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Abstract

The relative timing of sleep and of eating within the circadian day is important for
human health. Despite much data on sleep, and a growing data set for eating, there
remains a need for an interpretative framework for the understanding of this data for
health decisions. This study provides a new statistical and machine learning analysis of
more than 500 participants in the Daily24 project. From their data, and the analysis,
we propose a framework for determining the classification of participants into different
chronotypes and with that the ability to realize the potential impact of daily circadian
habits on health. We propose that our resulting distribution curves could be used,
similar to NHANES (National Health and Nutrition Examination Survey) data for
pediatric growth, as a measure for circadian misalignment and used to help guide
re-entrainment schedules.

Author summary

Daily habits can be positive, negative or neutral for human health. Generally sleep and
eating schedules are assumed without thought for their potential to help or interfere
with health. In this study we propose a framework, based on data from more than 500
participants, for evaluating the relative timing of meals and sleep schedules. This
evaluation, similar to pediatric growth charts, can guide clinical suggestions for those at
the extremes, while helping others to realize that they are unusual relative to the
population average

Introduction 1

A few general rules for optimizing sleep and eating schedules have arisen from anecdotal, 2

cultural and research based findings. For example it is now generally well accepted that 3

eating a large meal before sleep is, on average, a poor idea for optimal health [1]. 4

Similarly, the stress that many years of shift work places on an individual has been well 5
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documented [2]. What is not well understood is how much natural variability there is in 6

a population of individuals with respect to their sleep and eating schedules. In a similar 7

way, and related to the natural variability is the important, but challenging question of 8

whether individuals can be characterized for their schedule relative to the population 9

distribution and can be placed into different risk categories based on their sleep and 10

eating behaviour. 11

For example, important milestones in an individual’s pediatric development are 12

compared against population averages. This lets pediatricians and parents understand 13

and even take corrective actions if the development is not proceeding normally. A 14

similar measurement for circadian events would be ideal but is not nearly so easy to 15

attain. For children’s measures of development, a single set of office measures and 16

comparison against the NHANES population densities is all that is needed [3]. In 17

contrast, for a determination of daily habits, especially ones that may have health 18

benefits or may be dangerous to health, a set of measures needs to be performed over 19

multiple days into the weeks or months range. Currently, complicating the comparison 20

to NHANES, there is no similar population measure to compare the distribution of 21

circadian measures against. 22

With this paper we aim to present the first steps towards the ability to measure 23

circadian patterns within an individual and to compare those patterns against a 24

population. 25

We propose to do this by building from our Daily24 data collection of more than 500 26

individuals who collectively contributed to an ongoing project about the timing of 27

eating and sleeping. While this project is ongoing and still of modest size, it presents an 28

outstanding opportunity to define what a population measure means for these types of 29

events and how an individual can be fairly compared against that larger population. 30

Our framework leaves many questions open for more study. For example while we 31

can estimate how many days an individual needs to contribute for a fair comparison, we 32

can only do so under assumptions about the stability of a particular participants set of 33

habits. In a related way we can posit extreme schedules for comparison to our 34

population dataset, but we have not collected from a sufficiently large range of 35

individuals and their behavior patterns to clearly delineate the full complexity of the 36

measurement space. Further complicating our analysis is that there is very little data 37

connecting long-term behavior patterns with health risk. 38

Despite these limitations we believe that it is important to phrase these questions 39

and to begin the process of defining what a measure of circadian patterns should look 40

like and how it may be used to help particular patients and their clinical care teams. 41

We present this work with a full realization that the current framework is only a first 42

step into this fascinating problem and we don’t believe that this is immediately ready 43

for clinical work. In that spirit we provide an outline for how our initial dataset and 44

analysis could be extended, validated, and eventually used in a clinical setting. We 45

believe that efforts to establish the importance of daily awareness of eating and sleeping 46

times can be a substantial benefit in human health and that this dimension of human 47

health has not been fully addressed in all of its ramifications. 48

Entering Assumptions and Data Collection 49

Participants in the Daily24 project submitted their daily eating and sleeping times 50

through a smartphone App. We view their entries as representing stable habits that are 51

sampled via the App on a daily basis. Clearly this is a strong assumption, since 52

