
 1 

Spontaneous and deliberate modes of creativity: Multitask eigen-1 
connectivity analysis captures latent cognitive modes during creative 2 
thinking 3 

Hua Xie1, Roger E. Beaty2, Sahar Jahanikia1, Caleb Geniesse3, Neeraj S. Sonalkar4, Manish Saggar1*  4 
1 Department of Psychiatry and Behavioral Sciences, Stanford University, USA  5 
2 Department of Psychology, Pennsylvania State University, USA 6 
3 Biophysics Program, Stanford University, USA  7 
4 Center for Design Research, Stanford University, USA  8 
 9 
*Corresponding author (saggar@stanford.edu)  10 
Abstract  11 
Despite substantial progress in the quest of demystifying the brain basis of creativity, several questions 12 
remain open. One such issue concerns the relationship between two latent cognitive modes during 13 
creative thinking, i.e., deliberate goal-directed cognition and spontaneous thought generation. Although 14 
an interplay between deliberate and spontaneous thinking is often indirectly implicated in the creativity 15 
literature (e.g., dual-process models), a bottom-up data-driven validation of the cognitive processes 16 
associated with creative thinking is still lacking. Here, we attempted to capture the latent modes of 17 
creative thinking by utilizing a data-driven approach on a novel continuous multitask paradigm (CMP) 18 
that widely sampled a hypothetical two-dimensional cognitive plane of deliberate and spontaneous 19 
thinking in a single fMRI session. The CMP consisted of eight task blocks ranging from undirected mind 20 
wandering to goal-directed working memory task, while also including two of the widely used creativity 21 
tasks, i.e., alternate uses task (AUT) and remote association task (RAT). Using data-driven eigen-22 
connectivity (EC) analysis on the multitask whole-brain functional connectivity (FC) patterns, we 23 
embedded the multitask FCs into a low-dimensional latent space. The first two latent components, as 24 
revealed by the EC analysis, broadly mapped onto the two cognitive modes of deliberate and spontaneous 25 
thinking, respectively. Further, in this low-dimensional space, both creativity tasks were located in the 26 
upper right corner of high deliberate and spontaneous thinking (creative cognitive space). 27 
Neuroanatomically, the creative cognitive space was represented by not only increased intra-network 28 
connectivity within executive control and default mode networks, but also by a higher inter-network 29 
coupling between the two. Further, individual differences reflected in the low-dimensional connectivity 30 
embeddings were related to differences in deliberate and spontaneous thinking abilities. Altogether, using 31 
a continuous multitask paradigm and data-driven approach, we provide direct empirical evidence for the 32 
contribution of both deliberate and spontaneous modes of cognition during creative thinking. 33 
Keywords: creativity; deliberate/spontaneous thinking; dual-process model; multitask fMRI; whole-brain 34 
functional connectivity; eigen-connectivity. 35 
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1. Introduction  37 

