat objects. Finally, cell pseudotime scores were rescaled to
their quantiles using the R function ‘ecdf’.

Additionally, in order to quantify when in pseudotime a gene is expressed we computed a weighted average pseudotime
value. We define this ‘gene pseudotime’ for each gene j as

Cij

Rt ckj’
where N=363 is the number pseudobulk samples used for linking regulatory elements to genes (see below), t; is the mean
pseudotime across all cells in pseudobulk sample 7, and ¢;; is the aggregate RNA count for pseudobulk sample 7 in gene .

Pseudotime of cells profiled using scATAC-seq were defined as the pseudotime of their nearest RNA-cell neighbor in
CCA space.

_ N
Tj = Li=1ti

Linking gene regulatory elements and gene expression in the excitatory neuron trajectory

To facilitate aggregate analysis along pseudotime, we obtained pseudobulk samples by sorting cells based on their
pseudotime scores and merging bins of 100 cells. The same correlation-based approach as used on all cell types (see above)
was applied to these pseudobulk samples, linking peaks to cluster-specific genes. These cluster-specific genes were
identified from the scRNA data of cells included in the excitatory neuron trajectory employing a Wilcoxon test as
implemented in Seurat’s ‘FindAllMarkers’ function and applying thresholds of 0.01 and 0 for test-derived P-values and
log(fold-changes) respectively. We retained links with accessibility-gene expression correlation coefficients with PCC >
0.4 and FDR-adjusted P-value < 0.05, which resulted in 13,989 high-confidence positively correlated peak-to-gene links
with specificity to the excitatory neuron trajectory. These links were clusters using k-means (k=5) clustering based on the
z-score-scaled expression levels of the associated genes. Enrichment analysis for these clusters were performed using the
‘topGO’ (v.2.36.0) R/Bioconductor package (Gene Ontology enrichment), Fisher’s exact tests on manually curated gene
sets and Fisher’s exact tests as implemented in the R/Bioconductor package ‘LOLA’ (Sheffield and Bock, 2016) (v.1.14.0)
for peak TF motif occurrences (based on genome-wide scans of JASPAR 2018 PWMs using the ‘motifmatchr’ R package).

Matching TF motifs to expressed TF genes in the excitatory neuron trajectory

To avoid correlation biases in closely-related TF motifs, we used a database of previously annotated clusters of putative
binding motifs (Vierstra et al., 2020). For each motif cluster, we computed the pairwise Pearson correlation coefficients
between chromVAR motif activity scores (computed from the annotated genome-wide sites of that cluster) and gene
expression of all genes attributed to motifs in that cluster (Figure 3H). These PCCs were computed across the same
pseudotime-pseudobulk samples that were used for CRE-gene linking. We then matched each gene to the motif cluster that
exhibited the highest correlation with that gene (Figure 3F). We identified 24 dynamic motifs clusters representing 31 TFs
whose gene loci are linked with at least one CRE and that exhibit high correlation coefficients of motif cluster activity and
TF expression (PCC > 0.4) for downstream analysis (Figure 3F-J).

Calculation of motif synergy and correlation scores

We used chromVAR to compute synergy and correlation scores for the above 24 dynamic motifs clusters. (Schep et al.,
2017). We used the ‘getAnnotationSynergy’ chromVAR function to compute synergy scores, which represent the excess
variability of chromatin accessibility in CREs that contain binding sites from two different motif clusters compared to a
random sub-sample of CREs which contains binding sites from only one of the motif clusters (the one with greater
variability). It thus suggests a co-dependence of TFs belonging to the two motif clusters. In order to assist in the
discrimination between this co-dependence and co-expression, we also computed motif correlation coefficients using the
‘getAnnotationCorrelation’ function in chromVAR, defined as the correlation between the deviation scores for the CREs
that only contain binding sites from only one or the other motif cluster.

Inference of TF regulatory networks

We established a network of TF regulatory linkages by testing whether CREs with TF motif occurrences exhibited
significantly better peak-to-gene linkages than CREs without the motif. In this network the nodes correspond to the 31
dynamic TFs in the excitatory neuron trajectory. We draw a directed edge between TF1 and TF2 iff the regulatory elements
linked to TF2 that contain binding sites for the motif cluster that TF1 belongs to exhibit significantly larger correlation
coefficients than regulatory elements that do not contain a binding site for TF1 (one-side Wilcoxon Rank Sum test P-value
<0.01).
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Fuzzy c-means: clustering and re-projection approach

For fuzzy clustering analysis, 1,267 seed cells were first selected at random from glial clusters (10% of single cells), with
the number selected proportional to the cluster size. Pseudobulk data sets were sampled by combining these cells with their
50 nearest neighbors in scRNA PCA space. Next, 1,957 variably expressed genes were determined using the function
‘findVariableGenes’ from the R package ‘URD’. A pseudobulk counts matrix was made by summing feature counts across
the respective single cell members comprising each aggregate.

