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ABSTRACT2

The histone group added to a gene sequence must be released during mitosis to halt3
transcription during the DNA replication stage of the cell cycle. However, the detailed mechanism4
of this transcription regulation remains unclear. In particular, it is not realistic to reconstruct all5
appropriate histone modifications throughout the genome from scratch after mitosis. Thus, it6
is reasonable to assume that there might be a type of “bookmark” that retains the positions7
of histone modifications, which can be readily restored after mitosis. We developed a novel8
computational approach comprising tensor decomposition (TD)-based unsupervised feature9
extraction (FE) to identify transcription factors (TFs) that bind to genes associated with reactivated10
histone modifications as candidate histone bookmarks. To the best of our knowledge, this is the11
first application of TD-based unsupervised FE to the cell division context and phases pertaining12
to the cell cycle in general. The candidate TFs identified with this approach were functionally13
related to cell division, suggesting the suitability of this method and the potential of the identified14
TFs as bookmarks for histone modification during mitosis.15
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1 INTRODUCTION
During the cell division process, gene transcription must be initially terminated and then reactivated17
once cell division is complete. However, the specific mechanism and factors controlling this process18
of transcription regulation remain unclear. Since it would be highly time- and energy-consuming to19
mark all genes that need to be transcribed from scratch after each cycle of cell division, it has been20
proposed that genes that need to be transcribed are “bookmarked” to easily recover these positions for21
reactivation (Festuccia et al., 2017; Bellec et al., 2018; Zaidi et al., 2018; Teves et al., 2016). Despite22
several proposals, the actual mechanism and nature of these “bookmarks” have not yet been identified.23
John and Workman (1998) suggested that condensed mitotic chromosomes can act as bookmarks, some24
histone modifications were suggested to serve as these bookmarks (Wang and Higgins, 2013; Kouskouti25
and Talianidis, 2005; Chow et al., 2005), and some transcription factors (TFs) have also been identified as26

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.09.23.309633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309633


Taguchi and Turki Post-mitotic bookmark TFs

potential bookmarks (Dey et al., 2000; Kadauke et al., 2012; Xing et al., 2005; Christova and Oelgeschläger,27
2001; Festuccia et al., 2016).28

Recently, Kang et al. (2020) suggested that histone 3 methylation or trimethylation at lysine 4 (H3K4me129
and H3K4me3, respectively) can act as a “bookmark” to identify genes to be transcribed, and that a limited30
number of TFs might act as bookmarks. However, there has been no comprehensive search of candidate31
“bookmark” TFs based on large-scale datasets.32

We here propose a novel computational approach to search for TFs that might act as “bookmarks”33
during mitosis, which involves tensor decomposition (TD)-based unsupervised feature extraction (FE)34
(Fig. 1). In brief, after fragmenting the whole genome into DNA regions of 25,000 nucleotide, the histone35
modifications within each region were summed. In this context, each DNA region is considered a tensor36
and various singular-value vectors associated with either the DNA region or experimental conditions (e.g.,37
histone modification, cell line, and cell division phase) are derived. After investigating singular-value38
vectors attributed to various experimental conditions, the DNA regions with significant associations of39
singular-value vectors attributed to various experimental conditions were selected as potentially biologically40
relevant regions. The genes included in the selected DNA regions were then identified and uploaded to the41
enrichment server Enrichr to identify TFs that target the genes. To our knowledge, this is the first method42
utilizing a TD-based unsupervised FE approach in a fully unsupervised fashion to comprehensively search43
for possible candidate bookmark TFs.44

2 MATERIALS AND METHODS
2.1 Histone modification45

The whole-genome histone modification profile was downloaded from the Gene Expression Omnibus46
(GEO) GSE141081 dataset. Sixty individual files (with extension .bw) were extracted from the raw GEO47
file. After excluding six CCCTC-binding factor (CTCF) chromatin immunoprecipitation-sequencing files48
and six 3rd replicates of histone modification files, a total of 48 histone modification profiles were retained49
for analysis. The DNA sequences of each chromosome were divided into 25,000-bp regions. Note that the50
last DNA region of each chromosome may be shorter since the total nucleotide length does not always51
divide into equal regions of 25,000. Histone modifications were then summed in each DNA region, which52
was used as the input value for the analysis. In total, N = 123, 817 DNA regions were available for analysis.53
Thus, with approximately 120, 000 regions of 25, 000 bp each, we covered the approximate human genome54
length of 3× 109.55