individuals may have weekly variability, may change jobs or habits, or may simply have 53

a widely variable schedule. By collecting this information, we have the ability to define 54

those with very regular habits, and also an ability to sense those with much wider 55

latitude in their daily schedules. 56
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We immediately note that we are not connecting any of the Daily24 sleeping and 57

eating events with long-term health. This is, in part, due to the difficulty in defining 58

the causal connections, and in part due to the limited (6-months data window) time of 59

the study. We instead view the shared data as helping us to think about the definition 60

of a community averaged distribution of sleeping and eating events within a (we hope) 61

generally healthy population. We collected this data with an effort to determine daily 62

schedules and did not instruct individuals to change their schedules as part of the study. 63

In that regard we assume that we have a reasonable, statistically valid, distribution of 64

collected eating and sleeping events. 65

The total number of lines of data was more than 1/4-million. Each of these events 66

we view as a tweet-like note about a meal eaten, a sleep duration, or a snack. Some 67

individuals were outstanding in contributing over the entire six-months. Other 68

participants were less prolific in their contributions, but still did contribute a 69

statistically meaningful set of events. We elected to trim our initial set of events to 70

reflect individuals that contributed at least 21-days over the 6-months of the study. 71

Each day was considered complete if it had at least a complete sleep event associated 72

with it. 73

In sum the participants from this study were recruited as part of our Daily24 project 74

and were not selected based on their particular chronotype, or on the basis of any factor 75

known to be correlated with circadian patterns, such as shiftwork or any medical 76

condition. We view the participating pool as reflecting generally healthy individuals, 77

generally older, and technically literate (so that they could reliably use a 78

smart–phone-based app and enter their eating and sleeping times). 79

In Fig 1 we describe the data collection process and our assumptions for analyzing 80

the information. We make the assumption that our participants were truthful in their 81

daily behavior and consistent in entering their schedules. We accept that we did not 82

have the resources to verify every event and that while individual users could edit 83

(within 48-hours) their entered events, that we did not have an ability to check each 84

event as it is uploaded. We view this as more of a strength than a limitation, since we 85

tried to encourage users to view this as an observational study with no intent to modify 86

their behavior and no judgements as to the relative timing of their sleep and eating 87

events. 88

Fig 1. Data Collection with Daily24 Participants contributed their daily eating
and sleeping habits to our Daily24 project using the associated smartphone App and
our AWS backend.

With sufficient inputs, we believe that patterns in sleeping and eating can be found. 89
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As an extreme, and to illustrate this idea, it is commonly accepted that the probability 90

of eating is not constant (a uniform distribution) over 24-hours. There are periods in 91

the day that are more likely (greater probability) than others for an eating event to 92

occur. Similarly, sleep is not expected to occur with a uniform probability with the 93

most likely start of sleep occurring near the end of the circadian day. 94

Fig 2 shows the primary and derived data from the Daily24 App. The first set of 95

lines is an indication of the type of primary data that we logged on the AWS backend. 96

In each case this row included the participant’s type of entry (sleep or meal), the actual 97

time of data-update, and some additional information. For the meal events this 98

additional information included an estimate of meal or snack size. For sleep, the 99

additional information included a sleep duration. We used the primary data to define a 100

new derived data table that summarized each participant’s daily entries (one row per 101

day). This meant that we determined a statistical fit to their meal trajectories from 102

weak up time(calorie taken 0%) to last meal of the day(calorie taken 100%). It also 103

meant the calculation of a meal-eating window, of a sleep window, and of the time 104

between waking and first meal as well as of the time between last meal and sleep start. 105

Primary Data

Derived Data

Fig 2. Primary and Derived Data from Daily24 Primary data consisted of
tweet-like entries from the App installed on each participant’s phone to our AWS
backend that stored the timing of eating and sleeping events. From this primary data
the derived data summarized each day in terms of the eating trajectory and its relative
length and position relative to the sleep event.

