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KEY POINTS 

• Unbiased integrated network analysis of large-scale patient genomic and transcriptomic 

datasets identified new targetable synergistic regulators in Ph-like ALL 

 

• Co-targeting of STAT5 and BCL-2 with kinase inhibitors and venetoclax has synergistic 

efficacy in vitro and in vivo in Ph-like ALL. 

 
 
 
ABSTRACT 
 
Systems biology approaches can identify critical targets in complex cancer signaling networks to 

inform therapy combinations and overcome conventional treatment resistance. Herein, we 

developed a data-driven, network controllability-based approach to identify synergistic key 

regulator targets in Philadelphia chromosome-like B-acute lymphoblastic leukemia (Ph-like B-

ALL), a high-risk leukemia subtype associated with hyperactive signal transduction and 

chemoresistance. Integrated analysis of 1,046 childhood B-ALL cases identified 14 dysregulated 

network nodes in Ph-like ALL involved in aberrant JAK/STAT, Ras/MAPK, and apoptosis 

pathways and other critical processes. Consistent with network controllability theory, combination 

small molecule inhibitor therapy targeting a pair of key nodes shifted the transcriptomic state of 

Ph-like ALL cells to become less like kinase-activated BCR-ABL1-rearranged (Ph+) B-ALL and 

more similar to prognostically-favorable childhood B-ALL subtypes. Functional validation 

experiments further demonstrated enhanced anti-leukemia efficacy of combining the BCL-2 

inhibitor venetoclax with tyrosine kinase inhibitors ruxolitinib or dasatinib in vitro in human Ph-like 

ALL cell lines and in vivo in multiple patient-derived xenograft models. Our study represents a 

broadly-applicable conceptual framework for combinatorial drug discovery, based on systematic 

interrogation of synergistic vulnerability pathways with pharmacologic targeted validation in 

sophisticated preclinical human leukemia models.  
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INTRODUCTION 

Cancer cells exploit multiple deregulated pathways to evade the selective pressure of single-

agent drugs, promoting therapeutic resistance and clinical relapse1. However, combination 

therapy regimens for cancer have traditionally been non-specific with broad toxicity profiles and 

developed in an ad hoc manner. More rational identification of new targets in human cancers for 

combination drug regimens is an essential next step. There is growing interest in identifying 

synergistic genetic interactions as targets for combination therapy2, but large-scale experimental 

screening for genetic interactions has been technically challenging and expensive given the large 

number of candidate gene pairs one has to screen. As a result, existing RNA-interference and 

CRISPR-based screenings have been limited to only a few hundred genes3,4, far from saturating 

the search space of all possible (~4x108) pairwise interactions in the human genome. Given the 

above challenges, we developed a systems biology approach that enables efficient in silico 

genetic screening and prioritization of co-targetable pathways for combinatorial therapeutics 

followed by rigorous in vitro and in vivo pharmacologic validation in a difficult-to-cure subtype of 

leukemia.  

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) comprises 15-

30% of high risk B-ALL cases in children and adolescents/young adults (AYAs) and 20-40% in 

older adults5–9, and is associated with high rates of conventional chemotherapy resistance and 

poor clinical outcomes9,10. Ph-like ALL is defined by a kinase-activated transcriptomic signature 

resembling that of Philadelphia chromosome-positive (Ph+) ALL, but lacks the BCR-ABL1 

rearrangement11. Ph-like ALL is instead driven by alternative genetic alterations in two major 

subclasses: (1) JAK/STAT pathway alterations involving CRLF2, JAK2, EPOR, IL7R, or SH2B3 

rearrangements or indels and (2) ABL-class kinase fusions involving ABL1, ABL2, CSF1R, or 

PDGFRB rearrangements10. Preclinical studies of tyrosine kinase inhibitor (TKI) monotherapy in 

Ph-like ALL models have expectedly demonstrated incomplete anti-leukemia activity12–15 likely via 

compensatory signaling mechanisms, emphasizing the need for more rationally-designed 

combination therapy approaches to achieve cure. In the present studies, we hypothesized that an 
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unbiased systems biology approach could effectively elucidate optimal target pairings. Our 

network-based analysis is optimal to address the unique challenges of Ph-like ALL given its 

known dysregulation of multiple intracellular pathways that maintain a high degree of crosstalk. 

A main goal of effective multi-agent therapy is identifying drug combinations with 

synergistic efficacies, but not synergistic toxicities. We recently reported our OptiCon (Optimal 

Control) algorithm16 that is capable of discovering novel disease-specific synergistic regulators by 

integrating a molecular interaction network with large-scale patient genomic and transcriptomic 

data. OptiCon is based on the theory of network controllability, a mathematically validated 

framework for identifying a set of driver nodes in a complex network that can guide the system 

from an initial state to any desired final state17. OptiCon integrates clinical, genomic and 

expression data, as well as a gene regulatory network to identify critical network nodes termed 

Optimal Control Nodes (OCNs) that control a maximal number of deregulated genes (for optimal 

therapeutic efficacy) and a minimal number of unperturbed genes (for toxicity minimization). 