2.2 Tensor Data Representation56

Histone modification profiles were formatted as a tensor, xijkms ∈ RN×2×4×3×2, which corresponds to57
the kth histone modification (k = 1: acetylation, H3K27ac; k = 2: H3K4me1; k = 3 : H3K4me3; and58
k = 4 :Input) at the ith DNA region of the jth cell line (j = 1 : RPE1 and j = 2 : USO2) at the mth phase59
of the cell cycle(m = 1 : interphase, m = 2 : prometaphase, and m = 3 : anaphase/telophase) of the sth60
replicate (s = 1, 2). xijkms was normalized as

∑
i xijkms = 0 and

∑
i x

2
ijkms = N (Table 1). There are61

two biological replicates for each of the combinations of one of cell lines (either RPE1 or USO2), one of62
ChIP-seq (either acetylation or H3Kme1 or H3Kme4 or inout), and one of three cell cycle phases.63
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2.3 Tensor Decomposition64

Higher-order singular value decomposition (HOSVD) (Taguchi, 2020) was applied to xijkms to obtain65
the decomposition66

xijkms =
2∑

`1=1

4∑
`2=1

3∑
`3=1

2∑
`4=1

N∑
`5=1

G(`1`2`3`4`5)u`1ju`2ku`3mu`4su`5i, (1)

where G ∈ R2×4×3×2×N is the core tensor, and u`1j ∈ R2×2, u`2k ∈ R4×4, u`3m ∈ R3×3, u`4s ∈ R2×2,67
and u`5i ∈ RN×N are singular-value vector matrices, which are all orthogonal matrices. The reason for68
using the complete representation instead of the truncated representation of TD is that we employed HOSVD69
to compute TD. In HOSVD, the truncated representation is equal to that of the complete representation;70
i.e., u`1j , u`2k, u`3m, and u`4s are not altered between the truncated and the full representation. For more71
details, see Taguchi (2020).72

Here is a summary on how to compute eq. (1) using the HOSVD algorithm, although it has been described73
in detail previously (Taguchi, 2020). At first, xijkms is unfolded to a matrix, xi(jkms) ∈ RN×48. Then74
SVD is applied to get75

xi(jkms) =
N∑
`5=1

u`5iλ`5v`5jmks (2)

Then, only u`5i is retained, and v`5,jmks is discarded. Similar procedures are applied to xijkms by replacing76
i with one of j, k,m, s in order to get u`1j , u`2k, u`3m, u`4s. Finally, G can be computed as77

G(`1`2`3`4`5) =
N∑
i=1

2∑
j=1

4∑
k=1

3∑
m=1

2∑
s=1

xijmksu`5iu`1ju`2ku`3mu`4s (3)

78

2.4 TD-based unsupervised FE79

Although the method was fully described in a recently published book (Taguchi, 2020), we summarize80
the process of selecting genes starting from the TD.81

• To identify which singular value vectors attributed to samples (e.g., cell lines, type of histone82
modification, cell cycle phase, and replicates) are associated with the desired properties (e.g., “not83
dependent upon replicates or cell lines,” “represents re-activation,” and ”distinct between input and84
histone modifications”), the number of singular value vectors selected are not decided in advance, since85
there is no way to know how singular value vectors behave in advance, because of the unsupervised86
nature of TD.87

• To identify which singular value vectors attributed to genomic regions are associated with the desired88
properties described above, core tensor, G, is investigated. We select singular value vectors attributed89
to genomic regions that share G with larger absolute values with the singular value vectors selected in90
the process mentioned earlier, because these singular value vectors attributed to genomic regions are91
likely associated with the desired properties.92

• Using the selected singular value vectors attributed to genomic regions, those associated with the93
components of singular value vectors with larger absolute values are selected, because such genomic94
regions are likely associated with the desired properties. Usually, singular value vectors attributed95
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to genomic regions are assumed to obey Gaussian distribution (null hypothesis), and P -values are96
attributed to individual genomic regions. P -values are corrected using multiple comparison correction,97
and the genomic regions associated with adjusted P -values less than the threshold value are selected.98