Fuzzy c-means clustering was performed on this pseudobulk matrix using the function “cmeans” from the R package
‘1071 with parameters ¢ = 14 and m = 1.25, resulting in a gene-by-module “membership matrix” and a sample-by-module
“centers matrix”. To determine a ‘fixed’ or binarized module membership for downstream analyses, we defined a threshold
membership score as the maximum score at which all genes were assigned to a cluster (threshold = 0.06). Gene ontology
enrichments for each module were computed using the function ‘enrichGO’ from the R package ‘clusterProfiler’. Module
connectivity was computed between all module pairs using the Jaccard index, and modules were linked by applying a
threshold of 0.2 of the Jaccard index of gene sharing. This threshold was chosen by applying the elbow method. To visualize
the connections between modules, the centers matrix (sample-by-module) was used as the basis for dimensionality reduction
with UMAP, using the R package ‘umap’.

Finally, this process was repeated, sweeping the clustering parameters (c, m) and the membership threshold across a
range of values; from ¢ = 6 to ¢ = 30, and from m = 1 to 2; to ensure that the structure of the resulting embedding was not
overly sensitive to the clustering parameters.

Projecting ATAC-seq data into fuzzy clustering space

Pseudobulk samples of scATAC cells were generated using the same approach described above for gene activity scores.
This matrix was subsetted to match the features (genes) of the RNA fuzzy clustering analysis. In the case of missing features,
values were imputed using their median gene activity. To project ATAC-seq cells into the RNA fuzzy clustering embedding,
we transposed the membership matrix and multiplied it with the gene activity-by-pseudobulk matrix. Finally, we used the
“predict” function in R ‘stats’, with the fuzzy clustering UMAP model as the first argument, and the resulting transposed
product matrix as the second, to determine the UMAP coordinates of ATAC pseudobulks.

Differential branch activity analysis

Branches were defined by grouping ATAC-seq pseudobulks projecting into the early part of the fuzzy clustering UMAP
(into the Cyc cluster) according to their full-dataset cluster annotation, resulting in three branches. Differential gene
activities were calculated using Wilcoxon rank sum tests to compare branch A to B and C, B to A and C, and C to A and B.
Genes for each branch were ranked by their average log, fold change in the differential test. The 50 most unique genes for
each branch were visualized in a row-scaled heatmap.

Gene set enrichment analysis of GPCs was performed using the Kolmogorov-Smimov test for GPC ranks in the
differential test, relative to non-GPC ranks.

Motif enrichments for GPC TFs were derived by computing a Chi-square test for the enrichment of motifs in peaks
linked to differential gene activities. To find the TF motifs that best correspond to GPC TF genes, the best-correlated TF
motif activity (chromVAR) for each GPC TF across glial pseudobulks was used.

Characterization of astrocyte heterogeneity

We computed motif enrichments between peaks linked to modules 13 and module 14, which both contained AQP4, APOE,
and ALDH] as members, using a chi-squared test. Resulting P-values were adjusted for multiple testing using a Bonferroni
correction. Next, to define groups of astrocyte cells (samples in contrast to astrocytic gene signatures (modules)), we re-
clustered the RNA-derived glial pseudobulk samples, and performed unbiased differential expression testing using
“DESeq2” between clusters cO and c5, which highly expressed astrocyte genes (Zhang et al., 2016). A stringent FDR
(Benjamini-Hochberg) of 1e-20 was invoked to call differential genes, since applying the DESeq2 (Love et al., 2014)
framework to pseudobulks deflated P-values. The top 200 most differential genes were used to plot aggregate differential
gene expression within the alternative dataset.

De novo Mutation Filtering

De novo mutations from 1902 children with Autism and their unaffected siblings from the Simons Simplex Collection was
obtained from (An et al., 2018). From the list all mutations of coding or splice consequence as annotated by Gencode v27
(https://www.gencodegenes.org/human/release 27.html) were ignored from final analysis. Additionally, de novo mutation
calls that are observed in gnomAD (Karczewski et al., 2020), in nonstandard chromosomes, within the low complexity
repeat regions from the UCSC browser table RepeatMasker
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(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/rmsk.txt.gz) were removed from downstream analysis. Also, de
novo mutations appearing in both affected and unaffected siblings and multiple SSC families (that is, non-singleton de novo
mutations) were removed.

A deep learning model to predict cell-type specific chromatin accessibility from DNA sequence

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded DNA sequence (A=[1,0,0,0],
C=[0,1,0,0], G=[0,0,1,0], T=[0,0,0,1]) as input to predict single nucleotide-resolution read count profiles. The models take
in the sequence context around the summit of an ATAC-seq peak and predict the ATAC counts of cluster-pseudobulk
samples for the peak. The BPNet model is very similar in architecture to that employed by (Avsec et al., 2020). We trained
the models with GC matched negative regions.

This model is trained across 5 folds, each fold having different combinations of training, validation, and test

chromosomes. The model’s performance is evaluated using two different metrics for the two output tasks separately. For
the total counts predicted for the peak region, the model’s performance is computed with the Spearman correlation of
predicted counts to actual counts. The per-base read count track is evaluated using the Jensen-Shannon divergence distance,
which computes the divergence between two probability distributions; in this case the actual per base read profile for the
peak region and the predicted per base read profile for the peak region.
Once trained, we interpreted the model using the Shap.deep_explainer. This tool uses a modified version of the DeepLift
algorithm (Shrikumar et al., 2019) to understand the features learned by the neural network models. DeepLift computes the
feature attribution of each base in an input sequence to a specific output prediction from the neural network model. In this
case, the DeepLift computes the per base importance scores in the input sequence to predict the per base read count and
total counts in the peaks separately.

