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1 Summary of results

1.1 Homeostatic learning rule

The equations for the Homeostatic learning rule are

dWEE

dt
= +αgE E(Eset − E)

dWEI

dt
= −αgE I(Eset − E)

dWIE

dt
= +αgI E(Iset − I)

dWII

dt
= −αgI I(Iset − I)

(1)

and the condition for the Up state to be unstable
under this rule is

WEEup gE − 1 >
(EsetWIEup −ΘI)g2E

IsetgI
(2)

which is satisfied for biologically backed parameter
values. See the step-by-step derivation of this insta-
bility condition in Section 2.3.

1.2 Cross-Homeostatic learning rule

The equations for the Cross-Homeostatic learning
rule are

dWEE

dt
= +β(Iset − I)

dWEI

dt
= −β(Iset − I)

dWIE

dt
= −β(Eset − E)

dWII

dt
= +β(Eset − E)

(3)

This rule has a very simple expression for the stability
condition of the Up state when written in terms of
WEI and WIE :

WEIup +WIEup > 0 (4)

which is always satisfied since the weights are posi-
tive definite. See the step-by-step derivation of this
stability condition in Section 2.4.

1.3 Balanced-Homeostatic learning
rule

The equations for the Balanced-Homeostatic learning
rule are

dWEE

dt
= +α1gEE(Eset − E)

dWEI

dt
=

1

τ0
(WEIup −WEI )

dWIE

dt
= −α3gII(Iset − I)

dWII

dt
=

1

τ0
(WIIup −WII )

(5)

and the conditions for the Up state to be stable under
this rule are

a1 + (b1 − c1)d < (b′1 + c′1)e

a2 + (b2 − c2)d < (b′2 + c′2)e
(6)
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where

a1 = (ΘEΘI gEgI + E2
set

α3

α1
)Iset gEgI

b1 = I2setΘE g
2
EgI

c1 = E2
setIset g

2
E

b′1 = EsetIsetΘI gEg
2
I

c′1 = EsetI
2
set g

2
I

α3

α1

a2 = 2ΘEΘI g
2
Eg

2
I

b2 = 2IsetΘE g
2
EgI

c2 = E2
set g

2
E

b′2 = 2EsetΘIgE g
2
I

c′2 = EsetIset g
2
I

α3

α1

d = WIIup gI + 1

e = WEEup gE − 1

Conditions Eq. 6 are satisfied for biologically backed
parameter values. See the step-by-step derivation of
the stability condition in Section 2.5.

1.4 SynapticScaling learning rule

The equations for the SynapticScaling learning rule
are

dWEE

dt
= +γgE(Eset − E)WEE

dWEI

dt
= −γgE(Eset − E)WEI

dWIE

dt
= +γgI(Iset − I)WIE

dWII

dt
= −γgI(Iset − I)WII

(7)

and the condition for the Up state to be unstable
unde this rule is

(WEEup gE − 1)(2IsetWIIup gI + ΘI gI + Iset)

> (WIIup gI + 1)(2EsetWEEup gE −ΘE gE − Eset)
(8)

This instability condition holds for biologically
backed parameter values. See the step-by-step
derivation of the stability condition in Section 2.6.

2 Detailed calculations

2.1 Overview

We analyze the whole neural+synaptic system for ev-
ery synaptic learning rule considered in this work,
and study their stability. In every case, the general
prescription is:

1. Take the combined neural+synaptic system and
nondimensionalize all variables [1, Sections 1.2
and 1.4][2, Section 3.5], so that the two different
time scales are evident (fast neural, slow synap-
tic).

2. Make a quasi-steady state (QSS) approximation
of the neural subsystem [1, 2]. This means we
will consider the neural subsystem is fast enough
so that it converges “instantaneously” (when
compared to the synaptic subsystem) to its cor-
responding fixed point. For this we will require
that the stability conditions of the neural sub-
system are satisfied (see below).

3. Find the steady-state solution of the synaptic
subsystem, i.e. the Up state fixed point; com-
pute the Jacobian of the synaptic subsystem at
the Up state; compute the eigenvalues of the Ja-
cobian [2, 3]. Two out of the four eigenvalues
are expected to be zero because the Up state is
not an isolated fixed point of the system but a
continuous 2D plane in 4D weight space.

4. Address (linear) stability. If both nonzero eigen-
values have negative real part, then the Up state
is stable under this learning rule; if at least one
of the nonzero eigenvalues has positive real part,
then the Up state is unstable [2, 3]. (A note on
abuse of notation: we might say indistinctly “the
Up state is stable/unstable” and “the learning
rule is stable/unstable”)

Eigenvalues and stability in the presence of con-
tinuous, i.e. non-isolated, attractors have been dis-
cussed in the context of neural networks for eye po-
sition control [4, 5] (keep in mind that their eigen-
values’ critical value is 1 instead of zero because they
consider eigenvalues of the connectivity matrix alone,
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whereas we consider eigenvalues of the full system).
As the Up state is a collection of non-isolated fixed
points that form a 2D plane, there is no dynamics
along the plane, and the linear stability analysis is
enough to fully address stability—we do have two
zero eigenvalues, but there is no need to compute the
center manifold [3] because the other two eigenvalues
represent the whole dynamics around the fixed point
and have nonzero real part.

In order to apply the tools from Dynamical Sys-
tems’ theory for flows in a unified way for both the
neural and synaptic subsystems, we will switch from a
discrete-time description of synaptic weight dynamics
(where the change in weight W is represented by ∆W
applied every certain time interval) to a continuous-
time description (where the weights are continuously
evolving albeit with a long time scale τ0):

∆W → τ0
dW

dt

In the following we first define the neural subsys-
tem and compute its stability conditions (next sub-
section). Then we consider every learning rule in de-
tail (following subsections).