• There are no definite ways to select singular value vectors. The evaluation can only be done using the99
selected genes. If the selected genes are not reasonable, alternative selection of singular value vectors100
should be attempted. When we cannot get any reasonable genes, we abort the procedure.101

To select the DNA regions of interest (i.e., those associated with transcription reactivation), we first102
needed to specify the singular-value vectors that are attributed to the cell line, histone modification, phases103
of the cell cycle, and replicates with respect to the biological feature of interest, transcription reactivation.104
Consider selection of a specific index set `1, `2, `3, `4 as one that is associated with biological features of105
interest, we then select `5 that is associated with G with larger absolute values, since singular-value vectors106
u`5i with `5 represent the degree of association between individual DNA regions and reactivation. Using107
`5, we attribute P -values to the ith DNA region assuming that u`5i obeys a Gaussian distribution (null108
hypothesis) using the χ2 distribution109

Pi = Pχ2

[
>

(
u`5i
σ`5

)2
]
, (4)

where Pχ2 [> x] is the cumulative χ2 distribution in which the argument is larger than x, and σ`5 is the110
standard deviation. P -values are then corrected by the BH criterion (Taguchi, 2020), and the ith DNA111
region associated with adjusted P -values less than 0.01 were selected as those significantly associated with112
transcription reactivation.113

Algorithm displayed with mathematical formulas can be available in Fig. 2.114

2.5 Enrichment analysis115

Gene symbols included in the selected DNA regions were retrieved using the biomaRt package (Durinck116
et al., 2009) of R (R Core Team, 2019) based on the hg19 reference genome. The selected gene symbols117
were then uploaded to Enrichr (Kuleshov et al., 2016) for functional annotation to identify their targeting118
TFs.119

2.6 DESeq2120

When DESeq2 (Love et al., 2014) was applied to the present data set, six samples within each cell lines121
measured for three cell cycles and associated with two replicates were considered. Three cell cycles were122
regarded to be categorical classes associated with no rank order since we would like to detect not monotonic123
change between cell cycles but re-activation during them. All other parameters are defaults. Counts less124
than 1.0 were truncated so as to have integer values (e.g., 1400.53 was converted to 1400).125

2.7 csaw126

Since csaw (Lun and Smyth, 2015) required bam files not available in GEO, we first mapped 60 fastq127
files to hg38 human genome using bowtie2 (Langmead and Salzberg, 2012) where 60 fastq files in GEO ID128
GSE141081 were downloaded from SRA. Sam files generated by bowtie2 were converted and indexed129
by samtools (Li et al., 2009) and sorted bam files were generated. Generated bam files that correspond to130
individual combinations of cell lines and ChIP-seq were loaded into csaw in order to identify differential131
binding among three cell cycle phases.132
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3 RESULTS AND DISCUSSION
We first attempted to identify which singular-value vector is most strongly attributed to transcription133
reactivation among the vectors for cell line (u`1j), histone modification (u`2k), cell cycle phase (u`3m),134
and replicate (u`4s) (Fig. 3). First, we considered phase dependency. Fig. 4 shows the singular-value135
vectors u`3m attributed to cell cycle phases. Although u2m and u3m were associated with reactivation, we136
further considered only u3m since it showed a more pronounced reactivation profile. Next, we investigated137
singular-value vectors u`2m attributed to histone modification (Fig. 5). There was no clearly interpretable138
dependence on histone modification other than for u1k, which represents the lack of histone modification,139
since the values for H3K27ac, H3K4me1, and H3K4me3 were equivalent to the Input value that corresponds140
to the control condition; thus, u2k, u3k, and u4k were considered to have equal contributions for subsequent141
analyses. By contrast, since u1j and u1s showed no dependence on cell line and replicates, respectively, we142
selected these vectors for further downstream analyses (Fig. 6).143