Synergistic regulators (OCN pairs) are then nominated based on the synergy score, which 

quantifies the degree of crosstalk between pathways downstream of the two OCNs and the 

amount of enrichment for deregulated and mutated genes in the Optimal Control Regions (OCRs) 

of the two OCNs16. A high proportion of the gene pairs nominated by this algorithm has known 

synthetic lethal genetic interactions16. In the current study, we leveraged this powerful 

computational tool to identify key oncogenic dependencies in Ph-like ALL and to prioritize 

pathways for pharmacologic targeting in vitro and in vivo using human cell lines and various 

preclinical patient-derived xenograft (PDX) models of CRLF2-R or ABL-class Ph-like ALL.  

 

 

METHODS  
 
Detailed experimental methodologies are included in the Supplemental Data. 

 

Prediction of candidate combination therapeutic targets  
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We used our OptiCon16 algorithm to computationally nominate candidate combination therapeutic 

targets using the following inputs: a gene regulatory network, leukemia-specific genetic mutation 

data, and gene expression data (Tables S1-S4). Whole genome sequencing (WGS), whole 

exome sequencing (WES), and microarray expression data from B-ALL samples generated by 

the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project18 

and the Pediatric Cancer Genome Project (PCGP)7 were used for mutation calling and differential 

expression analyses.  

 

Cell lines 

Ph-like ALL cell lines MUTZ5 and MHH-cALL4 were obtained from the DSMZ cell biorepository. 

Ph-like TVA-1 cells with ETV6-ABL1 fusion were immortalized in vitro as a cell line from a PDX 

model established by the laboratory of Dr. David Fruman at the University of California, Irvine19.  

 

 
Drug synergy testing in vitro 
 
Cell lines were incubated at drug concentrations ranging between 1 nM - 50 µM for 72 hours. Cell 

viability was assessed by Cell-Titer Glo viability assays (Promega). IC50 values were determined 

using GraphPad Prism. Combination index (CI) values were calculated using Compusyn 

software20.  

 

RNA sequencing and transcriptome analysis 

Cells from the three Ph-like cell lines were cultured in medium containing vehicle, TKI alone, 

venetoclax alone, or in combination at indicated concentrations for 72 hours. RNA was extracted 

and sequenced using established protocols. See supplemental methods for full details of 

sequencing protocols and transcriptome analyses by differential gene expression, dimensionality 

reduction, and gene signature score methods.  

 

Immunoblotting 
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Protein and phospho-protein levels were measured by Western blot analysis using standard 

protocols. Antibodies used are described in supplemental methods.  

 

Patient-derived xenograft modeling and in vivo drug combination trials 

Patient-derived xenografts of primary patient leukemia samples were established as previously 

described12,13. Viably cryopreserved diagnostic bone marrow ALL cells from patients were 

engrafted into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice via informed consent on 

Institutional Review Board- and Institutional Animal Care and Use Committee (IACUC)-approved 

research protocols. See supplemental methods for further details.  

 

Data Sharing Statement 

RNA sequencing data are available at GEO. All software supporting the analysis in this study can 

be found in public repositories. Software package implementing OptiCon has been deposited at 

GitHub (https://github.com/tanlabcode/OptiCon). 

 

 

RESULTS 

 

Network-controllability analysis of patient multi-omics datasets identifies targetable 

synergistic regulators in the Ph-like ALL gene network  

We applied our unbiased OptiCon algorithm to the study of Ph-like ALL with an 

overarching goal of identifying synergistic target pairings for biologically-rational combination 

therapy (Figure 1A). We analyzed WGS, WES, and gene expression microarray data from 1046 

primary childhood/AYA B-ALL specimens, of which 289 were Ph-like (Table S1). We identified 

structural variants, small indels, and point mutations (Tables S2-S3) and differentially expressed 

genes in Ph-like B-ALL as compared to prognostically-favorable B-ALL subtypes that are highly 

curable with conventional chemotherapy, including the ETV6-RUNX121, high hyperdiploidy22, and 
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DUX4-rearranged/ERG-dysregulated subtypes23, in order to elucidate the key genetic 

dependencies that may render Ph-like ALL less sensitive to conventional chemotherapy. Using 

these data and a high-quality curated gene regulatory network (Table S4) as inputs, OptiCon 

analysis predicted 81 key regulator gene pairs to be significantly synergistic in Ph-like ALL 

(synergy score p-values <0.05, Table S5), which represent specific pairings of 14 OCNs (Table 

1, Figure S1-B).  

Pathway enrichment analysis of these Ph-like ALL-specific OCNs and their respective 

OCR genes showed enrichment in multiple kinase signaling pathways, in regulation of 

transcription and apoptosis, and in metabolic processes such as glycolysis and nucleoside 

metabolism (Figure 1B). Importantly, OptiCon identified STAT5B and CISH (cytokine-inducible 

SH2-containing protein, a known negative regulator of STAT5B) as OCNs, supporting the 

robustness of our methodology since STAT5B is a major known effector in Ph-like ALL7,24. 

