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 2 

Abstract 19 

The evolutionarily conserved TREX complex plays central roles during mRNP 20 

(messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. 21 

In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), 22 

the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of 23 

the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO 24 

revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of 25 

the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the SR-26 

like protein Gbp2 through both the N-terminal domain and RRM domains of Gbp2. 27 

Crosslinking mass spectrometry analysis supports the extensive interactions between 28 

THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the 29 

C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure 30 

Gbp2 to facilitate its loading onto mRNP. 31 

  32 
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 3 

Introduction: 33 

Eukaryotic RNA transcription is carried out in the nucleus by the RNA polymerases. 34 

During an early stage of mRNA transcription, a 5’ cap is added to the newly synthesized 35 

mRNA, which is followed by splicing, 3’-end processing and polyadenylation. Nuclear 36 

mRNA biogenesis culminates in their export through the nuclear pore complex to the 37 

cytoplasm.  Many protein factors including serine-arginine (SR) proteins associate with 38 

mRNAs to form mature mRNPs for export (Metkar et al., 2018; Singh et al., 2012). The 39 

evolutionarily conserved TRanscript-EXport (TREX) complex plays key roles in the highly 40 

coordinated mRNP assembly and export (Carmody & Wente, 2009; Chavez et al., 2000; 41 

Luo et al., 2001; Strasser & Hurt, 2001; Strasser et al., 2002; Viphakone et al., 2019; Xie 42 

& Ren, 2019; Zhou et al., 2000). TREX is recruited to actively transcribed genes (Cheng 43 

et al., 2006; Masuda et al., 2005; Strasser et al., 2002) and impacts transcription 44 

especially during elongation (Dominguez-Sanchez et al., 2011; Y. Zhang et al., 2016).  45 

 46 

The C-terminal domain of the largest subunit of RNA Pol II is highly phosphorylated on 47 

the heptapeptide repeats (YSPTSPS) at the Serine 2 position during the elongation phase 48 

of the transcription cycle (Hsin & Manley, 2012). Serine 2 phosphorylation coordinates 49 

loading of co-transcriptional 3’ end processing factors to the transcription machinery (Ahn 50 

et al., 2004). In yeast, the primary RNA Pol II CTD Ser2 kinase is the CTDK-1 complex 51 

(Cho et al., 2001; Sterner et al., 1995; Wood & Shilatifard, 2006). Growing evidence links 52 

the function of TREX and transcriptional CDKs. The yeast TREX component Mft1 53 

interacts genetically with CTDK-1 (Hurt et al., 2004). In addition to their roles during 54 

transcription elongation, TREX and CTDK-1 both influence mRNA 3’-end processing and 55 
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polyadenylation (Ahn et al., 2004; Rougemaille et al., 2008; Saguez et al., 2008). In 56 

humans, the transcriptional kinases are more divergent, at least CDK11, CDK12, and 57 

CDK13 are shown to phosphorylate Ser2 on Pol II CTD, all of which have been 58 

recognized as tumor suppressors (Cao et al., 2014; Parua & Fisher, 2020). TREX and 59 

CDK11 have been shown to interact in human cells and play roles in regulating HIV 60 

mRNA 3' end Processing (Pak et al., 2015). 61 

 62 

The coordination of TREX and CTDK-1 is largely unknown. Several lines of evidence 63 

suggest that a group of shuttling SR proteins could serve as the link for THO and CTDK-64 

1. SR proteins are well recognized as splicing factors, but they also play important roles 65 

in coordinating transcription and mRNA export (Reed & Cheng, 2005). In yeast, there are 66 

three shuttling SR proteins, Gbp2, Hrb1, and Npl3, which play roles in mRNA export by 67 

interacting with the mRNA export receptor Mex67•Mtr2 (Hackmann et al., 2014). In 68 

humans, three SR proteins, SRSF1, SRSF3, SRSF7 also shuttle between the nucleus 69 

and the cytoplasm to facilitate mRNA export by serving as adaptors for the human 70 

ortholog of Mex67•Mtr2, the NXF1•NXT1 complex (Huang et al., 2003; Huang & Steitz, 71 

2005; Muller-McNicoll et al., 2016).  72 

 73 

In yeast cells, TAP-tagged Gbp2 and Hrb1 were shown to associate with the CTDK-1 74 

complex (Hurt et al., 2004). Consistent with this observation, using purified recombinant 75 

proteins, we recently showed that Gbp2 RRM domains are sufficient to interact with 76 

CTDK-1, involving the N-terminal RS domain in its Ctk1 kinase subunit (Xie et al., 2020). 77 

We also found that there is a synthetic growth defect when both CTK1 and GBP2 are 78 
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knocked out in yeast. The physical and functional interactions between Gbp2 and CTDK-79 

1 provide a link between Gbp2 function and the transcription machinery. Interestingly, in 80 

humans, CDK11 directly interacts with SRSF7 (Hu et al., 2003), and together with TREX, 81 

all are implicated in HIV-1 mRNA 3' end processing (Pak et al., 2015; Valente et al., 2009). 82 

Among the three yeast shuttling SR-like proteins, Gbp2 and Hrb1, but not Npl3 have been 83 

shown to rely on the THO components Hpr1 and Mft1 to load onto mRNPs (Hacker & 84 

Krebber, 2004). The different requirements could stem from an interaction between THO 85 

and Gbp2 and Hrb1, but not Npl3 (Hurt et al., 2004; Martinez-Lumbreras et al., 2016). 86 

 87 

Despite extensive studies, how TREX, SR proteins, and CTDK-1 coordinately function 88 

during mRNA biogenesis is still not clear. To elucidate the molecular mechanisms, we 89 

conducted biochemical and structural studies on the yeast TREX complex and Gbp2. 90 