Prioritizing ASD de novo mutations using a cell type specific neural network model

The filtered de novo mutations from both the affected and unaffected siblings, described in the previous section, is first
overlapped with the open chromatin peak regions identified in the specific cell type. For each of the mutations overlapped,
first the reference sequence centered around the mutation (2114 bp) is fed into the cell type specific neural network models
across all 5 folds and the prediction of the total counts and the per base read probabilities are obtained. Next, the mutation
is installed in the middle of the modeled region keeping the rest of the context sequence the same. Output predictions are
obtained from the 5-fold trained models. We then compute the sum of perturbation in the per-base read count predicted by
the model for the mutation for 100 bp around the mutation using the formula:
22 100 @ = by,
where

a, = exp(log counts predicted for ref. allele)xsoftmax(read count for ref. allele at base k),
and

b, = exp(log counts predicted for alt. allele)*softmax(read count for alt. allele at base k).

Because we predict the log of the total counts, we first exponentiate it and multiply it by the SoftMax of the per base logits
predicted by the model for the reference and the alternate sequence to compute the sum of their per base differences. This
is carried out across all the 5 folds to obtain a mean score for the perturbation effect of each overlapping de novo mutation
in the specific cluster. We prioritized mutations across all clusters with a local perturbation in counts > 20 and observed that
the odds ratio for the models improves as we further increase the threshold.

Calculating enrichments of motifs at predicted high effect size mutations

We overlapped all the predicted high effects case and controls mutations with JASPAR motif instances and called motif
instances for mutations. To resolve ties among multiple motifs matching a mutation, we scored the motif instances
overlapping a mutation with the cluster specific model that scored the mutation the highest, the per base importance scores
using DeepLift normalized by the length of the mutation and picked the motif with the highest score as the disrupted motif
for the mutation.

Immunohistochemistry

Immunohistochemistry was performed as described (Trevino et al., 2020). Briefly, PCW17 and PCW21 human cortical
tissue was fixed overnight at 4°C in 4% paraformaldehyde (PFA, Electron Microscopy Sciences). Samples were then
washed with PBS and transferred to a 30% sucrose solution for 48-72 hours, then embedded in OCT (Tissue-Tek OCT
Compound, 4583, Sakura Fenetek) and 30% sucrose at a 1:1 ration, and snap-frozen in dry ice. Cryosections were obtained
using a cryostat (Leica) set at 30 pm and mounted on Superfrost Plus Micro slides (VWR, 48311-703). Next, sections were
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blocked and permeabilized for 1 hour at room temperature in blocking solution (10% normal donkey serum, 0.3% Triton-
X in PBS) and incubated with primary antibodies diluted in the same solution overnight at 4°C. The following primary
antibodies were used: anti-ASCL1(Mouse, 1:100, BD Biosciences, 556604), anti-CTIP2 (Rat, 1:300, Abcam, ab18465),
anti-EGFR (Rat, 1:200, Abcam, ab231), anti-GFAP (Rabbit, 1:1,000, Dako, Z0334), anti-GFAP (Rat, 1:1000, Thermo
Fisher Scientific, 13-0300), anti-HOPX (Mouse, 1/50, Santa Cruz, sc-398703), anti-K167 (Mouse, 1:500, BD Biosciences,
550609), anti-OLIG2 (Rabbit, 1:200, Millipore, AB9610), anti-PBXIP1 (Rabbit, 1:100, Abcam, ab84752), anti-PDGFRA
(Rabbit, 1:200, Santa Cruz, sc-338), anti-PPP1R 17 (Rabbit, 1:200, Atlas Antibodies, HPA047819), anti-SOX9 (Goat, 1:500,
R&D Systems, AF3075), anti-SPARCL1 (Goat, 1:300, Novus Biologicals, AF2728), anti-TFAP2C (Rabbit, 1:100, Thermo
Fisher Scientific, 14572-1). PBS was used to wash off the primary antibodies, and sections were then incubated with Alexa
Fluor secondary antibodies (1:1,000, Life Technologies) for 1 hour at room temperature. Hoechst 33258 was used to
visualize the nuclei. Sections were mounted for microscopy with glass coverslips using Aquamount (Thermo Scientific).
Images were taken using a Leica TCS SP8 confocal microscope and processed using Image] (Fiji). Cortical images spanning
from VZ to CP were obtained using a tiling approach in the Leica TCS SP8 and automatically stitched using the Leica
software.
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Supplementary Figure S1: Data quality of scATAC-seq and scRNA-seq libraries. (A) scRNA-seq quality metrics
showing the distribution of the number of reads, number of genes, and mitochondrial (MT) gene fraction per cell in each
sample. Technical replicates are merged. PCW = postconceptional weeks. (B) scATAC-seq quality metrics showing the
distribution of the number of fragments, transcription start site (T'SS) enrichment, and fraction of reads in peaks (FRIP) per
cell in each sample. (C) scATAC-seq cell thresholding on TSS enrichment and fragment counts. (D) UMAP plot showing
the TSS enrichment of each cell. (E) Aggregate normalized fragment count around TSSs for each scATAC-seq sample. (F)
Aggregate fragment size distributions for each scATAC-seq sample. (G) Correlation of technical replicates for each scRNA-
seq sample. (H) Correlation of technical replicates for each scATAC-seq sample.
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Supplementary Figure S2: Inmunohistochemistry of human cerebral cortex architecture. (A) Immunohistochemistry
in PCW21 human fetal cerebral cortex, showing expression of SOX9, CTIP2, and HOPX in the ventricular zone (VZ),
subventricular zone (SVZ), outer SVZ (0SVZ), intermediate zone / subplate (IZ/SP), and cortical plate (CP). (B)
Immunohistochemistry in PCW21 human fetal cerebral cortex, showing expression of GFAP, PPP1R17, and KI67. Scale
bars, 500 um (A, B), 50 pm (insets A, B).
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Supplementary Figure S3: Expression of cell-type specific markers in scRNA-seq data. (A) UMAP plots showing gene
expression of cell-type and cluster-specific markers (B) Bar plot showing the sample age composition in each of the scRNA-