Relatedly, phosphatidylinositol 3-kinase (PI3K) and SRC family kinases (LYN, LCK, SRC) were 

also identified in the downstream OCRs of several predicted OCNs in Ph-like ALL (Figure 1C; 

Table S6). These findings collectively serve as unbiased support for our and others’ prior 

pharmacologic studies that demonstrated effective targeting of JAK/STAT, PI3K, and SRC kinase 

pathway signaling in primary Ph-like ALL cells and preclinical models15,19,25. Importantly, OptiCon 

identified novel OCNs not previously known to be targets in Ph-like ALL, including BAG1 (BCL2-

associated athanogene 1), DUSP3 (dual specificity phosphatase 3), CD38, and NEK6 (never in 

mitosis gene A-related kinase 6); these genes have all been implicated in other leukemias or in 

tumorigenesis26–29. We further identified several anti- and pro-apoptotic genes, including BCL2, 

BCL2L11, BAD, BAX, and BCL2L1, in the OCRs of several OCNs in Ph-like ALL (Table S6).  

Next, we queried the drug databases TTD30, DrugBank31, DGIdb32, and NIH PubChem to 

identify known drugs or new chemical compounds that could be used for potential pharmacologic 

targeting of predicted nodes. Nine of our identified 14 OCNs matched with drug compounds 

(Table 1). Some agents have only preclinical testing data available in human cancer, such as the 

recently-described NEK6 inhibitor33. Others are more advanced, including the anti-CD38 
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monoclonal antibody daratumumab28 that is FDA-approved for adults with multiple myeloma and 

under current phase 1/2 clinical study in children with relapsed/refractory leukemias. Amongst the 

81 OCN gene pairs predicted to be significantly synergistic, 32 (40%) were found to have known 

small molecule inhibitors for both members of the pair (hypergeometric test p-value < 0.0001, 

Table S5). Additionally, 559 of the 973 predicted OCR genes (57%) were found to be targets of 

known drugs or experimental compounds (hypergeometric test p-value < 0.0001). Taken 

together, these results suggest that computationally predicted synergistic regulators and their 

target pathways in a disease-specific network are valuable sources for identifying novel drug 

targets.  

Since STAT5 signaling is known to be hyperactivated via both JAK and ABL class kinases 

in Ph-like ALL7,15, OptiCon’s nomination of STAT5B provided an attractive target for subsequent 

validation efforts. Several clinical trials are currently investigating the addition of the Janus kinase 

inhibitor (JAKi) ruxolitinib to treatment of Ph-like ALL patients with CRLF2 rearrangements and 

other JAK/STAT pathway alterations (NCT02723994)34 or the addition of the SRC/ABL kinase 

inhibitor (ABLi) dasatinib to therapy for patients with ABL-class alterations (NCT02883049). Given 

these ongoing trials incorporating single-agent TKIs, we focused on other key regulons predicted 

to be synergistic with STAT5B that may further optimize combination therapy. One OCN pair that 

ranked as highly synergistic was STAT5B and BAG1 (synergy score 0.023, adjusted p value= 

0.016). The latter encodes the BCL2-associated athanogene 1 protein that binds to and enhances 

the anti-apoptotic effect of BCL-2, likely by preventing its degradation35,36, although there is not a 

well-characterized pharmacologic BAG1 inhibitor. This OptiCon pairing and the several other 

apoptosis-related genes enriched in the OCRs highlight the potential importance of apoptosis 

pathways in Ph-like ALL and led us to investigate in the studies detailed below the therapeutic 

potential of venetoclax, a potent and highly-selective BCL-2 inhibitor approved by the US Food 

and Drug Administration for treatment of adults with relapsed/refractory chronic lymphocytic 

leukemia37 or acute myeloid leukemia (AML)38.  
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Pharmacologic co-targeting of STAT5 and BCL-2 has synergistic anti-leukemia efficacy in 

genetically heterogeneous Ph-like ALL cell lines 

We next validated our computational predictions in vitro in three known Ph-like ALL cell 

lines that represent both CRLF2-R and ABL-class alterations, including MUTZ5 (IGH-CRLF2, 

JAK2 R683G), MHH-cALL-4 (IGH-CRLF2, JAK2 I682F), and TVA-1 (ETV6-ABL1)19. Principal 

component analysis (PCA) of gene expression data from these cell lines and primary pediatric B-

ALL patient specimens included in the TARGET and PCGP datasets showed that the Ph-like ALL 

cell lines clustered together with Ph-like and Ph+ ALL patient samples (Figure S1-A) and separate 

from the other B-ALL subtypes, recapitulating expression signatures of primary Ph-like ALL 

samples used in the OptiCon analysis. We then investigated the baseline protein expression of 

BAG1 and anti-apoptotic BCL-2 family members in Ph-like ALL cell lines and PDX models and 

found that BAG1, BCL-2, BCL-xL, and/or MCL-1 are detected in all tested Ph-like ALL cell lines 

and PDX cells (Figure 1D).  