It is commonly agreed that creativity refers to the ability to produce work that is both novel and 38 
appropriate (Sternberg and Lubart, 1999). As one of the most extraordinary capacities of the human brain, 39 
creativity drives the development of our society. From art and design to science and engineering, we often 40 
marvel at people’s ingenuity. Given its central role, there has been an ever-growing interest in studying 41 
the neural basis of creative cognition. Although initial neuroimaging studies focused on revealing the 42 
contribution of individual brain regions to different aspects of creative thinking (Dietrich, 2004; Saggar et 43 
al., 2017, 2015), in recent years, this focus has shifted towards examining the interaction between 44 
multiple brain regions (as a network) during creative thinking (Beaty et al., 2019, 2017; Maillet et al., 45 
2019; Saggar et al., 2019). However, data-driven evidence is still needed to confirm whether creative 46 
thinking depends on a single brain network or an interplay between multiple networks.  47 
As a complex high-level cognitive phenomenon, creativity likely depends on a range of other lower- and 48 
higher-order processes, such as perception, working memory, semantic memory, and sustained attention 49 
(Dietrich, 2004; Lee and Therriault, 2013; Smeekens and Kane, 2016). Further, an interplay between two 50 
latent cognitive modes has been suspected during creative cognition, i.e., modes of spontaneous/implicit 51 
thinking and deliberate/explicit thinking. This interplay has been previously referred to as a dual-process 52 
model (Barr et al., 2015; Christoff et al., 2016; Dietrich, 2004; Finke, 1996; Sowden et al., 2015). 53 
Specifically, previous data suggest that while creative insights are often accompanied by defocused 54 
attention through spontaneous thinking (Baird et al., 2012; Eysenck, 1995; Gable et al., 2019; Zabelina et 55 
al., 2015), creativity can also stem from methodical problem solving via deliberate thinking (Benedek et 56 
al., 2014; Boden, 1998; Frith et al., 2019; Nusbaum and Silvia, 2011).  57 
The interplay between deliberate and spontaneous thinking during creative cognition is hypothesized to 58 
correspond to two canonical brain networks: the executive control network (ECN) and the default mode 59 
network (DMN), respectively (Beaty et al., 2016, 2015; Ellamil et al., 2012). The ECN is typically 60 
elicited by tasks requiring externally driven attention, while the DMN is typically elicited by internally 61 
driven cognition. In the context of creativity, the ECN is thought to support goal-directed and strategic 62 
cognition required to guide and direct the creative thought process, inhibiting common ideas and 63 
strategically searching memory for task-relevant unique solutions (Beaty et al., 2016). The DMN, in 64 
contrast, is thought to support the spontaneous generation of candidate ideas from memory and 65 
imagination, consistent with its role in episodic/semantic memory retrieval and mental simulation 66 
(Buckner et al., 2008). The putative cognitive processes of ECN and DMN broadly map onto dual-process 67 
models of creativity that emphasize spontaneous thought and deliberate control (Beaty et al., 2015).  68 
Together, these studies provide insights into the theoretical roles of DMN and ECN in spontaneous and 69 
deliberate cognition during creative performance. However, direct data-driven evidence for the 70 
involvement of these latent cognitive modes (i.e., deliberate/spontaneous thinking) remains elusive. That 71 
is, existing evidence does not unambiguously indicate that ECN and DMN support deliberate and 72 
spontaneous cognition during creative performance, while the cognitive roles of ECN and DMN have 73 
merely been speculated and inferred based on classic dual-process theories of creativity (e.g., Finke, 74 
1996).  75 
To tackle this issue, here, we adopted a data-driven approach to examine the interplay between 76 
spontaneous and deliberate thinking during creative cognition using functional magnetic resonance 77 
imaging (fMRI). Specifically, we developed a novel continuous multitask paradigm (CMP) - with seven 78 
cognitive task blocks and a resting-state block, in a single fMRI session. Using our CMP, we aimed at 79 
sampling a wide range of cognitive processes along a hypothetical two-dimensional plane of deliberate 80 
and spontaneous thinking. As shown in Fig. 1, we included two established creative tasks (i.e., alternate 81 
uses task (AUT) and remote associates task (RAT)), five other non-creative task blocks, and a resting-82 
state block. Based on the theoretical framework by Christoff and colleagues (2016), we hypothesized that 83 
the two latent cognitive processes would be differentially recruited by these eight task blocks. For 84 
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example, tasks such as 2-back working memory that require higher cognitive load would occupy the 85 
lower right quadrant, i.e., relying heavily on deliberate thinking while inhibiting spontaneity. Similarly, 86 
rest or mind-wandering is likely to recruit spontaneous thinking with minimum deliberate control (top left 87 
quadrant). Other non-creative tasks, with a medium level of cognitive load, would reside in the cognitive 88 
space between resting-state and working memory. Critically, we hypothesized that creative cognition 89 
would require both deliberate and spontaneous thinking and hence occupy the top right quadrant. 90 
Leveraging information from a wider variety of cognitive tasks, we aimed to obtain a holistic overview of 91 
how creative cognition is related to other cognitive processes. Further, using our CMP we aimed at 92 
identifying the latent cognitive axes that may underlie creative cognition. Similar approaches have been 93 
recently used to assess the neural correlates of ongoing cognition (Gonzalez-Castillo et al., 2015; Krienen 94 
et al., 2014). 95 
For a bottom-up data-driven validation of the latent cognitive modes across the eight task blocks, we 96 
performed the eigen-connectivity (EC) analysis on the task-related whole-brain functional connectivity 97 
(FC) patterns (Leonardi et al., 2013). The EC analysis can reveal the low-dimensional latent embeddings 98 
from the multitask FC patterns, i.e., the latent connectivity structures shared across tasks. We aimed to 99 
test our hypothetical cognitive space (shown in Fig. 1) by examining the low-dimensional embedding 100 
revealed by the EC analysis. Further, to estimate the utility of low-dimensional embeddings, we 101 
investigated the relationship between individual differences in the latent space embedding and 102 
corresponding behavior. 103 
 104 

 105 
Fig. 1.  Mapping multitask data to a hypothetical cognitive space with two putatively orthogonal dimensions of 106 
deliberate and spontaneous thinking. We hypothesize that tasks such as mind wandering would occupy the upper left 107 
quadrant as they are based on spontaneous processing with a minimum amount of deliberate control. In contrast, 108 
tasks with high cognitive load (2-back working memory or theory of mind task) would occupy the lower right 109 
quadrant as they are based highly on deliberate thinking. Other tasks like emotion classification, guessing, and 110 
visuomotor could be mapped in between deliberate and spontaneous thinking. Lastly, we hypothesized that if the 111 
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creativity tasks (alternate uses and remote association) require both deliberate and spontaneous thinking they should 112 
occupy the top right quadrant.  113 
 114 
2. Methods 115 

2.1 Participants 116 

Thirty-two participants (30.4 ± 5.4 years, 13F, 4 left-handed) took part in our study. All participants 117 
reported no history of neurological disorder or psychotropic medication, with normal or corrected-to-118 
normal vision. The study was approved by Stanford University's Institutional Review Board, and all 119 
participants gave written consent. Detailed demographic information can be found in Supplemental Table 120 
S1. 121 
2.2 Neuropsychological assessments  122 

A set of behavioral assessments were conducted outside the MR scanner to measure participants’ 123 
creativity and executive function as proxies for spontaneous/deliberate thinking. Below, we briefly 124 
introduce these assessments. 125 
2.2.1 Creativity  126 
The Torrance Test of Creative Thinking (TTCT-Figural; Torrance, 1972) is one of the most widely-127 
accepted tests to measure divergent thinking ability in the visual form. This game-like test can engage 128 
participants’ spontaneous creativity while being unbiased in terms of race, culture, socio-economic status, 129 
gender, and language (Kim, 2006). Participants were given 30 minutes to complete three activities in the 130 
TTCT-Figural assessment, i.e., picture construction, picture completion, and repeated figures of lines or 131 
circles. The TTCT-Figural assessments were scored by the Scholastics Testing Service, Inc 132 
(http://ststesting.com). 133 
2.2.2 Executive function  134 
Participants’ executive function was assessed using the Stroop Color-Word Interference Test (CWIT), a 135 
subtest of Delis–Kaplan Executive Function System (D-KEFS; Delis et al., 2001). CWIT consists of four 136 
parts: color naming, word reading, inhibition, and inhibition/switching.  137 
2.3 Imaging Data  138 