Yeast TREX is a ~470 kDa protein complex comprised of the pentameric THO sub-91 

complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. 92 

Thus far structural understanding of the TREX complex has been limited to low resolution 93 

structures (Pena et al., 2012; Ren et al., 2017). Here we present a 3.7 Å cryo-EM structure 94 

of the yeast THO•Sub2 complex to reveal the molecular details of the THO complex 95 

assembly and the THO-Sub2 interactions. We demonstrate direct binding between THO 96 

and Gbp2 using recombinant proteins and dissect their mode of interaction using in vitro 97 

binding studies and crosslinking mass spectrometry (XL-MS) analysis of the THO-Gbp2 98 

complex. Together, we propose that TREX serves as a landing pad to configure the multi-99 

domain Gbp2 and facilitate its loading onto the mRNP. 100 

 101 
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Results and Discussion 102 

THO directly interacts with the SR-like protein Gbp2 103 

We began by testing the interaction between the THO complex and Gbp2 using purified 104 

recombinant proteins. The ~400 kDa THO complex consisting of full-length Tho2, Hpr1, 105 

Tex1, Mft1, and Thp2 subunits (denoted by THO-FL, Figure 1A) was expressed in insect 106 

cells. Full-length Gbp2 was expressed in insect cells with an N-terminal GST-tag. Using 107 

GST pull down assays, we show that Gbp2 directly interacts with THO-FL (Figure 1B). 108 

We next tested the binding of Gbp2 to a THO core complex (denoted by THO*, Figure 109 

1A) that contains the ordered regions of all THO’s five subunits. We found that THO* is 110 

capable of binding to Gbp2, but with reduced interaction compared to THO-FL (Figure 111 

1B). These results suggest that multiple regions in THO are involved in Gbp2 recognition, 112 

including both the THO core and the potentially flexible regions that are truncated in THO*.  113 

 114 

We next attempted to dissect the domains in Gbp2 that are involved in THO interaction. 115 

Gbp2 contains an N-terminal RS domain (NTE) followed by three tandem RRM domains, 116 

RRM1, RRM2, and RRM3 (Figure 1A). RRM1 and RRM2 domains are capable of binding 117 

to RNA. RRM3 was shown to recognize THO (Martinez-Lumbreras et al., 2016). 118 

Interestingly, we found that Gbp2 without RRM3 still binds to THO (Figure 1C). On the 119 

other hand, deletion of the N-terminal RS domain of Gbp2 substantially reduced THO 120 

interaction, suggesting that the Gbp2 RS domain is required for stable binding to THO.  121 

 122 

Together, our binding studies indicate that THO-Gbp2 interaction involves multiple 123 

domains from both THO and Gbp2. To provide insights into the underlying molecular 124 
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mechanisms of the THO-Gbp2 recognition, we take an integrative approach combining 125 

cryo-EM structure determination of the THO* core complex and XL-MS analysis of the 126 

THO-FL interaction with Gbp2.  127 

 128 

Cryo-EM structure of the THO*•Sub2 complex at 3.7 Å resolution 129 

The THO complex is an integrated structural and functional unit that regulates the activity 130 

of Sub2. We previously determined a THO•Sub2 crystal structure at 6.0 Å resolution (Ren 131 

et al., 2017). Here, we carried out single particle cryo-EM studies on THO*•Sub2. For 132 

cryo-EM sample preparation, the THO*•Sub2 complex was subjected to crosslinking with 133 

glutaraldehyde to obtain a more homogeneous sample. We found that THO*•Sub2 forms 134 

a higher ordered assembly composed of four THO*•Sub2 protomers (Figure 2-figure 135 

supplement 1). This tetrameric assembly has a two-fold symmetry, and it correlates with 136 

the asymmetric unit content in our previously determined THO•Sub2 crystal structure. 137 

Two of the four THO*•Sub2 protomers are well ordered, whereas the peripheral two 138 

protomers are significantly more flexible. We observed an “arch” and a “bridge” that 139 

connect a “rigid” THO*•Sub2 protomer and a “mobile” protomer (Figure 2-figure 140 

supplement 1D). Our observations suggest that these two protomers are likely 141 

components of the functional assembly observed in THO complex isolated from yeast 142 

cells (Pena et al., 2012), which is also consistent with the recently published THO•Sub2 143 

structure (Schuller et al., 2020). Details of these features at the THO-THO dimer interface 144 

will be discussed in the later section of our XL-MS studies. For obtaining the best quality 145 

map for model building, the THO*•Sub2 protomer was extracted from the most ordered 146 

two copies and refined to an overall resolution at 3.7 Å (Figure 2-figure supplement 1). 147 
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The electron density map allows us to build an atomic model of the THO complex de novo 148 

(Figure 2A and Figure 2-figure supplement 2). The THO model contains two thousand 149 

residues with 90% assigned residue register. Sub2 was modeled using our previously 150 

determined crystal structure (Ren et al., 2017). By having the resolution to build an atomic 151 

model, we now reveal the molecular details of the structural core of THO and its 152 

interaction with Sub2.   153 

 154 

The structure of the THO complex reveals intimate folding of the five subunits (Figure 2B 155 

and Figure 2-figure supplement 3). Tho2, the largest subunit spanning the entire length 156 

of the elongated THO, plays a critical role in THO assembly. Tho2 can be dissected as 157 

“head”, “neck”, and “trunk” sections. The Tho2 “head” contains an N-terminal helical 158 

bundle that clusters with the N-termini of Hpr1, Mft1, and Thp2. Tho2 “neck” is comprised 159 

of a helix followed by a loop. The “neck” is embraced by a bi-lobed Hpr1 (lobe A and lobe 160 