To evaluate potential synergy in vitro, we treated Ph-like ALL cell lines with venetoclax 

and ruxolitinib (MUTZ5, MHH-cALL-4) or dasatinib (TVA-1) and assessed cell viability. Figures 

2A-C show individual drug response curves for each cell line with corresponding half-maximal 

inhibitory concentration (IC50) values. We confirmed high ruxolitinib IC50 values for both MUTZ5 

and MHH-cALL-439 and low dasatinib IC50 for TVA-1. However, limited cell killing was observed 

at up to 72 hours of drug incubation despite tested TKI doses as high as 30-50 µM (Figure 2A-C). 

In contrast, all three Ph-like cell lines showed sensitivity to venetoclax with IC50 values <800 nM 

and near-complete cell killing at 72 hours at higher drug doses, suggesting a strong dependency 

on BCL-2.  

Based on these initial monotherapy IC50 data, we then chose a range of drug doses to test 

in combination and assessed potential drug synergy. Figures 2D-F show the isobolograms and 

combination index (CI) values of the indicated venetoclax and ruxolitinib or dasatinib 

combinations; all dosage combinations tested were determined to be significantly synergistic 

using the Chau-Talalay method (CI<1.0)20. Cell viability data with in vitro drug combination 
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exposure are shown in Figure S2-A. For subsequent investigations into mechanisms of drug 

synergy detailed below, we used specific dose combinations as specified in Figure S2-B, chosen 

because they displayed high synergy (low CI values) in these cell lines (Figure 2D-F), were not 

completely lethal to the cells, and were not expected to induce appreciable off-target kinase 

inhibition40.  

 

Combination therapy shifts the transcriptome of Ph-like cells away from Ph+/Ph-like 

subtypes and towards more chemosensitive B-ALL subtypes 

To elucidate the transcriptomic effects of targeted therapy on Ph-like ALL cells, we 

performed RNA sequencing of the three Ph-like cell lines treated with venetoclax, TKI, or both 

drugs at our optimized dosing. Analysis of differentially expressed genes (DEGs) and PCA 

revealed that venetoclax monotherapy effect on the Ph-like ALL transcriptome was minimal 

(DEGs= 20 using FDR< 0.1, absolute log2FC> 1; Figure S3-A). In contrast, TKI monotherapy and 

combined TKI and venetoclax exposure had a large, but similar, effect on the transcriptome 

compared to DMSO control treatment (DEGs= 9651 and 10378, respectively).  

We next compared transcriptomes of inhibitor-treated Ph-like ALL cells to those of different 

B-ALL patient samples using Uniform Manifold Approximation and Projection (UMAP)41 to project 

gene expression data to lower dimensions (Figure 3A). We observed that the transcriptomes of 

vehicle control-treated and venetoclax monotherapy-treated Ph-like ALL samples, as well as 

some TKI monotherapy-treated ones, remained similar to those of untreated Ph+ and Ph-like ALL 

patient samples. Conversely, we found that combined venetoclax and TKI treatment altered the 

transcriptomic state of Ph-like ALL cells, causing them to cluster closer to B-ALL leukemia 

subtypes with more favorable cytogenetic alterations. This shift effectively made cells ‘less Ph-

like’ and more similar to subtypes that are sensitive to conventional chemotherapy, thereby 

supporting our network controllability theory (Figure 3B). To quantify further this transcriptome 

shift in treated Ph-like ALL cells, we developed comparator gene signature scores (Supplemental 

Methods) for several common B-ALL genetic subtypes. We observed that treating Ph-like ALL 
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cell lines with TKI monotherapy or simultaneous TKI and venetoclax altered their transcriptomes 

to have higher ETV6-RUNX1, hyperdiploidy, and TCF3-PBX1 gene signature scores 

(representing favorable risk subtypes) and lower KMT2A-rearranged scores (a prognostically-

unfavorable subtype42) in comparison to control-treated cells (Figure 3C). Therefore, both UMAP 

and gene signature score analyses support the specific shift of transcriptomic state in Ph-like ALL 

cells post-treatment. 

The network controllability theory underlying OptiCon suggests that co-targeting specific 

OCNs will lead to perturbation of their corresponding OCRs. We thus hypothesized that 

expression of genes within the identified OCRs of STAT5B and BAG1 would change after 

combination treatment, but not after monotherapy. Indeed, we observed that STAT5B and BAG1 

OCRs were significantly enriched for DEGs only with dual BCL-2 and STAT5 inhibition, but not 

with single-drug treatment (Figure 3D). On the contrary, none of the OCRs were enriched for 

DEGs when comparing monotherapy versus control. Interestingly, the OCR of the OCN CISH 

(cytokine inducible SH2 containing protein, a known negative regulator of JAK/STAT signaling) 

was also enriched for DEGs when comparing dual-inhibitor versus single-agent treatment, 

although the other 11 OCN-associated OCRs were not appreciably perturbed. Taken together, 

these findings suggest that Ph-like ALL cells may be shifted towards a potentially more favorable 

transcriptomic state by direct pharmacologic perturbation of STAT5B and BAG1 and their 

downstream control regions (Figure 3B).  

