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Abstract 

Protein-ligand binding prediction has extensive biological significance. Binding affinity helps          
in understanding the degree of protein-ligand interactions and has wide protein applications.            
Protein-ligand docking using virtual screening and molecular dynamic simulations are          
required to predict the binding affinity of a ligand to its cognate receptor. In order to perform                 
such analyses, it requires intense computational power and it becomes impossible to cover the              
entire chemical space of small molecules. Recent developments using deep learning has            
enabled us to make sense of massive amounts of complex datasets where the ability of the                
model to “learn” intrinsic patterns in a complex plane of data is the strength of the approach.                 
Here, we have incorporated Convolutional Neural Networks to find spatial relationships           
amongst data to help us predict affinity of binding of proteins in whole superfamilies towards               
a diverse set of ligands without the need of a docked pose or complex as input. The models                  
were trained and validated using a detailed methodology for feature extraction. We have also              
tested DEELIG on protein complexes relevant to the current public health scenario. Our             
approach to network construction and training on protein-ligand dataset prepared in-house           
has yielded novel insights. 
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Introduction 

Proteins are a diverse class of dynamic macromolecular structures in living organisms            
and are essential for the biochemistry and physiology of the organism. Depending on their              
functional role (s), proteins may bind to other proteins, peptides, nucleic acids and             
non-peptide ligands with varying affinities. Determining protein-ligand affinity helps in          
understanding the reaction mechanism and kinetics of the reaction, especially when           
experimental approaches may not be feasible, and has applications in drug development and             
pharmacology [1]. 

Protein-ligand interaction is measured in terms of Binding affinity. The stronger the            
readout for binding affinity, the stronger the interaction between protein and ligand may be              
inferred. It is quantified in terms of Inhibition constant (Ki), dissociation constant (Kd),             
changes in free energy measures (delta G, delta H and IC50) [2]. Predicting binding affinity               
between a protein and ligand complements experimental approaches and is usually used as a              
start-point for the latter. Classical prediction methods to score free binding energies of small              
ligands to biological macromolecules such as MM/GBSA and MM/PBSA typically rely on            
molecular dynamic simulations for calculations and aid in-silico docking and virtual           
screening as well as experimental approaches. However, there is a trade-off between            
computational resources and accuracy [3]. 

With a recent shift towards the use of machine learning and deep-learning based methods              
in the field of structural biology, making biologically significant predictions using regression            
and 'learning' intrinsic patterns in a complex plane of available data has led to resource-               
optimal predictions without compromising on accuracy. Deep learning has been known to            
learn representations and patterns in complex data forms. Our aim was to apply deep learning               
to predict binding affinity of protein- non-peptide ligand interaction without the need of a              
docked pose as input. 

Convolutional Neural Networks (CNN) are deep neural networks that use an input layer,             
output later as well as convolutional hidden layer(s). The first CNN was incorporated by              
LeCunn in 1998 [4] the connectivity pattern of which was inspired by the elegant              
experiments of Hubert and Weisel on the mammalian visual cortex in the 1960s [5]. With the                
growing technical advancements and massive amounts of data, CNNs have emerged popular            
in biological fields in the recent decade with various applications [6]. 

In our study, we have used CNNs to provide a quantitative estimate of protein-ligand              
binding using various sets of features corresponding to protein and ligand respectively by             
finding spatial relationships amongst the data without using docked poses as input. Our             
approach was validated using ligand-bound complexes from kinases superfamily in the PDB.            
Kinases belong to a class of enzymes required for substrate-dependent phosphorylation. They            
are represented across diverse cellular functions like signaling, differentiation, glycolysis [7].           
We have also tested our model on COVID-19 main protease [8] of the novel coronavirus               
strain complexed with various inhibitors of which binding affinities have not been predicted             
or experimentally determined so far. 
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Materials and Method 

Novel Dataset: Raw Data 

The raw data for our novel database was obtained from RCSB PDB (9) database, where 
following were selected as the query parameters. 
 

●   Chain Type: Protein Chain, No DNA or RNA or DNA/RNA Hybrid. 
●   Binding Affinity:   Kd or Ki value present. 
●   Chemical Components:   Has ligand (s) 
●   X-ray crystallography method:   Resolution upto 2.5 A.  

 
 
These criteria resulted in a list of 5464 protein PDB IDs, 2568 complexed ligand (s) and 
corresponding binding affinity values. The search results include the structures present in 
PDBdatabase, PDBBind (10, 11, 12), PDBMoad (13, 14) and scPDB (15) for its results. 
Initial raw data database created contained protein structures in PDB format, protein 
sequences in FASTA format, ligand in SDF format and binding affinity values of 
corresponding protein-ligand pairs for 5464  complexes. 
 

Dataset Refinement 

The PDB, FASTA and SDF files filtered were further processed to refine our novel dataset, 
as shown in Figure 1. Protein-ligand complexes were 5,464 in number and corresponded to 
29,650 complex unique chain-ligand pairs. Binding affinity values were obtained from the 
RCSB database and protein chain-ligand pairs with corresponding binding affinity as 0 were 
discarded to reduce statistical errors. This narrowed down the total complexes to 4,750 
protein-ligand pairs. 
 
Pocket information was extracted from the protein using Ghecom (16) and converted to 
MOL2 format using Chimera (17), which narrowed our results to 4699 pocket-ligand pairs. It 
narrowed down the size of the dataset to 4286 pocket-ligand pairs.  
We discarded other protein-ligand pairs with missing PSSM profiles, secondary structure or 
dihedral angle information. 
 