2.2 Neural dynamics

For the neural+synaptic system in the QSS approxi-
mation to be stable under a specific synaptic learning
rule, it is necessary that the neural subsystem is sta-
ble so it remains in its QSS solution as the weights
evolve. In this section we define the neural subsystem
and compute its stability conditions.

(SageMath code in the Supplementary
Material: up states - Neural subsystem

stability.ipynb)

2.2.1 System’s equations and fixed points

We consider a two-subpopulation model with firing-
rate units E and I with ReLU activation functions
(gain gX , threshold ΘX , with X = E, I). The dy-
namics for synaptic currents above threshold is given

by:

dE

dt
=

1

τE
(−E + gE(WEEE −WEI I −ΘE))

dI

dt
=

1

τI
(−I + gI(WIEE −WII I −ΘI))

(9)

All variables and parameters are definite positive. In
this subsection the synaptic weights WXY are fixed.

Down state There’s a trivial fixed point (i.e. a
steady-state solution dX/dt = 0) at E = I = 0 when
the inputs to both subpopulations are subthreshold.
This fixed point is stable: if the currents are below
the ReLU threshold, any value E > 0 and I > 0 will
have a negative velocity leading to an exponential
decrease towards zero.

Up state The other, non-trivial fixed point is the
Up state:

Eup = (WEI gE gI ΘI − (WII gI + 1) gE ΘE)/C

Iup = ((WEE gE − 1) gI ΘI −WIE gE gI ΘE)/C
(10)

where

C = WEIWIE gE gI−(WII gI +1)(WEE gE−1) (11)

The activity of the excitatory and inhibitory sub-
populations at the Up state, Eup and Iup , depend on
all weight values. Only some of the combinations,
however, lead to a stable steady state. We compute
the stability conditions in the following subsection.

2.2.2 Stability of neural fixed point (Up
state)

The Jacobian matrix, that is the matrix of first
derivatives, gives information regarding the stability
of fixed points: if the real parts of its eigenvalues are
all negative, then the fixed point is stable.

The Jacobian of the neural system (Eq. 9) is

J =

(
(WEEgE − 1)/τE −WEI gE/τE

WIEgI/τI −(WII gI + 1)/τI

)
(12)
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Its eigenvalues can be expressed as:

λ1,2 =
1

2

(
Tr ±

√
Tr2 − 4Det

)
(13)

where Tr and Det are the trace and determinant of
the matrix, respectively. For eigenvalues either com-
plex or purely real, their real parts are negative (and
thus the Up state is stable) when Det > 0 and Tr < 0,
that is:

WEIWIEgEgI > (WEEgE − 1)(WII gI + 1) (14)

(WII gI + 1)τE > (WEEgE − 1)τI (15)

Note that the positive determinant condition, Eq. 14,
is equivalent to C > 0 (Eq. 11).

In the following, we will require that the stability
conditions of the neural subsystem, Eqs. 14 and 15,
are satisfied.

2.2.3 Paradoxical effect

The paradoxical effect arises when an external depo-
larization of the inhibitory subpopulation (increase of
I) produces an actual decrease of I. In this model, an
external depolarization of I can be mimicked by a de-
crease of its threshold ΘI , thus there is a paradoxical
effect whenever the coefficient of ΘI in the numerator
of Iup is positive. The coefficient is gI (WEE gE−1)/C
and thus there is paradoxical effect if

WEE gE − 1 > 0 (16)

The paradoxical effect can also be seen in a plot of
the Up-state values Eup and Iup (Eq. 10) as a func-
tion of each individual weight. Specifically, from a
naive point of view Iup should increase when WIE is
increased, and decrease when WII is increased; how-
ever, it does the opposite in either case (see Figure
S3).

2.3 Synaptic dynamics: Homeostatic
learning rule

(SageMath code in the Supplemeentary Material: up
states - Homeostatic stability.ipynb)
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Figure S3: Paradoxical effect in the neural subsys-
tem. The excitatory activity at the Up state, Eup ,
behaves as expected when each weight is varied. The
inhibitory activity Iup , however, shows paradoxical
behavior when either WIE or WII are varied. Dashed
lines are the vertical asymptote of every case.

2.3.1 Definition of the learning rule

In continuous-time dynamics, the Homeostatic learn-
ing rule reads:

dWEE

dt
= +αgEE(Eset − E)

dWEI

dt
= −αgEI(Eset − E)

dWIE

dt
= +αgIE(Iset − I)

dWII

dt
= −αgII(Iset − I)

(17)
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where α is the learning rate (with appropriate units)
setting the time scale of the weight dynamics, and
Eset and Iset are the set points of the excitatory and
inhibitory subpopulations, respectively.

The fixed points of the system (i.e. steady states)
are determined by setting all derivatives to zero.
There is a non-trivial fixed point compatible with
the neural subsystem being above threshold: the Up
state, that is the set of weight values such that:

Eup = Eset

Iup = Iset
(18)

The values of the weights corresponding to the Up
state are given by the (underdetermined) system de-
fined by equating Eqs. 18 and 10. Since it is a two-
equation system for a set of four unknown weights,
there are two free weights that we choose to be
WEEup and WIEup . The other two have the following
values:

WEIup =
(EsetWEEup −ΘE)gE − Eset

IsetgE

WIIup =
(EsetWIEup −ΘI)gI − Iset

IsetgI

(19)

This means that the Up-state fixed point is actually a
continuous set of non-isolated fixed points forming a
2D plane in 4D weight space. In other words, there is
an infinite number of weight values compatible with
the Up state (possibly not all stable, though).