seq clusters.
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index of genes expressed in clusters from this sScCRNA-seq dataset and annotated cell types from Bhaduri et al., 2020.
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Supplementary Figure S5: Canonical correlation analysis links scRNA-seq and scATAC-seq datasets in a unified
manifold. (A) Ribbon plot showing correspondence of scRNA-seq and scATAC-seq clusters in a shared canonical
correlation analysis (CCA) landscape. CCA was derived from expression values in sScRNA-seq data matched to gene activity
scores from scATAC-seq. (B) Confusion matrix showing the correspondence of cluster annotations across datasets in the
CCA. Upper triangles indicate how ATAC clusters match to RNA clusters; lower triangles indicate how RNA clusters
match to ATAC clusters. Coloring indicates the proportion of cells mapping for a given pair.
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Figure S6: Data quality of scATAC-seq and scRNA-seq multiome data. (A) scATAC-seq cell thresholding on TSS
enrichment and fragment counts. (B) scRNA-seq quality metrics showing the distribution of the number of reads, number
of genes, and mitochondrial (MT) gene fraction per cell in each biological replicate. Technical replicates are merged. (C)
scATAC-seq quality metrics showing the distribution of the number of fragments, transcription start site (TSS)
enrichment, and fraction of reads in peaks (FRiP) per cell in each biological replicate. (D) Aggregate normalized fragment
count around TSSs for each scATAC-seq biological replicate. (E) Aggregate fragment size distributions for each
scATAC-seq biological replicate. (F) UMAP embeddings for multiome scATAC (left panels) and multiome scRNA (right
panels). Cells are colored by unsupervised clustering of scATAC counts (top panels) and scRNA data (bottom panels).
(G) Projection of multiome scATAC and scRNA data into singleome scATAC (top) and scRNA (bottom) UMAP
manifolds.
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Supplementary Figure S7: Supplemental analyses to glutamatergic neuron developmental trajectories. (A) RNA
velocity streamplot in UMAP space. Aggregate velocities for cells in clusters for glutamatergic neuron trajectories were
computed and plotted using scVelo. (B) scVelo root probability in UMAP space. (C) Density plot of sample age for
individual cells along the excitatory neuron trajectory pseudotime. (D) Density plot of cell clusters along the excitatory
neuron trajectory pseudotime. (E) Projection of adult glutamatergic neurons (Allen Brain Atlas) into sScRNA UMAP space.
(F) Distribution of excitatory neuron trajectory pseudotime for annotated cortical layers. Fetal cell pseudotime annotation
was transferred to adult neurons by nearest-neighbor matching in UMAP space. (G) Correspondence between fetal sample
age and annotated adult cortical layers. The heatmap shows Jaccard indices of annotation in adult neurons with fetal
gestational age annotation by nearest neighbor matching in UMAP space. (H) MA plot of differential expression between
PCW16 and PCW20-24 cells. Genes identified as differentially expressed are shown in red (adjusted p-value < 0.05,
[log2(fold-change)| > 2). Cells with 0.2 < annotated pseudotime < 0.8 were compared in PCW16 vs PCW20, PCW21 and
PCW24. (I) GO enrichment for genes upregulated (top) and downregulated (bottom) in PCW16 vs PCW20-24 neurons.
Enrichments were computed for the gene sets shown in H and the top 6 enrichments are shown for each direction.
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Supplementary Figure S8: Glial cell characterization using fuzzy c-means clustering. (A) Bubble plot showing gene
expression of glial subtype markers in annotated glial clusters. The expression of identifying markers is sometimes evident
in several clusters. For each group of markers, the dot size indicates the mean fraction of cells expressing the markers. Color
indicates mean expression level. (B) UMAP showing expression of selected glial genes in the scRNA-seq manifold.(C)
Membership matrix for fuzzy clustering, showing the fractional membership of each gene (columns) in each module (rows).
The right-hand panel shows the memberships, now binarized at a membership threshold of 0.06. (D) Bar plot showing how
many genes belong to “n” modules after thresholding. (E) Plot of glial scRNA-seq pseudobulk aggregates. For each
aggregate, the sample-of-origin age in postconceptional weeks (PCW) is compared with the pseudotime values (Methods).
Pseudotime was strongly correlated with developmental time. Pearson r = 0.67, P =2.2¢-16.
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Supplementary Figure S9: Characterization of fuzzy clusters. (A) Module membership and expression values for genes
depicted in Figure 4C across pseudotime aggregates. (B) UMAP plots showing the mean, scaled expression of all genes in
each module (m1-m14). (C) Gene ontology (GO) enrichments for each module, including the term description. Bar plots
represent the -Logio (P), with P values adjusted by the Bonferroni method. Bar color indicates the log, fold enrichment for
each term. (D) Enrichment of SFARI genes (gene score < 3) in each fuzzy module. Enrichments indicated by color, are
shown as the log odds ratio (OR), and plotted with module centroids in the UMAP of fuzzy clustering cell loadings.
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Supplementary Figure S10: Immunohistochemistry of genes in fuzzy modules. (A) Module membership and
expression values for TFAP2C. (B) Immunohistochemistry in PCW21 human cerebral cortex showing expression of
module m6 transcription factor TFAP2C in the SVZ and oSVZ. (C) Module membership and expression values for