 

Apoptotic and cytokine signaling pathways can be altered by inhibitor therapy, resulting 

in enhanced apoptosis when combined 

We next interrogated the transcriptional, translational, and functional effects of inhibitor 

therapy on specific pathways nominated by OptiCon. Interestingly, both BCL2 and STAT5B gene 

expression were upregulated in TKI monotherapy and combined venetoclax/TKI conditions 

(Figure 3E), which we hypothesize could be due to negative feedback mechanisms such as 

downregulation of PTPN6 following TKI treatment43. Conversely, other anti-apoptotic genes 
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BAG1, MCL1, and BCL2L1 (encoding BCL-xL) were significantly downregulated in combination 

drug-treated cells versus vehicle control. We also detected significant expression changes in 

several other genes involved in the PI3K/Akt/mTOR, Ras/mitogen-activated protein kinase 

(MAPK) pathways, and intrinsic and effector apoptosis mechanisms following in vitro inhibitor 

exposure (Figure S3-B).  

On a post-translational level, ruxolitinib or dasatinib treatment was sufficient to completely 

abrogate activated pSTAT5 and MAPK targets pERK and/or pJNK (Figure 4A-B). Unexpectedly, 

BCL-2 expression was observed to be highest in venetoclax-treated and combination drug-treated 

conditions, which could potentially be interpreted as a survival advantage of BCL-2 

overexpressing leukemia cells and elimination of low-BCL-2 cells, as has been reported in AML 

44, although other studies have shown that elevated BCL-2 expression is not a reliable biomarker 

of venetoclax sensitivity or resistance44,45. MCL-1 on the other hand, is an anti-apoptotic BCL-2 

family protein that is tightly transcriptionally regulated and whose high expression is known to 

mediate venetoclax resistance by binding to BIM46. Thus, we noted with interest that levels of the 

anti-apoptotic proteins MCL-1 and BAG1 noticeably decreased after combination treatment, while 

levels of the pro-apoptotic BH3-only protein BIM increased (Figure 4A-B).  

We next hypothesized that the synergistic decrease in cell viability seen with combined 

TKI and venetoclax treatment could be due to augmentation of apoptosis. We thus determined 

the proportion of cells undergoing early apoptosis (Annexin V+/ PI-) and late apoptosis/necrosis 

(Annexin V+/PI+) and found that combining ruxolitinib or dasatinib with venetoclax led to 

significantly greater apoptosis than either monotherapy with effects detected within 4-24 hours of 

drug exposure (Figure 4C). Increased cleaved-caspase 3 was detected in both venetoclax and 

combination drug-treated cells, consistent with the observed increase in apoptosis at 72 hours in 

these conditions (Figure 4C, Figure S4). Importantly, despite its strong effects on the expression 

of apoptosis pathway targets, TKI monotherapy did not appreciably increase apoptosis. Together, 

these data suggest that the anti-leukemia effects observed from combination drug treatment may 

be due to TKI-mediated “apoptotic priming” of leukemia cells in decreasing anti-apoptotic proteins 
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while increasing pro-apoptosis proteins, resulting in enhanced apoptosis only when combined 

with venetoclax. 

 

Combination of venetoclax and TKI shows potent anti-leukemia efficacy in multiple patient-

derived xenograft models of Ph-like ALL and is well-tolerated in vivo  

To validate pharmacologically our OptiCon-predicted pairing in vivo, we investigated the 

potential efficacy of combined venetoclax and ruxolitinib or dasatinib treatment in six different 

patient-derived xenograft (PDX) Ph-like ALL models comprised of CRLF2-rearranged or ABL1-

rearranged genetic backgrounds (Table S7). Given that optimal inhibitor dosing for combination 

therapy may differ from optimal monotherapy dosing, we tested two dose levels (50% and 100%) 

of inhibitors in several PDX models to model potential synergy and to assess if anti-leukemia 

benefit could be achieved with lower dosing.  

As hypothesized, we observed significant inhibition of leukemia proliferation in peripheral 

blood and end-study spleens in most CRLF2-rearranged and ABL1-rearranged Ph-like ALL PDX 

models treated with combined venetoclax and ruxolitinib or dasatinib (Figure 5). Detected 

combination treatment effects were also superior to TKI and/or venetoclax monotherapy in many 

models. Additionally, near-curative effects of ruxolitinib and venetoclax or dasatinib and 

venetoclax were observed in end-study spleens of three PDX models (CRLF2-rearranged/JAK2-

mutant JH331, ABL1-rearranged NH011 and TVA1). Interestingly, combined TKI and venetoclax 

at 50% ‘half-dosing’ also had more potent anti-leukemia effects than full monotherapy dosing of 