2.3.2 Nondimensionalization

Next we nondimensionalize all variables in order to
have a simpler system and make the QSS approxima-
tion in a safe way. We define new (nondimensional)
variables e, i, τ , wEE , wEI , wIE , and wII , and their
corresponding scaling parameters. We substitute the
new variables into the full system (neural+synaptic,
Eqs. 9 and 17) and choose the values of the scaling
parameters such that all nondimensional variables are
of order 1 (see SageMath code in the Supplementary

Material). With this, the full system reads:

εE
de

dτ
= −e+RegwEE −

giwEI

R
− θE

εI
di

dτ
= −i+

RewIE

g
− iwII

Rg
− θI

dwEE

dτ
= −e(e− 1)

dwEI

dτ
= +i(e− 1)

dwIE

dτ
= −e(i− 1)

dwII

dτ
= +i(i− 1)

(20)

where we defined the new parameters

εE = τE/τ0

εI = τI/τ0

τ0 = 1/(αgEgIEsetIset)

R = Eset/Iset

g = gI/gE

θE = (gE/Eset)ΘE

θI = (gI/Iset)ΘI

2.3.3 Quasi-steady state approximation

Neural dynamics evolves in a much shorter time scale
(τE and τI) than synaptic dynamics (τ0):

τE � τ0 =⇒ εE � 1

τI � τ0 =⇒ εE � 1

which implies

εE
de

dτ
∼ 0

εI
di

dτ
∼ 0

(21)

thus we can safely assume e and i very quickly
reach quasi-equilibrium values, i.e. practically instan-
taneous convergence to quasi-steady state (QSS) val-
ues as if the weights were fixed, while the synaptic
weights evolve according to their slow dynamics. This
allows us to reduce the system’s dimensionality from
six to four.
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In the QSS approximation, the values of the nondi-
mensionalized excitatory and inhibitory activities in-
stantaneously track the slow dynamics of the learning
rule. They are determined by applying Eq. 21 to the
first two rows of Eq. 20; solving for e and i leads to

eqss = (g2θIwEI − (Rg + wII )θE)/c

iqss = (RgθI(RgwEE − 1)−R2θEwIE )/c
(22)

where

c = RgwEIwIE − (wII +Rg)(RgwEE − 1)

The full system in the QSS approximation reads

dwEE

dτ
= −eqss(eqss − 1)

dwEI

dτ
= iqss(eqss − 1)

dwIE

dτ
= −eqss(iqss − 1)

dwII

dτ
= iqss(iqss − 1)

(23)

where eqss and iqss are nonlinear functions of the
weights as defined by Eq. 22.

Note that the Up state fixed point, defined by mak-
ing all derivatives equal to zero, can be expressed as

eqss = 1

iqss = 1
(24)

which is the nondimensionalized version of Eq. 18.
The weight values compatible with this condition are
defined by equating Eqs. 22 and 24:

wEIup = RwEEup −
R(θE + 1)

g

wIIup = R2wIEup −Rg(θI + 1)

(25)

(wEEup and wIEup are free). This is the nondimen-
sionalized version of Eq. 19.

2.3.4 Instability condition

The program for assessing linear stability of the Up
state is as follows: a) compute the Jacobian (the ma-
trix of first derivatives) of Eq. 23 and evaluate it at

the Up state; b) compute the eigenvalues of the Ja-
cobian (two of them will be zero because the fixed
points form a continuous 2D plane in phase space);
c) If the real part of the two nonzero eigenvalues is
negative then the Up state is stable; if at least one
of the nonzero eigenvalue has positive real part then
the Up state is unstable.

Jacobian matrix Let the full system in the QSS
approximation (Eq. 23) be written as

dwEE

dτ
= fEE (eqss , iqss)

dwEI

dτ
= fEI (eqss , iqss)

etc . . .

where eqss and iqss are functions of the weights as
defined by Eq. 22. By applying the chain rule the
elements Jij (i, j = 1 . . . 4) of the Jacobian matrix
can be expressed as

J11 =
dfEE

dwEE
=
dfEE

deqss

deqss
dwEE

+
dfEE

diqss

diqss
dwEE

J12 =
dfEE

dwEI
=
dfEE

deqss

deqss
dwEI

+
dfEE

diqss

diqss
dwEI

J13 = . . .

J21 =
dfEI

dwEE
=

dfEI

deqss

deqss
dwEE

+
dfEI

diqss

diqss
dwEE

J22 = . . .

etc . . .

In order to have the Jacobian specialized in the Up
state, these expressions are to be substituted by Eqs.
22-25.

Eigenvalues of the Jacobian matrix The Jaco-
bian matrix has two zero eigenvalues and two nonzero
eigenvalues. The nonzero eigenvalues have the form:

λ± =

(
A±
√
A2 −DC

)
(R2 + 1)

C
(26)

where

A = g2θI +RgwEEup −RgwIEup − 1

C = 2R(Rg2θIwEEup −RθEwIEup − gθI)

D = 2g/R

(27)
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Sign of the eigenvalues To determine the sign
of the real part of Eq. 26, first note that the fac-
tors (R2 + 1) and D are positive definite. Second,
C must be positive because it is related to one of
the stability conditions of the neural subsystem (Eq.
14, after substituting back to dimensionalized quan-
tities). Note next that A2−DC is less than A2 (since
C and D are positive), and thus the square root is
either real and less than |A| or imaginary, both cases
leading to Re(A ±

√
A2 −DC) > 0 if A > 0. The

learning rule is then unstable (both eigenvalues have
positive real part) if A > 0, which in terms of the
original parameters and variables reads:

WEEup gE − 1 >
(EsetWIEup −ΘI)g2E

IsetgI
(28)

2.3.5 Analysis of the instability condition

By using the Up state relationship Eq. 19, this con-
dition can be re-expressed in a more useful form in
terms of WIEup and WEIup :

I2setWEIup gI + IsetΘE gI

> E2
setWIEup gE − EsetΘI gE

(29)

Note that this relationship can be written as

a+ b > a′ − b′

where the left-hand side is a sum of positive definite
terms and the right-hand side is a difference of posi-
tive definite terms, with

a = I2setWEIup gI

a′ = E2
setWIEup gE

b = IsetΘE gI

b′ = EsetΘI gE

Note that for a biologically backed set of parameter
values the following relations hold:

Iset > Eset

gI > gE

ΘI > ΘE

and thus it is likely that

a > a′

b ∼ b′

(despite WEIup ∼ 0.1WIEup), leading to a+b > a′−b′
and thus making the instability condition Eq. 29 to
hold.

