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Abstract 1 

Beyond detecting brain damage or tumors, little success has been attained on identifying 2 

individual differences and brain disorders with magnetic resonance imaging (MRI). Here, we 3 

sought to build industrial-grade brain imaging-based classifiers to infer two types of such 4 

inter-individual differences: sex and Alzheimer’s disease (AD), using deep learning/transfer 5 

learning on big data. We pooled brain structural data from 217 sites/scanners to constitute the 6 

largest brain MRI sample to date (85,721 samples from 50,876 participants), and applied a 7 

state-of-the-art deep convolutional neural network, Inception-ResNet-V2, to build a sex 8 

classifier with high generalizability. In cross-dataset-validation, the sex classification model 9 

was able to classify the sex of any participant with brain structural imaging data from any 10 

scanner with 94.9% accuracy. We then applied transfer learning based on this model to 11 

objectively diagnose AD, achieving 88.4% accuracy in cross-site-validation on the 12 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and 91.2% / 86.1% accuracy for 13 

a direct test on two unseen independent datasets (AIBL / OASIS). Directly testing this AD 14 

classifier on brain images of unseen mild cognitive impairment (MCI) patients, the model 15 

correctly predicted 63.2% who eventually converted into AD, versus predicting 22.1% as AD 16 

who did not convert into AD during follow-up. Predicted scores of the AD classifier 17 

correlated significantly with illness severity. By contrast, the transfer learning framework was 18 

unable to achieve practical accuracy for psychiatric disorders. To improve interpretability of 19 

the deep learning models, occlusion tests revealed that hypothalamus, superior vermis, 20 

thalamus, amygdala and limbic system areas were critical for predicting sex; hippocampus, 21 

parahippocampal gyrus, putamen and insula played key roles in predicting AD. Our trained 22 

model, code, preprocessed data and an online prediction website have been openly-shared to 23 

advance the clinical utility of brain imaging. 24 

 25 

Keywords 26 

Alzheimer’s disease, brain MRI, convolutional neural network, sex difference, transfer 27 

learning 28 
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1. Introduction 30 

Can we infer individual differences and brain disorders from brain images? This is a question 31 

that has been long pursued. However, beyond visually identifying brain damage or tumors, 32 

little success has been attained in identifying individual differences, e.g., age, sex, or brain 33 

disorders, e.g., Alzheimer’s disease (AD). These may contain subtle features that cannot be 34 

discerned by visual inspection, but which may be amenable to identification based on 35 

machine intelligence. Here, we sought to build industrial-grade brain imaging-based 36 

classifiers for sex and AD with high generalizability via deep learning/transfer learning on big 37 

data. 38 

 39 

Progress has been attained in using brain imaging, especially magnetic resonance imaging 40 

(MRI), to predict sex,1,2 age,3,4 Alzheimer’s Disease (AD),5,6 major depressive disorder 41 

(MDD),7,8 attention-deficit/hyperactivity disorder (ADHD),9 and autism spectrum disorder 42 

(ASD) among others.10,11 However, all of these efforts have failed to generalize. Brain 43 

imaging data varies depending on characteristics such as scanner vendor, head coil type, 44 

imaging sequence, applied gradient fields, reconstruction methods, voxel size, field of view, 45 

etc. Participant characteristics also vary in sex, age, race and education, etc. These variations 46 

make a brain imaging-based classifier trained on a site (or several sites) difficult to generalize 47 

to unseen sites/scanners, thus preventing brain imaging-based classifiers from becoming 48 

practically useful, e.g., in clinical settings. 49 

 50 

Recently, utilizing deep learning on big data has been successfully applied on an 51 

industrial-grade in fields like extreme weather condition prediction,12 aftershock pattern 52 

prediction13 and automatic speech recognition.14 In medical imaging, image-based deep 53 

convolutional neural networks (CNN) have been applied to objectively diagnose retinal 54 

diseases,15 skin cancer16 and breast cancer screening.17 In brain imaging, CNN have predicted 55 

chronological age with high accuracy.3,4 However, accuracy has been insufficient when 56 

generalizing to unseen datasets (i.e., for data acquired in difference sites/scanners, Pearson's 57 

correlation coefficients between predicted and actual age range from 0.53 to 0.86).3 Brain age 58 
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prediction errors may be biologically meaningful as brain disorders may involve accelerated 59 

or delayed brain maturation/aging.3 Nonetheless, a brain imaging-based CNN classifier has 60 

yet to achieve practical utility. 61 

 62 

Taking AD diagnosis as an example, safe and non-invasive MRI-based biomarkers are needed 63 

to supplement current invasive diagnostic biomarkers like cerebrospinal fluid (CSF), amyloid 64 

positron emission tomography (PET) and tau imaging.18-20 However, prior attempts have yet 65 

to reach clinical utility. Qiu and colleagues21 built an interpretable deep-learning classifier for 66 

AD with an average accuracy of 82.2% using brain imaging data from four datasets. However, 67 

the performance of the proposed AD classifier is quite unstable across datasets. For example, 68 

in AIBL dataset, the AD classifier achieved 87.0% accuracy and 0.924 specificity but with a 69 

deficient 0.594 sensitivity. On the contrary, in FHS dataset, the accuracy of the same classifier 70 

dropped to 76.6% with high sensitivity (0.901) and inadequate specificity (0.712). The 71 

floating accuracy and inconsistent tradeoff between sensitivity and specificity in different 72 

medical units hampered the proposed method to be integrated into the present diagnosis 73 

system. To alleviate the unsatisfactory generalization performance, Bashyam et al.22 used a 74 

more heterogeneous sample to build a brain age prediction model that would be more 75 

generalizable to unseen sites/scanners. However, when transfer learning to AD, they only used 76 

random cross-validation on the ADNI dataset with an accuracy of 86% and didn’t implement 77 

independent dataset validation. Random cross-validation may share participants from the 78 

same sites between training and testing samples, thus the model may not apply to datasets 79 

from unseen sites due to the site information leaking in training. To attain generalizability, 80 

cross-dataset or cross-site validation should be implemented to make sure classifier accuracy 81 

will be insensitive to site/scanner variability. 82 

 83 

A bottleneck for developing an industrial-grade brain imaging-based classifier is the needed 84 

scale and the variety of the training datasets. In recent years, data sharing projects have made 85 

upwards of 100,000 brain images available to the scientific community. However, no studies 86 

have fully implemented this resource to train classifiers. The largest training sample (45,615 87 

participants) has come mainly from a single site (UKBiobank).3 The second and third largest 88 
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training data sets comprised 16,848 and 14,468 participants.4,22 Even with a relatively large 89 

sample, if the training sample doesn’t contain sufficient sites (i.e., with variations in 90 

manufacturers of MR equipment, scanning parameters, quality control procedures and 91 

participant characteristics, etc.), a trained classifier will fail to generalize to unseen datasets. 92 