B). Tho2 “trunk” folds into an alpha solenoid structure, which binds the Tex1 β-propeller 161 

at its center and stabilizes a semi-open Sub2 ATPase at its C-terminal end. An extended 162 

region at Hpr1 C-terminal region forms a “belt” lining the Tho2 “trunk”.  163 

 164 

Assembly of the THO•Sub2 complex  165 

Tho2 is the main scaffold upon which other THO constituents assemble. Tho2 features a 166 

total contact area of ~9000 Å2 with the other four THO subunits. Tho2 “head” domain 167 

binds to a four helix bundle, formed by two pairs of anti-parallel helices contributed by 168 

Mft1 and Thp2, respectively (Figure 3A). Tho2 “head” and the helix in its “neck” sandwich 169 

the very N-terminal helix of Mft1 (residues 6-17). The opposite side of the Mft1/Thp2 four 170 
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helix bundle runs in parallel with Hpr1 lobe A (residues 1-230). The Tho2 “neck”, 171 

particularly the loop (residues 167-179), is embraced by the Hpr1 lobe A and lobe B 172 

(residues 250-490) (Figure 3B). Although the “neck” is largely buried, it contains multiple 173 

hydrophilic residues including K171, N173 and E177. Tho2 and Hpr1 residues at this 174 

interface are highly conserved from yeast to human (Figure 2-figure supplement 3).   175 

 176 

The “trunk” of Tho2 (residues 180 to 1200) forms an alpha-solenoid. Hpr1 “belt” contains 177 

residue assignment from residues 491 to 535 (Figure 3C). It starts from the beginning of 178 

the Tho2 “trunk”, featuring aromatic residues at the interface including F511, F515, F518, 179 

and W532, and likely extends further to the C-terminus of Tho2 “trunk” as evidenced by 180 

our XL-MS studies discussed later. The seven-bladed Tex1 β-propeller sits at the center 181 

of the Tho2 “trunk” via blade 4 and 5 (Figure 3D). The loops connecting blade 4/5 (4D5A) 182 

and 5/6 (5D6A), as well as the 5BC loop within blade 5 contact a pair of Tho2 helices 183 

(residues 626-666), whose opposite side binds to the C-terminal RecA domain of Sub2 184 

(Sub2-C). This Tho2-Tex1 interaction is conserved from yeast to human based on the 185 

sequence homology (Figure 2-figure supplement 3). In addition, a prominent extension 186 

from Tho2 is projected outward perpendicular to the Tho2 “trunk”. The C-terminal part of 187 

this extension (residues 464-485) forms a hairpin that winds through the bottom face of 188 

the Tex1 β-propeller. This additional Tho2-Tex1 binding mode is likely a yeast specific 189 

mechanism as human and other metazoan THOs lack this extension (Figure 2-figure 190 

supplement 3).  191 

 192 
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Regulation of the enzymatic activity of the DEAD-box ATPase is vital to the stepwise 193 

remodeling reactions mediated by the TREX complex (Xie & Ren, 2019). We previously 194 

showed that THO stimulates the ATPase activity of Sub2 (Ren et al., 2017). The cryo-EM 195 

structure provides new insights into the molecular details of their interaction. Overall, THO 196 

stabilizes a semi-open conformation of Sub2 by interacting with both RecA domains 197 

(Sub2-N and Sub2-C). Comparison of the cryo-EM structure and our previous THO•Sub2 198 

crystal structure shows that these two structures are in excellent agreement (Figure 3-199 

figure supplement 1). The cryo-EM structure reveals the atomic details of the THO-Sub2 200 

interactions at the Sub2-C interface (Figure 3E). Sub2-C makes contacts with two pairs 201 

of Tho2 helices (residues 625-695). The Sub2 loop consisting of residues 304-308 is 202 

situated at the center of the interface featuring electrostatic interactions via E305 and 203 

N307. In addition, another Sub2 loop consisting of residues 355-358 makes critical 204 

contacts via F355 and R358. The importance of this loop is evidenced by our previous 205 

mutagenesis studies that show the ATPase activity of Sub2 mutant E356A/K357A/R358A 206 

cannot be activated by THO (Ren et al., 2017). This Sub2 activation mechanism is a 207 

conserved mechanism shared by several other DEAD-box proteins including Dbp5 which 208 

functions at the terminal step of nuclear mRNA export at the cytoplasmic side of the 209 

nuclear pore complex (Folkmann et al., 2011; Mathys et al., 2014; Montpetit et al., 2011; 210 

Schutz et al., 2008).    211 

 212 

XL-MS analysis of the THO•Gbp2 complex  213 

The THO complex contains a significant amount of potentially flexible regions including 214 

~400 residues at the Tho2 C-terminal end and ~150 residues at the Hpr1 C-terminal end. 215 
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These flexible regions are presumably not suitable for structural studies. Our binding 216 

studies show that these flexible regions are involved in Gbp2 recognition (Figure 1B). To 217 

gain further insights into the THO complex arrangement and the THO-Gbp2 interaction, 218 

we took a XL-MS approach (Chait et al., 2016; Leitner et al., 2016; Yu & Huang, 2018) to 219 

analyze the complex between THO-FL and Gbp2. We used both EDC and DSS, a 220 

carboxyl and amine-reactive crosslinker and an amine specific crosslinker that crosslink 221 

residues with Cα-Cα distance less than 17 Å and 30 Å, respectively (Kim et al., 2018; Shi 222 

et al., 2014). We obtained a total of 200 unique EDC crosslinks, of which 69 were 223 

interprotein crosslinks including 9 crosslinks between Tho2 and Gbp2. We also obtained 224 

a total of 133 unique DSS crosslinks to complement the EDC crosslink data, with 53 of 225 

these crosslinks being interprotein crosslinks. (Figure 4A, Figure 4A-figure supplement 1, 226 

and Table 2). The crosslinking data is highly consistent with the THO structure (Figure 4-227 

figure supplement 1B and 1C). 91% and 100% of the EDC and DSS crosslinks that can 228 

be mapped to the structure fall within the expected distance restraint.   229 

 230 

Crosslinks between THO subunits provide insights into the C-terminal domain of THO 231 