2.3.1 Imaging acquisition  139 
Participants were scanned using a GE 3T Discovery MR750 scanner with a 32-channel Nova Medical 140 
head-coil at the Stanford Center for Cognitive and Neurobiological Imaging. Functional scan parameters 141 
used are as follows: 1183 volumes, repetition time TR = 0.71 s, echo time TE = 30 ms; flip angle FA = 142 
54°, field of view FOV = 220 × 220 × 144 mm, isotropic voxel size = 2.4 mm, #slices = 60, multiband 143 
acceleration factor = 6. High-resolution T1-weighted structural images were also collected with FOV = 144 
190 × 256 × 256 mm, FA = 12°, TE = 2.54 ms, and isotropic voxel size = 0.9 mm. 145 
2.3.2 Continuous multitask paradigm 146 
A novel continuous multitask paradigm (CMP) was conducted over two runs (duration for each run was 147 
~14 min). The CMP included seven cognitive task blocks and a resting state block (Table 1). The 148 
cognitive tasks were chosen to sample along the two-dimensional hypothetical plane of deliberate and 149 
spontaneous thinking. Each task block lasted 90 s with a 12 s instruction between two task-blocks. A brief 150 
summary of the task blocks is provided in Table 1. The CMP was repeated in the second run in a 151 
randomized order with different sets of stimuli/questions. Participants were first familiarized with the 152 
rules of each task before entering the scanner. For the two creative tasks, alternative uses task (AUT) and 153 
remote associates task (RAT), we recorded participants’ answers after the scan, consistent with previous 154 
studies (Beaty et al., 2019; Benedek et al., 2019).  155 
Table 1. Task batteries included in the continuous multitask paradigm. ITI: inter-trial interval.  156 
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Name Task description   #Trials/Duration Reference  

Alternative uses task 
(AUT)  

Silently name uncommon uses of 
everyday objects (e.g. bricks) and press 
a button when you think of one. 

3 trials; each trial lasted 
for 30 s 

Mayseless et al. (2015) 

Emotion task 
(Emotion) 

Match one of two simultaneously 
presented emotionally-charged faces 
(angry or afraid) with an identical 
target face displayed below. 

30 trials; each trial 
lasted 3 s 

Hariri et al. (2002) 

2-back working 
memory task (WM) 

Match geometric shapes with the one 
presented two shapes before (5 shapes 
in total). 

30 trials; each trial 
lasted 3 s 

Gonzalez-Castillo et al. 
(2015) 

Theory of mind task 
(ToM) 

Read a story describing false beliefs 
and answer a yes/no question1. 

5 trials; each trial lasted 
18 s. Each trial 
consisted of 12 s for 
reading, 5 s for 
answering and 1 s ITI 

Dodell-Feder et al. 
(2011) 

Visuomotor task 
(VisMot) 

Visually cued finger-tapping of a red 
target on a flashing checkboard. 

3 trials; each trial lasted 
30 s. Within each trial 
18 s for stimuli and 12 s 
ITI 

Drobyshevsky et al, 
(2006) 

Guessing task 
(Guessing) 

View a “?” and guess who “hides 
behind” the question mark (baby or 
adult). Receive monetary feedback 
indicating whether the answer is 
correct. 

10 trials; each trial 
lasted 9 s. Within each 
trial, 3 s for guessing, 2 
s for feedback and 4 s 
ITI 

Delgado et al. (2000) 

Remote Associates 
Task (RAT) 

Produce a fourth related word based on 
the three cue words 2. 

9 trials; each trial lasted 
10 s 

Mednick (1962) 

Mind wandering 
(MW) 

Relax and fixate at the crosshair.  90 s duration Raichle et al. (2001) 

 157 
2.3.3 Preprocessing  158 
We discarded the first 12 frames of functional data, after which we applied a standardized preprocessing 159 
pipeline using fMRIprep (v1.2.1, Esteban et al., 2019). The functional data underwent motion correction, 160 
slice timing correction, susceptibility distortion correction, and were normalized to the Montreal 161 
Neurological Institute (MNI152) template. Overall, we excluded 7 participants due to technical difficulty 162 
(3), poor structural registration (1), excessive motion (1; mean framewise displacement > 0.2mm); and 163 
participants’ dropping out or inability to scan (2). All later analysis included 25 participants. 164 
For the remaining 25 participants, we removed nuisance signal by regressing out the physiological noise 165 
(white matter and CSF) and motion-related noise using the Volterra expansion of 6 motion parameters 166 
and 2 physiological signals (Friston et al., 1996): [𝑅	𝑅!	𝑅"#$	𝑅"#$! ]. Along with the nuisance signal 167 
regression, detrending and temporal filtering between 0.008 and 0.18Hz were also simultaneously 168 
performed using AFNI 3dTproject. Despiking was performed using 3dDespike, and spatial smoothing 169 
was carried out using Gaussian kernel with FWHM = 6 mm. A parcellation with 375 regions of interest 170 
(ROIs) were defined based on the parcellation previously used by Shine et al. (2019), which contains 333 171 

 
1 ToM example: Story: Laura didn't have time to braid her horse's mane before going to camp. While she was at camp, William 
brushed Laura's horse and braided the horse's mane for her. Yes/No question: Laura returns assuming that her horse's hair isn't 
braided. 
2 RAT example: Cue: dream – break – light. Answer: day. 
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cortical parcels from the Gordon atlas (Gordon et al., 2016), 14 subcortical regions from the Harvard–172 
Oxford subcortical atlas (bilateral thalamus, caudate, putamen, ventral striatum, globus pallidus, 173 
amygdala, and hippocampus), and 28 cerebellar regions from the SUIT atlas (Diedrichsen et al., 2009) to 174 
ensure the whole-brain coverage. After dropping 12 ROIs with fewer than 10 voxels, the time series were 175 
extracted from the remaining 363 ROIs by first converting the residual signal to percentage signal change 176 
(i.e., voxel intensity was divided by the voxel mean) and then computing the average signal within each 177 
ROI. The two functional runs were concatenated, and time points with the framewise displacement 178 
greater than 0.5 mm were excluded from further analysis (time points discarded = 1.62%±2.32%).  179 
2.3.4 Estimating regularized functional connectivity (FC)    180 
Sparse graphical models has been increasingly adopted by neuroimaging researchers in recent years 181 
(Allen et al., 2014; Rosa et al., 2015; Smith et al., 2011; Xie et al., 2019). Here, we employed graphical 182 
LASSO (Friedman et al., 2007) to estimate functional connectivity using the R package ‘glasso’. In short, 183 
graphical LASSO encourages a sparse solution of the task-specific precision matrix 𝛩 (or inverse 184 
covariance matrix) by maximizing the following log-likelihood function 𝐿$ 185 