It resulted in a total of 4041 pocket-ligand pairs, which corresponds to 7414 pocket-ligand 
pairs containing unique chains.  
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Figure 1: Feature Extraction pipeline 

Feature Extraction 
Training the deep learning network on raw information is known to result in longer time for 
convergence and less accuracy. We followed a conventional methodology for feature 
extraction and used the deep learning framework to learn the interaction between the 
protein-pocket and ligand for their affinity prediction. 
 

Protein-Pocket features 
A comprehensive two-level feature extraction methodology, one at the atomic level and the 
other at the level of amino acids utilizing structural information and protein sequence 
respectively.  
 
Atomic Level (19 Bits) 
 

● 9 Bit 1 hot or all null hot encoding for atom types: B, C, N, O, P, S, Se, halogen and 
metal. 

●  1 integer for hybridization  
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●  1 integer representing the number of bonds with heavy atoms 
●  1 integer representing the number of bonds with hetero atoms 
●  5 bits  (1 if present) encoding properties defined with SMARTS patterns: 

hydrophobic, aromatic, acceptor, donor and ring 
●  1 float for partial charges 
●  1 integer to distinguish between ligand as -1 and protein as 1 

 
Amino Acid level (25 Bits) 
We utilized the sequence information of protein to get more features about the protein 
pocket-ligand interaction. 
 

● Position-Specific Scoring Matrix (PSSM): PSSM is a matrix that represents the 
probability of mutation at each point of the sequence. It gives a 20 bit- probability for 
each amino acid at each location. PSSM profiles were obtained using PSI-BLAST 
(18) with SwissProt as subject database and E-value threshold as 0.001. Chains with 
less than 50 amino acids were removed from the input dataset. 

● Relative Solvent Accessibility (RSA): It is encoded by 1 bit of information for each 
amino acid that provides whether it is buried or exposed to the solvent. We set a 
threshold of 25% in RSA values. RSA was obtained using NACCESS (19). 

● Secondary Structure: It is encoded by 1 bit of information about the structure as coil, 
helix or plate and was predicted using the DSSP (20, 21). 

● Dihedral Angles: It is encoded by 2 bits of information with phi / psi angles of each of 
the amino acids and was predicted using DSSP (20, 21) for obtaining dihedral angles. 

 

Ligand Features 
Standard ligand features were calculated for ligands in our dataset using PADEL (22) and 
1D, 2D and chemical fingerprints, which includes hybridisation, atom pair interaction, counts 
of various functional group.  
 
We also used QikProp (34) and QIKPROP (23) to derive ADMET (Absorption, Distribution, 
Metabolism, Excretion, and Toxicity) properties, which includes the physical properties, 
solubility and partition coefficients. The exhaustive list of every property calculated is given 
in the appendix.  
It results in a 1D array of 14,716 dimensions containing the various properties of a given 
ligand. This is used as a feature vector representing the ligand represented in MOL2 format.  
 

Grid Formation 

The three-dimensional co-ordinates of atoms were converted into a 3D grid of resolution 10Å 
with 1Å spacing between the two axes centered along the centroid of the ligand. Atoms 
outside each such grid were discarded. The atoms lying inside the grid were rounded up to 
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the nearest coordinate of the grid where features of corresponding atoms that lay in the same 
coordinates were added up. 
This resulted in projecting ligand-interacting residues into a three-dimensional cube with 
features representing the atomic as well as protein-based properties of each atom of the 
protein pocket. 
 
 

Strategies 

Detailed and complete block diagrams with inputs are provided in Figures 2, 3 as well as 
in Supplementary Materials. 

Atomic Model 

Preprocessing 

Features were calculated at the atomic level (Section 4.1.1) corresponding to each atom of an 
amino acid and ligand.  A 19-bit vector was calculated that uniquely identified each of the 
atoms in the 3D co-ordinates of a given protein-pocket and ligand complex. A 4D tensor each 
of size m x m x m x 19, i.e. the 3 coordinates  (x, y, z) and the features, where m represents 
the number of atoms present in a complex was constructed as the feature vector representing 
the given protein pocket-ligand. 
 
The 4D vector contains the protein-pocket features and was converted to a 3D grid using grid 
featurization (Section 4.3). The 3D- featurized grid is essentially a 4D tensor, where the 
coordinates are approximated to the points on the grid.  
 
The dataset is converted to vectors and is divided into training:validation:test sets in ratio 
80:10:10.  
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Figure 2: Training framework for Atomic Model. The framework is trained on 19 bits 
features each of protein-pocket and ligand together as input. 

 

Architecture 
Convolutional Neural Networks (24) have been used to capture spatial features in an image. 
We use CNNs to capture the interaction between ligand and protein atoms in three- 
dimensional space. A network was constructed (Figure 2) with a 3D CNN of varying channel 
sizes of [64, 128, 256] with non-linear activation ReLU after each layer, each 3D CNN had a 
filter of 5Å cube which was used to perform convolution operations. MaxPool (25) layer that 
acts in three dimensions to lower the dimension with a pool size of 2Å cube and Batch 
Normalization (26) layer is added after each CNN layer, this in turn decreases the training 
time and helps in faster convergence.  
 
The latent features learnt from the above CNN layers were then flattened and used for 
calculating the binding affinity of the protein pocket-ligand pair. The CNN derives the 
relation among the 3D coordinates and their features, which would correspond well to the 
binding affinities of complexes.  
 