Thus, here, we utilized the largest and most diversiform sample to date (85,721 samples from 93 

50,876 participants from 217 sites/scanners, see Table S1), to achieve an industrial-grade 94 

classifier which can generalize to any scanner and any sample. 95 

 96 

Our first training goal was to predict sex, as it is an objective dichotomous indicator available 97 

for every participant in open datasets. After obtaining a brain imaging-based classifier for sex 98 

with high cross-dataset accuracy, our second goal was to use transfer learning to attempt to 99 

classify patients with AD. Transfer learning is preferred as the AD dataset is much smaller, 100 

and direct training on a small sample can result in overfitting with poor generalization to new 101 

unseen testing data 23. The third goal was to test the specificity of our AD model on MDD, 102 

ASD and ADHD datasets, and to explore the transfer learning framework to these psychiatric 103 

disorders. This study advanced brain imaging-based deep-learning towards clinical utilities in 104 

four ways. First, we implemented big data on an unprecedented scale, comprising 85,721 105 

samples from 217 sites/scanners, thus permitting us to build an industrial-grade brain 106 

imaging-based deep learning classifier. Second, as generalizability is crucial for practical use, 107 

we always used stringent cross-dataset-validation or cross-site-validation during 108 

training/testing, thus allowing our model to be generalized to anybody from any site/scanner. 109 

Third, other than the traditional 2D Inception-ResNet-v2 deep neural network models, the 3D 110 

neural network we expanded reflects the 3D nature of the brain and improves interpretability 111 

through occlusion testing. Lastly, we openly shared our preprocessed data, trained model, 112 

code and framework to facilitate open-science, and have built an online prediction website 113 

(http://brainimagenet.org:8088) for anyone interested in testing our classifier with brain 114 

imaging data from anybody and any scanner. 115 

 116 

2. Materials and methods 117 
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Data acquisition 118 

We submitted data access applications to nearly all the open-access brain imaging data 119 

archives, and received permissions from the administrators of 34 datasets. The full dataset list 120 

is shown in Table S1. Deidentified data were contributed from datasets approved by local 121 

Institutional Review Boards. Reanalyses of these data were approved by the Institutional 122 

Review Board of the Institute of Psychology, Chinese Academy of Sciences. All study 123 

participants provided written informed consent at their local institution. All 50,876 124 

participants (contributing 85,721 samples) had at least one session with a T1-weighted 125 

structural image and information on sex and age. For participants with multiple sessions of 126 

structural images, each image was considered an independent sample for data augmentation in 127 

training. Importantly, scans from the same person were never split into training and testing 128 

sets, as that would artifactually inflate performance. To test if our classifier could be 129 

transferred to brain disorders, we selected ADNI (16,596 samples from 2,212 participants), 130 

Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL, 624 samples 131 

from 406 participants), Open Access Series of Imaging Studies (OASIS, 3,150 samples from 132 

1,664 participants), REST-meta-MDD (2,380 participants), Autism Brain Imaging Data 133 

Exchange (ABIDE) 1&2 (2,145 participants) and ADHD200 (875 participants) datasets.  134 

  135 

MRI preprocessing 136 

We did not feed raw data for classifier training, but used the knowledge from brain imaging 137 

data analysis. Brain structural data were segmented and normalized to acquire grey matter 138 

density (GMD) and grey matter volume (GMV) maps. Specifically, the voxel-based 139 

morphometry (VBM) analysis module within Data Processing Assistant for Resting-State 140 

fMRI (DPARSF),24 which was developed based on SPM,25 was used to segment individual 141 

T1-weighted images into GM, WM and cerebrospinal fluid (CSF). Then, the segmented 142 

images were transformed from individual native space to MNI space (a coordinate system 143 

created by Montreal Neurological Institute) with the Diffeomorphic Anatomical Registration 144 

Through Exponentiated Lie algebra (DARTEL) tool.26 The two voxel-based structural metrics, 145 

GMD and GMV, were fed into the deep learning classifier as two channels per participant. 146 

GMV was modulated GMD images using the Jacobian determinants derived from the spatial 147 
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normalization in the VBM analysis.27  148 

 149 

Quality control 150 

Poor quality raw structural images produce distorted GMD and GMV maps during 151 

segmentation and normalization. To prevent such participants from affecting the training 152 

classifiers, we excluded participants in each dataset with spatial correlation lower than the 153 

threshold defined by mean - 2SD Pearson’s correlation between each participant’s GMV map 154 

and the grand mean GMV template. The grand mean GMV template was generated by 155 

randomly selecting 10 participants from each dataset and averaging the GMV maps of all 156 

these 340 (from 34 datasets) participants. The image quality of all 340 scans was visually 157 

checked. After quality control, 83,735 samples from 49,558 participants were retained for 158 

classifier training. 159 

 160 

Deep learning: classifier training and testing for sex 161 

We trained a 3-dimension Inception-ResNet-v2 model adopted from its 2-dimension version 162 

in the Keras built-in application (see Fig. 1A for structure).28 This is a record-breaking model 163 

in pattern recognition which integrates two classical series of CNN models, Inception and 164 

ResNet. We replaced the convolution, pooling and normalization modules with their 165 