Finally, we evaluated which vector u`5i had a larger
∑4

`2=2 |G(1, `2, 3, 1, `5)|α, α = 1, 2, 3 (Fig. 7); in144
this case, we calculated the squared sum for 2 ≤ `2 ≤ 4 to consider them equally. Although we do not have145
any definite criterion to decide α uniquely, since `5 = 4 always takes largest values for α ≥ 1, `5 = 4 was146
further employed. The P -values attributed to the ith DNA regions were calculated using eq. (4), resulting147
in selection of 507 DNA regions associated with adjusted P -values less than 0.01.148

We next checked whether histone modification in the selected DNA regions was associated with the149
following transcription reactivation properties:150

1. H3K27ac should have larger values in interphase and anaphase/telophase than in prometaphase, as the151
definition of reactivation.152

2. H3K4me1 and H3K4me3 should have constant values during all phases of the cell cycle, as the153
definition of a “bookmark” histone modification154

3. H3K4me1 and H3K4me3 should have larger values than the Input; otherwise, they cannot be regarded155
to act as “bookmarks” since these histones must be significantly modified throughout these phases.156

To check whether the above criteria are fulfilled, we applied six t tests to histone modifications in the 507157
selected DNA regions (Table 2). The results clearly showed that histone modifications in the 507 selected158
DNA regions satisfied the requirements for transcription reactivation; thus, our strategy could successfully159
select DNA regions that demonstrate reactivation/bookmark functions of histone modification.160

After confirming that selected DNA regions are associated with targeted reactivation/bookmark features,161
we queried all gene symbols contained within these 507 regions to the Enrichr server to identify TFs that162
significantly target these genes. These TFs were considered candidate bookmarks that remain bound to163
these DNA regions throughout the cell cycle and trigger reactivation in anaphase/telophase (i.e., after cell164
division is complete). Table 3 lists the TFs associated with the selected regions at adjusted P -values less165
than 0.05 in each of the seven categories of Enrichr.166

Among the many TFs that emerged to be significantly likely to target genes included in the 507 DNA167
regions selected by TD-based unsupervised FE, we here focus on the biological functions of TFs that were168
also detected in the original study suggesting that TFs might function as histone modification bookmarks169
for transcription reactivation (Kang et al., 2020). RUNX was identified as an essential TF for osteogenic170
cell fate, and has been associated with mitotic chromosomes in multiple cell lines, including Saos-2171
osteosarcoma cells and HeLa cells (Young et al. 2007). Table 4 shows the detection of RUNX family TFs172
in seven TF-related categories of Enrichr; three RUNX TFs were detected in at least one of the seven173
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TF-related categories. In addition, TEADs (Kegelman et al. 2018), JUNs (Wagner, 2002), FOXOs (Rached174
et al., 2010), and FosLs citepKang01072020 were reported to regulate osteoblast differentiation. Tables 5,175
6,7, and 8 show that two TEAD TFs, three JUN TFs, four FOXO TFs, and two FOSL TFs were detected in176
at least one of the seven TF-related categories in Enrichr, respectively.177

Other than these five TF families reported in the original study (Kang et al., 2020), the TFs detected most178
frequently within seven TF-related categories in Enrichr were as follows (Table 9): GATA2 (Kala et al.,179
2009), ESR1 (Kato and Ogawa, 1994), TCF21 (Kim et al., 2017), TP53 (Ha et al., 2007), WT1 (Shandilya180
and Roberts, 2015), NFE2L2 (also known as NRF2 (Martin-Hurtado et al., 2019)), GATA1 (Kadauke181
et al., 2012), and GATA3 (Shafer et al., 2017). All of these TFs have been reported to be related to mitosis182
directly or indirectly, in addition to JUN and JUND, which are listed in Table 6. This further suggests the183
suitability of our search strategy to identify transcription reactivation bookmarks.184

One might wonder why we did not compare our methods with the other methods. As can be seen in Table185
1, there are only two samples each in as many as 24 categories. Therefore, it is difficult to apply standard186
statistical tests for pairwise comparisons between two groups including only two samples. In addition,187
the number of features, N , which is the number of genomic regions in this study, is as many as 1,23,817,188
which drastically reduces the significance of each test if we consider multiple comparison criteria that189
increase P -values that reject the null hypothesis. Finally, only a limited number of pairwise comparisons190
are meaningful; for example, we are not willing to compare the amount of H3K4me1 in the RPE1 cell line191
at interphase with that of H3K27ac in the U2OS cell line at prometaphase. Therefore, usual procedures that192
deal with pairwise comparisons comprehensively, such as Tukey’s test, cannot be applied to the present193
data set as it is. In conclusion, we could not find any suitable method applicable to the present data set that194
has a small number of samples within each of as many as 24 categories, whereas the number of features is195
as many as 1,23,817.196