𝐿$ = 𝑙𝑜𝑔 𝑑𝑒𝑡𝛩 − 𝑡𝑟(𝑠𝛩) − 𝜆‖𝛩‖$             (1), 186 
where 𝑑𝑒𝑡 denotes the matrix determinant; 𝑡𝑟 denotes the matrix trace; 𝑠 represents the empirical 187 
covariance matrix; 𝜆 is a non-negative regularization parameter provided by users; ‖𝛩‖$ indicates the L1 188 
penalty on	𝛩. 189 
A zero entry in the precision matrix reflects conditional independence between the signals of two brain 190 
regions, after regressing out all other ROI timeseries. A higher 𝜆 yields a sparser representation at the cost 191 
of goodness-of-fit. To achieve a good balance between the sparsity and goodness-of-fit, we tested a range 192 
of 𝜆 (0 - 0.2, step size = 0.02) and found an optimal 𝜆 (0.06 & 0.08) for each individual that maximizes 193 
the following log-likelihood 𝐿!(𝜆) 194 

                     𝐿!(𝜆) = ∑ 𝑙𝑜𝑔 𝑑𝑒𝑡𝛩% − 𝑡𝑟(𝑠&𝛩%)'
%($             (2). 195 

Here, 𝑠& is the empirical covariance matrix estimated using all the time points, and 𝐾 is the total number 196 
of tasks. This objective function was chosen given the expectation that task-specific FCs should be 197 
similar across multiple cognitive tasks for a given participant (Finn et al., 2015, also see Supplemental 198 
Fig. S1). Upon choosing the optimal regularization parameter, we estimated the regularized covariance 199 
matrix and subsequently converted it to regularized whole-brain FC, followed by Fisher-z transformation. 200 
2.3.5 Multitask eigen-connectivity analysis   201 
To delineate the latent cognitive processes sampled by the CMP, we extracted the latent FC structure 202 
from the multitask-FC using eigen-connectivity (EC) analysis developed by Leonardi et al. (2013). The 203 
EC analysis was originally developed to study time-varying FC dynamics during rest. Briefly, after 204 
computing task-specific FC matrices, we first vectorized the upper triangular FC matrices and regressed 205 
out the subject-specific baseline-FC to better reveal task-specific FC patterns (Xie et al., 2018a). Here, 206 
baseline-FC was characterized as the FC pattern estimated using time points from all eight task blocks for 207 
each participant. We then concatenated the residual FC vectors across participants and tasks, resulting in a 208 
65,703 × 200 group-level residual FC matrix (𝐹𝐶)*+,-) across 8 task blocks and 25 participants. Singular 209 
value decomposition (SVD) was applied on the group-level 𝐹𝐶)*+,-.  210 

𝐹𝐶)*+,- = 𝑈Σ𝑉.     (3), 211 

where 𝑈 is a 65,703 × 200 unitary matrix and the columns of	𝑈 are orthonormal eigenvectors; 𝑉 is a 200 212 
× 200 unitary matrix; Σ is a 200 × 200 diagonal matrix of singular values.  213 
The column vectors of 𝑈 were reshaped back into the matrix form (#ROIs × #ROIs). First few columns 214 
vectors of 𝑈, explaining large variance, can be used to define the low-dimensional connectivity-based 215 
embedding that is shared across all eight task blocks. The latent embeddings were referred to as EC 216 
patterns by Leonardi et al. (2013) when studying dynamic functional connectivity. The EC weights 217 
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correspond to the projections of these ECs, i.e., columns of 𝑉 multiplied by the singular values of Σ. 218 
Given our goal to anchor the cognitive processes into lower dimensions that can be visualized, we 219 
focused on the first two ECs that explained the most variance in the group-level 𝐹𝐶)*+,-, as well as the 220 
corresponding weights, in order to match the latent cognitive processes of interest.  221 

 222 
Fig. 2. A graphic summary of the EC analysis pipeline. (a) The eight task-specific FC (𝐹𝐶!"#$) and a baseline-FC 223 
(𝐹𝐶%"#&'()&) were computed and then vectorized for each participant. The baseline-FC was computed across the 224 
entire scan time. (b) For each participant, the 𝐹𝐶%"#&'()& was regressed out from task-specific FCs using linear 225 
regression. (c) Baseline-removed FC patterns (𝐹𝐶*&#(+) were then concatenated across tasks and participants. (d) 226 
𝐹𝐶*&#(+ were then submitted to singular value decomposition (SVD). The columns of orthonormal eigenvectors U 227 
(or equally principal components) were converted to matrix form, termed as eigen-connectivity (EC) patterns.  228 
 229 
 230 
3. Results 231 

3.1 Characterizing the latent connectivity dimensions as revealed by EC analysis 232 

We projected vectorized residual task-FCs to a low-dimensional space using the EC analysis. Here, we 233 
focused on the first two dimensions/ECs in terms of the variance explained, in accordance with our 234 
hypothesis. Fig. 3a shows EC patterns for the first two ECs. The strength of intra-network couplings for 235 
the first two ECs are shown as line chart in Fig. 3b. Each EC pattern can be understood as a latent low-236 
dimensional embedding or spatial mode that captures shared variations across the multitask FCs. On the 237 
network level, we observed that the EC1 (shown as upper triangle in Fig. 3a) was characterized by a 238 
strong intra-network coupling of the ECN (i.e. fronto-parietal network (FPN)) and salience network (SN), 239 
which were highest among all networks. On the contrary, the EC2 (shown as lower triangle in Fig. 3a) 240 
was characterized by highest within network coupling strength of the DMN.  241 
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In sum, the latent space revealed by our multi-task EC analysis suggested two dominant latent 242 
dimensions: one dimension for deliberate thinking (characterized by high intra-ECN) and the other for 243 
spontaneous thinking (characterized by high intra- DMN). 244 