(Tho2-CTD, residues 1200-1597) downstream of the “trunk” domain and the role it plays 232 

on the arrangement of the THO-THO dimer. The Tho2-CTD contains a “bridge” that 233 

connects THO to the neighboring THO molecule as indicated by our cryo-EM density map 234 

(Figure 4B, Figure 2-figure supplement 1). Comparison with the recently published THO-235 

Sub2 structure reveals that the bridge starts at Tho2 residue 1200 (Schuller et al., 2020). 236 

The “bridge” is followed by a structured segment, as suggested by the clustered 237 

crosslinking between Tho2 (residues 1260 to 1369) and the Hpr1 lobe B (E297, D434, 238 
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K462, and K467) as well as Mft1 D129 (Figure 4B). In line with our observation, Tho2 239 

(residues 1279-1405) was shown to form a rigid core through proteolysis and it folds into 240 

a helical structure as indicated by CD spectra (Pena et al., 2012). Importantly, crosslinking 241 

involving the structured segment indicates that the Tho2-CTD crosses over to the 242 

neighboring THO near its Hpr1 lobe B. The structured segment is followed by a highly 243 

flexible tail (residues ~1400-1597), as this region crosslinks to spatially separated 244 

residues. For example, Tho2 K1576 crosslinks to both Hpr1 lobe B (E297 and D434) and 245 

Tex1 (D341). In support of the flexibility of the Tho2 tail, a previous study showed that 246 

Tho2 (1411-1530) was highly sensitive to trypsin digestion (Pena et al., 2012). Our XL-247 

MS data further supports the observed THO-THO dimer interface at the “arch”, which is 248 

composed of Mft1 and Thp2 from two THO molecules (Schuller et al., 2020). We identified 249 

multiple crosslinks involving the “bulge” (Mft1, residues 142-196) including Mft1-250 

K182/Tho2-K1103, Mft1-K165/Tho2-K967, Mft1-K170/Tho2-K967, and Mft1-K174/Tho2-251 

K967 (Figure 2-figure supplement 1D and Table 2). Structural comparison of our cryo-EM 252 

structure and the recently published structure reveals significant flexibility in the relative 253 

orientation between two THO molecules (Figure 4-figure supplement 2) (Schuller et al., 254 

2020). Of note, as the dimerization of THO is asymmetric, the “bridge” is only observed 255 

at the proximal side of the THO dimer. It is conceivable that the Tho2-CTD will exhibit 256 

more significant flexibility at the distal side of the THO dimer. Our data also provide 257 

insights into the arrangement of the Tex1 C-terminal tail (residues 367-422) and Hpr1-258 

CTD (residues 600-752) (Figure 4-figure supplement 2). The extensive crosslinks 259 

observed between Tho2-CTD and Hpr1-CTD suggests that they are spatially close to 260 

each other and are likely localized in between two THO molecules. Together, XL-MS 261 
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results provide critical insights into the regions in THO that are not visible in the cryo-EM 262 

structures.   263 

 264 

Crosslinking between Tho2 and Gbp2 indicates that Tho2-CTD is in close proximity to all 265 

three Gbp2 RRM domains (Figure 4A and 4C). Each of the three RRM domains crosslinks 266 

to the structured segment in Tho2-CTD: RRM1-K190 to Tho2-K1349, RRM2-E241 to 267 

Tho2-K1250, and RRM3-D367 to Tho2-K1335. These results suggest that Gbp2 is 268 

localized in between two THO molecules near Hpr1 lobe B, as these involved Tho2 269 

residues (K1250 and K1335) are crosslinked to Hpr1 lobe B (Figure 4B). Our data also 270 

show that each RRM domain crosslinks to the highly flexible tail in Tho2-CTD. It is 271 

possible that, in the presence of Gbp2, the Tho2 tail may assume a more specific 272 

conformation.  273 

 274 

Our XL-MS results (Figure 4C), together with the in vitro binding studies (Figure 1B and 275 

1C), demonstrate that Tho2-CTD contributes to Gbp2 interaction. The C-terminal domain 276 

of Tho2 also binds to RNA/DNA (Pena, 2012). The function of Tho2-CTD in vivo was 277 

supported by the growth defect of tho2-ΔCTD yeast strains (Pena et al., 2012). 278 

Importantly, the synthetic growth defect of tho2-ΔCTD and Δgbp2 strains highlights their 279 

functional links (Martinez-Lumbreras et al., 2016).  280 

 281 

As both Gbp2 and Sub2 bind to the C-terminal region of Tho2, we next asked whether 282 

Gbp2 and Sub2 can associate with the THO complex together. GST-Gbp2 was used to 283 

pull down THO in the presence of Sub2. We found that GST-Gbp2 is able to pull down 284 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.04.425184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425184
http://creativecommons.org/licenses/by/4.0/


 14 

both THO and Sub2 (Figure 4D). In addition, THO and Sub2 appear to be in a 285 

stoichiometric amount relative to each other. Our results suggest that THO, Sub2, and 286 