Analytic Plan 106

Circular statistics were selected to account for the 24-hour cycle of our primary data. 107

The most well-known of the distributions defined by circular statistics is called the von 108

Mises distribution [4]. The von Mises distribution was the first circular distribution ever 109

proposed and is arguably the most widely known and studied circular distribution. 110

There are a few common characteristics for the von Mises distribution. It is defined by 111

two parameters: loc, a measure of location and concentration, a measure of spread. The 112

distribution becomes a Uniform distribution when its concentration is zero. Unlike other 113

probability distributions, the von Mises distribution is a special case for a related 114

distribution, the von Mises-Fisher distribution with n being two (meaning the von Mises 115

distribution is a 2D representation of von Mises-Fisher distribution). 116
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Results 117

Mixed von Mises 118

Each von Mises distribution has only one peak in its density function, while in a 119

person’s circadian cycle, there can be several peaks. For instance, a user’s meal records 120

may show three peaks, say at 8:00 a.m., 12:00 p.m., and 8:00 p.m., which means this 121

user most likely had had meals at these three-time points. 122

Each peak needs to be represented by its own distribution, so a participant’s day of 123

recording was assumed as a mixture of von Mises distributions, with every patient’s 124

data represented as a sum of k component von Mises distributions, each weighted by its 125

own coefficient. Using Bayesian framework, the conjugate prior distribution for the loc 126

parameters was each an individual von Mises distribution; for concentration, a Gamma 127

distribution. For the weight coefficients, we used Dirichlet distributions. We assume we 128

know K and in practice, we tried several Ks ranging from 2 to 6 and found the one that 129

has the best fit. 130

To gain an approximation of the posterior, which is the same functional form as 131

prior distribution, we used the variational inference method [5]. Compared to sampling 132

-based methods it has two advantages: it is deterministic and converges fast. 133

With this approach we gain the posterior parameters and then use the expectation 134

of each posterior distribution as Bayes estimates for parameters in the model. 135

Using the mixed von Mises model, we are able to compare the posterior density 136

functions among different users, in order to begin the process of seeing and capturing 137

the diversity among the population. We view this distribution and approach as the 138

simplest of those that we tried, and so its also the main reference and comparison point 139

for the data. It is also important to reemphasize that we chose the users who were 140

active more than 21 days as active users and took all of their records as the population. 141

For further analysis we then compared the posterior density estimation of the 142

population to individual densities computed for the top ten users. We calculated the KL 143

divergence between two density functions as a numeric measure in keeping with the 144

goodness-of-fit metric of the variational-inferential algorithm. 145

Fig 3 shows a fit to the entire set of individuals that contributed 21 or more days to 146

the study data. As a comparison the kernel density estimator [6] as a fit over the 147

histogram is also shown. By having two probability distributions we can compute the 148

Kullback-Leibler (KL) divergence [7] between the mixed von Mises fit and the kernel 149

density fit. The number gives us a comparison point between a well known fit to a 150

histogram and the fit derived from our mixed von Mises model. A similar comparison 151

by computing this KL divergence between distributions is used for providing a 152

comparison point throughout the paper. 153

Gaussian Processes 154

Gaussian process models have proven to be reliable estimators of many complex 155

distributions [8]. They are a first-choice distribution for many applications in machine 156

learning and many robust computer algorithms have been built around their application 157

to different types of data. For our application we looked mainly at variants of Gaussian 158

Process models that built the distributions as chains of conditional events [9]. This 159

approach builds on the independent mixture model of the von Mises distribution by 160

computationally arguing that the density fit is better seen as a series of conditional 161

probability estimates. That can be simply seen as phrasing the question: given that a 162

participant woke at 8 AM what is the probability for a first meal within one-hour? 163

The first of our two Gaussian process models works with code from the Turner 164

group. In particular, their GPAR stands for the Gaussian Process Autoregressive 165
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Derived Population Data with MixedVonmises
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Fig 3. Mixed von Mises distribution fit to derived data The Daily24 population
fit with the mixture model defined by the von Mises distribution. This model provided
the simplest and most consistent estimator of the densities amongst the five considered.