 245 
Fig. 3. (a) Visualization of the first two eigen-connectivity (EC) patterns with intra-network connectivity 246 
highlighted. EC1: the upper-triangle, EC2: lower-triangle. Aud: auditory; Vis: visual; CinO: cingulo-opercular; 247 
CinP: cingulo-parietal; DMN: default mode network; FPN: frontal-parietal network; DAN: dorsal attention network; 248 
VAN: ventral attention network; RsT: retrosplenial temporal; SM: sensorimotor; SN: salience network; SC: 249 
subcortical; CB: cerebellum; None: network not specified. (b) A line plot of the average intra-network coupling 250 
strength of major large-scale functional networks.  251 
 252 

3.2 Embedding tasks into the latent cognitive space  253 

To better examine the relationship between different cognitive tasks with respect to the revealed 254 
deliberate and spontaneous EC dimensions, we projected task-FCs through the first two ECs. Noticeably, 255 
and as hypothesized, the task-FCs projected into the low-dimensional plane were separable and highly 256 
resembled the hypothetical cognitive space (shown as an inset in Fig. 4a). Specifically, we observed that 257 
the task-FCs associated with two creative tasks (i.e., AUT and RAT) were projected together in the upper 258 
right quadrant. The mind wandering (MW) together with the visuomotor (VisMot) task were observed 259 
mostly in the upper left quadrant, as both required minimum deliberate control3. Working memory (WM) 260 
and theory of mind (ToM) tasks were also projected together to the lower right quadrant. These two tasks 261 
were arguably among the most cognitively demanding tasks while requiring very limited spontaneous 262 
thinking. Further, based on our hypothesis, grouping the tasks into four types: deliberate (WM and ToM), 263 
spontaneous (MW), moderate (Emotion, Guessing, and VisMot), and creative (AUT and RAT), revealed 264 
that the projection of creativity tasks on EC1 resembles deliberate processing and their projection on EC2 265 
resembles that of spontaneous processing (Fig. 4b-c). Altogether, providing data-driven evidence that 266 
creative cognition does require an interplay between both deliberate (EC1) and spontaneous thinking 267 
(EC2).  268 
Additionally, we showed EC3 to EC10 and the low-dimensional projection using the first 3 ECs in the 269 
Supplemental Materials (Fig. S2). We also quantitatively evaluated the task separability of weights of all 270 
200 ECs using one-way ANOVA given the task labels. We found ECs beyond the first two can inform us 271 

 
3 It should be noted that participants spent 40% of the time during the visuomotor task on fixation in 
between trials, which could have explained VisMot-FCs being projected together with MW.  
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of underlying tasks, where EC weights from one task were significantly different from the rest (FDR-272 
corrected p < 0.05, Fig. S3). 273 
 274 
  275 

 276 
Fig. 4. (a) Low-dimensional projection of task-FCs with the first two EC components, color-coded based on task 277 
labels. Each symbol represents a projection of a task-FC, for a total of 200 symbols (25 per participant over 8 tasks). 278 
Inset: the hypothetical cognitive space spanning across two putative cognitive axes, i.e., deliberate thinking (EC1) 279 
and spontaneous thinking (EC2). (b-c) Graphical summary of low-dimensional projections along with the EC1 and 280 
EC2, grouped based on the hypothesis. Creativity tasks: AUT and RAT; deliberate tasks: WM and ToM; 281 
spontaneous task: MW; tasks requiring moderate level of spontaneous and deliberate thinking: Emotion, Guessing, 282 
and VisMot. 283 
 284 
3.3 Revealing the functional architecture of creative cognition   285 

To further understand the functional architecture of the creative cognition space, we examined the 286 
aggregated functional connectome across deliberate (EC1) and spontaneous (EC2) latent dimensions. We 287 
hypothesized that given the observation that creative tasks were both embedded in the top right corner of 288 
the EC latent space, suggesting an interplay between both deliberate (EC1) and spontaneous (EC2) 289 
modes, a better understanding of the functional architecture of creative cognitive space can be acquired by 290 
examining the aggregated connectivity pattern of EC1 and EC2. The aggregated pattern of EC1 and EC2, 291 
through numerical addition, is shown in Fig. 5a. Besides the expected enhanced intra-network coupling 292 
within default mode and fronto-parietal networks, we also observed high inter-network coupling between 293 
default mode and fronto-parietal, cingulo-opercular, and cingulo-parietal networks.  294 
In an attempt to understand the large-scale network architecture underlying the aggregated EC pattern, we 295 
computed the node strength, and for visualization purposes, we showed the ten ROIs with the 296 
highest/lowest node strength in Fig. 5(b)&(c). In terms of hubs with the positive node strength (i.e., 297 
highly coupled regions), the majority was found in the brain regions that form the DMN as well as some 298 
in the anterior temporal lobe. The ROI with the highest positive node strength was found to be the right 299 
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medial prefrontal cortex (mPFC, MNI coordinate: 4.8 65.1 -7.1) of the DMN. On the other hand, hubs 300 
with the largest negative node strength (i.e., regions decoupled from other regions) were found in the 301 
visual network and the DAN (left lateralized). The ROI with the highest negative node strength was found 302 
in the left inferior frontal gyrus (IFG, MNI coordinate: -45.2 2.7 32.4) within the DAN. 303 