2.3.6 Numerical analysis

2 4 6 8 10
WEE

5

10
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20
WIE

(synaptic
unstable)

(paradoxical)

(detcond
stable)

(trcond
stable)

synaptic unstable
paradoxical
neural detcond
neural trcond

Figure S4: Regions of stability. The Homeostatic
learning rule is unstable where the neural subsystem
is stable. Synaptic: Eq. 28; Paradoxical: Eq. 16;
Neural detcond: Eq. 14; Neural trcond: Eq. 15.

As an illustration of the reasoning above, we plot
the instability condition Eq. 28 with parameter values
as in Table 1.

Iset = 14 Eset = 5
gI = 4 gE = 1
ΘI = 25 ΘE = 4.8

Table 1: Parameter values.

It is clear from Figure S4 that the learning rule
is stable in a region that doesn’t overlap with the
stability region of the neural subsystem.
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2.4 Synaptic dynamics: Cross-
Homeostatic learning rule

(SageMath code in the Supplementary Material: up

states - CrossHomeostatic stability.ipynb)

In this section we follow a path similar to the one
in the previous section, so we will skip some details.

2.4.1 Definition of the learning rule

In continuous-time dynamics, the CrossHomeostatic
learning rule reads:

dWEE

dt
= +β(Iset − I)

dWEI

dt
= −β(Iset − I)

dWIE

dt
= −β(Eset − E)

dWII

dt
= +β(Eset − E)

(30)

The only fixed point is the Up state and is the set
of weight values such that:

Eup = Eset

Iup = Iset
(31)

The values of the weights corresponding to the Up
state are given by the (underdetermined) system de-
fined by equating Eq. 31 and Eq. 10. Since it is
a two-equation system for a set of four unknown
weights, there are two free weights that we choose
to be WEEup and WIEup . The other two have the
following values:

WEIup =
(EsetWEEup −ΘE)gE − Eset

IsetgE

WIIup =
(EsetWIEup −ΘI)gI − Iset

IsetgI

(32)

This means that, as in Section 2.3, there is an infinite
number of weight values compatible with the Up state
(possibly not all stable, though).

2.4.2 Nondimensionalization

The full system (Eqs. 30 and 9) in nondimensional-
ized form reads:

εE
de

dτ
= −e+ ewEE −

iwEI

R
− θE

εI
di

dτ
= −i+RgewIE − giwII − θI

dwEE

dτ
= −i+ 1

dwEI

dτ
= +i− 1

dwIE

dτ
= +R(e− 1)

dwII

dτ
= −R(e− 1)

(33)

where we defined the new parameters

εE = τE/τ0

εI = τI/τ0

τ0 = 1/(βgEIset)

R = Eset/Iset

g = gI/gE

θE = (gE/Eset)ΘE

θI = (gI/Iset)ΘI

2.4.3 Quasi-steady state approximation

As before, we assume that the neural variables evolve
in a much shorter time scale than synaptic variables.
In the QSS approximation, the values of the nondi-
mensionalized excitatory and inhibitory activities are

eqss = (θIwEI −RθE(gwII + 1))/(Rc)

iqss = (θI(wEE − 1)−RgθEwIE )/c
(34)

where

c = gwEIwIE − (wII + 1)(wEE − 1)
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The full system in the QSS approximation reads

dwEE

dτ
= −iqss + 1

dwEI

dτ
= +iqss − 1

dwIE

dτ
= +R(eqss − 1)

dwII

dτ
= −R(eqss − 1)

(35)

where eqss and iqss are nonlinear functions of the
weights as defined by Eq. 34.

Note that the Up state fixed point, defined by mak-
ing all derivatives equal to zero, can be expressed as

eqss = 1

iqss = 1
(36)

which is the nondimensionalized version of Eq. 31.
The weight values compatible with this condition are
defined by equating Eqs. 34 and 36:

wEIup = R(wEEup − 1)−RθE

wIIup = RwIEup −
θI + 1

g

(37)

(wEEup and wIEup are free). This is the nondimen-
sionalized version of Eq. 32.

2.4.4 Stability condition

Now we show that this learning rule is stable. The Ja-
cobian matrix evaluated at the Up state has two zero
eigenvalues (as expected) and two nonzero eigenval-
ues. The nonzero eigenvalues have the form:

λ± =

(
A±
√
A2 −DC

)
(R+ 1)

C
(38)

where

A = (RθE −RwEEup +R− wIEup)g

C = 2(θIwEEup −RgθEwIEup − θI)

D = 2g

To determine the sign of Eq. 38, first note that the
factors (R + 1) and D are positive definite. Second,

C must be positive because it is related to one of
the stability conditions of the neural subsystem (Eq.
14, after substituting back to dimensionalized quan-
tities). Note next that A2−DC is less than A2 (since
C and D are positive), and thus the square root is
either real and less than |A| or imaginary, both cases
leading to Re(A ±

√
A2 −DC) < 0 if A < 0. The

learning rule is then stable (both eigenvalues with
negative real part) if A < 0. The instability condi-
tion in terms of the original parameters and variables
reads:

(EsetWEEup gE + IsetWIEup gE

−ΘEgE − Eset)gI/(IsetgE) > 0
(39)

which, after switching WEE →WEI via Eq. 32, leads
to

WEIup +WIEup > 0 (40)

This condition is always satisfied because the weights
are positive definite and thus the rule is stable for
any choice of parameter values (as long as the neural
subsystem is).