3-dimension versions and adjusted the number of layers and convolutional kernels to make 166 

them suitable for 3-dimension MRI inputs (e.g., GMD and GMV as different input channels). 167 

The present model consists of one stem module, three groups of convolutional modules 168 

(Inception-ResNet-A/B/C) and two reduction modules (Reduction-A/B). It can take advantage 169 

of convolutional kernels with different sizes and shapes and extract features in different sizes, 170 

and mitigate vanishing gradients and exploding gradients by adding residual modules. We 171 

utilized the Keras built-in stochastic gradient descent optimizer with learning rate = 0.01, 172 

nesterov momentum = 0.9, decay = 0.001 (e.g., learn rate = learn rate0 x (1 / (1 + decay x 173 

batch))). Loss function was set to binary cross-entropy. Batch size was set to 24 and the 174 

training procedure lasted 10 epochs for each fold. To avoid potential overfitting, we randomly 175 

split 600 samples out of the training sample as a validating sample and set a checking point at 176 

the end of every epoch. We saved the model in which the epoch classifier showed the lowest 177 
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validating loss. Thereafter, the testing sample was fed into this model to test the classifier. 178 

 179 

To ensure generalizability, we used cross-dataset validation on the data of 83,735 samples 180 

from 49,558 participants with 34 datasets scanned from 217 sites/scanners. In the testing 181 

phase, all the data from a given dataset would never be seen during the classifier training 182 

phase. This also ensured the data from a given site (and thus a given scanner) were unseen by 183 

the classifier during training. While this strict setting inevitably limits classifier performance, 184 

this made it feasible to generalize to any participant at any site (scanner). Five-fold 185 

cross-dataset-validation was used to assess classifier accuracy. Of note, 3 datasets were 186 

always kept in the training sample due to the massive number of samples after quality control: 187 

Adolescent Brain Cognition Development (ABCD) (30,533 samples from 11,875 participants), 188 

UK Biobank (19,760 participants) and Alzheimer's Disease Neuroimaging Initiative (ADNI) 189 

(16,431 samples from 2,212 participants). The remaining 31 datasets were randomly allocated 190 

to the training and testing samples. The allocating schemas were the solution that balanced the 191 

sample size of 5 folds the best from 10,000 random allocating procedures.  192 

 193 
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 194 

Figure 1 | Flow diagram for training procedure for the sex classifier and the Alzheimer’s 195 

disease transfer learning framework. (A) Schema for 3D Inception-ResNet-V2 network 196 

and the Alzheimer’s disease transfer learning framework. (B) Schematic diagram for 197 

leave-dataset-out 5-fold cross-validation in training the sex classifier. 198 

 199 

Transfer learning: classifier training and testing for AD 200 

After obtaining an industrial-grade brain imaging-based classifier for sex with high 201 
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cross-dataset accuracy, we used transfer learning to see if we could classify AD patients. The 202 

structure of the sex model was kept, and weights in the last two layers (e.g., full connection 203 

layer and drop out layer) were reset. This new model was transferred to the ADNI dataset 204 

(2,186 samples from 380 AD patients and 4,671 samples from 698 normal controls (NCs)). 205 

ADNI was launched in 2003 (Principal Investigator Michael W. Weiner, MD) to investigate 206 

biological markers of the progression of MCI and early AD (see www.adni-info.org). 207 

Five-fold cross-site-validation was used to assess classifier accuracy. By ensuring the data 208 

from a given site (and thus a given scanner) were unseen by the classifier during training, this 209 

strict strategy made the classifier generalizable with non-inflated accuracy, thus better 210 

simulating realistic medical applications than traditional five-fold random cross-validation.  211 

 212 

To further test the generalizability of the AD classifier, we directly tested the classifier on two 213 

unseen independent AD sample, i.e., AIBL29 and OASIS30,31. We used the averaged output of 214 

5 AD classifiers in the previous five-fold cross-site-validation as the final output for a 215 

participant. We used diagnoses provided by AIBL dataset as the labels of samples (101 216 

samples from 82 AD patients and 523 samples from 324 NCs). As OASIS did not specify the 217 

criteria for an AD diagnosis, we adopted 2 criteria from ADNI-1 to define AD patients, i.e., 1) 218 

mini-mental state examination score between 20 and 26 (inclusive) and 2) clinical dementia 219 

rating score = 0.5 or 1.0. Thus, we tested on 277 AD patients and 995 NCs who met the 220 

ADNI-1 criteria of AD and NCs in OASIS dataset. Of note, AIBL and OASIS scanning 221 

conditions and recurrent criteria differed much more than variations among different ADNI 222 

sites, thus we expected to achieve lower performance. This AD classifier was also tested on 223 

MDD, ASD and ADHD samples to determine its specificity in a more complex sample, i.e., 224 

would patients with mental disorders be misclassified as AD patients. 225 

 226 

We further investigated whether the AD classifier could predict the progression of MCI. MCI 227 

is defined as cognitive decline without impairment in everyday activities.32 The amnestic 228 

subtype of MCI has a high risk of converting to AD. We screened image records of the MCI 229 

patients who subsequently converted to AD in ADNI 1/2/go phases, and collected 1668 230 

samples from 235 participants labeled as ‘MCI’ (i.e., they had follow-up visits labeled as 231 
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‘Conversion: MCI to AD’ or ‘AD’, but images acquired at those follow-up visits were not 232 

used). We also assembled 4069 samples from 624 participants labeled ‘MCI’ without later 233 

conversion for contrast. We fed all these MCI images directly into the AD classifier without 234 

further fine-tuning, thus evaluating the performance of the AD classifier on unseen MCI 235 

information.  236 

 237 

Transfer learning: classifier training and testing for psychiatric disorders 238 

We further applied this transfer learning framework to MDD, ASD and ADHD samples to 239 

determine its performance with psychiatric disorders. The sex classifier was transferred to 240 

psychiatric samples from REST-meta-MDD (1266 MDDs vs. 1097 NCs), ABIDE 1&2 (985 241 