The features from the last CNN layer are then flattened out, and passed through a fully 
connected neural network having the number of neurons as [1000, 500, 250] with ReLU as 
non-linearity after each layer. Dropout (25) is added after each layer to prevent overfitting by 
forcing the neural network to learn various other pathways by randomly assigning neurons to 
zero, 0.50 as Dropout threshold. Dense network predicts a regressive value of Binding 
Affinity, corresponding to a single neuron output.  
Training framework is shown in Figure 2 and a detailed layer network is shown in Figure 4 
(a). 
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Training 
 
The featurized protein-pocket grid formed was rotated to all 24 combinations possible, such 
that the network is able to learn in an orientation invariant form. 
 
The network was trained by taking Mean Square error between the predicted and actual 
values as a loss function. The network was optimized using Adam (27) as the optimizer with 
a learning rate of 1e-5 and weight decay of 0.001 for 20 epochs. Network was trained on an 
Nvidia Pascal GPU using Pytorch (28) as the framework.  
 

Composite Model 

 

Preprocessing 
 
Features were calculated at the amino acid level (Section 4.1.2) and were concatenated 
alongside the atomic level features (Section 4.1.1) to each atom of amino acid.  It results in a 
44-bit vector uniquely identifying each of the atoms in the 3D co-ordinates of a given protein. 
A 4D tensor each of sizes m x m x m x 44, i.e. the 3 coordinates  (x, y, z) and the features, 
where m represents the number of atoms present in a complex is constructed as the feature 
vector of protein pocket. 
 
The 4D vector contains the protein-pocket features, it was converted to a 3D grid using grid 
featurization  (Section 4.3). The 3D featurized grid is essentially a 4D tensor, where the 
coordinates are approximated to the points on the grid.  
 
The ligands were separately featurized by calculating the ligand properties (Section 4.2), 
which results in a 1D tensor.  
 
The dataset is converted to vectors and is divided into training:validation:test sets in ratio 
80:10:10.  
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Figure 3: Training framework for Composite Model. The framework is trained on 44 
bits features of protein-pocket and 14716 bits of ligand as separate inputs. 

 

Architecture 
A multi-input network was constructed (29) with a 3D CNN (24) of varying channel sizes of 
[64, 128, 256] with non-linear activation ReLU after each layer, each 3D CNN had a filter of 
5Å cube which was used to perform convolution operations. We also added MaxPool (25) 
layer that acts three-dimensionally to lower dimensionality  while retraining features learnt 
after each CNN layer. It has a filter size of 2Å cube. Batch Normalization (26) layer was 
added after each CNN module for faster convergence.  
 
The ligand features were passed through the dense layers of sizes [7000, 5000, 2000] with 
ReLU as non-linearity after each layer and we also perform dropout operations after each 
dense layer to prevent it from overfitting (30). This results in a latent vector representing the 
relevant features for each ligand.  
 
The latent output from the CNN layers is flattened and concatenated with the latent feature 
vector of ligand, to create one single feature vector of protein pocket-ligand interactions. This 
vector is passed through a densely connected neural network having the number of neurons as 
[7000, 2000, 500, 200] with ReLU as non-linearity after each layer and we used Dropout 
after each layer also to prevent overfitting forcing the neural network to learn various other 
pathways by randomly assigning weights of neurons to zero, with  0.50  as Dropout 
threshold. This dense network finally predicts a regressive value of Binding Affinity, 
corresponding to a single neuron output. 
Training framework is shown in Figure 3 and a detailed layer network is shown in Figure 4 
(b) 
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Additional Case studies of specific protein families 
Recently deposited complexes of COVID-19 main protease with various inhibitors deposited 
in the PDB were used for the purpose of our study ( Table 3). The crystal structure complexes 
(PDB IDs: 5R7Y, 5R7Z, 5R82, 5R84) of the COVID-19 main protease with inhibitors  ( 
(Z45617795:  N-[ (5-methylisoxazol-3-yl)carbonyl]alanyl-L-valyl-N~1~- ( (1R,2Z)-4- 
(benzyloxy)-4-oxo-1-{[ (3R)-2-oxopyrrolidin-3-yl]methyl)but-2-enyl)-L-leucinamide); 
Z1220452176:   (~{N)-[2- (5-fluoranyl-1~{H)-indol-3-yl)ethyl]ethanamide); Z219104216: 6- 
(ethylamino)pyridine-3-carbonitrile; Z31792168: 
2-cyclohexyl-~{N)-pyridin-3-yl-ethanamide)) respectively has been recently deposited in 
PDB  (2020; unpublished). 
Another study has deposited the complex of the COVID-19 main protease with a 
broad-spectrum inhibitor X77 (N- (4-tert-butylphenyl)-N-[(1R)-2- 
(cyclohexylamino)-2-oxo-1- (pyridin-3-yl) ethyl]-1H-imidazole-4-carboxamide)  (2020; 
unpublished).  
In order to compare affinity of deoxycholate with homologous proteins of the periplasmic 
C-type cytochrome ( Table 4), Ppc homologs PpcA (PDB: 1OS6), PpcB (PDB: 3BXU), 
PpcC (PDB: 3H33), PpcD (PDB: 3H4N) and PpcE (PDB: 3H34) and ligand deoxycholic 
acid (Pubchem CID: 222528) were gathered. These were processed and DEELIG was 
used to predict the binding affinity of each homolog with the ligand. 
 

Training 
The featurized protein-pocket grid formed was rotated to all 24 combinations possible, such 
that the network is able to learn in an orientation invariant form. 
 
The featurized protein pocket-ligand pair of training set was passed through corresponding 
the network and trained by taking Mean Square error between the predicted and actual values 
as a loss function. The network was optimized using Adam (27) as the optimizer with a 
learning rate of 1e-5 and weight decay of 0.001. The network was trained on an Nvidia Pascal 
GPU using Pytorch (28) as the framework.  
 