either agent, suggesting enhanced STAT5 and BCL-2 co-targeting in these leukemias. While 

most models did not demonstrate appreciable single-agent venetoclax activity, our surprisingly 

ruxolitinib-resistant JAK-mutant JH331 PDX model was exquisitely sensitive to BCL-2 inhibition 

and further showed superior inhibition of leukemia proliferation with dual ruxolitinib/venetoclax 

treatment, highlighting potential for JAKi resensitization or resistance reversal. Other CRLF2-

rearranged models (ALL4364, ALL2128) demonstrated marked sensitivity to ruxolitinib with >50% 

reduction of ALL burden in end-study spleens, although combined treatment with venetoclax did 
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not further augment anti-leukemia response. Importantly, we also observed excellent tolerability 

of dual inhibitor treatment for up to four weeks in our PDX models with stability of murine weights 

(Figure S5) and other physical health parameters.  

 

DISCUSSION 

Omics analyses in the study of human cancers often generate large candidate gene lists 

that can be difficult to prioritize for pharmacologic targeting. We employed an innovative systems 

biology strategy for unbiased identification of synergistic pathways as candidates for combination 

therapy. This approach efficiently narrowed the search space of relevant oncogenic pathways 

and is also broadly applicable. We applied our network-controllability approach to a clinically high-

risk leukemia subtype and identified 14 novel optimal control nodes in Ph-like ALL. The largest 

fraction of the OCNs are involved in kinase signaling, followed by metabolism, transcriptional 

regulation, splicing, and apoptosis (Figure 1B), suggesting relative dependencies of Ph-like ALL 

on these biological processes. We focused further experimental validation studies upon the highly 

ranked OCN pair STAT5B and BAG1 given the strong biologic rationale for this Ph-like ALL-

specific OCN pairing. Furthermore, there is pragmatic translational potential for investigating 

combination therapy using the TKIs ruxolitinib or dasatinib and the BCL-2 inhibitor venetoclax 

given their clinical availability and established adult and pediatric dosing. Venetoclax has not been 

extensively investigated in Ph-like ALL, although several preclinical studies have reported 

preliminary efficacy of combining BCL-2 inhibitors with TKIs in other ALL types such BCR-ABL1+ 

models47 and IL7R-mutant T-ALL models48. OptiCon’s nomination of STAT5B and BCL2-related 

pathways from integrative-omics analysis of primary Ph-like ALL samples provides independent 

rationale for co-targeting these specifically in the Ph-like ALL subtype.  

Intriguingly, we demonstrated that ‘precision drugging’ of the STAT5B and BAG1 pair of 

synergistic regulators altered the transcriptomic state of Ph-like ALL to become more similar to 

other chemosensitive B-ALL subtypes. These results support the basis of network controllability 

theory that successful identification of key control nodes can shift cells from one transcriptomic 
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state to another desired one via specific perturbation. Although the transcriptomic effects of joint 

BCL-2 and kinase inhibition appear to be driven in large part by the TKI, the phenotypic effects of 

combined therapy in enhancing cell death seem driven by venetoclax. Our functional assays of 

apoptosis and cell viability combined with transcriptional and protein analyses suggest that TKI 

monotherapy may be priming Ph-like cells for apoptosis by altering the fine balance between pro-

apoptotic and anti-apoptotic protein expression.  

OptiCon analysis also elucidated potential crosstalk pathways that mediate synergy 

between the STAT5 signaling and BCL-2 pathways in Ph-like ALL. We found that several MAPK 

pathway genes (e.g., MAPK8 (JNK1) and MAPK11 (p38)) participate in crosstalk between the 

OptiCon-predicted OCNs STAT5B and BAG1. While mutations in MAPK pathway genes have 

been reported in Ph-like ALL7, the mechanistic relevance of deregulated MAPK signaling in Ph-

like ALL is not well-understood. JNKs are known to phosphorylate and regulate BCL-2, BIM, and 

BAD with effects on apoptosis in a context and cell-type dependent manner, and ERK1/2 

activation has been associated with anti-apoptotic effects49,50. Our identification of their negative 

regulator DUSP3 as an OCN and our surprising findings that co-treatment with venetoclax and 

ruxolitinib or dasatinib also decreased phosphorylated ERK1/2 and JNK levels suggest that MAP 

kinases are involved in critical Ph-like ALL signaling crosstalk.  

Our studies reveal in an unbiased manner that both CRLF2-rearranged and ABL1-

rearranged Ph-like ALL appear to have previously-unknown BCL-2 dependencies. Our additional 

demonstration of superior in vivo anti-leukemia effects of combining ruxolitinib or dasatinib and 

venetoclax in multiple PDX models with various genetic backgrounds, provides strong preclinical 

rationale for bench-to-bedside development of dual BCL-2 and kinase inhibition in next-generation 

clinical trials for patients with Ph-like ALL. Further elucidation of key genetic and molecular factors 

that may contribute to the observed heterogeneity of inhibitor treatment responses in our Ph-like 

ALL PDX models will facilitate potential future clinical translation of these findings. Importantly, 

we also observed effective in vivo leukemia burden reduction when venetoclax and dasatinib were 

used at subtherapeutic dosing, suggesting the ability to achieve effective anti-leukemia activity 
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while potentially reducing therapy-associated toxicity. This observation lends additional support 

for our network-based approach which takes pathway crosstalk into account to spare unperturbed 

pathways in order to minimize potential toxicity.  