 304 
Fig. 5. (a) The aggregated EC combining EC1 and EC2. (b) Ten ROIs with the most positive node strength. (c) Ten 305 
ROIs with the most negative node strength. The node size is proportional to the node strength, and the network label 306 
of each ROI is color-coded.    307 
 308 

3.4 Examining whether individual differences in embedding can predict behavior 309 

Individual differences were characterized in terms of EC-based latent-space embedding. We hypothesized 310 
that the observed individual differences in the latent-space embedding could be associated with individual 311 
differences in behavior. We limited this analysis to the two creativity tasks only. Specifically, the 312 
individual differences in the weights of deliberate dimension (EC1) could be related to deliberate thinking 313 
ability, while the variability in the weights of spontaneous dimension (EC2) could be related to 314 
spontaneous thinking ability. The behavioral correlates of deliberate and spontaneous thinking were 315 
computed as follows. We used the behavioral performance on the color-word interference task (CWIT) as 316 
a proxy of participants’ deliberate thinking ability. To operationalize behavioral performance of 317 
spontaneous thinking, we regressed the CWIT score from the Torrance Test of Creative Thinking task 318 
score (TTCT-F). Hence, by removing the variance associated with deliberate thinking from the creativity 319 
score, we attempted to use the residuals as a proxy for spontaneous thinking.  320 
After controlling for age, handedness, and gender, we found that the weights of EC1 during the AUT 321 
were significantly positively correlated with deliberate thinking score (r = 0.45, p = 0.030), and EC2 322 
during the AUT was significantly positively correlated with spontaneous thinking score (r = 0.43, p = 323 
0.038), as shown in Fig. 6. We did not observe any significant brain-behavior relationship using EC 324 
weights for the second creativity task (RAT).  325 
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 326 
Fig. 6. Brain-behavior relationship using EC weights during AUT. The EC weights and behavioral scores are z-327 
scored. (a) The scatterplot of EC1 weights vs deliberate thinking score; (b) EC2 weights vs spontaneous thinking 328 
scores. Dotted lines represent 95% confidence intervals. 329 
 330 