36


https://doi.org/10.1101/2020.12.29.424636

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424636; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

PBXIPI. (D) Immunohistochemistry in PCW21 human cerebral cortex showing expression of module m2 marker
PBXIP1 and colocalization with the astroglia marker GFAP in radial glia in the VZ and oSVZ. (E) Module membership
and expression values for CRYAB. (F) Immunohistocjemistry in PCW21 human cerebral cortex showing expression
of module m9 marker CRYAB in truncated radial glia in the VZ. (G) Plot of the total number of module-module
connections at a given Jaccard index threshold. Higher Jaccard thresholds mean fewer connections are “allowed” in
the downstream analysis. This plot shows a clear “elbow” behavior at Jaccard > 0.2, which was used to select that
threshold. Scale bars, 200 um (B, D, F), 200 um (inset B).
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Supplementary Figure S11: colocalization of OLIG2 and ASCL1 in the human cerebral cortex. (A)
Immunohistochemistry in PCW21 human fetal cortex showing expression of ASCL1, OLIG2 and GFAP. ASCLI and

OLIG?2 colocalize in the inner and outer fiber layers (IFL, OFL) and SVZ and 0SVZ mainly. GFAP shows the radial glial

scaffolding. Scale bar, 500 pm (A).
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Supplementary Figure S12: colocalization of OLIG2, ASCL1 and EGFR in the human cerebral cortex. (A)
Immunohistochemistry in PCW21 human fetal cortex showing expression and colocalization of modules m1, m4 and m12

genes ASCL1, OLIG2 and EGFR representing oIPCs. Scale bars, 500 um (A), 50 um (insets A).
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Supplementary Figure S13: colocalization of astrocyte- and oligodendrocyte-associated markers in the human
cerebral cortex. (A) Immunohistochemistry in PCW21 human fetal cortex showing colocalization of the astroglia markers
SPARCL1 and GFAP in the cortical plate and subplate. (B) UMAP plot showing SPARCLI gene expression. (C)
Immunohistochemistry in PCW21 human fetal cortex showing colocalization (white arrowheads) of OLIG2, associated
with oligodendrocyte progenitors, and the astrocyte marker SPARCL1 in SVZ/IFL and oSVZ/OFL. (D)
Immunohistochemistry in PCW21 human fetal cortex showing colocalization of PDGFRA, SPARCL1 and EGFR. Scale
bars, 500 um (A, D), 50 um (C, and insets A, D).
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Supplementary Figure S14: Heterogeneity of astrocyte precursors. (A) Fuzzy clustering-derived UMAP showing
pseudobulk aggregates plotted by sample age. (B) Mean scaled expression of human mature astrocyte genes (Zhang et al.
2016) in fuzzy clustering-derived UMAP of scRNA-seq pseudobulk aggregates. (C) Expression of selected differential
genes from Figure 4D. (E) UMAP of Bhaduri et al., 2020 fetal astrocyte scRNA-seq dataset, showing sample age.
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Supplementary Figure S15: Projection of scATAC-seq aggregates into fuzzy embedding using different gene sets —
gene set controls related to GPC analysis. UMAP plots showing the projection of aggregates into the fuzzy clustering-
derived low-dimensional embedding. The origin of the arrows represents the original projection coordinates of a particular
scATAC-seq aggregate; the arrows point to the new projection coordinates when using only a given subset of genes to make
the projection (other genes are imputed as zero-variance features). Colors indicate the scATAC-seq cluster from which the
aggregates derive. Panels show projection with only GPC genes (A); random gene sets (B, 100 permuted trials); module m2
genes only (C); module m5 genes (D); module m7 genes (E); module m13 genes (F).
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Supplementary Figure S16: Supplementary characterization of BPNet model performance and mutation vignettes.
(A) Enrichment of cases versus control mutations using naive overlap with cluster-specific ATAC-seq peaks, showing rele
vance of the deep learning model to capture pathogenic disruptions. (B) Distribution of disruption scores for case and control
mutations using different training paradigms. Data are shown for the oIPC cluster. On the left, using only scATAC-seq
peaks as the basis for training, there is a systematic difference between cases and controls (Wilcoxson test P = 6.2e-7). On
the right, when training is given GC-matched negatives, disruption scores are substantially more conservative, and the
distributions are matched (P =0.27). (C) Performance evaluation of BPNet cluster-specific models, computed by calculating
the rank correlation between true counts in the cluster and predicted counts. Data are from 5-fold cross-validated training.
(D) Conservation scores in cases versus controls, showing that trivial genomics metrics do not explain the observed
prioritized mutations. (E) Distance to the nearest gene in cases versus controls, showing that trivial genomics metrics do not
explain the observed prioritized mutations. (F) UMAP plots of gene expression (magenta) and gene activity (viridis) for
NFIA. (G) UMAP plots of gene expression (magenta) and gene activity (viridis) for NPY.