Gbp2 can form a THO•Sub2•Gbp2 complex, and therefore Gbp2 could function together 287 

with the TREX complex during nuclear mRNP maturation.  288 

 289 

Working model for coordinated function of TREX and Gbp2 290 

Together with our recent characterization of Gbp2 interaction with the RNA Pol II Ser2 291 

kinase CTDK-1 complex, we propose a working model for the coordinated function 292 

between TREX, Gbp2, and CTDK-1 (Figure 5).  Gbp2 interaction with CTDK-1 provides 293 

a means to associate with the transcription machinery (Hurt et al., 2004; Xie et al., 2020). 294 

We envision that TREX and Gbp2 function coordinately during nuclear mRNP maturation 295 

and surveillance. During transcription, faulty assembly of mRNPs is a threat to genomic 296 

stability. If the defective mRNPs persist, they need to be sensed by a surveillance system 297 

and degraded. In yeast, Gbp2 and Hrb1 were shown to play key roles in mRNP 298 

surveillance (Hackmann et al., 2014). Interactions between Gbp2 and Mex67 for export 299 

and between Gbp2 and Mtr4 for degradation through the RNA exosome complex are 300 

mutually exclusive. TREX travels with the transcription machinery (Meinel et al., 2013) 301 

and its function in mRNP assembly is well documented. In THO/Sub2 mutant yeast cells, 302 

mRNP assembly is defective and faulty mRNPs cannot be degraded efficiently, which 303 

leads to the formation of heavy chromatin (Rougemaille et al., 2008; Saguez et al., 2008). 304 

In humans, depletion of TREX complex components leads to R-loop accumulation, 305 

transcriptional elongation defects, and trapped mRNP in nuclear speckles. (Dias et al., 306 

2010; Dominguez-Sanchez et al., 2011; Perez-Calero et al., 2020; Wang et al., 2018). 307 
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The extensive interactions between THO and Gbp2 suggest that THO could serve as a 308 

landing pad for Gbp2 loading onto mRNPs to function as a key surveillance factor during 309 

mRNP maturation. Interestingly, in human cells, TREX was shown to interact with multiple 310 

domains of the mRNP export receptor NXF1•NXT1 to facilitate its loading onto mRNPs 311 

(Viphakone et al., 2019). Given that Gbp2 interacts with the yeast export receptor 312 

Mex67•Mtr2 (Hackmann, 2014), the interplay between TREX, Gbp2, and Mex67•Mtr2 313 

during mRNP biogenesis warrants further study.  314 

  315 
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Methods 316 

Plasmids and proteins 317 

Both THO-FL and the THO* core complex were expressed in High-Five insect cells by 318 

coinfection of recombinant baculoviruses. THO-FL contains full length S. cerevisiae Tho2 319 

(residues 1-1597), Hpr1 (residues 1-752), Tex1 (residues 1-422), Mft1 (residues 1-392), 320 

and Thp2 (residues 1-261) subunits and the former four subunits each contains a TEV 321 

cleavable N-terminal His tag. The THO* complex contains S. cerevisiae Tho2 (residues 322 

1-1257), Hpr1 (residues 1-603), Mft1 (residues 1-256), full length Thp2, and S. bayanas 323 

Tex1 (residues 1-380) with Tho2 and Hpr1 each containing a TEV cleavable N-terminal 324 

His tag. High-Five cells were harvested 48 hr after infection. The cells were sonicated in 325 

a lysis buffer containing 50 mM Tris pH 8.0, 300 mM NaCl, 10 mM imidazole, 1 mM PMSF, 326 

5 mg/L aprotinin, 1 mg/L pepstatin, 1 mg/L leupeptin, and 0.5 mM TCEP. THO complexes 327 

were purified by Ni affinity chromatography, followed by TEV digestion to remove His tags. 328 

The proteins were then purified on a mono Q column (GE Healthcare) and subjected to 329 

further size exclusion purification with a Superose 6 column (GE Healthcare) in 10 mM 330 

Tris pH 8.0, 150 mM NaCl, and 0.5 mM TCEP.  331 

 332 

GST tagged Gbp2 (residues 1-427) and Gbp2∆RRM3 (residues 1-316) were expressed 333 

in High-Five cells. Cells were lysed in the same condition as the THO complexes. The 334 

GST tagged Gbp2 proteins were purified using glutathione sepharose 4B resin (GE 335 

Healthcare) followed by size exclusion chromatography using a Superdex 200 column 336 

(GE Healthcare) in 10 mM Tris pH 8.0, 300 mM NaCl, and 0.5 mM TCEP.  337 

 338 
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Sub2 and Gbp2∆N (residues 107-427) were expressed in Rosetta E. coli cells 339 

(Stratagene) with an N-terminal TEV cleavable GST tag. Protein expression was induced 340 

at an OD600 of 1.0 with 0.5 mM IPTG at 20 °C for 16 hrs. Cells were lysed in the same 341 

lysis buffer as mentioned above. Proteins were first purified using glutathione sepharose 342 

4B resin. For Sub2, the GST tag was removed by TEV, and the protein was purified on a 343 

mono Q column. Untagged Sub2 and GST-Gbp2∆N were further purified on a Superdex 344 

200 column in 10 mM Tris pH 8.0, 150 mM NaCl, and 0.5 mM TCEP. 345 

 346 

All purified proteins were concentrated, flash frozen in liquid nitrogen, and stored at -80°C. 347 

 348 

Cryo-EM Sample preparation and data collection 349 

Purified THO* and Sub2 were first buffer exchanged to 10 mM HEPES pH 7.0, 100 mM 350 

potassium acetate, and 0.5 mM TCEP. THO* was incubated with 3-fold molar excess of 351 