Regression Model [9]. GPAR models are multi-output regression models used to exploit 166

dependencies between outputs to maximize predictive performance where it can also 167

capture nonlinear relationships between outputs. One specific feature that we thought 168

GPAR useful for is its ability to define functions in terms of each other and to then 169

stack them together. 170

In order for GPAR to work for our data, we first ordered our data into three 171

separate data sets: wake time, food time, and sleep time. Then, we ordered the food 172

times by ordered meals: first meal, second meal . . . , last meal. For most top 173

contributors, the total meal numbers ranged from six to eleven meals. After we ordered 174

the data in the following way, we defined distributions for each event. When we fit the 175

Von Mises distribution, there were many meals that overlapped with each other. As a 176

result, we have combined a few meals together for the individuals that were close to 177

each other so that there will be four meal events. 178

After working through the data component of GPAR, we defined each function to be 179

von Mises distribution. Because every event should start with the wake-up time, we 180

have used the same von Mises distribution fit defined previously. On the other hand, for 181

other events, we created sample points from previous events and refitted so that we 182

have functions that depend on both the data and the previous events. Afterward, we 183

stacked them and added some noise. Now using GPAR’s regression function 184

GPARRegressor, we fit our functions to the Gaussian Process model. Then, we plotted 185

observed points, the von Mises line, and the Gaussian Process Regression. 186

Multi-Output Gaussian Process Toolkit (MOGPTK), our second Gaussian Process 187

approach builds from a Python package for multi-channel data modeling using Gaussian 188

processes (GP) [10,11]. This toolkit aims to address the need for a Multi-output 189

Gaussian Process kernel and provides a natural way to train our model and it is based 190

on the trained model to predict the following pattern. To apply this toolkit, we also 191

need to implement GPFlow [12], which is an extensive GP framework with a wide 192

variety of implemented kernels, likelihoods, and training strategies. MOGPTK is a 193

based MOGP kernel from which specific kernels are generated. The base kernel provides 194

the functionality to split the input data into multiple channels and process them by 195

sub-kernels. 196
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Under this toolkit, we mainly focused on the MOSM kernel, which is the 197

Multi-Output Spectral Mixture Kernel [13]. The MOSM kernel is designed to provide a 198

closed-form covariance function after applying the inverse Fourier transform. Based on 199

the Parra and Tobar paper, the cross-spectral density between channels i and j is 200

modeled as a complex-valued SE function. In our approach, we applied the MOSM 201

Kernel to find the covariance, mean, magnitude, delay, and phase between every two 202

variables, and then built our model under the MOSM Kernel. 203

Fig 4 shows the fits from our two Gaussian process models and the KL divergence 204

relative to the kernel density estimators. Note that both models give good fits and that 205

this enables a comparison to the mixed von Mises as well as between the two GP models. 206

Derived Population Data with GPAR Model
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Derived Population Data with MOGPTK Model

Time

D
en

si
ty

0.
0

0.
4

0.
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

KL=0.03

MOGPTK Population fitting
Kernel Density Estimation

Fig 4. Gaussian Process Models GPAR and MOGPTK models were defined for
population fits to the derived data of the Daily24 population. Note the comparison back
to the mixed von Mises and to the next figure for the State Space Models

State Space Models 207

The state-space model (SSM) is a statistical model that relates a set of observable 208

variables (so-called manifest variables) to a set of latent variables [14, 15]. It is assumed 209

that the responses on the indicators or manifest variables are the result of an 210

individual’s position on the latent variable(s), and the manifest variables have nothing 211

in common after controlling for the latent variable. We used SSM which is a package in 212

Python consisting of fast and flexible code for simulating, learning, and performing 213

inference in a variety of state-space models. 214

In order to make state-space model work for our data, we converted our data to 215

“counts” type for 8 behaviors as realization of observable variables (day-count for ‘wake’, 216

’drinkOnly’, ’smallSnack’, ’largeSnack’, ’smallMeal’, ’mediumMeal’, ’largeMeal’, and 217

’sleep’). This reflects the type of data that the SSM package is expecting to use for fits. 218

Our aim is to estimate the underlying latent variables, which in our case can be 219

interpreted as the individual’s energetic level, see Fig 6,7,8. 220

Specifically, we used hidden Markov model(HMM) [16] and switching linear 221

dynamics system(SLDS) model [17] to fit the data. HMM as a classic state space model 222
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is simple and easy to fit while SLDS can interpret data more subtle with continuous 223

hidden states [18] . 224

To compare the two state space models with the GP models and the mixed von 225

Mises, Fig 5 gives a comparison. Again, the kernel density estimator is used to provide 226

a comparison point. 227

Derived Population Data with HMM Model
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Derived Population Data with SLDS Model
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Fig 5. State Space Models HMM and SLDS models were defined for population fits
to the Daily24 data.