44


https://doi.org/10.1101/2020.12.29.424636

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424636; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

REFERENCES

Abrahams, B.S., Arking, D.E., Campbell, D.B., Mefford, H.C., Morrow, E.M., Weiss, L.A., Menashe, 1., Wadkins, T.,
Banerjee-Basu, S., and Packer, A. (2013). SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum
disorders (ASDs). Mol Autism 4, 36.

An, J.-Y., Lin, K., Zhu, L., Werling, D.M., Dong, S., Brand, H., Wang, H.Z., Zhao, X., Schwartz, G.B., Collins, R.L., et al.
(2018). Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362.

Avsec, Z., Weilert, M., Shrikumar, A., Krueger, S., Alexandari, A., Dalal, K., Fropf, R., McAnany, C., Gagneur, J., Kundaje,
A., et al. (2020). Deep learning at base-resolution reveals cis-regulatory motif syntax. BioRxiv 737981.

Barbarese, E., Barry, C., Chou, C.-H.J., Goldstein, D.J., Nakos, G.A., Hyde-DeRuyscher, R., Scheld, K., and Carson, J.H.
(1988). Expression and Localization of Myelin Basic Protein in Oligodendrocytes and Transfected Fibroblasts. Journal of
Neurochemistry 51, 1737-1745.

Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020). Generalizing RNA velocity to transient cell states
through dynamical modeling. Nature Biotechnology 1-7.

Bhaduri, A., Andrews, M.G., Mancia Leon, W., Jung, D., Shin, D., Allen, D., Jung, D., Schmunk, G., Haeussler, M., Salma,
J., et al. (2020). Cell stress in cortical organoids impairs molecular subtype specification. Nature 1-7.

Buenrostro, J.D., Corces, M.R., Lareau, C.A., Wu, B., Schep, A.N., Aryee, M.J., Majeti, R., Chang, H.Y., and Greenleaf,
W.J. (2018). Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic
Differentiation. Cell /73, 1535-1548.¢€16.

Corces, M.R., Granja, J.M., Shams, S., Louie, B.H., Seoane, J.A., Zhou, W., Silva, T.C., Groeneveld, C., Wong, C.K., Cho,
S.W., et al. (2018). The chromatin accessibility landscape of primary human cancers. Science 362, eaav1898.

Cusanovich, D.A., Hill, A.J., Aghamirzaie, D., Daza, R.M., Pliner, H.A., Berletch, J.B., Filippova, G.N., Huang, X.,
Christiansen, L., DeWitt, W.S., et al. (2018). A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility. Cell /74,
1309-1324.¢18.

van Dijk, D., Sharma, R., Nainys, J., Yim, K., Kathail, P., Carr, A.J., Burdziak, C., Moon, K.R., Chaffer, C.L., Pattabiraman,
D., et al. (2018). Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell /74, 716-729.e27.

Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., and Schier, A.F. (2018). Single-cell reconstruction of
developmental trajectories during zebrafish embryogenesis. Science 360.

Fietz, S.A., Kelava, L., Vogt, J., Wilsch-Brauninger, M., Stenzel, D., Fish, J.L., Corbeil, D., Riechn, A., Distler, W., Nitsch,
R., et al. (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling.
Nature Neuroscience /3, 690—699.

Gandal, M.J., Zhang, P., Hadjimichael, E., Walker, R.L., Chen, C., Liu, S., Won, H., Bakel, H. van, Varghese, M., Wang,
Y., etal. (2018). Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362.

Granja, J.M., Klemm, S., McGinnis, L.M., Kathiria, A.S., Mezger, A., Corces, M.R., Parks, B., Gars, E., Liedtke, M., Zheng,
G.X.Y., et al. (2019). Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia.
Nature Biotechnology 37, 1458—1465.

Greig, L.C., Woodworth, M.B., Galazo, M.J., Padmanabhan, H., and Macklis, J.D. (2013). Molecular logic of neocortical
projection neuron specification, development and diversity. Nature Reviews Neuroscience /4, 755-769.

Hansen, D.V., Lui, J.H., Parker, P.R.L., and Kriegstein, A.R. (2010). Neurogenic radial glia in the outer subventricular zone
of human neocortex. Nature 464, 554-561.