Sub2 in the presence of 0.05% glutaraldehyde for 30 min at RT. Crosslinking was 352 

quenched with 0.1 M Tris pH 8.0 and the sample was concentrated to 0.5 mg/mL. 1.5 µl 353 

of THO*•Sub2 was applied to a glow-discharged UltrAuFoil R 1.2/1.3 grids (Quantifoil). 354 

Grids were blotted for 3 s with a blotting force of 3 and 100% humidity at 22 °C and 355 

plunged into liquid ethane using an FEI Vitrobot Mark IV (Thermo Fisher).  356 

 357 

Electron micrographs were acquired with a Titan Krios electron microscope (Thermo 358 

Fisher) equipped with a Falcon 3 detector (Thermo Fisher). Movies were collected with 359 

EPU with a calibrated pixel size of 0.681 Å/pixel. A total of 4907 movies were collected 360 
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with a defocus range from 0.8 μm to 2.0 μm. Description of the cryo-EM data collection 361 

parameters can be found in Table 1.  362 

 363 

Cryo-EM data processing 364 

Motion correction was performed using MotionCor2 (Zheng et al., 2017). The parameters 365 

of the contrast transfer function (CTF) were estimated using Gctf (K. Zhang, 2016). We 366 

initially selected 396 K particles from 4907 micrographs with automatic particle picking in 367 

RELION-3 (Zivanov et al., 2018). The picked particles were binned by 2 and subjected to 368 

reference-free 2D classification. 205 K particles were selected for 3D classification with 369 

C2 symmetry using an initial model generated by EMAN2 (Tang et al., 2007). Each 370 

particle contains four copies of the THO•Sub2 complex with two copies significantly more 371 

flexible than the others. 15 K particles were selected for 3D refinement using a mask 372 

covering the two ordered THO•Sub2 molecules with C2 symmetry. The particles were 373 

then re-extracted at the original pixel size of 0.681 Å/pixel and subjected to Bayesian 374 

polishing, CTF refinement, and 3D refinement. Refinement of the entire four copies of 375 

THO•Sub2 molecules generated a map at 4.80 Å resolution. We extracted 30 K 376 

THO•Sub2 protomers from the ordered two copies and refinement using a mask covering 377 

one THO•Sub2 molecule yielded a map of THO•Sub2 at 3.70 Å resolution with a 378 

sharpening B factor of 86 Å2 as assessed by an FSC threshold of 0.143.      379 

 380 

Model building 381 

The 3.70 Å THO•Sub2 map was used for model building in COOT (Emsley et al., 2010). 382 

The five subunit THO complex was built de novo. Individual RecA domains of Sub2 were 383 
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placed using our previously determined atomic resolution structure (PDB ID 5SUP). The 384 

THO•Sub2 model was subjected to real-space refinement in Phenix (Adams et al., 2010). 385 

The final THO•Sub2 model contains Tho2 (residues 37 to 913, followed by 10 poly-Ala 386 

helices at the C-terminus), Hpr1 (residues 4 to 535), Tex1 (residues 68 to 366), Mft1 387 

(residues 5 to 227), Thp2 (residues 8 to 227), and Sub2. Figures were prepared using 388 

Chimera (Pettersen et al., 2004) or PyMOL (Molecular Graphics System, Schrodinger, 389 

LLC). 390 

 391 

GST pull-down assays 392 

1 μM of GST or GST-tagged Gbp2 variants was incubated with 1 μM of THO variants or 393 

with 1 μM of THO and 2 μM of Sub2 as indicated in the binding buffer (20 mM HEPES 394 

pH 7.0, 80 mM NaCl, and 0.5 mM TCEP) at room temperature for 10 min. The reaction 395 

mixtures were then added to ~15 μL glutathione resin in an Eppendorf tube and binding 396 

was allowed to proceed at room temperature for 30 min with gentle tapping to mix every 397 

3-5 min. Beads were washed twice with 500 μL washing buffer containing 20 mM HEPES 398 

pH 7.0, 80 mM NaCl (for Figure 1B) or 50 mM NaCl (for Figure 1C and Figure 4D), and 399 

0.5 mM TCEP. Bound proteins were eluted with washing buffer supplemented with 20 400 

mM glutathione and analyzed using Coomassie-stained SDS-PAGE gels. The 401 

experiments were repeated three times independently. 402 

 403 

Crosslinking mass spectrometry analysis  404 

For EDC crosslinking, 1 μM of THO-FL and 1 μM of GST-Gbp2 were incubated at 10 mM 405 

HEPES pH 7.0, 105 mM NaCl, 0.5 mM TCEP in the presence of 20 mM EDC and 0.5 mM 406 
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sulfo-DHS at room temperature for 40 min. The reaction was quenched at room 407 

temperature for 20 min by adding Tris pH 8.0 and β-mercaptoethanol to a final 408 

concentration of 50 mM and 20 mM, respectively. DSS crosslinking was performed in the 409 

same conditions except that 0.5 mM DSS was used and only Tris pH 8.0 was used for 410 

quenching the reaction.  411 

 412 

The DSS and EDC cross-linked samples were directly processed for in-solution Trypsin 413 

and Lys-C digestion. The samples were reduced with 5 mM DTT and 5 mM TCEP in 8M 414 

urea buffer (50 mM Ammonium bicarbonate), and were then incubated with 30mM 415 

iodoacetamide at room temperature for 30 minutes in the dark. 30-45 μg of the purified 416 

complex was digested with Trypsin and Lys-C using a 1:100 ratio for each protease upon 417 

diluting the sample to 1 M urea. The proteolysis reaction occurred overnight (12-16 hours) 418 

at 37°C. After overnight digestion with trypsin, the complex was digested with an 419 

additional 1:100 ratio of trypsin at 37°C for 2 hours. The resulting mixture was acidified, 420 

desalted by using a C18 cartridge (Sep-Pak, Waters). 421 

 422 

1-2 μg of the trypsin digested crosslinked complex was analyzed with a nano-LC 1200 423 

that is coupled online with a Q Exactive™ HF-X Hybrid Quadrupole Orbitrap™ mass 424 

spectrometer (Thermo Fisher) (Xiang, Nambulli, et al., 2020; Xiang, Shen, et al., 2020). 425 