We conclude this presentation of results for the population fits by reference to Table 228

1, where the different models are compared. Note that while there are differences 229

between the models, these may not be sufficiently different to enable a clear winner or 230

subset of losers in the models to be discriminated. For that reason we evaluated how 231

individuals are scored in the following section. 232

Comparison of Individuals to Populations 233

To evaluate our five different models we explored how individuals were scored in each of 234

the five models. This did not lead to a clear winner (i.e. one best model), but did let us 235

evaluate how different types of individuals would be represented within the different 236

formulations. 237

What we feel is thus important, for model selection in this instance, is to closely 238

evaluate what properties of which individuals are most critical for a clinical application. 239

Since we do not have that additional data there is not easy way to discriminate between 240

the different models. 241

Instead we are left with a set of differences that are interesting, and are presented 242

here for comparison. For example, in Fig 6 the way an early activity individual would 243

be seen in the five models is shown for comparison. 244

Fig 7 shows a similar comparison figure for a late peaking individual. Note for both 245

this figure and Fig 6 that the state space models have a slight advantage in providing a 246

sense for what hidden degrees of freedom might be involved with setting the observed 247

distributions. The quality of the fits are sufficiently similar in all five models for both 248

early and late active individuals to be sufficient for our goals. 249
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Table 1. Comparison summary table for 5 methods on primary data. We use 2 error
metrics: KL divergence(KLD) and mean absolute error(MAE). We calculate KLD
between each method fitting and Gaussian kernel density estimation(Gkde) of the
data.(Since KL(p, q) 6= KL(q, p) we use mean of two values) For mixed von Mises
model, the calculation is straightforward, for GP models and SSM models, we can only
sample from model results and get data counts for time windows. By this way we
recover a sample data(size 1000) from each model and apply Gkde on the sample data,
compare to Gkde of original primary data, then get KLD. Replicating this procedure for
100 times gives estimation of KLD and corresponding confidence interval(CI). For MAE,
we compare sample data from each model and original primary data with histograms(48
bins), then calculate mean absolute difference of counts in each bin as MAE. GP models
and SSM models’ MAE calculation is straightforward, we use inverse function method
to sample from estimated mixed von Mises distribution. Replicating this procedure for
100 times gives estimation of MAE and corresponding confidence interval

KL Divergence CI MAE CI

Mixed von Mises Model 0.024
851.5

CI(846.0,861.5)

Gaussian Process Models
GPAR

0.052
CI(0.050, 0.053)

1143.7
CI(1126.5,1160.0)

MOGPTK
0.047

CI(0.046,0.048)
1140.5

CI(1125.8, 1161.1)

State-Space Models
HMM

0.024
CI(0.023, 0.025)

832.1
CI(819.0, 847.8)

SLDS
0.0069

CI(0.0064, 0.0073)
373.7

CI(361.0, 384.6)

Time
Time

Fig 6. Early activity peaking individual Comparison of all five models for one
individual (a4a038a0). Note the variations in KL score. HMM provides three states
where the orange one can be viewed as the most energetic period during the whole day
since the individual begins working in an early time, then the change to an ivory state
in the night may reveal a transfer to rest time and blue region may stand for the whole
other time. SLDS method also gives three states which we may also interpret as the
energy transferring, up to the difference brought by the duration of each period.