 331 
4. Discussion 332 

Human creativity is a vast construct, seemingly intractable to scientific inquiry, partially due to its 333 
multifaceted nature (Jung, 2013). It has been long suspected that creative cognition is supported by two 334 
latent cognitive modes (i.e., deliberate and spontaneous modes of thinking). However, the neural evidence 335 
for the contribution of spontaneous and deliberate cognition in creativity has been indirect and 336 
inconsistent (Mok, 2014). Here, to validate the involvement of these latent cognitive modes in creative 337 
thinking and to identify their neural substrates, we adopted a data-driven approach and sampled across a 338 
wide range of cognitive space using an 8-task continuous multitask paradigm (CMP). We hypothesized 339 
that by sampling a wider cognitive space we will better understand how creative cognition is related to 340 
other lower- and higher-order cognitive processes.    341 
Since creative cognition does not seem to be confined to any localized brain region (Dietrich and Kanso, 342 
2010), we decided to focus on examining the large-scale network architecture using whole-brain 343 
functional connectivity (FC). We first computed the task-FCs and then extracted latent connectivity 344 
patterns across all tasks using eigen-connectivity (EC) analysis (Leonardi et al., 2013). The first two latent 345 
dimensions were observed to represent the deliberate and spontaneous modes of thinking, respectively. 346 
When the task-FCs were embedded into a 2-dimensional latent space of deliberate/spontaneous thinking, 347 
we observed creativity tasks to be embedded in the region with both strong deliberate and spontaneous 348 
thinking. The embeddings of other tasks also followed as expected. For example, the cognitively 349 
demanding tasks such as the theory of mind and n-back working memory appeared to tax deliberate 350 
thinking heavily yet requiring little spontaneous thinking. On the contrary, resting state (mind wandering) 351 
and visuo-motor task were embedded higher on the spontaneous mode of thinking. Further, the individual 352 
differences in EC weights were observed to be related to behavioral differences in the ability of deliberate 353 
and spontaneous cognition during a creative task. Altogether, our findings demonstrate the potential of 354 
using a data-driven approach to pool information across multiple cognitive processes in order to extract 355 
latent cognitive dimensions associated with creative cognition. 356 
Early research on creative cognition focused on isolating specific brain regions associated with creative 357 
performance. Although domain-specific assessment of creative cognition proved somewhat successful in 358 
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teasing out regions specific to each domain, e.g., musical (Limb and Braun, 2008), verbal (Bechtereva et 359 
al., 2004), and figural (Ellamil et al., 2012; Saggar et al., 2017, 2015), the domain-generic assessment of 360 
creativity revealed a large variance in findings across studies (Boccia et al., 2015). Recently, researchers 361 
have shifted gear towards studying the whole-brain functional architecture related to creative cognition. 362 
These network-based studies have highlighted a putative role of the default mode network (DMN) and 363 
executive control network (ECN) during creative thinking (Beaty et al., 2015; Zhu et al., 2017). In 364 
general, while the DMN has been suggested to support spontaneous cognition, such as mind-wandering, 365 
introspection, autobiographical memory, and mentalization (Raichle, 2015), the ECN (operationalized as 366 
the frontal-parietal network (FPN)), is commonly considered as a key player in deliberate, goal-directed 367 
cognition. With regards to creative thinking, the current consensus is that an interplay between deliberate 368 
(ECN) and spontaneous thinking (DMN) is required for creative cognition. However, no data-driven 369 
validation exists regarding how this interplay facilitates creativity. 370 
To address this issue, here, we used a continuous multi-task fMRI paradigm consisted of a wide range of 371 
cognitive tasks including creativity, and explored the latent dimensions using eigen-connectivity analysis. 372 
Interestingly, the first two latent dimensions were mapped onto deliberate (FPN-dominated intra-network 373 
coupling) and spontaneous (DMN-dominated intra-network coupling) axes. We also examined the extent 374 
of inter-network coupling for each latent dimension. For the deliberate axis, i.e., EC1, we observed 375 
greater inter-network connectivity between DMN and task-positive networks (including FPN, dorsal 376 
attention network (DAN), and cingulo-opercular network (CinO)). Our observation coincided with an 377 
earlier finding of increased DMN connectivity with task-promoting regions across six tasks regardless of 378 
task-associated activation (Amanda Elton and Wei Gao, 2015). For the spontaneous axis, i.e., EC2, we 379 
observed reduced intra-network coupling of the FPN as well as stronger within-network connectivity in 380 
the DMN. The weakened within-FPN coupling might allow for flexible reconfiguration during 381 
spontaneous thinking, which has been shown to positively correlate with creativity across the visual and 382 
verbal domains (Zhu et al., 2017). Moreover, an overall decoupling was observed for DAN, possibly 383 
reflecting down-regulated top-down attention modulation (Zabelina and Andrews-Hanna, 2016).  Lastly, 384 
as creativity required both cognitive modes (EC1 and EC2), we aggregated first two EC patterns and 385 
revealed strengthened within-network coupling in the DMN and FPN, as well as an overall increase in 386 
inter-network connectivity between the two. Overall, our findings extend network neuroscience research 387 
on creative cognition by identifying patterns of intra- and inter-network connectivity associated with 388 
latent cognitive modes during creative task performance.   389 
To pinpoint the key regions in the aggregated EC pattern underlying creative cognition, we examined the 390 
regions with the highest absolute node strength. The regions with the highest positive functional coupling 391 
were found in the DMN, such as mPFC, angular gyrus (AG), and posterior cingulate cortex (PCC), as 392 
well as regions in the anterior temporal lobe. The involvement of DMN in creative cognition has been 393 
well-documented. For example, higher creativity has been associated with increased FC between the 394 
mPFC and the PCC (Takeuchi et al., 2012). A lesion study found that lesions in the mPFC were 395 
associated with impaired originality (Shamay-Tsoory et al., 2011). Moreover, using connectome-based 396 
predictive modeling (Rosenberg et al., 2015), a recent study found regions in the DMN were among the 397 
top contributors to the so-called “high-creative network”, i.e., the network where FC strength positively 398 
predicted creativity scores (Beaty et al., 2018). Moreover, the anterior temporal lobe (or temporal pole) 399 
has an important role in many cognitive processes, including creative cognition, theory of mind, emotion 400 
processing, and semantic processing (Wong and Gallate, 2012). In short, our findings suggested that 401 
whole-brain integration of regions in DMN plays a pivotal role in creative cognition.  402 
As for the ROIs with the greatest decrease in the connectivity of the aggregated EC, the majority were 403 
found in the DAN and visual network. The decoupling of the visual network is consistent with past work 404 
linking deactivation of the visual cortex to the suppression of external stimuli during creative thinking 405 
(Benedek et al., 2016; Ritter et al., 2018). On the other hand, as it is well-known that DAN is responsible 406 
for external attention (Maillet et al., 2019), decoupling of DAN may also signal loosened top-down 407 
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attention to external stimuli, potentially allowing for allocating more cognitive resources toward an 408 
introspective stream of consciousness (Zabelina and Andrews-Hanna, 2016). Interestingly, we observed 409 
left-lateralized decoupling for the DAN. This left-over-right decoupling pattern in DAN mirrors lesion 410 
studies linking left hemisphere lesions to increases in creativity (Seeley et al., 2008; Shamay-Tsoory et 411 
al., 2011; c.f. Chen et al., 2019). It has been suggested that, under an inhibitory mechanism, the right 412 
hemisphere's predominance in creative cognition may be inhibited by the left hemisphere in typical 413 
people, while such inhibition is weakened after damages to the left hemisphere, thus boosting creativity 414 
(Huang et al., 2013). In our case, the decoupled left-lateralized DAN (especially L IFG and surrounding 415 
ROIs) could be linked to the release of inhibition of the left hemisphere in a similar fashion that facilitates 416 
creativity, although the lateralized involvement may depend on the creativity domain (Chen et al., 2019). 417 
Moreover, Lotze and colleagues (2014) also noted that a reduced left- and inter-hemispheric connectivity 418 
of language areas, namely the left posterior area BA44 (left IFG), may lead to a more spontaneous and 419 
less constraining cognition. This is consistent with our observation that the left IFG showed the greatest 420 
decoupling in the aggregated EC pattern. Taken together, down-regulation in regions responsible for top–421 
down externally-directed attentional control in the left prefrontal cortex (e.g. left IFG) appears to be a key 422 
neural feature for both creative cognition and related spontaneous cognitive processes, such as mind 423 
wandering (Christoff et al., 2009; Julia W. Y. Kam et al., 2013).     424 
To sum up, our work sheds new light on the complex interaction between DMN and FPN during creative 425 
cognition. Our data-driven approach suggests these typically opposing networks may indeed cooperate 426 
during creative cognition as revealed by our EC analysis. Furthermore, decoupling of key regions in DAN 427 
and visual networks may also correspond to the shielding of internally directed attention from the external 428 
environment during creative thinking (Maillet et al., 2019), further facilitating creative cognition.   429 
Limitations and future directions 430 
There are some methodological limitations associated with our study. The first issue concerns the 431 
relatively small sample size (N = 25), which limited our statistical power in the brain-behavior analysis. 432 
Future studies with more participants are needed to further validate our findings, as a recent study 433 
suggests that it may require a consortium-level sample size to obtain a reproducible brain-behavior 434 
relationship (Marek et al., 2020). Second, previous studies have shown the inter-subject differences in FC 435 
patterns are dominated by stable individual differences other than transient cognitive/task modulation 436 
(Finn et al., 2015; Gratton et al., 2018; Xie et al., 2018a). We circumvented this issue by removing 437 
individual baseline-FCs (i.e., FC fingerprints). However, this is a rather simplified means of removing 438 
individual differences by assuming a linear relationship between task-specific and subject-specific FC 439 
patterns. Moreover, EC analysis assumes linearity, therefore, it can only capture linear relations among 440 
connectivity pairs. Future studies can consider nonlinear decomposition methods such as general principal 441 
component analysis (Vidal et al., 2005) and geometry-aware principal component analysis (Harandi et al., 442 
2018). These nonlinear methods could help us more efficiently explore the nonlinear relationships 443 
between task-FCs. Third, given our goal of anchoring latent deliberate and spontaneous thinking during 444 
creative cognition, we narrowed our focus to the first two EC components. Our choice was partially 445 
justified by linking EC weights with behavioral data (Fig. 6), and matching EC patterns with previous 446 
neuroimaging findings in creative research. However, there is no doubt that the EC patterns beyond the 447 
first two could be meaningful, as many higher-order ECs also explained significantly more variance than 448 
those from the surrogate data and provided some task separability (Supplemental Fig. S4). Indeed, some 449 
interesting work has been conducted using EC analysis on the multitask data from Human Connectome 450 
Project, which looked at higher-order EC components to better identify individuals and tasks (Abbas et 451 
al., 2020; Amico and Goñi, 2018). However, as is often the case with any latent factor analysis, increasing 452 
the number of latent components/factors comes at the cost of interpretability. We believe that for our 453 
specific question, limiting our focus to the first two ECs was a reasonable trade-off. Future work could 454 
also look at a different set of tasks with different latent cognitive dimensions. For example, using different 455 
forms of creativity (e.g. figural, verbal, and musical) or parametrically modulating the cognitive load (1, 456 
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2, 3-back WM), we can delineate the potential confounding factors (e.g., creativity domains and task 457 
difficulties). Lastly, the rich spatiotemporal dynamics of the brain remain untapped in this study. Future 458 
work can also investigate the time-varying FC during task performance (Gonzalez-Castillo and 459 
Bandettini, 2018; Vergara et al., 2019; Xie et al., 2018b) as well as instantaneous activation patterns using 460 
Topological Data Analysis (TDA; Geniesse et al., 2019; Saggar et al., 2018). Additionally, our analysis 461 
also assumed that the functional parcellation remained unchanged despite the changing cognitive 462 
demands, which is subject to future evaluation (Salehi et al., 2019). 463 
Conclusion  464 
Creativity theories have long emphasized dual-process models of spontaneous and deliberate thought, but 465 
bottom-up data-driven evidence supporting these theories has been largely absent. Using a data-driven 466 
eigen-connectivity (EC) analysis with a continuous multitask paradigm (CMP), we extracted latent 467 
connectivity patterns shared across multitask FCs - corresponding to deliberate and spontaneous thinking 468 
- and we showed that creative cognition may require a balance of these two latent cognitive modes. The 469 
EC pattern underlying creative cognition revealed a complex interaction between the two canonical and 470 
typically opposite brain networks. We observed creative cognition requires stronger intra-network 471 
connectivity in the default mode network (DMN) and fronto-parietal network (FPN), as well as stronger 472 
inter-network coupling between the two. We also found higher decoupling in the left-lateralized dorsal 473 
attention network (DAN) and visual network, which may facilitate creative thinking by shielding the 474 
brain from the external stimuli. In sum, our work provided a bottom-up validation of the latent cognitive 475 
modes of creative cognition, offering novel neural evidence for the classic theory of creativity. 476 
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Supplemental Materials  713 
Table S1. Demographic information. 714 