ASDs vs. 1107 NCs) and ADHD200 (181 ADHDs vs. 526 NCs) after quality control. The 242 

training parameters were the same used for training the AD classifier. After fine-tuning, 243 

five-fold cross-site-validation was used to assess classifier accuracy. 244 

 245 

Interpretation of the deep learning classifiers  246 

To better understand the brain imaging-based deep learning classifier, we calculated occlusion 247 

maps for the classifiers. We repeatedly tested images in the testing sample using the model 248 

with the highest five-fold accuracy, while successively masking brain areas (volume = 249 

18mm*18mm*18mm, step = 9mm) in all input images. The accuracy achieved with “intact” 250 

samples by the classifier minus accuracy achieved with “defective” samples indicated the 251 

“importance” of the occluded brain area for the classifier. Occlusion maps were calculated for 252 

both sex and AD classifiers.  253 

 254 

Data and code availability  255 

The imaging, phenotype and clinical data used for the training, validation and test sets were 256 

obtained from the administrators of 34 datasets. The raw data are publicly available in 257 

different repositories. The preprocessed brain imaging data are available through the R-fMRI 258 

Maps project (Link_To_Be_Added upon publication; preprocessed data for some datasets 259 

could not be shared as the raw data owners do not allow sharing data derivatives). The code 260 

for training and testing the model are openly shared at 261 
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https://github.com/Chaogan-Yan/BrainImageNet. The online prediction website is available at 262 

http://brainimagenet.org:8088. 263 

 264 

3. Results 265 

Brain imaging big data  266 

Only brain imaging data with sufficient size and variety can make deep learning useful for 267 

building an industrial-grade classifier. We received permissions from the administrators of 34 268 

datasets (85,721 samples from 50,876 participants from 217 sites/scanners, see Table S1; 269 

some datasets did not require application). Data for each participant contained at least one 270 

session with a T1-weighted brain structural image and information on participant sex.  271 

 272 

Performance of the sex classifier 273 

We trained a 3-dimension Inception-ResNet-v2 model adapted from its 2-dimension version 274 

in the Keras built-in application (see Fig. 1A for structure). To ensure generalizability, 275 

five-fold cross-dataset-validation was used to assess classifier accuracy (see Fig. 1B). The 276 

five-fold cross-dataset-validation accuracies were: 94.8%, 94.0%, 94.8%, 95.7% and 95.8%, 277 

for an overall average accuracy of 94.9% in testing samples. Area under the curve (AUC) of 278 

the receiver operating characteristic (ROC) curve reached 0.981 (see Fig. 2). In short, our 279 

model can classify the sex of a participant with brain structural imaging data from anyone and 280 

any scanner with about 95% accuracy. Interested readers can test this model at the online 281 

prediction website (http://brainimagenet.org:8088). The code and model are also openly 282 

shared at https://github.com/Chaogan-Yan/BrainImageNet. 283 

 284 
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 285 

Figure 2 | Performance of the sex classifier. (A) Receiver operating characteristic curve of 286 

the sex classifier. (B) Tensorboard monitor graph of the sex classifier in the training sample. 287 

The curve was smoothed for better visualization. (C) Tensorboard monitor graph of sex 288 

classifier in the validation sample. 289 

 290 

Performance of the AD classifier 291 

After attaining an industrial-grade brain imaging-based classifier for sex with high 292 
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cross-dataset accuracy, we used transfer learning to see if we could classify patients with AD. 293 

To ensure generalizability, we utilized five-fold cross-site-validation to assess classifier 294 

accuracy. The AD classifier achieved an average accuracy of 88.4% (accuracy = 92.1%, 295 

82.8%, 88.5%, 90.9% and 85.3% in 5 folds) in the ADNI test samples. Average sensitivity and 296 

specificity were 0.814 and 0.917, respectively. The ROC AUC reached 0.938 when results 297 

from the 5 testing samples were combined (see Fig. 3 and Table. 1).  298 

 299 

To test the generalizability of the AD classifier, we applied it to an unseen independent AD 300 

dataset, i.e., AIBL and OASIS 1/2. The AD classifier achieved 91.2% accuracy in AIBL with 301 

0.948 AUC (see Table. 1 and Supplementary Fig. 1A). Sensitivity and specificity were 0.851 302 

and 0.924, respectively. The AD classifier achieved 86.1% accuracy in OASIS with 0.921 303 

AUC (see Table. 1 and Supplementary Fig. 1B). Sensitivity and specificity were 0.789 and 304 

0.881, respectively. To assess specificity to AD, we also tested it on MDD, ASD and ADHD 305 

samples. The model achieved 86.4% accuracy (e.g., only 13.6% of MDD, ASD or ADHD 306 

samples were misclassified as AD; 94.2%, 77.1% and 81.4% accuracy for REST-meta-MDD, 307 

ABIDE1/2 and ADHD200 samples, respectively) in this test, yielding specificity comparable 308 

to that for the OASIS sample, indicating high specificity of this AD classifier in diverse 309 

patient samples.  310 

 311 

Table 1 | performance of the Alzheimer's disease classifier 312 

Dataset n (AD) n (NC) Accuracy AUC Sensitivity Specificity 

ADNI 2186 4671 0.884 0.938 0.814 0.917 

AIBL 101 523 0.912 0.948 0.851 0.924 

OASIS 277 995 0.861 0.921 0.789 0.881 

AD = Alzheimer's disease; NC = normal control. The sample sizes showed here the numbers of T1 MRI scans. 313 

 314 

Importantly, although the AD classifier is agnostic to mild cognitive impairment (MCI), we 315 

directly tested it on the MCI dataset in ADNI to determine its potential to predict progression 316 

from MCI to AD. For MCI patients who eventually converted to AD, the classifier predicted 317 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15

63.2% as AD. For MCI patients who did not convert to AD during the ADNI data collection 318 

period, only 22.1% were classified as AD (see Supplementary Fig. 1C). These results suggest 319 

that the classifier is practical for screening MCI patients with a higher risk of progression to 320 

AD. In sum, we believe our AD classifier can support computer-aided diagnosis and 321 

prediction of AD, thus we have made it freely available at http://brainimagenet.org:8088. 322 