Performance Evaluation 

 The predicted value of our regression-based approach is the negative natural logarithmic 
value of Kd or Ki. This is then converted to its antilog to obtain Kd or Ki value in 
nanoMolar quantity.  
 
The performance of the models was quantified using Mean Absolute error (MAE) and Root 
mean square error (RMSE). It was tested on validation and testing sets which were initially 
divided from our dataset as mentioned in the training section. Lower error corresponds to 
better learning capacity of the model. Standard deviation among the real and predicted values 
was also calculated.  
The MAE, RMSE and SD values are shown in Table 1. 
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Table 1: Predictions accuracy on test set of our novel dataset 

 
For the purpose of training and testing models, one NVIDIA Tesla P100 GPU cluster was 
used. Computational time taken for featurization of the dataset, training and testing were 52 
hours, 22 hours and 8 minutes respectively. 

Results and Discussion 

Two modules were trained. The first module was trained using a small set of features for 
protein and ligand, which were represented together in a 3D grid space. This approach has 
also been part of a previous study (29). However, the previous study uses a restricted ligand 
set that does not involve larger ligands. Here we have used a diverse set of ligands as one of 
our inputs. With training of Atomic Model for 35 epochs, MAE score of 2.84 was achieved 
(Table 1). 
 
We constructed another module that enabled us to improve on the ligand and protein based 
information. To this purpose, we used an increased feature vector size which amounted to 
14716 bits in size for ligand and 44 bits for each atom of protein. With training of Composite 
Model for only 4 epochs , MAE score of 2.27 was achieved (Table 1). 
 
The performance of our model was further evaluated using ligand-bound complexes from the 
kinase superfamily from PDB. The composite model outperformed the atomic model 
significantly and with lower standard deviation.  (Table 2).  
 

Table 2 : Predictions accuracy on kinases 

 
 
In light of the ongoing coronavirus pandemic, we tested protein-ligand complexes from 
the coronavirus (CoV) family. The COVID-19 main protease is a key enzyme for the 
novel strain of coronavirus that is being implicated in the pandemic. A recent study 
involved testing of in-vitro binding efficacy of coronavirus COVID-19 virus main 
protease (Mpro) with a potent reversible synthetic inhibitor, N3 (31). However, the highly 

Method MAE RMSE SD 

Atomic Model 2.84 3.93 2.62 

Composite Model 2.27 3.07 2.06 

Method MAE RMSE SD 

Atomic Model 2.48 3.24 3.11 

Composite Model 2.24 2.71 2.67 
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potent inhibition by N3 rendered the experimental determination of binding affinity not 
achievable. Using the structure of Mpro at high resolution (7BQY: 1.7 Angstrom), we 
have been able to predict the binding affinity of N3 to 3.1e+4 nanomolar (Table 3). This 
value agrees with the observed high affinity in the course of recent experiments (31). 
 
We used complexes of COVID-19 main protease with various inhibitors ( Materials and            
Methods; Table 3 ) to predict their respective binding affinities as their experimental values             
have not been made available. Based on our model-based predictions, broad spectrum            
inhibitor X77 scores for highest affinity followed by ligands Z45617795, N3, Z31792168,            
Z1220452176 and Z219104216 in the order of decreasing binding affinity ( Table 3 )            
strengthening the suitability of X77 as a potential candidate against COVID-19 virus protease 
 
 
 
 
 

Table3: Predictions of Binding Affinity on COVID-19 complexes 

 
A triheme cytochrome from the sulfur-, metal- and radionuclide-reducing bacteria, Geobacter           
sulfurreducens, named PpcA binds strongly to deoxycholate [10]. However, its triheme           
paralogous counterparts PpcB, PpcC, PpcD and PpcE do not bind to deoxycholate [11, 12].              
Our results also predict that ligand deoxycholate binds with high affinity to periplasmic             
C-type cytochrome A (PpcA) but not to its homologs PpcB, PpcC, PpcD and PpcE (Table 4).  

 
Table 4: Predictions of Binding Affinity on homologs of Periplasmic C-type Cytochrome 

(Ppc) family 

PDB Ligand -Log (Kd/Ki) [Kd] or [Ki]  (nM) 

5R7Y Z45617795 11.96 6.39e+3 

5R7Z Z1220452176  7.69 4.57e+5 

5R82 Z219104216 6.12  2.18e+6 

5R84 Z31792168 8.32 2.43e+5 

6W63 X77 15.34  2.17e+2 

7BQY N3 10.38 3.10e+4 

Homolog PDB ID 
Prediction 

Kd or Ki (uM) 

PpcA 1OS6 4.512 

PpcB 3BXU 416.042 

PpcC 3H33 835.232 
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Conclusion 

Deep-learning based approaches have been implemented for prediction of binding affinity. 
One of the studies used atomic level features of complex in a CNN based framework for 
binding affinity prediction (35), while another study used protein sequence level features in a 
CNN based framework for prediction (36). Another approach used as been to use feature 
learning along with gradient boosting algorithms to predict binding affinity (36). Here, we 
provide a composite model that incorporates tripartite structural, sequence and atomic level 
features with those of the atomic and other chemical features of the ligand to predict binding 
affinity of a putative complex. 
 
We propose a deep-learning based approach to predict ligand (eg., drug)–target binding 
affinity using only structures of target protein (PDB format) and ligand  (SDF format) as 
inputs.  Convolutional Neural Networks (CNN) were used to learn representations from the 
features extracted from these inputs and hidden layers in the affinity prediction task. We used 
two approaches to feature extraction- atomic level as well as composite level and compared 
their performance using the same network. We have trained on complexes from PDB across 
all taxa filtered as per few starting criteria including crystal quality. Our results are validated 
and reflected in the performance scores. The baseline to the results of our approach is the 
study by Stepniewska-Dziubinska et al 2018 [27], the performance of which our study has 
exceeded ( Results).   
 