Collectively, our application of a systems biology framework to a high-risk leukemia 

subtype provides critical new insights regarding cancer gene network controllability and the ability 

to facilitate unbiased discovery of novel target pairings. While our results certainly provide 

compelling rationale for clinical investigation of new dual venetoclax and ruxolitinib or dasatinib 

strategies for patients with Ph-like ALL, our network controllability-based methodology for inferring 

synergistic gene regulatory nodes also provides an innovative paradigm for rational design of 

combination therapy approaches that has wide applicability to other human cancers and diseases. 
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TABLES 
 
Table 1. Optimal control nodes (OCNs) predicted to be synergistic key regulators in Ph-
like ALL and their known small molecule inhibitors. 
 

OCN Name Drug/compound inhibitor Source 

ACVR2B activin A receptor type 2B  bimagrumab DGIdb 

BAG1 BCL2 associated athanogene 1  

(2R,3R,4S,5R)-2-[6-amino-8-
[(3,4-

dichlorophenyl)methylamino]puri
n-9-yl]-5-

(hydroxymethyl)oxolane-3,4-diol DrugBank 

CD38 CD38 molecule  
daratumumab, isatuximab, 

MOR-202, SAR-650984 
DGIdb, TTD, 

DrugBank 

CISH 
cytokine inducible SH2 containing 

protein  epoetin alfa DGIdb 

CYLD CYLD lysine 63 deubiquitinase  NA  NA 

DUSP3 dual specificity phosphatase 3   NA NA 

FRAT1 
FRAT1, WNT signaling pathway 

regulator   NA NA 

GTF3A general transcription factor IIIA   NA NA 

INPP5B 
inositol polyphosphate-5-phosphatase 

B  
D-Myo-Inositol-1,4-

Bisphosphate DrugBank 

NEK6 NIMA-related kinase 6  

8205, (5Z)-2-hydroxy-4-methyl-
6-oxo-5-[(5-phenylfuran-2-

yl)methylidene]-5,6-
dihydropyridine-3-carbonitrile DGIdb, PubChem 

S1PR3 sphingosine-1-phosphate receptor 3  

AFD(R), AUY954, EDD7H9, 
FTY720-phosphate, VPC03090-

P, VPC12249, VPC23019, 
VPC44116, compound 26 DGIdb, TTD 

STAT1 
signal transducer and activator of 

transcription 1  AVT-02 UE DGIdb,TTD 

STAT5B 
signal transducer and activator of 

transcription 5B Dasatinib, Ruxolitinib DGIdb, DrugBank 

UPRT 
uracil phosphoribosyltransferase 

homolog   NA NA 
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FIGURE LEGENDS 
 
 

Figure 1. A systems biology approach to discovery and testing of combinatorial 

therapeutic targets. (A) Overview of the Optimal Control (OptiCon) network-based approach 

towards identifying and validating synergistic drug targets in Ph-like B-ALL. OptiCon input data 

include a high-quality curated gene regulatory network, genetic mutation data, and gene 

expression data under two conditions (Ph-like ALL versus favorable-risk B-ALL subtypes). Output 

of OptiCon identifies synergistic Optimal Control Node (OCN) pairs. Druggable pathways defined 

by OCNs and their respective Optimal Control Regions (OCRs) are then validated in vitro in Ph-

like ALL cell lines and in vivo in murine patient-derived xenograft (PDX) models. (B) Enriched 

Gene Ontology (GO) terms among predicted OCRs. Each color represents the OCR of a 

predicted OCN. Thickness of bars varies since certain terms were enriched among multiple 

OCRs. (C) Synergistic OCN pair STAT5B and BAG1 predicted for Ph-like ALL. Gene crosstalk 

links between their specific OCRs are shown in yellow. Shade of a node represents the 

deregulation score (DScore) of the corresponding gene. Red, up-regulated in Ph-like ALL; green, 

down-regulated in Ph-like ALL. (D) Baseline protein expression of BAG1 and the anti-apoptotic 

BCL2-family proteins BCL2, BCL-xL, and MCL1 in several Ph-like cell lines and PDXs. 

 

Figure 2. Combined BCL-2 and kinase inhibition is synergistic in vitro in Ph-like ALL. 