2.4.5 Two-dimensional dynamics

The general program to assess stability of an iso-
lated fixed point involves computing the eigenvalues
of the Jacobian at the fixed point and looking at their
real parts: a single eigenvalue with positive real part
means the fixed point is unstable, while if all eigenval-
ues have negative real part the fixed point is stable.
In case no eigenvalues have positive real part but at
least one has zero real part, the linear stability anal-
ysis is inconclusive and one must go to higher orders
by computing the center manifold.

However, the learning rules we study have non-
isolated fixed points: the 2D planes defined by e.g.
Eq. 32 where two weights are free. In this case, two
out of the four eigenvalues are expected to be zero,
meaning there is no dynamics along the 2D plane and
thus there is no need to compute the center manifold.

In order to show that this is the case and build
confidence in our results, here we perform a sim-
ple linear transformation of our variables and arrive
without any further approximation at a system where
two of the variables have exact zero dynamics. See
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SageMath code in the Supplementary Material: up

states - CrossHomeostatic stability.ipynb.
As a first step we switch from the nondimension-

alized weights wEE , wEI , wIE , wII to new variables
w1, w2, w3, w4 that are zero at the fixed point:

w1 = wEE − wEEup

w2 = wEI − wEIup

w3 = wIE − wIEup

w4 = wII − wIIup

(41)

where wEEup and wIEup are set to arbitrary values
and wEIup and wIIup are defined by Eq. 37 (all satis-
fying the stability conditions of the neural subsystem,
Eqs. 14 and 15). In the new variables, the learning
rule Eq. 35 reads:

dw1

dτ
= f1(w1, w2, w3, w4)

dw2

dτ
= f2(w1, w2, w3, w4)

dw3

dτ
= f3(w1, w2, w3, w4)

dw4

dτ
= f4(w1, w2, w3, w4)

(42)

where

f1 = −iqss(w1 + wEEup , w2 + wEIup ,

w3 + wIEup , w4 + wIIup) + 1

f2 = . . . etc.

according to the transformation Eq. 41.
The second step is a textbook diagonalization of

the system. The Jacobian matrix of Eq. 42 has the
following eigenvalues:

(0, 0, λ3, λ4)

where λ3,4 < 0 are the eigenvalues shown in Eq.
38. With this we compute the corresponding eigen-
vectors v1, v2, v3, v4 (the double eigenvalue 0 has a
geometric multiplicity of 2 so there is no need to
compute generalized eigenvectors and Jordan form)
and arrange them in columns to form the diagonal-
izing matrix T. The transformation of the variables

(w1, w2, w3, w4)→ (w, x, y, z) is such that, in matrix
notation,

(w1, w2, w3, w4) = T(w, x, y, z) (43)

The transformation of the whole vector field, in ma-
trix notation with F = (f1, f2, f3, f4), is

d(w, x, y, z)

dτ
= T−1F(T(w, x, y, z)) (44)

which unfolded is

dw

dτ
= 0

dx

dτ
= 0

dy

dτ
= λ3y + g3(w, x, y, z)

dz

dτ
= λ4z + g4(w, x, y, z)

(45)

showing that two directions have dynamics that is
identically zero. Note that this result didn’t involve
any further approximation other than the QSS ap-
proximation of the neural subsystem.

2.5 Synaptic dynamics: Balanced-
Homeostatic learning rule

(SageMath code in the Supplementary Material: up

states - Balanced stability.ipynb)
In this section we follow a similar path as in pre-

vious sections, so we will skip some details.

2.5.1 Definition of the learning rule

In continuous-time dynamics, the Balanced-
Homeostatic learning rule reads:

dWEE

dt
= +α1gEE(Eset − E)

dWEI

dt
=

1

τ0
(f(WEE )−WEI )

dWIE

dt
= −α3gII(Iset − I)

dWII

dt
=

1

τ0
(g(WIE )−WII )

(46)

10



where

f(WEE ) =
(EsetWEE −ΘE)gE − Eset

IsetgE

g(WIE ) =
(EsetWIE −ΘI)gI − Iset

IsetgI

(47)

are the Up state fixed point values of the weights
(see below). The only fixed point compatible with
the neural subsystem being suprathreshold is the Up
state

Eup = Eset

Iup = Iset

WEIup = f(WEEup)

WIIup = g(WIEup)

(48)

where WEEup and WIEup are free (not all values will
lead to stable Up states, though).

2.5.2 Nondimensionalization

The full system (Eqs. 46 and 9) in nondimensional-
ized form reads:

εE
de

dτ
= −e+RgewEE − iwEI − θE

εI
di

dτ
= −i+

ewIE

αg
− iwII − θI

dwEE

dτ
= −(e− 1)e

dwEI

dτ
= −wEI +RgwEE − θE − 1

dwIE

dτ
= +(i− 1)i

dwII

dτ
= −wII +

wIE

αg
− θI − 1

(49)

where we defined the new parameters

εE = τE/τ0

εI = τI/τ0

τ0 = 1/(α1gEgIEsetIset)

R = Eset/Iset

α = α1/α3

g = gI/gE

θE = (gE/Eset)ΘE

θI = (gI/Iset)ΘI

2.5.3 Quasi-steady state approximation

As before, we assume that the neural variables evolve
in a much shorter time scale than synaptic variables.
In the QSS approximation, the values of the nondi-
mensionalized excitatory and inhibitory activities are

eqss = (θIwEI − θE(wII + 1))αg/c

iqss = (αgθI(RgwEE − 1)− θEwIE )/c
(50)

where

c = (wII + 1)αg(RgwEE − 1)− wEIwIE

The full system in the QSS approximation reads

dwEE

dτ
= −(eqss − 1)eqss

dwEI

dτ
= −wEI +RgwEE − θE − 1

dwIE

dτ
= +(iqss − 1)iqss

dwII

dτ
= −wII +

wIE

αg
− θI − 1

(51)

where eqss and iqss are nonlinear functions of the
weights as defined by Eq. 50.