Our algorithm relies on certain inputs including sensitive binding cavity detection by the             
Ghecom algorithm (Kawabata, 2010) that uses mathematical morphology to find both deep            
and shallow pockets (if any) in a given protein. The coordinates of the predicted binding               
cavity of the protein (grid) are rotated to various combinations and are placed around the               
centroid of the ligand and the resultant 4-D tensor is processed further for features along the                
CNN ( Materials and Method ) . Hence, ligand-bound poses are not used as input. Our dataset              
has ~5k+ complexes and also includes complexes that were not part of PDBBind (which is               
usually used to benchmark and is derived from PDB). The ligand set we have used also                
represents a diverse set ( Supplementary Materials SM Files 1 and 2 ) and is one of the                
highlights of our approach. The predictions from DEELIG can in fact help existing databases              
like RSCB PDB, PDBMoad and PDBBind in filling missing binding affinity data for             
complexes. 
 

PpcD 3H4N 483.678 

PpcE 3H34 187.157 
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We have constructed a novel dataset that represents a diverse set of ligands and using a novel 
deep learning based approach we have achieved significant improvement in prediction of 
binding affinity of protein-ligand complexes. Interestingly, our approach performed better 
without ligand coordinates as input. To counter filtering or noise reduction in our dataset,  our 
dataset constructed is smaller than PDBBind (35) but we have overcome the constraints on 
ligand selection part of a previous study  (29). Although our dataset contains 5464 complexes 
compared to 16,151 complexes found in PDBBind, the ligands used as part of our training 
include 452 unique ligands absent in PDBBind. This helps in achieving ligand diversity 
during training the CNN model. The similarity matrix constructed from the binary 
fingerprints of ligands used in the dataset supports our claim of improved ligand diversity in 
our dataset (Supplementary File S1). 
 
We have highlighted a few examples such as complexes of kinases and viral drug targets 
only to reinforce the broader applicability of our approach (Tables 2 and 3). Our predictions 
are in line with experimental observations [32, 33, 34] that deoxycholate binds to PpcA 
cytochrome but not to homologs PpcB - E cytochrome (Table 4). 
 
We have also eliminated the need of providing ligands in a complex form with protein. Thus 
a given protein pocket may be tested for the degree of binding for any given ligand. This can 
be extended to predicting potential binding partners for proteins in other superfamilies as 
well. It is also important to consider that docking score and pose is not a reliable correlation 
with MM/GBSA poses (37). DEELIG can be used for a member of any protein 
superfamily and a non-peptide ligand, the docking pose of which may or may not be 
known.  
The code repository for the project is publicly available at : 
                                     https://github.com/asadahmedtech/DEELIG 
 

Future Direction 

Binding affinity predictions through DEELIG can be extended to protein-ligand complexes of 
protein superfamilies where the affinity is quantitatively unknown due to experimental 
limitations or where the potential for binding is yet to be explored in vitro. A webserver to 
implement DEELIG for easy online access would be useful for the general scientific 
community and this will also be in the pipeline. A later version of DEELIG which is trained 
on peptide ligand dataset will also be worked on. 
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Supplementary Files 

a. SM compressed folder:  dataset.gz (can be retrieved from 
https://drive.google.com/file/d/1JE3gQuTXprRVghygAwR9HESvABHKED0L/view
?usp=sharing) 
b. SM Files for Ligand diversity analysis: Similarity matrix (SM File 1) and 
clustering (SM File 2 ) of unique ligands- 
https://drive.google.com/drive/folders/1Ar64qn8vD0sSdPWptPgOkPeM7pWghKi7?u
sp=sharing 
 
c. SM File 3: Dataset_distribution.xls 
d. SM File 4: Dataset_details.xls 
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Appendix 

A.1: Property list for ligand features 

Following properties of ligand were calculated using PADEL (22), 

● Basic Group Count 

● Carbon Type 

●  Hybridization Ratio 

● Manhold LogP  (The Ratio of carbon to hetero atoms) 

● Number of Aromatic bonds 

● MACCSS Key 

● Klehotaroth fingerprints  (Types and Counts) 

● AtomPair2D fingerprints  (Types and Counts) 

Following are ADMET and present in PADEL 

● donorHB 

● accptHB 

● Constitutional  (Electronegativity) 

● rotatableBondCounts  (#ringatoms) 

● RuleofFive 

● VABC  (Volume)  

● Weight  (mol_MW) 

Following {ADMET ) properties of ligand were calculated using QikProp (34) and QIKPROP 
(16, 21), 

● Amine 

● Amidine 

● Acid 

● Amide 

● Rotor 

● rtvFG  (reactive functional groups) 

● mol_MW, dipole 

● Volume 

● donorHB 

● accptHB 

● QPpolrz  (polarizability) 
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● SASA 

● SASA  (probe of 1.4A) 

● FOSA  (hydrophobic component of SASA) 

● FISA  (hydrophilic component of SASA)  

● PISA  (pi of SASA)  

● WPSA  (polar of SASA)  

● SAFluorine 

● SAamideO 

● Partition coefficients => 

○ QPlogPC16 

○ QPlogPoct 

○ QPlogPw 

○ QPlogPo/w 

● CIQPlogS  ( Conformation indie aqueous solubility) 
● IP (ev) ( ionization potential) 