In order to demonstrate inferiority of other method compared with our method, we applied DESeq2 (Love197
et al., 2014) to the present data set, although DESeq2 was designed to not ChIP-seq but RNA-seq. The198
outcome is disappointing as expected (Table 10) if it is compared with Table 2. First of all, there are no199
coincidences between two cell lines. Although there are as many as 4227 regions within which H3K4me1200
is distinct among three cell cycle phases when RPE1 is considered, there were no regions associated with201
distinct H3K4me1 when U2OS was considered. In addition to this, although only H3K27ac among three202
histone modifications measured is expected to be distinct during three cell cycle phases, other histone203
modifications are sometimes detected as distinct during three cell cycle phases. Finally, the number of204
genomic regions considered in each comparison varies, since DESeq2 automatically discarded regions205
associated with low variance among distinct classes. The reason why there are no regions associated with206
distinct histone modification for Input and H3K4me1 when RPE1 was considered is definitely because207
almost all genomic regions were considered for these two comparisons; too many comparisons increase208
the P -values because of multiple comparison corrections. On the other hand, our proposed TD based209
unsupervised FE can deal with all of the genomic regions, which resulted in more stable outcomes. Thus, it210
is obvious that DESeq2 was inferior to TD based unsupervised FE when it is applied to the present data set.211

One might still wonder if it is because of usage of DESeq2 not designed specific to ChIP-seq data. In212
order to confirm this point, we sought integrated approaches designed specific to treatment of ChIP-seq data.213
In addition, we need some approaches that enable us not only pairwise comparison but also comparisons214
among more than two categories, since we have to compare among three cell cycle phases, i.e., terphase,215
prometaphase, and anaphase/telophase. There are not so many approaches satisfying these conditions (Wu216
et al., 2015; Steinhauser et al., 2016; Tu and Shao, 2017). For example, although DBChIP (Liang and217

This is a provisional file, not the final typeset article 6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.09.23.309633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309633


Taguchi and Turki Post-mitotic bookmark TFs

Keleş, 2011) was designed to treat ChIP-seq data set, since it was designed to be specific to TF binding,218
it required to input single nucleotide positions where binding proteins bind, Thus, it is not applicable to219
histone modification measurements where not binding points but binding regions are provided. On the220
other hand, although DiffBind (Stark and Brown, 2011) was designed to deal with histone modification, it221
can accept only pairwise comparisions. SCIFER (Xu et al., 2014) can identify enrichment within single222
measurement compared with input experiment, MACS2 which is modified version of MACS (Zhang223
et al., 2008), can also accept only pairwise comaprisons, ODIN (Allhoff et al., 2014) also can accept224
only pairwise comparisons, RSEG (Song and Smith, 2011) also can accept only pairwise comparisons,225
MAnorm (Shao et al., 2012) also can accept only pairwise comparisons, HOMER (Heinz et al., 2010)226
also can accept only pairwise comparisons, QChIPat (Liu et al., 2013) also can accept only pairwise227
comparisons, diffReps (Shen et al., 2013) also can accept only pairwise comparisons, MMDiff (Schweikert228
et al., 2013) also can accept only pairwise comparisons, PePr Zhang et al. (2014) does not perform even229
pairwise comparison. ChIPComp (Chen et al., 2015) was tested toward only pairwise comparisons when it230
was applied to real data set. Although MultiGPS (Mahony et al., 2014) can deal with multiple files, they231
must be composed of condition A and its corresponding input vs condition B and its corresponding input,232
it cannot be applied to the present case composed of three cell cycle phases and their corresponding inputs.233
Thus as far as we investigated there are no approaches designed to be applicable to three independent234
conditions, each of which is composed of a pair of treated and input experiments.235