Nevertheless, we emphasize that online classification results should be interpreted with 323 

caution, as they cannot replace evaluation and diagnosis by licensed clinicians.  324 

 325 
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 326 

Figure 3 | Performance of the Alzheimer's disease (AD) classifier. (A) Receiver operating 327 

characteristic curve of the AD classifier. (B) Tensorboard monitor panel of the AD classifier in 328 

the training sample. (C) Tensorboard monitor panel of the AD classifier in the validation 329 

sample. 330 

 331 

Performance of the classifiers for psychiatric disorders 332 

We also applied this transfer learning framework to MDD, ASD and ADHD samples to 333 
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determine its performance for these psychiatric disorders. The training and testing procedures 334 

were the same as those for the AD classifier. To ensure generalizability, we utilized five-fold 335 

cross-site-validation to assess classifier accuracy. The MDD/NC classifier achieved 55.6% 336 

accuracy in the testing sample with AUC of 0.562. The ADHD classifier achieved 63.1% 337 

accuracy with AUC of 0.669. The ASD classifier achieved 57% accuracy with AUC of 0.604 338 

(see Supplementary Figs. 2-4, left panel). Notably, the performance of our 339 

cross-site-validations were all worse than those of traditional random cross-validation (69.3% 340 

accuracy for the MDD classifier, 69.4% accuracy for the ADHD classifier, 58.3% accuracy 341 

for the ASD classifier, see Supplementary Figs. 2-4, right panel). This indicates that classifiers 342 

for psychiatric disorders are more sensitive to site variability, thus a useful model should be 343 

fine-tuned for each specific site. 344 

 345 

Interpretation of the deep learning classifiers  346 

To better understand the brain imaging-based deep learning classifier, we calculated occlusion 347 

maps for the classifiers. In brief, we continuously set a cubic brain area of every input image 348 

to zeros, and attempted classification with the defective samples. Occlusion maps showed that 349 

hypothalamus, superior vermis, thalamus, amygdala, putamen, accumbens, hippocampus and 350 

parahippocampal gyrus played critical roles in predicting sex (see Fig. 4A). Occlusion maps 351 

for the AD classifier highlighted hippocampus, parahippocampal gyrus, putamen and insula as 352 

playing unique roles in predicting AD (see Fig. 4B). 353 

 354 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 355 

Figure 4 | Interpretation of the deep learning classifiers with occlusion maps. Classifier 356 

performance dropped considerably when the brain areas rendered in red were masked 357 

out of the model input. (A) Occlusion maps for the sex classifier. (B) Occlusion maps for the 358 

Alzheimer disease classifier. Graphs on the bottom right show occlusion maps projected to 359 

the brain surface. 360 

 361 
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To investigate the clinical significance of the output of the AD classifier, we calculated 362 

Spearman’s correlation coefficients between scores predicted by the classifier and 363 

mini-mental state examination (MMSE) scores in AD, NC and MCI samples. We observed 364 

significant negative correlations between predicted scores and MMSE scores for AD (r = 365 

-0.319, p < 1 × 10-40), NC (r = -0.109, p < 1 × 10-10), MCI (r = -0.408, p < 1 × 10-188) and the 366 

overall sample (r = -0.579, p < 1 × 10-188) (See Fig. 5). As lower MMSE scores indicated 367 

more severe cognitive impairment for AD and MCI patients, we confirmed that the more 368 

severe the disease, the higher the predicted score by the classifier. In addition, both predicted 369 

scores and MMSE scores differed significantly between MCI patients who converted to AD 370 

and those who did not (predicted scores: t = 13.454, p < 1× 10-36, Cohen’s d = 1.03; MMSE 371 

scores: t = -8.015, p < 1× 10-14, Cohen’s d = -0.61) (See Supplementary Fig. 5). Importantly, 372 

the effect size of the scores predicted by the classifier is much larger than the behavioral 373 

measure (MMSE scores). 374 

 375 
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 376 

Figure 5 | Correlations between Alzheimer's disease (AD) classifier output and illness 377 

severity. The scores predicted by the AD classifier were significantly negatively 378 

correlated with mini-mental state examination (MMSE) scores of AD, normal control 379 

(NC) and mild cognitive impairment (MCI) samples. (A) Correlations between scores 380 

predicted by the AD classifier and MMSE scores of AD samples. (B) Correlations between 381 

scores predicted by the AD classifier and MMSE scores of NC samples. (C) Correlations 382 

between scores predicted by the AD classifier and MMSE scores of MCI samples. (D) 383 

Correlations between scores predicted by the AD classifier and MMSE scores of AD, NC and 384 

MCI samples. 385 

 386 

4. Discussion 387 
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Using an unprecedentedly large sample, we built an industrial-grade classifier for sex which 388 

can classify the sex of a participant with brain structural imaging data from anyone and any 389 

scanner with about 95% accuracy. Using transfer learning, the model fine-tuned to AD 390 

achieved 88.4% accuracy in stringent cross-site-validation and 91.2% / 86.1% accuracy for 391 

direct tests on unseen independent dataset (AIBL and OASIS). Predicted scores of the AD 392 

classifier were significantly negatively correlated with illness severity (r = -0.579). When we 393 

directly tested the AD classifier on brain images of unseen MCI patients, 63.2% of those who 394 

eventually converted to AD were predicted as AD, versus 22.1% of those who did not convert 395 

to AD during the ADNI follow-up interval. The AD classifier also achieved high specificity in 396 

direct testing on other datasets (e.g., MDD, ADHD, ASD). Occlusion tests showed that 397 

hypothalamus, superior vermis, thalamus, amygdala and limbic system areas were critical for 398 

predicting sex and hippocampus, parahippocampal gyrus, putamen and insula played key 399 

roles in predicting AD. By contrast, the transfer learning framework failed to achieve useful 400 

accuracy for psychiatric disorders. 401 

 402 

The industrial-grade accuracy and generalizability (95% and 88% for sex and AD, 403 

respectively, for anyone and any scanner) of our deep neural network classifiers demonstrates 404 

brain imaging can have practical utility for predicting individual differences (e.g., sex and 405 