● EA (eV)  (electron affinity) 

● #metab  (likely metabolic reactions) 

● PSA  (van der waals SA of polar N and O atoms) 

● #NandO, #ringatoms  (number of atoms in rings) 

● #in34  (number of atoms in 3 or 4 membered rings) 

● #in56  (number of atoms in 5 or 6 membered rings) 

● #noncon  (ring atoms cannot form conjugated aromatic bonds) 

● #nonHatm  (heavy atoms- nonhydrogen atoms) 

● RuleOfThree 

● RuleOfFive  (lipinski violations) 

● QPlogKhsa  (binding to human serum albumin) 

● PercentHuman-OralAbsorption 

● Globular nature index 
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A.2 Network Layout for modules
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B.1 Kinases prediction dataset 

 
PDBID GroundTruth  (-log 

(kd/ki)) 

Predicted  (-log (kd/ki)) Set 

1ATP_ATP_E_355 14.33 10.162511 training 

1B38_ATP_A_381 12.89 11.011607 training 

1B39_ATP_A_381 13.64 10.672279 training 

1BX6_BA1_A_351 16.88 17.481277 training 

1KV1_BMU_A_391 11.34 11.811321 training 

1PXJ_CK2_A_500 8.11 8.140871 training 

1Q8T_Y27_A_930 9.22 8.202146 training 

1Q8U_H52_A_961 12.6 14.963462 training 

1Q8U_H52_A_962 12.6 12.837863 training 

1Q8W_M77_A_960 11.05 13.436903 training 

1R0E_DFN_A_702 20.73 18.322815 training 

1R0E_DFN_B_501 20.73 20.813835 training 

1TVO_FRZ_A_1001 11.68 14.313412 training 

1UNL_RRC_A_1293 3.97 5.2938104 training 

1UU3_LY4_A_1374 4.97 12.5554905 training 

1XH4_R69_A_351 14.9 10.410368 training 

1XH5_R68_A_1001 10.29 11.608167 training 

1XWS_BI1_A_1001 16.12 15.265529 training 

1YDT_IQB_E_351 14.51 11.634923 training 

2BAK_AQZ_A_401 14.81 13.099378 training 

2C5O_CK2_A_1297 8.11 4.862343 training 

2C5O_CK2_C_1298 8.11 5.131049 training 

2EWA_SB2_A_361 15.98 13.587485 training 

2F2U_M77_A_501 14.07 10.874512 training 

2F2U_M77_B_1501 14.07 12.677324 training 

2J2I_LY4_B_1307 5.92 9.034196 training 

2NPQ_BOG_A_1000 10.39 10.77333 training 

2NPQ_BOG_A_2000 10.39 9.395628 training 

2O3P_QUE_A_501 15.21 11.99402 training 

2O63_MYC_A_501 11.77 10.327488 training 

2O64_MYU_A_501 12.6 15.132906 training 

2QHM_7CS_A_500 11.93 15.419877 training 

2RIO_ADP_A_1101 8.5 8.839855 training 

2RIO_ADP_B_2101 8.5 8.12286 training 

2RKU_R78_A_500 17.33 17.202715 training 

2UZT_SS3_A_1351 13.93 10.50961 training 

2VU3_LZE_A_1299 15.02 11.712693 training 
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2WTV_ZZL_A_1390 16.48 14.356284 training 

2WTV_ZZL_B_1390 16.48 14.618113 training 

2XJ2_985_A_1001 14.24 13.576728 training 

2Y7J_B49_A_1294 9.74 8.980873 training 

2Y7J_B49_B_1294 9.74 10.673288 training 

2Y7J_B49_C_1294 9.74 8.560607 training 

2Y7J_B49_D_1294 9.74 5.335432 training 

2YIW_YIW_A_1353 19.34 12.520471 training 

2YIX_YIX_A_1355 17.23 14.783937 training 

2ZB1_GK4_A_361 12.25 11.635828 training 

3AMA_SKE_A_351 9.22 6.7474203 training 

3AMB_VX6_A_351 9.22 11.450221 training 

3AT4_CCK_A_336 17.61 16.972866 training 

3BWJ_ARX_A_352 12.66 10.589522 training 

3D0E_G93_A_1 17.04 12.532833 training 

3D0E_G93_B_2 17.04 17.183178 training 

3DDQ_RRC_A_299 12.9 8.297859 training 

3DDQ_RRC_C_299 12.9 7.178257 training 

3E5A_VX6_A_500 17.73 12.699175 training 

3EQG_4BM_A_1 14.99 9.964328 training 

3FC1_52P_X_362 10.49 10.373807 training 

3FLS_FLS_A_361 18.24 13.88539 training 

3FLW_FLW_A_361 18.16 16.465137 training 

3FSK_RO6_A_450 14.96 13.170166 training 

3GCP_SB2_A_361 15.72 12.1016035 training 

3GCS_BAX_A_401 5.6 6.2856894 training 

3GCU_R48_B_401 13.32 12.8222475 training 

3GCV_SS6_A_361 14.12 12.847186 training 

3GNI_ATP_B_1 15.43 9.653784 training 

3GP0_NIL_A_1 14.84 18.384321 training 

3HEC_STI_A_1 9.22 8.287979 training 

3HEG_BAX_A_1 5.6 7.008605 training 

3HMO_STU_A_1 15.01 12.163776 training 

3HP5_52P_A_401 10.49 10.918285 training 

3HV6_R39_A_361 12.72 9.466206 training 

3IW5_DF3_A_362 11.69 9.562438 training 

3IW6_PP0_A_361 10.33 7.345064 training 

3IW8_HIZ_A_361 8.92 9.450232 training 

3JVS_AGY_A_900 13.44 14.485944 training 

3L8S_BFF_A_361 13.83 12.68417 training 

3L8X_N4D_A_361 16.12 14.4477 training 
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3LFA_1N1_A_361 8.22 9.860175 training 