45


https://doi.org/10.1101/2020.12.29.424636

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424636; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N.,
Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61-68.

Imayoshi, 1., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., and Kageyama, R.
(2013). Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors. Science 342, 1203—
1208.

lossifov, 1., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives,
L., Patterson, K.E., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature 5735,
216-221.

Jacquet, B.V., Salinas-Mondragon, R., Liang, H., Therit, B., Buie, J.D., Dykstra, M., Campbell, K., Ostrowski, L.E., Brody,
S.L., and Ghashghaei, H.T. (2009). FoxJ1-dependent gene expression is required for differentiation of radial glia into
ependymal cells and a subset of astrocytes in the postnatal brain. Development 736, 4021-4031.

Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X,, Li, M., Sousa, A.M.M.,, Pletikos, M., Meyer, K.A., Sedmak, G., et
al. (2011). Spatio-temporal transcriptome of the human brain. Nature 478, 483—489.

Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alf6ldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna,
A., Bimbaum, D.P., et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature
581, 434-443.

Kelley, D.R., Snoek, J., and Rinn, J.L. (2016). Basset: learning the regulatory code of the accessible genome with deep
convolutional neural networks. Genome Res 26, 990-999.

Kelley, D.R., Reshef, Y.A., Bileschi, M., Belanger, D., McLean, C.Y., and Snoek, J. (2018). Sequential regulatory activity
prediction across chromosomes with convolutional neural networks. Genome Res. 28, 739-750.

Kelsey, G., Stegle, O., and Reik, W. (2017). Single-cell epigenomics: Recording the past and predicting the future. Science
358, 69-75.

Khan, A., Fornes, O., Stigliani, A., Gheorghe, M., Castro-Mondragon, J.A., van der Lee, R., Bessy, A., Chéneby, J.,
Kulkarni, S.R., Tan, G., et al. (2018). JASPAR 2018: update of the open-access database of transcription factor binding
profiles and its web framework. Nucleic Acids Res 46, D260-D266.

Klemm, S.L., Shipony, Z., and Greenleaf, W.J. (2019). Chromatin accessibility and the regulatory epigenome. Nature
Reviews Genetics 1.

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgemer, H., Petukhov, V., Lidschreiber, K., Kastriti, M.E.,
Lonnerberg, P., Furlan, A., et al. (2018). RNA velocity of single cells. Nature 560, 494—498.

Li, M., Santpere, G., Kawasawa, Y.l., Evgrafov, O.V., Gulden, F.O., Pochareddy, S., Sunkin, S.M., Li, Z., Shin, Y., Zhu,
Y., et al. (2018a). Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science
362, caat7615.

Li, Z., Cogswell, M., Hixson, K., Brooks-Kayal, A.R., and Russek, S.J. (2018b). Nuclear Respiratory Factor 1 (NRF-1)
Controls the Activity Dependent Transcription of the GABA-A Receptor Beta 1 Subunit Gene in Neurons. Frontiers in
Molecular Neuroscience /1.

Love, M.1., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15, 550.

Ma, S., Zhang, B., LaFave, L., Chiang, Z., Hu, Y., Ding, J., Brack, A., Kartha, V.K., Law, T., Lareau, C., et al. (2020).
Chromatin potential identified by shared single cell profiling of RNA and chromatin. BioRxiv 2020.06.17.156943.

46


https://doi.org/10.1101/2020.12.29.424636

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424636; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-Cell RNA
Sequencing Data Using Artificial Nearest Neighbors. Cell Systems &8, 329-337.e4.

Mclnnes, L., Healy, J., and Melville, J. (2020). UMAP: Uniform Manifold Approximation and Projection for Dimension
Reduction. ArXiv:1802.03426 [Cs, Stat].

Miller, J.A., Ding, S.-L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J., Aiona, K., et
al. (2014). Transcriptional landscape of the prenatal human brain. Nature 508, 199-206.

Molnér, Z., Clowry, G.J., Sestan, N., Alzu’bi, A., Bakken, T., Hevner, R.F., Hiippi, P.S., Kostovi¢, 1., Rakic, P., Anton,
E.S., et al. (2019). New insights into the development of the human cerebral cortex. Journal of Anatomy 235, 432—451.

Nowakowski, T.J., Pollen, A.A., Sandoval-Espinosa, C., and Kriegstein, A.R. (2016). Transformation of the Radial Glia
Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron 917, 1219-1227.

Oberheim, N.A., Takano, T., Han, X., He, W., Lin, J.H.C., Wang, F., Xu, Q., Wyatt, J.D., Pilcher, W., Ojemann, J.G., et al.
(2009). Uniquely Hominid Features of Adult Human Astrocytes. J. Neurosci. 29, 3276-3287.

Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Horvath, S., and Geschwind, D.H. (2013).
Integrative Functional Genomic Analyses Implicate Specific Molecular Pathways and Circuits in Autism. Cell /55, 1008—
1021.

Parker, S.C.J., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., Bueren, K.L. van, Chines, P.S., Narisu,
N., Program, N.C.S., et al. (2013). Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human
disease risk variants. PNAS 770, 17921-17926.

Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A., Daza, R.M., Aghamirzaie, D., Srivatsan, S., Qiu, X.,
Jackson, D., Minkina, A., et al. (2018). Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin
Accessibility Data. Molecular Cell 71, 858-871.e8.

Pollen, A.A., Nowakowski, T.J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C.R., Shuga, J., Liu, S.J.,
Oldham, M.C., Diaz, A., et al. (2015). Molecular Identity of Human Outer Radial Glia during Cortical Development. Cell
163, 55-67.

Ramanathan, S., Woodroffe, A., Flodman, P.L., Mays, L.Z., Hanouni, M., Modahl, C.B., Steinberg-Epstein, R., Bocian,
M.E., Spence, M.A., and Smith, M. (2004). A case of autism with an interstitial deletion on 4q leading to hemizygosity for
genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide
receptors NPY 1R, NPYSR. BMC Med Genet 5, 10.

Ransom, B.R. (2012). Neuroglia (Oxford University Press).

Rubenstein, J.L.R. (2011). Annual Research Review: Development of the cerebral cortex: implications for
neurodevelopmental disorders. Journal of Child Psychology and Psychiatry 52, 339-355.

Schep, A.N., Wu, B., Buenrostro, J.D., and Greenleaf, W.J. (2017). chromVAR: inferring transcription-factor-associated
accessibility from single-cell epigenomic data. Nature Methods /4, 975-978.

Sheffield, N.C., and Bock, C. (2016). LOLA: enrichment analysis for genomic region sets and regulatory elements in R and
Bioconductor. Bioinformatics 32, 587—589.

Silbereis, J.C., Pochareddy, S., Zhu, Y., Li, M., and Sestan, N. (2016). The Cellular and Molecular Landscapes of the
Developing Human Central Nervous System. Neuron 89, 248-268.

Sloan, S.A., Darmanis, S., Huber, N., Khan, T.A., Birey, F., Caneda, C., Reimer, R., Quake, S.R., Barres, B.A., and Pasca,
S.P. (2017). Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells.
Neuron 95, 779-790.¢6.

47


https://doi.org/10.1101/2020.12.29.424636

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424636; this version posted December 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Song, M., Pebworth, M.-P., Yang, X., Abnousi, A., Fan, C., Wen, J., Rosen, J.D., Choudhary, M.N.K., Cui, X., Jones, [.R.,
et al. (2020). Cell-type-specific 3D epigenomes in the developing human cortex. Nature 1-6.

Stergachis, A.B., Neph, S., Reynolds, A., Humbert, R., Miller, B., Paige, S.L., Vernot, B., Cheng, J.B., Thurman, R.E.,
Sandstrom, R., et al. (2013). Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes.
Cell 154, 888-903.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y., Stoeckius, M., Smibert, P., and
Satija, R. (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888-1902.e21.

Trevino, A.E., Sinnott-Armstrong, N., Andersen, J., Yoon, S.-J., Huber, N., Pritchard, J.K., Chang, H.Y., Greenleaf, W.J.,
and Pasca, S.P. (2020). Chromatin accessibility dynamics in a model of human forebrain development. Science 367.

Vasile, F., Dossi, E., and Rouach, N. (2017). Human astrocytes: structure and functions in the healthy brain. Brain Struct
Funct 222, 2017-2029.

Vierstra, J., Lazar, J., Sandstrom, R., Halow, J., Lee, K., Bates, D., Diegel, M., Dunn, D., Neri, F., Haugen, E., et al. (2020).
Global reference mapping of human transcription factor footprints. Nature 583, 729—736.

Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., and Young, R.A.
(2013). Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes. Cell /53, 307—
319.

Wiese, S., Karus, M., and Faissner, A. (2012). Astrocytes as a Source for Extracellular Matrix Molecules and Cytokines.
Front. Pharmacol. 3.

Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A., Reilly, S.K., Lin, L., Fertuzinhos, S., Miller,
J.A., etal. (2013). Coexpression Networks Implicate Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis
of Autism. Cell 155, 997-1007.

Wonders, C.P., and Anderson, S.A. (2006). The origin and specification of cortical interneurons. Nature Reviews
Neuroscience 7, 687-696.

Zhang, Y., Sloan, S.A., Clarke, L.E., Caneda, C., Plaza, C.A., Blumenthal, P.D., Vogel, H., Steinberg, G.K., Edwards,
M.S.B,, Li, G., et al. (2016). Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals
Transcriptional and Functional Differences with Mouse. Neuron 89, 37-53.

Zhou, J., and Troyanskaya, O.G. (2015). Predicting effects of noncoding variants with deep learning—based sequence model.
Nature Methods /2, 931-934.

Zhou, Q., and Anderson, D.J. (2002). The bHLH Transcription Factors OLIG2 and OLIG1 Couple Neuronal and Glial
Subtype Specification. Cell 109, 61-73.

Zhou, J., Park, C.Y., Theesfeld, C.L., Wong, A.K., Yuan, Y., Scheckel, C., Fak, J.J., Funk, J., Yao, K., Tajima, Y., et al.

(2019). Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nature
Genetics 1.

48


https://doi.org/10.1101/2020.12.29.424636