In Fig 8 we illustrate a challenge for all five models: how to capture an individual 250

with both late and early peaks in activity. In this case the mixed von Mises and the two 251
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Time

Time

Fig 7. Late activity peaking individual Comparison of all five models for one
individual (e6e4ca7f). Note the variations in KL score. HMM gives three latent states,
the ivory one may display the working time, the most energetic period, the orange one
may indicate the waking time while the blue one represents the rest time of the whole
day. SLDS gives two separate states, the blackish green can be viewed as the whole
period during which individual takes most of his activities while the blue one may
represent his rest time.

state space models provide better fits. Note that only one of the two state space models 252

(HMM) is able to give some indicators of internal variables that underlie shifts differing 253

between early and late initiations. 254

Time

Time

Fig 8. Early and Late peaks in activity Comparison of all five models for one
individual (448a8708). Note the variations in KL score. HMM provides three latent
states. The ivory one and orange one are two periods corresponding to the two peaks in
activity and the blue one manifests the other time. SLDs offers two states where the
blue one exhibits a longer duration which may be interpreted as the whole time period
where the individual conducts his activity and the blackish green one signifies the rest
time.
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One way to further compare the different models is to plot the individual KL 255

divergence scores for each model relative to a common reference probability. This is 256

shown in two ways in Fig 9 and Fig 10. Note that a set of individuals (8 in total, three 257

of them are shown in Fig 6,7,8, while the rest are in the supporting information) for 258

comparison is shown along the x-axis. For Fig 9 the ordering along the x-axis is from 259

most consistent score to most divergent score. The distribution of scores in Fig 10 260

illustrates that there is a non-symmetric distribution with a very long tail on the right 261

hand side. 262
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Fig 9. KL divergence as scatter plot for individuals in each of the five
models The diversity of measures shows that non-uniqueness of the fit with some
models measuring individual differences as more or less extreme relative to their
estimate of the population distribution.
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Discussion 263

Circadian biology is an ancient part of human physiology and reflects our human 264

evolution within the context of a twenty-four hour day [19]. The adaptations to the 265

light/dark cycle of each 24-hour cycle has been an important regulator of many 266

biological systems. While the molecular, cellular, and tissue ramifications of these 267

adaptations remain an active area of research, every individual makes decisions about 268

eating and sleeping without much thought or context on each day. 269

Recent work has shown that the timing of eating has a major impact on circadian 270

function [20]. The beginnings of circadian physiology emphasized light and sleep as the 271

main drivers of circadian rhythms. With the realization of the importance of the timing 272

of eating, the full awareness of the coupling between peripheral and central components 273

of circadian biology came into focus. With this awareness has come an improved ability 274

to define circadian mis-alignment as due to behavior (for example shiftwork) that does 275

not support a consistent 24-hour rhythm that aligns light/dark, sleep and meals [2]. 276

With the growing acceleration of technology the ability for many individuals to 277

ignore light/dark and to work at many hours has become common. While the new 278

habits that this brings may seem to have only trivial impact on a daily level, they can 279

lead to significant physiological stress over years. To evaluate the relative impact of the 280

daily habits over many years is a challenge that is not yet fully addressed. To help 281

interpret what a circadian daily habit means for human health there is the need to a 282

summary of many days of behavior and a way to relate the individuals behavior back to 283

both optimal behavior and to the statistical behavior of many others. The NHANES 284

project has provided many families and pediatricians with a dataset that lets a 285

comparison of an individual child relative to the population to be easily defined [3]. Our 286

work is in the same tradition, with the expectation that the methods defined by this 287

paper an provide the entry point to a larger, community defined, dataset for 288

summarizing, interpreting, and aiding, in the evaluation of circadian health. 289

Changepoint Detection 290

It has been observed that many individuals have different weekday versus weekend 291

schedules. Often this is modeled ’as if’ the individual has shifted timezones. This 292

framework should also be readily interpretable for the Daily24 data. But, we did 293

initially fit all of the data ’as if’ each day is identically distributed. Our entering 294

assumption thus made the model fit easier, but at the possible expense of leaving out 295

the true complexity of individual behaviour. 296

We address this issue by bringing in our initial efforts at changepoint detection. This 297

is shown in Fig 11 where we demonstrate that it is possible to optimize a scoring 298

parameter for our data. In principle it should be possible to further determine by the 299

sampled Daily24 events whether someone has an unusual schedule (for example 300

Wednesday is always different from all other weekdays) or whether a particular 301