Note that the Up state fixed point, defined by mak-
ing all derivatives equal to zero, are the weight values
that satisfy

eqss = 1

iqss = 1
(52)

and
wEIup = RgwEEup − θE − 1

wIIup =
wIEup

αg
− θI − 1

(53)

which are the nondimensionalized versions of Eqs. 48
and 47, respectively. Weights wEEup and wIEup are
free, so the Up state is a 2D plane of non-isolated
fixed points.

2.5.4 Stability condition

Now we show the conditions for which this learning
rule is stable. The Jacobian matrix of Eq. 51 eval-
uated at the Up state has two zero eigenvalues (as

11



expected) and two nonzero eigenvalues. The nonzero
eigenvalues have the form:

λ± =
A±
√
A2 + FC

C
(54)

where

C = 2(Rαg2θIwEEup − θEwIEup − αgθI)

and A and F are long expressions that can be found
in the corresponding Jupyter notebook.

To determine the sign of Eq. 54, first note that
C must be positive because it is related to one of
the stability conditions of the neural subsystem (Eq.
14, after substituting back to dimensionalized quanti-
ties). Next note that both eigenvalues have negative
real part if F < 0 and A < 0: if F < 0 then the ar-
gument of the square root is less than A2, and then
the square root itself is either real and less than |A|,
or imaginary. In any case, if in addition A < 0 then
both eigenvalues have negative real part. The stabil-
ity conditions are then F < 0 and A < 0, which can
be written in terms of the dimensionalized parame-
ters and variables as

a1 + (b1 − c1)d < (b′1 + c′1)e

a2 + (b2 − c2)d < (b′2 + c′2)e
(55)

where

a1 = (ΘEΘI gEgI + E2
set

α3

α1
)Iset gEgI

b1 = I2setΘE g
2
EgI

c1 = E2
setIset g

2
E

b′1 = EsetIsetΘI gEg
2
I

c′1 = EsetI
2
set g

2
I

α3

α1

a2 = 2ΘEΘI g
2
Eg

2
I

b2 = 2IsetΘE g
2
EgI

c2 = E2
set g

2
E

b′2 = 2EsetΘIgE g
2
I

c′2 = EsetIset g
2
I

α3

α1

d = WIIup gI + 1

e = WEEup gE − 1

2.5.5 Numerical analysis

It is hard to analytically determine whether the sta-
bility conditions Eq. 55 are satisfied or not in the
general case. However, here we show that for the bi-
ologically backed set of parameter values in Table 1
(with the addition of α1 = 0.001 and α3 = 0.0001)
the conditions are satisfied and the learning rule is
thus stable.

In Figure S5 we plot the stability conditions of this
rule. It is clear that the stability region of the neural
subsystem lies well within the stability region of the
learning rule, making the full system stable.

2 4 6 8 10
WEE

5

10

15

20

25

30
WIE

(synaptic
stable 1)

(synaptic
stable 2)

(paradoxical)

(detcond
stable)

(trcond
stable)

synaptic stable 1
synaptic stable 2
paradoxical
neural detcond
neural trcond

Figure S5: Regions of stability. The neural sub-
system is stable in a region where the Balanced-
Homeostatic rule is also stable. Synaptic 1 and 2:
Eq. 55; Paradoxical: Eq. 16; Neural detcond: Eq. 14;
Neural trcond: Eq. 15.

2.6 Synaptic dynamics: Synaptic-
Scaling learning rule

(SageMath code in the Supplementary Material: up

states - SynapticScaling stability.ipynb)

In this section we follow a similar path as in pre-
vious sections, so we will skip some details.
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2.6.1 Definition of the learning rule

In continuous-time dynamics, the SynapticScaling
learning rule [6] reads:

dWEE

dt
= +γgE(Eset − E)WEE

dWEI

dt
= −γgE(Eset − E)WEI

dWIE

dt
= +γgI(Iset − I)WIE

dWII

dt
= −γgI(Iset − I)WII

(56)

The only fixed point compatible with the neural
subsystem being above threshold is the Up state and
is the set of weight values such that:

Eup = Eset

Iup = Iset
(57)

The values of the weights corresponding to the Up
state are given by the (underdetermined) system de-
fined by equating Eq. 57 and Eq. 10. Since it is
a two-equation system for a set of four unknown
weights, there are two free weights that we choose
to be WEEup and WIEup . The other two have the
following values:

WEIup =
(EsetWEEup −ΘE)gE − Eset

IsetgE

WIIup =
(EsetWIEup −ΘI)gI − Iset

IsetgI

(58)

This means that there is an infinite number of weight
values compatible with the Up state (possibly not all
stable, though).

2.6.2 Nondimensionalization

The full system (Eqs. 56 and 9) in nondimensional-
ized form reads:

εE
de

dτ
= −e+ ewEE − iwEI − θE

εI
di

dτ
= −i+ ewIE − iwII − θI

dwEE

dτ
= −(e− 1)wEE

dwEI

dτ
= +(e− 1)wEI

dwIE

dτ
= −(i− 1)wIE/R

dwII

dτ
= +(i− 1)wII /R

(59)

where we defined the new parameters

εE = τE/τ0

εI = τI/τ0

τ0 = 1/(γEset)

R = Eset/Iset

g = gI/gE

θE = (gE/Eset)ΘE

θI = (gI/Iset)ΘI

2.6.3 Quasi-steady state approximation

As before, we assume that the neural variables evolve
in a much shorter time scale than synaptic variables.
In the QSS approximation, the values of the nondi-
mensionalized excitatory and inhibitory activities are

eqss = (θIwEI −RθE(wII + 1))/c

iqss = (θI(wEE − 1)− θEwIE )/c
(60)

where

c = wEIwIE − (wII + 1)(wEE − 1)

13



The full system in the QSS approximation reads

dwEE

dτ
= −(eqss − 1)wEE

dwEI

dτ
= +(eqss − 1)wEI

dwIE

dτ
= −(iqss − 1)wIE/R

dwII

dτ
= +(iqss − 1)wII /R

(61)

where eqss and iqss are nonlinear functions of the
weights as defined by Eq. 60.