AD). The current prototype should be amenable to other brain imaging applications. The deep 406 

neural network model output is a continuous variable; thus, the threshold can be adjusted to 407 

balance sensitivity and specificity. For example, when testing the AD model on the 408 

independent sample (OASIS), sensitivity and specificity results were 0.789 and 0.881, 409 

respectively, when the default threshold was set at 0.5. However, for screening, the 410 

false-negative rate should be minimized even at the cost of higher false-positive rates. If we 411 

lower the threshold (e.g., to 0.3), sensitivity can be improved to 0.893 at a cost of decreasing 412 

specificity to 0.773. Thus, in our openly available AD prediction website 413 

(http://brainimagenet.org:8088), users can obtain continuous outputs and adjust the threshold 414 

by themselves. This adjustable characteristic of the model makes it feasible to integrate it into 415 

diagnostic criteria as a potential diagnostic MRI biomarker. The relatively high sensitivity of 416 

our proposed MRI-based biomarker addresses the lower sensitivity of current criteria (even 417 
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with invasive CSF and PET examinations, sensitivities of IWG-1 and NIA-AA criteria have 418 

been reported to be 68% and 65.6%, respectively).33,34  419 

 420 

Beyond the feasibility of being integrated into diagnostic criteria, the presented AD model 421 

also showed outstanding characteristics to be a progression biomarker. First, the output of the 422 

deep neural network model was significantly negatively correlated with MMSE scores, 423 

although they were not included in model training. Considering the “greedy” characteristic of 424 

deep neural networks for reducing training loss, the predicted scores for AD and NC may be 425 

overstated, and the magnitude of the negative correlations may have been underestimated. 426 

Second, the present model can quantify disease milestones by predicting the progression of 427 

MCI patients. MCI patients who eventually converted to AD were more than twice as likely 428 

to be predicted as AD than MCI patients who did not convert (63.2% vs 23.1%). Third, when 429 

directly comparing predicted scores (or MMSE scores) between MCI subjects with and 430 

without conversion to AD, the effect size for predicted scores was much higher than for 431 

MMSE scores (dprediction = 1.03 vs. dMMSE = -0.61), indicating that the AD classifier predicted 432 

scores provide better prompting/warning effects for physicians seeking to differentiate MCI 433 

patients. 434 

 435 

Although deep-learning algorithms are described as “black boxes” for their weak 436 

interpretability, occlusion analyses showed that the current MRI-based AD biomarker was 437 

aligned with published pathological findings and clinical experience. For example, AD 438 

induced brain structural changes have been frequently reported in structural MRI studies, with 439 

the most prominent change of hippocampus atrophy being used in imaging assisted 440 

diagnosis.35 Hippocampus (and entorhinal cortex) neurobiological changes precede 441 

progressive neocortical damage and AD symptoms.36 The convergence of our deep learning 442 

system and human physicians on hippocampus structure transformation for classifying AD 443 

patients further supports the crucial role of the hippocampus in AD. Other than the 444 

hippocampus, differential atrophy has also been observed in putamen and insula in AD 445 

patients compared to normal aging adults.37,38 We speculate that the lower accuracy of the AD 446 

classifier than the sex classifier reflects greater biological heterogeneity in AD, as non-AD 447 
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dementias (such as vascular dementia, frontotemporal degeneration, dementia with Lewy 448 

bodies) may confound AD diagnosis.35  449 

 450 

For psychiatric disorders, our model failed to achieve practical accuracy. Importantly, there 451 

are still no objective biomarkers for psychiatric disorders, including MDD, ASD and ADHD. 452 

The accuracy and consistency of clinician diagnoses are themselves suboptimal (e.g., for 453 

diagnosing MDD, sensitivity ranges from 0.25 to 0.95, specificity ranges from 0.33 to 0.95, 454 

depending on the instruments used).39 As psychiatric disorder labels can be inaccurate, any 455 

brain image-based classifier trained on these samples cannot yield better accuracy than the 456 

input labels (clinician diagnoses). Accordingly, we did not expect high model accuracies for 457 

psychiatric disorders. Future studies utilizing longitudinal information on prognosis and 458 

treatment response would have the potential to transform the diagnosis and treatment of 459 

mental disorders. When such data become available, we believe artificial intelligence systems 460 

will improve the efficiency and reliability of the diagnostic process. 461 

 462 

Our base model can precisely predict the sex of a given participant, thus advancing our 463 

understanding of sex differences in the human brain. Daphna and colleagues extracted 464 

hundreds of voxel-based morphometry (VBM) features from structural MRI and concluded 465 

that “the so-called male/female brain” does not exist as no single structural feature can 466 

support a sexually dimorphic view of human brains.40 However, human brains can embody 467 

sexually dimorphic features in a multivariate manner. The high accuracy and high 468 

generalizability of the sex classifier in the present study demonstrated that sex was separable 469 

in a 1,981,440-dimension (96*120*86*2) feature space. Among those 1,981,440 features, 470 

occlusion analysis revealed that features located in hypothalamus played the most critical role 471 

in predicting sex. The hypothalamus regulates testosterone secretion through 472 

hypothalamic-pituitary-gonadal axis, thus playing a critical role in brain masculinization.41 473 

Men have significantly larger hypothalamus than women relative to cerebrum size.42 Taken 474 

together, our machine learning evidence shows that robust “male/female brain” differences do 475 

exist. 476 

 477 
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In the deep learning field, the appearance of ImageNet tremendously accelerated the evolution 478 

of computer vision.43 As data organization and preprocessing of MRI data require tremendous 479 

time, manpower and computational loads, these constraints impede scientists from other fields 480 

entering brain imaging. Open access preprocessed brain imaging big data are fundamental to 481 

facilitate the participation of a broader range of researchers. Beyond building and sharing an 482 

industrial-grade brain imaging-based deep learning classifier, we invite researchers 483 

(especially computer scientists) to join the effort to decipher the brain by openly sharing all 484 

sharable preprocessed data (Link_To_Be_Added upon publication; preprocessed data of some 485 

datasets could not be shared as the raw data owners do not allow sharing data derivatives). We 486 

also openly share our models to allow other researchers to directly deploy them 487 