Briefly, desalted peptides were loaded onto a Picochip column (C18, 1.9 µm particle size, 426 

200 Å pore size, 50 μm × 25 cm; New Objective) and eluted using a 60-min liquid 427 

chromatography gradient (5% B–8% B, 0–2 min; 8% B–40% B, 2-50 min; 40%B–100% 428 

B, 50-60 min; mobile phase A consisted of 0.1% formic acid (FA), and mobile phase B 429 
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consisted of 0.1% FA in 80% acetonitrile). The flow rate was ~350 nl/min. The QE HF-X 430 

instrument was operated in the data-dependent mode, where the top 6 most abundant 431 

ions (mass range 350 – 2,000, charge state 4 - 8) were fragmented by high-energy 432 

collisional dissociation (HCD). The target resolution was 120,000 for MS and 15,000 for 433 

tandem MS (MS/MS) analyses. The quadrupole isolation window was 1.6 Th, and the 434 

maximum injection time for MS/MS was set at 300 ms. 435 

 436 

After the MS analysis, the data was searched by pLink2 for the identification of cross-437 

linked peptides (Chen et al., 2019). The mass accuracy was specified as 10 and 20 p.p.m. 438 

for MS and MS/MS, respectively. Other search parameters included cysteine 439 

carbamidomethylation as a fixed modification and methionine oxidation as a variable 440 

modification. A maximum of three trypsin missed-cleavage sites were allowed. The 441 

crosslink spectra were then manually checked to remove potential false-positive 442 

identifications as previously described (Xiang, Shen, et al., 2020). The crosslinking data 443 

was analyzed by CX-Circos (http://cx-circos.net). The distance distribution of the 444 

crosslinks onto the THO structure was performed with Xlink Analyzer (Kosinski et al., 445 

2015).   446 

  447 
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Figure 1. The THO complex directly interacts with the SR-like protein Gbp2. A) 660 

Domain organization of the THO complex, Sub2, and Gbp2. Within THO, the protein 661 

regions that are included in the core THO* complex are colored (Tho2 in blue, Hpr1 in 662 

green, Tex1 in cyan, Mft1 in light blue, and Thp2 in yellow). Sub2 is colored in pink (Sub2-663 

N) and purple (Sub2-C). Gbp2 contains an N-terminal extension (NTE) followed by three 664 

RRM domains. B) THO directly interacts with Gbp2. In vitro GST-pull down assays with 665 

purified recombinant proteins show that both THO-FL and THO* bind to Gbp2 with the 666 

former exhibiting stronger interaction. C) THO binding to Gpb2 requires the N-terminal 667 

extension of Gbp2.   668 
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Figure 2. Cryo-EM structure of the THO*•Sub2 complex at 3.70 Å resolution. A) 669 

Overall architecture of the THO*•Sub2 complex in front and back views. B) Dissected 670 

view of the THO*•Sub2 complex subunits. The largest THO subunit, Tho2, contains a 671 

“head”, a “neck”, and an α-solenoid “trunk”. Hpr1 contains lobe A, lobe B, followed by an 672 

extended “belt”.  673 
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Figure 3. Key interactions in the THO*•Sub2 complex.  A) A highly intimate interface 674 

involving the Tho2 “head”. B) The Tho2 “neck” is embraced by the two lobes of Hpr1. C) 675 

The Hpr1 exhibits an extended “belt” lining the Tho2 “trunk”. D) The Tex1 beta propeller 676 

sits at the center of the Tho2 “trunk”. E) The interface between Tho2 and Sub2-C.  677 
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Figure 4. Chemical cross-linking and mass spectrometry reveals THO-Gbp2 678 

interactions. A) Circular plot showing the intermolecular crosslinking sites with EDC 679 

cross-linker. Each THO•Gbp2 complex subunit is represented as a colored segment with 680 

the amino acid residues indicated. Inter-molecular crosslinks are mapped inside the circle 681 

and the intra-molecular crosslinks are mapped outside the circle. The crosslinks between 682 

Tho2 and Gbp2 are colored in orange. B) Schematics of the arrangement of the Tho2-683 

CTD, which contains a “bridge” connecting two THO molecules, followed by a structured 684 

segment and a flexible tail (residues ~1400-1597). The EDC crosslinks between the 685 

structured Tho2-CTD fragment and Hpr1 (E297, D434, and K462) as well as Mft1 (D129) 686 

are indicated by yellow lines. The DSS crosslink between Tho2-CTD and Hpr1-K467 is 687 

indicated by a purple line. C) Schematics of the THO-Gbp2 interactions (left) and the 688 

identified crosslinking sites between Tho2-CTD and Gbp2 RRM domains. D) In vitro GST-689 

pull downs show that Gbp2 binds to the THO•Sub2 complex.  690 
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Figure 5. Working model of coordinated function of TREX and Gbp2.  692 

During transcription, the yeast CTDK-1 complex phosphorylates Ser2 of the RNA Pol II 693 