Wednesday is simply different from other Wednesdays. This is a challenging problem 302

with many algorithms that have been defined for changepoint detection, but without a 303

clear indication for when a particular data point represents a genuine change or simply 304

a fluctuation within the same stable distribution. 305

An additional type of changepoint is that seen with shiftwork. While we did not 306

have participants in Daily24 that shared a schedule similar to the traditional shiftwork 307

schedule, we do feel that the Daily24 App should be applicable to shiftwork schedules as 308

readily as the ’normal’ schedules that we sampled. In addition, the changepoint 309

algorithm should be capable of detecting shifts in daily schedule that reflect an ’on-shift’ 310

day relative to days that are ’off-shift’. 311
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Fig 11. Defining the optimal penalty function for the Changepoint
Detector Participants will change their schedule, sometimes due to a work change,
sometimes due to a weekday versus a weekend. To simplify the initial analysis, we made
the very strong assumption of a single stable pattern. To define when a shift from that
pattern is due to a schedule change versus an unusual event from the same stable
distribution is the challenge of optimizing a changepoint detector. We present, in this
figure, the first steps into defining one for Daily24 data.

The changepoint approach that we used is built within the Rupture Python code 312

and is based on multiple papers [21]. We evaluated a range of different possible 313

algorithms and different penalty functions. While we were not able to tune the 314

changepoint detection to reliably get all changes correctly labeled, we did get results 315

that suggest the implementation of a changepoint detection would be important for the 316

generalization of our results. In particular, we suggest that changepoint measures, even 317

if imperfect, can be a large help in identifying those individuals with a large weekend 318

effect or that have shiftwork schedules. 319

Cluster Analysis 320

To understand whether different daily habits can be classified we created a set of 321

synthetic individuals with very regular schedules. This let us supplement out Daily24 322

samples with individuals that represent early and late chronotypes, with shift workers, 323

and with those that consistently eat meals before sleep. For more details on the 324

synthetic datasets please see our supplemental information. 325

This supplemental dataset lets us define a feature set that includes both a 326

comparison of each individual to population measures using KL divergence and an 327

analysis of changepoints in an imagined daily schedule. By using this feature set we can 328

readily classify individuals into different types. For example the early and late 329

chronotypes are clearly discriminated from the other types of behavior in this 330

classification. This is shown in Fig 12 331
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Fig 12. Classification of an individual based on timing of sleep and of
eating Synthetic data is used to illustrate how a machine learning framework for
classification would enable confident mapping of individual behavior to a population
based understanding of relative risk and of patient type.

Clinical Presentation 332

While the analysis we present is not ready for clinical work, the approach that we 333

outline may provide a framework for how daily habits and their summary can be 334

presented within a clinical setting. 335

As an example we imagine that the synthetic data is a reasonable representation of 336

the range of observed human behavior. This let us describe the approach, but we 337

emphasize that without real participant data that the ideas presented are still at the 338

idea stage. 339

With the assumption of five converged population distributions, representing the 340

early and late chronotypes, the shiftworkers, the weekend/weekday shifting schedules 341

and those with a long-term habit of late meals, we can define each person’s circadian 342

schedule relative to their main reference population. We can imagine a type of 343

presentation that is summarized in Fig 13 where each individuals set of values is 344

compared against the population measured distribution. This is a similar spirit to the 345

NHANES data for pediatric growth and could serve a similar purpose by providing a 346

discussion point between clinical providers and their patients. 347

This may be especially important for clinical issues surrounding circadian 348

mis-alignment, for example in high-risk populations like shift workers [2]. We can 349

imagine the ideas of this paper being combined with ideas for optimal re-entrainment 350

from travel with light schedules to define new schedules for optimal recovery from 351

mis-aligned light/dark and eating/sleeping [22,23]. 352

An additional focus area for this type of analysis is for providing a continued 353

assessment of the impact of intermittent fasting on human health. This was our own 354

entry point to Daily24 and the analysis of this paper could be used to more fully 355

characterize the impact of timing of eating by a comparison back from individuals to 356
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the community. There has already been much valuable research on the impact of timing 357

of eating, and this framework could help to move these types of questions from 358

individual anecdotal studies or from purely research based studies, into a clinical setting 359

by providing a consistent framework for comparison [19,20] 360

Fig 13. Interpretation of data with chronotypes and for the clinical setting
To enable clinical care teams and patients to readily see what their data means and to
help with communication, something like this data presentation may be used. What is
plotted is the strongest set of events distributed over the participants logged timings for
eating and for sleep. By plotting this on a relative axis, with additional use of color and
symbols, the clinical meaning can be made clear.