3MYG_EML_A_1 22.34 17.777912 training 

3NPC_B96_A_365 9.53 10.554703 training 

3NPC_B96_B_365 9.53 8.5307665 training 

3O8P_BMU_A_361 11.34 10.370246 training 

3O8U_BMU_A_361 11.34 9.472248 training 

3OBJ_BMU_A_361 11.34 11.657911 training 

3PG3_DG7_A_362 11.01 13.260027 training 

3PXF_2AN_A_304 7.91 8.43764 training 

3PXQ_2AN_A_300 7.91 8.458857 training 

3PXQ_2AN_A_301 7.91 7.9644737 training 

3PXQ_2AN_A_302 7.91 7.834199 training 

3PXZ_2AN_A_299 7.91 6.5781374 training 

3PXZ_JWS_A_301 9.74 7.590602 training 

3PY1_2AN_A_301 7.91 6.6630545 training 

3PY1_2AN_A_302 7.91 7.0281353 training 

3PY1_SU9_A_300 13.56 13.19573 training 

3RGF_BAX_A_465 5.78 8.478868 training 

3SW7_19K_A_299 9.76 12.033982 training 

3TZM_085_A_1 6.27 13.889732 training 

3UBD_SL0_A_400 10.45 11.020773 training 

3UO4_0C0_A_1 12.73 12.905641 training 

3UOL_0C7_A_2 15.54 13.293035 training 

3UOL_0C7_B_1 15.54 14.602809 training 

3VQH_IQB_A_401 15.29 15.187998 training 

3VVH_4BM_B_503 14.99 13.505534 training 

3VVH_4BM_C_503 14.99 15.487566 training 

3ZSH_469_A_400 19.12  training 

3ZSI_52P_A_1000 10.49 7.871111 training 

4BCQ_TJF_C_1295 13.44 12.84407 training 

4BTK_DTQ_A_1337 12.95 9.336148 training 

4CRL_C1I_A_1360 20.06 15.915939 training 

4DLI_IRG_A_401 10.64 9.909659 training 

4DLI_IRG_A_402 10.64 11.62527 training 

4EK6_10K_A_301 9.92 10.227652 training 

4EZ7_2AN_A_302 7.91 7.93563 training 

4EZ7_2AN_A_303 7.91 6.879238 training 

4F9Y_GG5_A_401 12.03 14.077505 training 

4F9Y_GG5_A_402 12.03 12.441417 training 

4F9Y_LM3_A_403 13.21 10.422124 training 

4FKI_09K_A_301 7.45 10.119772 training 
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4FKL_CK2_A_300 8.11 7.9371223 training 

4FKO_20K_A_301 7.84 8.178918 training 

4FKU_60K_A_301 12.39 9.98849 training 

4FKU_60K_A_303 12.39 14.65224 training 

4GUE_QCT_A_401 9.76 10.720871 training 

4I3Z_ADP_A_301 0.67 5.0668316 training 

4I3Z_ADP_C_301 0.67 6.001342 training 

4I5M_R78_A_401 18.65 21.034546 training 

4JBQ_VX6_A_501 17.73 14.951972 training 

4KS8_B49_A_701 3.73 7.098278 training 

4L9I_8PR_A_601 8.95 12.205049 training 

4L9I_8PR_B_601 8.95 10.86388 training 

4LOO_SB4_A_401 16.48 16.590876 training 

4LOP_SB4_A_401 16.48 16.209667 training 

4LOP_SB4_B_401 16.48 14.673704 training 

4LOP_SB4_C_401 16.48 14.650061 training 

4LOP_SB4_D_401 16.48 14.583004 training 

4LOQ_SB4_A_401 16.48 15.305688 training 

4LOQ_SB4_B_401 16.48 12.504713 training 

4LOQ_SB4_C_401 16.48 13.820618 training 

4OTI_MI1_A_1001 13.13 12.5323515 training 

4QMN_DB8_A_401 11.62 14.84667 training 

4QMZ_B49_A_401 5.69 6.55925 training 

4QP2_36R_A_401 4.67 7.273883 training 

4QTA_38Z_A_411 15.86 13.754637 training 

4QTB_38Z_A_418 13.99 12.003158 training 

4QTB_38Z_B_412 13.99 11.510162 training 

4QTE_390_A_430 17.73 13.258313 training 

4QYY_3G7_A_401 14.51 10.219946 training 

4TXC_38G_A_301 12.95 11.588561 training 

4U43_3D8_A_401 7.65 5.3566923 training 

4X21_3WH_A_501 14.84 11.492774 training 

4X21_3WH_B_501 14.84 13.035936 training 

4XX9_RF4_A_402 9.44 8.770052 training 

4Y8D_49J_A_401 16.24 11.525299 training 

4Y8D_49J_B_401 16.24 15.099169 training 

4ZJI_4OQ_B_601 7.83 7.283536 training 

4ZJI_4OQ_C_601 7.83 9.089074 training 

4ZJI_4OQ_D_601 7.83 6.8545666 training 

4ZJJ_4OR_A_601 7.83 7.0933084 training 

4ZJJ_4OR_B_601 7.83 8.350812 training 
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4ZJJ_4OR_C_601 7.83 5.1687207 training 