Note that the Up state fixed point, defined by mak-
ing all derivatives equal to zero, can be expressed as

eqss = 1

iqss = 1
(62)

which is the nondimensionalized version of Eq. 57.
The weight values compatible with this condition are
defined by equating Eqs. 60 and 62:

wEIup = wEEup − 1− θE
wIIup = wIEup − 1− θI

(63)

(wEEup and wIEup are free). This is the nondimen-
sionalized version of Eq. 58.

2.6.4 Instability condition

Now we show that this learning rule is unstable for
biologically backed parameter values. The Jacobian
matrix evaluated at the Up state has two zero eigen-
values (as expected) and two nonzero eigenvalues.
The nonzero eigenvalues have the form:

λ± =
A±
√
A2 −DC
C

(64)

where

C = 2R(θIwEEup − θEwIEup − θI)

D = 2(θE − 2wEEup + 1)(θI − 2wIEup + 1)

and A is a long expression that can be found in the
corresponding Jupyter notebook.

To determine the sign of Eq. 64, first note that
C must be positive because it is related to one of

the stability conditions of the neural subsystem (Eq.
14, after substituting back to dimensionalized quanti-
ties). Next note that D, after switching wEE → wEI

and wIE → wII by means of Eq. 63, reads

D = 2(θE + 2wEIup + 1)(θI + 2wIIup + 1)

which is positive definite
Note next that A2 −DC is less than A2 (since C

and D are positive), and thus the square root is either
real and less than |A| or imaginary, both cases leading
to Re(A ±

√
A2 −DC) > 0 if A > 0. The learning

rule is then unstable (both eigenvalues with positive
real part) if A > 0. This condition can be written as

(WEEup gE − 1)a > (WIIup gI + 1)a′ (65)

where

a = 2IsetWIIup gI + ΘI gI + Iset

a′ = 2EsetWEEup gE −ΘE gE − Eset

2.6.5 Analysis of the instability condition

In a biologically backed set of parameter values the
following is true:

Iset > Eset

gI > gE

ΘI > ΘE

Keeping this in mind, and taking into account that
a is the sum of positive terms while a′ is the differ-
ence of positive terms, we can safely say that a > a′

(despite WIIup ≤ WEEup), and thus the instability
condition Eq. 65 is satisfied despite that one of the
stability conditions of the neural subsystem requires
that (WEEup gE − 1)τI > (WIIup gI + 1)τE , see Eq.
15). The SynapticScaling rule is then unstable.

2.6.6 Numerical analysis

As an illustration of the reasoning above, we express
the instability condition Eq. 65 in terms of the free
weights WEE and WIE by means of Eq. 58, and plot
it with parameter values as in Table 1.

The instability condition is a homographic func-
tion (i.e. a hyperbola) with instability regions in its
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first and third quadrants. It is clear from Figure S6
that the neural subsystem is stable in a region that is
entirely within the instability region of the synaptic
subsystem.

2 4 6 8 10
WEE

5

10

15

20
WIE

(synaptic
unstable)

(paradoxical)

(detcond
stable)

(trcond
stable)

synaptic unstable
paradoxical
neural detcond
neural trcond

Figure S6: Regions of stability. The SynapticScaling
learning rule is unstable where the neural subsystem
is stable. Synaptic: Eq. 65; Paradoxical: Eq. 16;
Neural detcond: Eq. 14; Neural trcond: Eq. 15.

3 Learning rule from loss func-
tion

(SageMath code in the Supplementary Material: up

states - Loss function.ipynb)
Here we show how to compute the learning rule

starting from a loss function. Then we make an
approximation by considering the weight values are
small, and take that as input to interpret several
learning rules that don’t come from a loss function.

3.1 General prescription

We consider the full neural+synaptic system in the
QSS approximation (see e.g. Section 2.3). In this
approximation the neural subsystem is represented
by the quasi-steady-state values

E = Eup(WEE ,WEI ,WIE ,WII )

I = Iup(WEE ,WEI ,WIE ,WII )
(66)

where the functions Eup and Iup are defined by Eq.
10 (see [7] for a related discussion on quasi-steady
state, synaptic plasticity, and gradient descent).

The synaptic subsystem, that is the learning rule,
will be obtained as a result of considering a specific
loss function, and the general prescription to com-
pute the learning rule from a loss function L is the
following:

1. Consider a loss function depending on E and I
(which in turn depend on all weights):

L = L(E, I)

Conditions to be satisfied by the loss function
are, for instance, to be smooth enough (i.e. con-
tinuous and differentiable) and to have a mini-
mum when the activities E and I are at the set
points Eset and Iset (i.e. homeostatic plasticity).

2. The dynamics of the weights is such that it fol-
lows a gradient descent on the loss function to-
wards its minimum. In vector notation :

∆W = −α∇L (67)

with learning rate α. The unfolded learning
rules, that is the equations that govern the
weights’ dynamics, are then

∆WEE = −α ∂L

∂WEE

∆WEI = −α ∂L

∂WEI

∆WIE = −α ∂L

∂WIE

∆WII = −α ∂L

∂WII

(68)

3. The partial derivatives of the loss function in Eq.
68 are:

∂L

∂WEE
=
∂L

∂E

∂E

∂WEE
+
∂L

∂I

∂I

∂WEE

∂L

∂WEI
=
∂L

∂E

∂E

∂WEI
+
∂L

∂I

∂I

∂WEI

∂L

∂WIE
=
∂L

∂E

∂E

∂WIE
+
∂L

∂I

∂I

∂WIE

∂L

∂WII
=
∂L

∂E

∂E

∂WII
+
∂L

∂I

∂I

∂WII

(69)
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or, in vector notation:

∇L =
∂L

∂E
∇E +

∂L

∂I
∇I (70)

Here we use the chain rule for the derivatives be-
cause it gives us much more compact expressions
at the end.