Individual dose response curves and IC50 values for ruxolitinib (rux) and venetoclax (ven) 

treatment of (A) MUTZ5 and (B) MHH-cALL4 cell lines and dasatinib (das) and venetoclax 

treatment of (C) TVA-1 cells. Viability data are shown relative to 0.1% DMSO vehicle assayed at 

72 hours using CellTiter-Glo absorbance assays. Each data point represents the mean of six 

replicate measures +/- standard deviation (SD). (D-F) Isobolograms for combination of TKIs with 

venetoclax at various dose combinations in MUTZ5, MHH-cALL-4 and TVA-1 cell lines, 

respectively, along with Combination Index (CI) values for each dose combination which were 
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generated using Compusyn. CI values were less than 1.0 (synergistic effect) for all dose 

combinations tested. 

 

Figure 3: Combination treatment elicits specific and unique changes in the transcriptome 

of Ph-like cell lines. (A) UMAP based on RNA-Seq data from treated Ph-like cell lines and B-

ALL patient microarray expression data shows that combination treatment shifts transcriptome of 

Ph-like cells to resemble that of favorable-risk B-ALL subtypes. (B) Network controllability theory 

posits that one can use control nodes in a gene network to guide a system from an initial state (in 

this case relatively chemoresistant Ph-like ALL) to a final state (chemosensitive favorable risk 

subtype B-ALL). (C) Signature genes of non-Ph-like B-ALL subtypes (ETV6-RUNX1, TCF3-

PBX1, and hyperdiploidy subtypes) are enriched in Ph-like ALL cells treated with venetoclax and 

ruxolitinib or dasatinib. Enrichment scores were computed using single-sample Gene Set 

Enrichment Analysis (ssGSEA). (D) Predicted synergistic OCRs STAT5B and BAG1 were 

significantly perturbed only by combination drug treatment, but not by monotherapy. The degree 

of perturbation was measured by the overlap between genes in the OCR of each specified OCN 

and differentially expressed genes in the specified comparison (monotherapy versus control or 

combination therapy versus monotherapy). Significance of overlap was determined using a 

hypergeometric test. Significant p-values were observed for the STAT5B, BAG1, and CISH OCRs 

in dual inhibitor-treated cells, but not with drug monotherapies, and also not in the other OCRs. 

(E) Gene expression changes during monotherapy or combination inhibitor therapy in OptiCon-

nominated OCNs and some OCR genes. P-values were calculated using one-way ANOVA 

implemented in LIMMA software and adjusted for multiple testing using the Benjamini-Hochberg 

method. 
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Figure 4: Effects of combined kinase and BCL-2 inhibition on intracellular 

phosphosignaling, apoptosis proteins, and functional apoptosis. (A) Immunoblot images 

and (B) Normalized immunoblotting signal intensities of phosphorylated (p) STAT5, BAG1, BCL-

2 family proteins, and pERK and pJNK in Ph-like ALL cell lines treated in vitro with venetoclax, 

TKI (ruxolitinib for MUTZ5 and MHH-cALL-4, dasatinib for TVA-1), or both drugs. Densitometry 

signals were normalized to b-actin or b-tubulin loading controls and displayed graphically relative 

to 0.1% DMSO control treatment. Each bar represents mean +/- standard deviation (SD) of 3 

technical replicates. BAX and cleaved caspase-3 targets were assessed by apoptosis protein 

arrays. (C) Time course of apoptosis under single or combination drug conditions was assessed 

by annexin V/propidium iodide (PI) co-staining and flow cytometric analysis. MUTZ5 and MHH-

cALL-4 cells were treated with 0.1 µM venetoclax, 1 µM ruxolitinib, both drugs, or 0.1% DMSO 

control. TVA-1 cells were treated with 50 nM venetoclax, 0.5 nM dasatinib, both drugs, or 0.1% 

DMSO control. Early apoptosis (assessed by percent annexin V+/PI-, left panels) and late 

apoptosis/necrosis (assessed by percent annexin V+/PI+, right panels) are shown for each time 

point. Each bar represents mean ± SD of 3 replicates. Significance of control or single drug as 

compared to combination indicated by asterisks above bars: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 

using 2-way ANOVA and Dunnett’s post-test correction.  

 

Figure 5. Combined TKI and venetoclax treatment inhibits Ph-like ALL proliferation in vivo. 

(A-D) CRLF2-rearranged and (E-F) ABL1-rearranged Ph-like ALL patient-derived xenograft 

models (n=5 per treatment arm) were treated with vehicle or inhibitors as delineated above and 

followed by flow cytometric quantification of human CD10+/CD19+ ALL in murine peripheral blood 

(left panels) and in end-study spleens (middle and right panels). (F) One luciferase-expressing 

TVA-1 PDX model was followed by bioluminescent imaging (flux measured in photons per second 

[p/s]) with terminal splenic leukemia burden quantified by flow cytometry as in the other five 

models. TKI and venetoclax co-treatment significantly inhibited leukemia proliferation in vivo in 

most PDX models versus inhibitor monotherapy. Error bars represent +/- SD. *P ≤ 0.05, **P ≤ 
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0.01, ***P ≤ 0.001, ****P ≤ 0.0001 using 2-way ANOVA for peripheral blood analyses over time 

and 1-way ANOVA for end-study spleen analyses. ns = not significant. 
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