This difficulty is because of two kinds of distinct differential binding analyses required (Fig. 8), one of236
which is the comparison between treated and input experiments and another of which is the comparison237
between two experimental conditions (e.g., patients versus healthy control, two different tissues) whereas238
they are easily performed in tensor representation as shown in the above. Nevertheless, in order to239
emphasize the inferiority of ChIP-seq specific pipeline aiming differential binding analysis toward TD240
based unsupervised FE, we considered csaw (Lun and Smyth, 2015) as a representative since it accepts, at241
least, not pairwise but comparisons among multiple conditions as performed by DESeq2 (Table 10). Table242
11 shows the results. It is very disappointing as expected. For example, although H3K27ac is expected to243
support reactivation, differential binding region among distinct cell cycle phases in U2OS cell line is almost244
none (only 0.1 % of whole tested regions). Although H3K4me3 should not distinctly bind to chromosome245
among thee cell cycles since it is expected to play a role of bookmark, it distinctly binds to chromosomes246
among three cell cycle phases for two cell lines. These behaviours are very contrast to those in Table 2247
which exhibits the expected differential/undifferential binding to chromosome. Thus, in conclusion, even if248
we employ pipelines specifically designed to ChIP-Seq data analyses, they cannot outperform the results249
obtained by TD based unsupervised FE.250

4 CONCLUSIONS
We applied a novel TD-based unsupervised FE method to various histone modifications across the whole251
human genome, and the levels of these modifications were measured during mitotic cell division to identify252
genes that are significantly associated with histone modifications. Potential bookmark TFs were identified253
by searching for TFs that target the selected genes. The TFs identified were functionally related to the cell254
division cycle, suggesting their potential as bookmark TFs that warrant further exploration.255
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Figure 1. Flow chart of analyses performed in this study
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Algorithm of TD based unsupervised FE

Compute G(l1,l2,l3,l4,l5), ul1j, ul2k, ul3m, ul4s, ul5i from xijkms 
defined by eq. (1) using HOSVD

min σl1
l1

min σl4
l4

max convex=|(ul3 1 -ul3 2)- (ul3 2 -ul3 3)|
l3

l2 with σl4>1/2 

max Σ l1,l2,l3,l4 |G(l1,l2,l3,l4,l5)|α
l5

Pi=Pχ
2[>( ul5 iσ l5

)
2

]

i with adjusted Pi <0.01

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 2. Algorithm of TD based unsupervised FE. (1) Perform TD to derive G(`1, `2, `3, `4, `5). (2)
Select u`1j that takes constant values between two cell lines as much as possible. (3) Select u`2k that
has distinct values for Histone modification toward inputs. (4) Select u`3m that represents reactivation
during three cell cycle phases as much as possible. (5) Select u`1j that takes constant values between two
biological replicates as much as possible. (6) Select `5 associated with G having largest absolute values
given `1, `2, `3, `4 (7) Attribute P -values to is with assuming that u`5i obeys Gaussian distribution (Null
hypothesis). (8) Select is associated with adjusted P -values less than 0.01.

Table 1. Combinations of experimental conditions. Individual conditions are associated with two replicates
Histone modifications

Phases Cell lines
H3K27ac H3K4me1 H3K4me3 Input

RPE1 U2OS RPE1 U2OS RPE1 U2OS RPE1 U2OS
interphase © © © © © © © ©

prometaphase © © © © © © © ©
anaphase/telophase © © © © © © © ©
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Figure 3. Schematic of the process for selecting u4i to be used for DNA region selection.
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Figure 4. Singular-value vectors associated with cell cycle phase. Left: u1m, middle: u2m, right: u3m
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`2=2 |G(1, `2, 3, 1, `5)|α, `5 ≤ 100. Because of HOSVD algorithm, G(`1, `2, `3, `4, `5) = 0
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Condition A
Condition B
Condition C

Treated Input

Figure 8. Schematics that illustrates the difficulty of differential binding analysis. In contrast to differential
expression analysis that requires only inter conditions comparisons (displayed by broken bidirectional
arrows), differential binding analysis requires additional intra conditions comparisons between treated
and input experiment (displayed by bidirectional solid arrows). There are no pipelines that aim to identify
differential binding considering simultaneously more than two conditions.