(https://github.com/Chaogan-Yan/BrainImageNet). Training of the 3-dimensional 488 

Inception-ResNet-V2 in the present study was powered by 4 NVIDIA Tesla V100 32G GPUs. 489 

However, researchers do not need to buy expensive GPUs but can instead deploy the 490 

compressed model directly on much cheaper computers. Our code is also openly shared 491 

(https://github.com/Chaogan-Yan/BrainImageNet), thus allowing other researchers to 492 

replicate the present results and further develop brain imaging-based classifiers based on our 493 

work to date. Finally, we have built an online prediction website for classifying sex and AD 494 

(http://brainimagenet.org:8088). Users can upload their own raw T1 or preprocessed GMD 495 

and GMV data to obtain predictions of sex or AD labels in real-time. 496 

 497 

Study limitations should be acknowledged. Considering the lower reproducibility of 498 

functional MRI compared to structural MRI, only structural MRI derived images were used in 499 

the present deep learning model. Nevertheless, functional physiology should further improve 500 

the performance of sex and brain disorder classifiers. Future studies should examine whether 501 

functional MRI, especially resting-state functional MRI, can provide additional information 502 

for model training. Furthermore, with advances in software such as FreeSurfer,44 fmriprep45 503 

and DPABISurf, surface-based algorithms may replace volume-based algorithms. 504 

Surface-based algorithms are more time and computation consuming, but can provide more 505 

precise brain registration and reproducibility.46 Future studies should take surface-based 506 

images as inputs of deep learning models. In addition, the present AD classification model 507 
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was built based on the labels provided by the ADNI database. Future work should incorporate 508 

gold standard post-mortem pathological results for AD or treatment response for psychiatric 509 

disorders to further advance the clinical value of MRI-based biomarkers. 510 

 511 

In summary, we pooled MRI data from 217 sites/scanners to constitute the largest brain MRI 512 

sample (85,721 samples) to date, and applied a state-of-the-art architecture deep 513 

convolutional neural network, Inception-ResNet-V2, to build an industrial-grade sex classifier. 514 

The AD classifier obtained through transfer learning attained high accuracy and sufficient 515 

generalizability to be of practical use, thus demonstrating the feasibility of transfer learning in 516 

brain disorder applications. Further work is needed to deploy such a framework in psychiatric 517 

disorders and other aspects of individual differences. 518 

  519 
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Figure legends 581 

Figure 1 Flow diagram for training procedure for the sex classifier and the Alzheimer’s 582 

disease transfer learning framework. (A) Schema for 3D Inception-ResNet-V2 network 583 

and the Alzheimer’s disease transfer learning framework. (B) Schematic diagram for 584 

leave-dataset-out 5-fold cross-validation in training the sex classifier. 585 

 586 

Figure 2 Performance of the sex classifier. (A) Receiver operating characteristic curve of 587 

the sex classifier. (B) Tensorboard monitor graph of the sex classifier in the training sample. 588 

The curve was smoothed for better visualization. (C) Tensorboard monitor graph of sex 589 

classifier in the validation sample. 590 

 591 

Figure 3 Performance of the Alzheimer's disease (AD) classifier. (A) Receiver operating 592 

characteristic curve of the AD classifier. (B) Tensorboard monitor panel of the AD classifier in 593 

the training sample. (C) Tensorboard monitor panel of the AD classifier in the validation 594 

sample. 595 

 596 

Figure 4 Interpretation of the deep learning classifiers with occlusion maps. Classifier 597 

performance dropped considerably when the brain areas rendered in red were masked 598 

out of the model input. (A) Occlusion maps for the sex classifier. (B) Occlusion maps for the 599 

Alzheimer disease classifier. Graphs on the bottom right show occlusion maps projected to 600 

the brain surface. 601 

 602 

Figure 5 Correlations between Alzheimer's disease (AD) classifier output and illness 603 

severity. The scores predicted by the AD classifier were significantly negatively 604 

correlated with mini-mental state examination (MMSE) scores of AD, normal control 605 
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(NC) and mild cognitive impairment (MCI) samples. (A) Correlations between scores 606 

predicted by the AD classifier and MMSE scores of AD samples. (B) Correlations between 607 

scores predicted by the AD classifier and MMSE scores of NC samples. (C) Correlations 608 

between scores predicted by the AD classifier and MMSE scores of MCI samples. (D) 609 

Correlations between scores predicted by the AD classifier and MMSE scores of AD, NC and 610 

MCI samples. 611 

 612 

References 613 

1 Zhang, C., Dougherty, C. C., Baum, S. A., White, T. & Michael, A. M. Functional connectivity predicts 614 

gender: Evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39, 1765-1776, 615 