4ZJJ_4OR_D_601 7.83 7.2560215 training 

5AJQ_DB8_A_800 16.48 14.70757 training 

5AJQ_DB8_B_800 16.48 14.7908 training 

5AUT_2AN_A_301 9.62 8.227689 training 

5CS6_K82_A_404 5.07 4.468193 training 

5CS6_K82_A_405 5.07 5.1155643 training 

5CS6_K82_A_406 5.07 4.588729 training 

5CS6_K82_A_407 5.07 4.937118 training 

5CSH_54E_A_401 5.92 5.2921076 training 

5CSH_54E_A_402 5.92 7.947792 training 

5CSH_54E_B_403 5.92 5.49813 training 

5CSH_54E_B_404 5.92 6.6865587 training 

5CSP_54G_A_401 7.46 6.192384 training 

5CU3_54S_A_404 12.66 16.073565 training 

5CU3_54S_B_403 12.66 9.69426 training 

5CU4_54S_A_404 12.66 12.544091 training 

5DN3_5DN_A_402 10.19 7.8209085 training 

5DR9_SKE_A_401 6 7.5168114 training 

5DRB_5FJ_A_501 17.11 14.781893 training 

5DT0_SKE_A_401 6 5.988515 training 

5JQ5_I74_A_302 10.67 13.649733 training 

5L4Q_LKB_A_401 14.46 12.602347 training 

5L4Q_LKB_B_401 14.46 14.451378 training 

5MO8_C98_A_404 11.02 11.826718 training 

5MO8_C98_B_401 11.02 11.957595 training 

5MOD_86L_A_404 5.81 5.3589926 training 

5MOE_OQC_A_409 5.3 4.6797047 training 

5MOE_OQC_A_410 5.3 5.384391 training 

5MOE_OQC_A_411 5.3 6.2392187 training 

5MOE_OQC_B_409 5.3 6.606739 training 

5MRB_C5N_A_901 12.27 16.349714 training 

5MTX_FJI_A_401 15.55 13.412746 training 

5MTY_HB9_A_401 18.16 13.793211 training 

5TBE_78L_A_401 16.94 19.41852 training 

5TE0_XIN_A_401 14.28 14.470296 training 

5TF9_7AV_A_501 10.04 7.720195 training 

5VC3_DB8_A_601 14.08 16.318983 training 

5VC4_XZN_A_601 14.65 10.742605 training 

5VC5_96M_A_601 16.03 12.171665 training 

5VC6_P48_A_601 15.82 14.553338 training 
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5VCV_1N1_A_404 15.72 9.767446 training 

5VCW_93J_A_401 4.51 5.9813185 training 

5VCW_93J_B_401 4.51 4.4235907 training 

5VCZ_XZN_A_401 12.33 13.311826 training 

5VD0_8X7_A_401 12.64 13.869585 training 

5VD1_P48_A_401 11.53 17.269943 training 

5VD3_H8H_A_401 10.48 12.441893 training 

1PY5_PY1_A_700 16.82 14.969334 validation 

1XH7_R96_A_351 13.42 14.521075 validation 

1XH9_R69_A_351 15.59 11.105695 validation 

2A4L_RRC_A_300 3.39 6.7256346 validation 

2FVD_LIA_A_299 19.12 15.857263 validation 

2UZW_SS4_E_1351 16.82 13.931561 validation 

2WTV_ZZL_D_1390 16.48 16.501717 validation 

3BWJ_ARX_A_351 12.66 10.008118 validation 

3GCQ_1BU_A_401 12.59 17.14584 validation 

3GCU_R48_A_401 13.32 11.107234 validation 

3GI3_B10_A_391 17.84 15.133845 validation 

3HMP_CX4_A_1 10.34 7.4939575 validation 

3HUB_469_A_361 19.12 14.843432 validation 

3HUC_G97_A_362 11.49 10.609373 validation 

3LFF_Z83_A_362 13.15 12.004912 validation 

3O8T_BMU_A_361 11.34 10.189346 validation 

3PXF_2AN_A_305 7.91 9.076647 validation 

3PXZ_2AN_A_300 7.91 6.3745623 validation 

3SW4_18K_A_299 9.95 14.080001 validation 

3U9N_09H_A_301 13.82 11.017376 validation 

3UVQ_FS8_A_361 15.59 11.264186 validation 

3VVH_4BM_A_703 14.99 12.857493 validation 

4BCQ_TJF_A_1296 13.44 12.502231 validation 

4BTJ_ATP_B_1338 8.3 10.083336 validation 

4KKH_1RQ_A_501 14.6 17.964321 validation 

4LOQ_SB4_D_401 16.48 22.440546 validation 

4NJ3_2KD_A_301 12.72 11.144922 validation 

4QMS_1N1_A_401 3.97 8.428536 validation 

4QMU_SKE_A_401 5.63 5.1778917 validation 

4ZJI_4OQ_A_601 7.83 5.5979853 validation 

5D1J_56H_A_4000 14.79 12.7819 validation 

5DPV_SKE_A_402 6 7.86001 validation 

5LVL_537_A_401 11.29 10.439565 validation 

5MOE_OQC_B_408 5.3 6.949047 validation 
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5V5Y_8X7_A_601 15.83 15.258941 validation 

5VCY_DB8_A_401 12.83 14.903077 validation 

1KE9_LS5_A_299 10.95 10.35851 test 

1XH6_R94_A_351 14.55 14.093109 test 

2BAJ_1PP_A_401 17.04 12.874502 test 

2BAL_PQA_A_401 12.23 12.644074 test 
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3FLN_3FN_C_361 20.04 13.301807 test 

3HRF_P47_A_1374 9.19 9.049356 test 
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