Table 2. Hypotheses for t tests applied to histone modification in the selected 507 DNA regions. The null
hypothesis was that the inequality relationship of the alternative hypothesis is replaced with an equality
relationship. int: interphase, ana: anaphase, tel: telophase, pro: prometaphase.

Test Alternative hypothesis P -value Description of desired relationships
1 {xij1ms|m = 1, 3} > {xij12s} 3.30× 10−3 H3K27ac reactivation (int & ana/tel > pro)
2 {xij2ms|m = 1, 3} 6= {xij22s} 0.60 H3K4me1 bookmark (int & ana/tel = pro)
3 {xij3ms|m = 1, 3} 6= {xij32s} 0.72 H3K4me3 bookmark (int & ana/tel = pro)
4 {xij4ms|m = 1, 3} 6= {xij42s} 0.86 Input as control (int & ana/tel = pro)
5 {xij2ms} > {xij4ms} 8.98× 10−6 H3K4me1 > Input
6 {xij3ms} > {xij4ms} 3.79× 10−3 H3K4me3 > Input

Table 3. Number of transcription factors (TFs) associated with adjusted P -values less than 0.05 in various
TF-related Enrichr categories

Adjusted P-values
Terms > 0.05 < 0.05

(I) ChEA 2016 537 97
(II) ENCODE and ChEA Consensus TFs from ChIP-X 91 12
(III) ARCHS4 TFs Coexp 1533 54
(IV) TF Perturbations Followed by Expression 1577 346
(V) Enrichr Submissions TF-Gene Coocurrence 587 1135
(VI) ENCODE TF ChIP-seq 2015 788 28
(VII) TF-LOF Expression from GEO 239 11

Table 4. Identification of RUNX transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 RUNX1 © ©
2 RUNX2 ©
3 RUNX3 ©

Table 5. Identification of TEAD transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 TEAD4 © ©
2 TEAD3 ©
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Table 6. Identification of JUN transcription factor (TF) family members within seven TF-related categories
in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 JUN © © © ©
2 JUND © © © ©
3 JUNB © ©

Table 7. Identification of FOXO transcription factor (TF) family members within seven TF-related
categories in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 FOXO1 © ©
2 FOXO3 ©
3 FOXO4 ©
4 FOXO6 ©

Table 8. Identification of FosL transcription factor (TF) family members within seven TF-related categories
in Enrichr. Roman numerals correspond to the first column in Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 FOSL2 © ©
2 FOSL1 © ©

Table 9. Top 10 most frequently listed transcription factor (TF) families (at least four, considered the
majority) within seven TF-related categories in Enrichr. Roman numerals correspond to the first column in
Table 3.

TF (I) (II) (III) (IV) (V) (VI) (VII)
1 GATA2 © © © © ©
2 ESR1 © © © © ©
3 TCF21 © © © ©
4 TP53 © © © ©
5 JUN © © © ©
6 JUND © © © ©
7 WT1 © © © ©
8 NFE2L2 © © © ©
9 GATA1 © © © ©

10 GATA3 © © © ©

Table 10. The performances achieved by DESeq2 applied to the present data set. Adjp: adjusted P -values
computed by DESeq2

RPE1 U2OS
Adjp > 0.01 Adjp < 0.01 Adjp > 0.01 Adjp < 0.01

H3K27ac 30649 1829 28849 1425
H3K4me1 113784 0 52323 4227
H3K4me3 26420 8259 24359 1559

Input 112976 0 5995 196
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Table 11. The performances achieved by csaw applied to the present data set. Adjp: adjusted P -values
computed by csaw

RPE1 U2OS
Adjp > 0.01 Adjp < 0.01 Adjp > 0.01 Adjp < 0.01

H3K27ac 4127704 113803 4477318 6126
H3K4me1 5552148 0 6060553 5
H3K4me3 3054309 140962 2197717 27570

Input 3310106 0 5040796 0

This is a provisional file, not the final typeset article 20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.09.23.309633doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.309633

	Introduction
	Materials and Methods
	Histone modification
	Tensor Data Representation
	Tensor Decomposition
	TD-based unsupervised FE
	Enrichment analysis
	DESeq2
	csaw

	Results and Discussion
	Conclusions