CTD. The N-terminal extension in CTDK-1’s kinase subunit Ctk1 recognizes the RRM 694 

domains of Gbp2, connecting Gbp2 to the transcription machinery. TREX travels along 695 

with the transcription machinery and recognizes multiple domains of Gbp2, possibly 696 

facilitating its loading onto the maturing mRNP. Both TREX and Gbp2 are involved in 697 

subsequent loading of the export receptor Mex67•Mtr2 to generate export competent 698 

mRNPs.  699 
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Figure 2-figure supplement 1. Cryo-EM data processing. A) Cryo-EM data processing 701 

workflow. B) Fourier shell correlation (FSC) curves between the two half maps of the 702 

THO*•Sub2 protomer. C) Individual particles of the cryo-EM sample contain four copies 703 

of the THO*•Sub2 protomer. D) An “arch” and a “bridge” are observed between a rigid 704 

THO*•Sub2 protomer and a mobile THO*•Sub2 protomer. Comparison of the cryo-EM 705 

map and our previous crystal structure (PDB ID 5SUQ) reveals that the crystal structure 706 

corresponds to a rigid THO*•Sub2 protomer and partial structure of a mobile THO*•Sub2 707 

protomer.   708 
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 710 

Figure 2-figure supplement 2. Cryo-EM model building. A) Local resolution of the final 711 

reconstruction calculated by Relion. Electron density maps at the Tho2 “neck” (B), the 712 

Tho2-Tex1 interface (C), and the Tho2-Sub2 interface (D).  713 
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Figure 2-figure supplement 3. Sequence alignment of Tho2 homologues.  715 

Tho2 sequences from S. cerevisiae, D. melanogaster, D. rerio, M. musculus, and H. 716 

sapiens were aligned with ClustalW. Shading indicates the degree of conservation across 717 

homologues. Tho2 secondary structural features from our cryo-EM structure are shown 718 

above the sequence alignment with α-helices represented as blue bars and β-sheets 719 

represented as blue arrows. The model of Tho2 contains ten poly-Ala helices at its C-720 

terminus represented by gray line. Three poly-Ala helices at the N-terminus of Tho2 are 721 

represented by gray bars. Sequences that are not present in the model (loops and highly 722 

flexible regions) are represented by dotted lines. The regions of Tho2 that form interaction 723 

interfaces with each of the other THO Complex subunits were identified using PISA, and 724 

these interaction regions are shown below the sequence alignment. The coloration for the 725 

interaction regions is consistent with the color scheme throughout the manuscript with 726 

Hpr1 in green, Tex1 in cyan, Mft1 in light blue, Thp2 in yellow, Sub2-N in pink and Sub2-727 

C in purple. 728 

  729 
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 730 

Figure 3-figure supplement 1. Comparison of the cryo-EM structure and our 731 

previous crystal structure of THO•Sub2 at the THO-Sub2 interface. Cryo-EM 732 

structure is colored in blue (Tho2), pink (Sub2-N), and purple (Sub2-C). Crystal structure 733 

is colored in light blue (Tho2) and gray (Sub2-N and Sub-C).   734 
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Figure 4-figure supplement 1. Analyses of the XL-MS data. A) Circular plot showing 736 

the intermolecular crosslinking sites with DSS cross-linker. B) Distance distribution of the 737 

crosslinks. We mapped the Cα-Cα distances between cross-linked residues onto the 738 

dimeric THO structure (PDB ID 7AQO). 91% of the EDC crosslinks and 100% of the DSS 739 

crosslinks that can be mapped to the structure fall within the expected threshold of 17 Å 740 

and 30 Å.  C) EDC (yellow) and DSS (purple) crosslinks are mapped on the THO structure 741 

(PDB ID 7APX).  742 
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Figure 4-figure supplement 2. XL-MS data indicate the arrangement of the C-termini 743 

of Tex1 and Hpr1. A) The C-terminal tail of Tex1 (residues 367-422) is localized near 744 

Hpr1 lobe B. The crosslinking sites are indicated by yellow lines. B) The Hpr1-CTD binds 745 

to the C-terminus of the Tho2 “trunk” and is localized close to the neighboring THO 746 

molecule. C) Structural alignment of the dimeric THO assembly between our cryo-EM 747 

structure and the recently reported THO-Sub2 structure (PDB ID 7AQO). Sub2 is omitted 748 

for clarity. The structures are aligned using one THO molecule, revealing significant 749 

flexibility in the relative orientation between the two THO molecules.   750 
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                   Table 1. Cryo-EM data collection, refinement and validation statistics 
 

 THO-Sub2 
protomer 

(EMDB-xxxx) 
(PDB xxxx) 

THO-Sub2 
tetramer 

(EMDB-xxxx) 
 

Data collection and processing   
Microscope/Camera    Titan Krios/Falcon 3EC 

300 
50 

0.8 to 2.0 
0.681 

C1 
396 K 

Voltage (kV) 
Electron exposure (e–/Å2) 
Defocus range (µm) 
Pixel size (Å) 
Symmetry imposed 
Initial particle images (no.) 
Final  particle images (no.) 30 K 15 K 
Resolution at 0.143 FSC (masked, Å) 3.70 4.80 
Map sharpening B factor (Å2) 86 145 
   
Refinement   
Model resolution at 0.5 FSC (Å) 3.87  
Model composition 
    Protein residues 

 
2378 

 

B factors (Å2) 
    Protein 

 
109.6 

 

R.m.s. deviations 
    Bond lengths (Å) 
    Bond angles (°) 

 
0.008 
1.11 

 

 Validation 
    MolProbity score 
    Clashscore 
    Poor rotamers (%)    

 
2.14 

11.86 
0.15 

 

 Ramachandran plot 
    Favored (%) 
    Allowed (%) 
    Disallowed (%) 

 
90.1 
9.7 
0.2 
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