(2018). 616 

2 Luo, Z. G., Hou, C. P., Wang, L. B. & Hu, D. W. Gender Identification of Human Cortical 3-D Morphology 617 

Using Hierarchical Sparsity. Front. Hum. Neurosci. 13, 29, (2019). 618 

3 Kaufmann, T. et al. Common brain disorders are associated with heritable patterns of apparent aging 619 

of the brain. Nat. Neurosci. 22, 1617-1623, (2019). 620 

4 Jonsson, B. A. et al. Brain age prediction using deep learning uncovers associated sequence variants. 621 

Nat Commun 10, 5409, (2019). 622 

5 Perrin, R. J., Fagan, A. M. & Holtzman, D. M. Multimodal techniques for diagnosis and prognosis of 623 

Alzheimer's disease. Nature 461, 916-922, (2009). 624 

6 Challis, E. et al. Gaussian process classification of Alzheimer's disease and mild cognitive impairment 625 

from resting-state fMRI. NeuroImage 112, 232-243, (2015). 626 

7 Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of 627 

depression. Nat. Med. 23, 28-38, (2017). 628 

8 Fonzo, G. A. et al. Brain regulation of emotional conflict predicts antidepressant treatment response 629 

for depression. Nat Hum Behav 3, 1319-1331, (2019). 630 

9 Bellec, P. et al. The Neuro Bureau ADHD-200 Preprocessed repository. NeuroImage 144, 275-286, 631 

(2017). 632 

10 Hazlett, H. C. et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 633 

542, 348-351, (2017). 634 

11 Emerson, R. W. et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of 635 

autism at 24 months of age. Sci. Transl. Med. 9, (2017). 636 

12 Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568-572, 637 

(2019). 638 

13 DeVries, P. M. R., Viegas, F., Wattenberg, M. & Meade, B. J. Deep learning of aftershock patterns 639 

following large earthquakes. Nature 560, 632-634, (2018). 640 

14 Liu, W. B. et al. A survey of deep neural network architectures and their applications. Neurocomputing 641 

234, 11-26, (2017). 642 

15 Kermany, D. S. et al. Identifying medical diagnoses and treatable diseases by image-based deep 643 

learning. Cell 172, 1122-1131, (2018). 644 

16 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 645 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

30

115-118, (2017). 646 

17 McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 647 

89-94, (2020). 648 

18 Dubois, B. et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. The 649 

Lancet Neurology 13, 614-629, (2014). 650 

19 Jack Jr, C. R. et al. Introduction to the recommendations from the National Institute on 651 

Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. 652 

Alzheimer's & dementia 7, 257-262, (2011). 653 

20 Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA 654 

criteria. The Lancet Neurology 6, 734-746, (2007). 655 

21 Qiu, S. et al. Development and validation of an interpretable deep learning framework for Alzheimer’s 656 

disease classification. Brain, (2020). 657 

22 Bashyam, V. M. et al. MRI signatures of brain age and disease over the lifespan based on a deep brain 658 

network and 14 468 individuals worldwide. Brain 143, 2312-2324, (2020). 659 

23 Pan, S. J. & Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data 660 

Engineering 22, 1345-1359, (2010). 661 

24 Yan, C. G. & Zang, Y. F. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. 662 

Front. Syst. Neurosci. 4, 13, (2010). 663 

25 Friston, K. J. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. 664 

Brain Mapp. 2, 189-210, (1994). 665 

26 Goto, M. et al. Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra provides 666 

reduced effect of scanner for cortex volumetry with atlas-based method in healthy subjects. 667 

Neuroradiology 55, 869-875, (2013). 668 

27 Good, C. D. et al. A voxel-based morphometric study of ageing in 465 normal adult human brains. 669 

NeuroImage 14, 21-36, (2001). 670 

28 Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. in National Conference on Artificial Intelligence.  671 

4278-4284. 672 

29 Ellis, K. A. et al. Addressing population aging and Alzheimer's disease through the Australian Imaging 673 

Biomarkers and Lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative. 674 

Alzheimer's & dementia 6, 291-296, (2010). 675 

30 Marcus, D. S. et al. Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, 676 

middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498-1507, (2007). 677 

31 Marcus, D. S., Fotenos, A. F., Csernansky, J. G., Morris, J. C. & Buckner, R. L. Open access series of 678 

imaging studies: longitudinal MRI data in nondemented and demented older adults. J. Cogn. Neurosci. 679 

22, 2677-2684, (2010). 680 

32 Gauthier, S. et al. Mild cognitive impairment. The lancet 367, 1262-1270, (2006). 681 

33 de Jager, C. A., Honey, T. E., Birks, J. & Wilcock, G. K. Retrospective evaluation of revised criteria for the 682 

diagnosis of Alzheimer's disease using a cohort with post-mortem diagnosis. Int. J. Geriatr. Psychiatry 683 

25, 988-997, (2010). 684 

34 Harris, J. M. et al. Do NIA-AA criteria distinguish Alzheimer's disease from frontotemporal dementia? 685 

Alzheimer's & Dementia 11, 207-215, (2015). 686 

35 Frisoni, G. B., Fox, N. C., Jack, C. R., Jr., Scheltens, P. & Thompson, P. M. The clinical use of structural 687 

MRI in Alzheimer disease. Nat. Rev. Neurol. 6, 67-77, (2010). 688 

36 Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 689 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

31

239-259, (1991). 690 

37 de Jong, L. W. et al. Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an 691 

MRI study. Brain 131, 3277-3285, (2008). 692 

38 Rombouts, S. A., Barkhof, F., Witter, M. P. & Scheltens, P. Unbiased whole-brain analysis of gray matter 693 

loss in Alzheimer's disease. Neurosci. Lett. 285, 231-233, (2000). 694 

39 Pettersson, A., Bostrom, K. B., Gustavsson, P. & Ekselius, L. Which instruments to support diagnosis of 695 

depression have sufficient accuracy? A systematic review. Nord J Psychiatry 69, 497-508, (2015). 696 

40 Joel, D. et al. Sex beyond the genitalia: The human brain mosaic. Proc. Natl. Acad. Sci. U. S. A. 112, 697 

15468-15473, (2015). 698 

41 Forest, M. G., Peretti, E. D. & Bertrand, J. Hypothalamic-pituitary-gonadal relationships in man from 699 

birth to puberty. Clin. Endocrinol. (Oxf.) 5, 551-569, (1976). 700 

42 Makris, N. et al. Volumetric parcellation methodology of the human hypothalamus in neuroimaging: 701 

Normative data and sex differences. NeuroImage 69, 1-10, (2013). 702 

43 Deng, J. et al. in 2009 IEEE conference on computer vision and pattern recognition.  248-255 (Ieee). 703 

44 Fischl, B. FreeSurfer. NeuroImage 62, 774-781, (2012). 704 

45 Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Med. 16, 111-116, 705 

(2019). 706 

46 Coalson, T. S., Van Essen, D. C. & Glasser, M. F. The impact of traditional neuroimaging methods on the 707 

spatial localization of cortical areas. Proc. Natl. Acad. Sci. U. S. A. 115, e6356-e6365, (2018). 708 

 709 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2021. ; https://doi.org/10.1101/2020.08.18.256594doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.256594
http://creativecommons.org/licenses/by-nc-nd/4.0/