Conclusion 361

A significant unsolved problem for circadian physiology is how to extrapolate from a 362

daily habit into the impact of that habit over years. While our current study doesn’t 363

connect the health outcomes with the daily habit, it is a framework for providing an 364

ability to quickly summarize the daily habits of an individual within the context of a 365

larger group. While the direct clinical application of this approach will need still larger 366

datasets and still more analysis work to connect the distributions to health outcomes, 367

we believe that this framework approach can provide an important anchoring point 368

within a population for the interpretation of many days of circadian data. This is a real 369

improvement over a scatter chart of an individual’s data and potentially can provide a 370

way for nuanced discussion of an individual’s daily habits within the context of a 371

clinical office visit. 372

We emphasize that the approach outlined will need to be extended to a larger 373

dataset with more varied individuals (by age, gender and race). The importance of 374

potential cultural bias (since all participants are in the US) is also a factor that should 375

be considered in enlarging the dataset. 376

Furthermore, the optimal approach for how long an individual’s circadian schedule 377

should be tracked and with what confidence bars will need to be worked out. While 378

some confidence bars can be supplied based on assuming that (for example) a two week 379

schedule is fully representative of a two-month or two-year schedule, this may clearly 380

lead to a large systematic error if the assumption of an unbiased and consistent sample 381

is wrong. 382
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Supporting information 383

S1 Individual example-1. Active more in the early part of the day. 384

S2 Individual example-2. Active throughout the day. 385

S3 Individual example-3. Active later than most. 386

S4 Individual example-4. Active more in the early part of the day. 387

S5 Population fitting on primary data 388

S6 Github Repo contains codes for all five methods and an synthetic data for each 389

method to run. See https://github.com/jdjmoon/TRF for details 390
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León-Villagrá P, et al. GPflow: A Gaussian process library using TensorFlow.
The Journal of Machine Learning Research. 2017;18(1):1299–1304.

13. Parra G, Tobar F. Spectral mixture kernels for multi-output Gaussian processes.
In: Advances in Neural Information Processing Systems; 2017. p. 6681–6690.

14. Linderman S, Johnson M, Miller A, Adams R, Blei D, Paninski L. Bayesian
learning and inference in recurrent switching linear dynamical systems. In:
Artificial Intelligence and Statistics; 2017. p. 914–922.

15. Linderman S, Nichols A, Blei D, Zimmer M, Paninski L. Hierarchical recurrent
state space models reveal discrete and continuous dynamics of neural activity in
C. elegans. bioRxiv. 2019; p. 621540.

16. Zucchini W, MacDonald IL, Langrock R. Hidden Markov models for time series:
an introduction using R. CRC press; 2017.

17. Linderman SW, Miller AC, Adams RP, Blei DM, Paninski L, Johnson MJ.
Recurrent switching linear dynamical systems. arXiv preprint arXiv:161008466.
2016;.

18. Oh SM, Rehg JM, Balch T, Dellaert F. Learning and inferring motion patterns
using parametric segmental switching linear dynamic systems. International
Journal of Computer Vision. 2008;77(1-3):103–124.

19. Mattson MP, Longo VD, Harvie M. Impact of intermittent fasting on health and
disease processes. Ageing research reviews. 2017;39:46–58.

20. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annual review
of nutrition. 2017;37.

21. Truong C, Oudre L, Vayatis N. ruptures: change point detection in Python.
arXiv preprint arXiv:180100826. 2018;.

22. Dean DA, Forger DB, Klerman EB, et al. Taking the lag out of jet lag through
model-based schedule design. PLoS Comput Biol. 2009;5(6):e1000418.

December 31, 2020 17/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.31.424983doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.424983
http://creativecommons.org/licenses/by/4.0/


23. Serkh K, Forger DB. Optimal schedules of light exposure for rapidly correcting
circadian misalignment. PLoS Comput Biol. 2014;10(4):e1003523.

December 31, 2020 18/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2020.12.31.424983doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.31.424983
http://creativecommons.org/licenses/by/4.0/