4. The partial derivatives in the gradients ∇E =(
∂E

∂WEE
, . . .

)
and ∇I =

(
∂I

∂WEE
, . . .

)
etc. are

to be taken from the quasi-steady-state values of
E and I, Eq. 66. We will, however, compute the
partial derivatives from the implicit expressions
given by setting dE/dt = dI/dt = 0 in Eq. 9
without solving for E and I.

3.2 Detailed calculation

Loss function We choose a very general loss func-
tion that depends homeostatically on both E and I
activities:

L(E, I) =
1

2
(Eset − E)2 +

1

2
(Iset − I)2 (71)

This loss function is an elliptic paraboloid in (E, I)
space with a global minimum at (Eset , Iset) so a gra-
dient descend learning rule as above should converge
to that minimum (see Liapunov function and gradient
systems: [3, Section 1.1B][8, Sections 9.3 and 9.4][2,
Section 7.2]. Keep in mind, however, that L has a
different shape when expressed as a function of the
weights, and that E and I are not necessarily mono-
tonic functions of the weights, so the conditions for
the set point of L to be stable or a global minimum
or even unique are not necessarily satisfied.

Partial derivatives of L The partial derivatives
of L with respect to E and I are simply

∂L

∂E
= −(Eset − E)

∂L

∂I
= −(Iset − I)

(72)

Partial derivatives of E and I We compute the
partial derivatives ∂X/∂WXY (X,Y = E, I) by first
functions defined by equating the neural subsystem
(Eq. 9) to zero:

E = gE(WEEE −WEI I −ΘE))

I = gI(WIEE −WII I −ΘI))
(73)

then differentiating the implicit functions:

∂E

∂WEE
= gE(E +WEE

∂E

∂WEE
)− gEWEI

∂I

∂WEE

∂E

∂WEI
= gEWEE

∂E

∂WEI
− gE(I +WEI

∂I

∂WEI
)

∂E

∂WIE
= gEWEE

∂E

∂WIE
− gEWEI

∂I

∂WIE

∂E

∂WII
= gEWEE

∂E

∂WII
− gEWEI

∂I

∂WII

∂I

∂WEE
= gIWIE

∂E

∂WEE
− gIWII

∂I

∂WEE

∂I

∂WEI
= gIWIE

∂E

∂WEI
− gIWII

∂I

∂WEI

∂I

∂WIE
= gI(E +WIE

∂E

∂WIE
)− gIWII

∂I

∂WIE

∂I

∂WII
= gIWIE

∂E

∂WII
− gI(I +WII

∂I

∂WII
)

(74)
and then solving for the derivatives:

∂E

∂WEE
= −(EWII gE gI + EgE)/C

∂E

∂WEI
= (IWII gE gI + IgE)/C

∂E

∂WIE
= EWEI gE gI/C

∂E

∂WII
= −IWEI gE gI/C

∂I

∂WEE
= −EWIE gE gI/C

∂I

∂WEI
= IWIE gE gI/C

∂I

∂WIE
= (EWEE gE − E)gI/C

∂I

∂WII
= −(IWEE gE − I)gI/C

(75)
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where

C = WEIWIE gE gI − (WII gI + 1)(WEE gE − 1)

Exact learning rules Putting everything to-
gether, the learning rules Eq. 68 are:

∆WEE = −α
C

((Iset − I)EWIE ge gI

+ (Eset − E)E(WII gI + 1)gE)

∆WEI = +
α

C
((Iset − I)IWIE ge gI

+ (Eset − E)I(WII gI + 1)gE)

∆WIE = +
α

C
((Eset − E)EWEI ge gI

+ (Iset − I)E(WEE gE − 1)gI)

∆WII = −α
C

((Eset − E)IWEI ge gI

+ (Iset − I)I(WEE gE − 1)gI)
(76)

Note that these are very complicated, nonlinear ex-
pressions because both E and I depend on all weights
via Eq. 73. Also the denominator C depends on all
weights (see previous paragraph).

Small weights approximation We want simpler
expressions for the learning rules. Note that the ex-
act expressions above all have a homeostatic factor
(either E−Eset or I − Iset) and a presynaptic factor
(E in ∆WEE and ∆WIE and I in ∆WEI and ∆WII ).
Despite their complicated dependence on the weights,
both factors have simple interpretations so we want to
keep them as they are while expanding the rest of the
expressions (explicit dependence on the weights in-
cluding C) as a first-order Taylor series around zero.
Although this is not a textbook Taylor expansion of
the full expressions, it is very informative because the
results can be much easily interpreted (for a similar

approach see [7]:

∆WEE = +α((Eset − E)E gE

+ (Eset − E)EWEE g
2
E

+ (Iset − I)EWIE gE gI)

∆WEI = −α((Eset − E)I gE

+ (Eset − E)IWEE g
2
E

+ (Iset − I)IWIE gE gI)

∆WIE = +α((Iset − I)E gI

− (Iset − I)EWII g
2
I

− (Eset − E)EWEI gE gI)

∆WII = −α((Iset − I)I gI

− (Iset − I)IWII g
2
I

− (Eset − E)IWEI gE gI)

(77)

Note that the first terms of these expressions (corre-
sponding to the zeroth order in the approximation)
are exactly the standard Homeostatic learning rules,
Eq. 17. Also note that the homeostatic factors in
the third terms have the sign corresponding to the
Cross-Homeostatic rules, Eq. 30.
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