Variable N = 32 

Sex 
    Male 
    Female 

 
19 
13 

Age  
    Mean ± SD 
    Range 

 
30.37 ± 5.41 

19-43 

Handedness 
    Right 
    Left 

 
28 
4 

 715 
Table S2. Psychometric test results. TTCT: Torrance Test of Creative Thinking; CWIT: Color-Word Interference 716 
Test. 717 

Domain  Psychometric Tests  Mean  Std 
Figural creativity average TTCT 119.19 22.70 
Executive function composite score CWIT 115.13 14.90 

 718 
Table S3. In-scanner behavioral performance. 719 

Task  Accuracy (mean ± std) 
Theory of Mind  0.67 ± 0.18 
Emotion  0.96 ± 0.05 
VisuoMotor  0.98 ± 0.04 
Working memory   0.93 ± 0.08 

 720 
 721 
 722 
 723 
 724 
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    725 
Figure S1. The similarity between group-level task-FCs and baseline-FC was measured by Pearson 726 
correlation. Task acronym: WM: working memory; ToM: theory of mind; AUT: alternative uses task; 727 
Emotion: emotion task; VisMot: visuomotor task; RAT: remote associates task; MW: mind-wandering. 728 
Network acronym: Aud: auditory; Vis: visual; CinO: cingulo-opercular; CinP: cingulo-parietal; DMN: 729 
default mode network; DAN: dorsal attention network; FPN: frontal-parietal network; VAN: ventral 730 
attention network; RsT: retrosplenial temporal; SM: sensorimotor; SN: salience network; SC: subcortical; 731 
CB: cerebellum. 732 
 733 
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 734 

 735 
 736 
Figure S2. Upper: Thresholded EC3-10 at 10% edge sparsity. Positive edges are shown in yellow and 737 
negative edges are shown in dark blue. Lower: Low-dimensional projection using the first three ECs. 738 
 739 
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 740 
Figure S3. Task separability of EC components. We performed a one-way ANOVA on each EC weight 741 
using task labels as grouping variables. Fifteen EC components had significantly different mean across 742 
tasks (FDR-corrected p < 0.05), suggesting that EC components beyond the first two ECs contained 743 
cognitively relevant information.  744 

 745 
 746 
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