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Abstract 28 

Intrinsic brain dynamics co-fluctuate between distant regions in an organized manner during rest, 29 

establishing large-scale functional networks. We investigate these brain dynamics on a millisecond 30 

time scale by focusing on Electroencephalographic (EEG) source analyses. While synchrony is thought 31 

of as a neuronal mechanism grouping distant neuronal populations into assemblies, the relevance of 32 

simultaneous zero-lag synchronization between brain areas in humans remains largely unexplored. 33 

This negligence is due to the confound of volume conduction, leading inherently to temporal 34 

dependencies of source estimates derived from scalp EEG (and Magnetoencephalography, MEG), 35 

referred to as spatial leakage. Here, we focus on the analyses of simultaneous, i.e., quasi zero-lag 36 

related, synchronization that cannot be explained by spatial leakage phenomenon. In eighteen 37 

subjects during rest with eyes closed, we provide evidence that first, simultaneous synchronization is 38 

present between distant brain areas and second, that this long-range synchronization is occurring in 39 

brief epochs, i.e., 54-80 milliseconds. Simultaneous synchronization might signify the functional 40 

convergence of remote neuronal populations. Given the simultaneity of distant regions, these 41 

synchronization patterns might relate to the representation and maintenance, rather than processing 42 

of information. This long-range synchronization is briefly stable, not persistently, indicating flexible 43 

spatial reconfiguration pertaining to the establishment of particular, re-occurring states. Taken 44 

together, we suggest that the balance between temporal stability and spatial flexibility of long-range, 45 

simultaneous synchronization patterns is characteristic of the dynamic coordination of large-scale 46 

functional brain networks. As such, quasi zero-phase related EEG source fluctuations are 47 

physiologically meaningful if spatial leakage is considered appropriately.  48 

Significance 49 

Synchrony is suggested as a mechanism for coordinating distant neuronal populations. Yet, 50 

simultaneous (i.e., zero-lag) synchronization between remote brain regions in humans is difficult to 51 

demonstrate, because volume conduction in EEG/MEG recordings causes spurious zero-lag relations. 52 

Here, we investigate actual zero-lag relations and systematically compare them to the residual bias 53 

due to spatial smoothness of EEG source estimates. We indeed report simultaneous synchronization 54 

between distant brain regions. These synchronization patterns manifest variably in time. We suggest 55 

that simultaneous synchronization is relevant when studying the dynamic, large-scale functional 56 

architecture in humans.  57 
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Introduction 58 

Brain activity spontaneously fluctuates during rest, when no specific task is instructed. Intriguingly, 59 

these fluctuations are correlated between distant brain regions, forming large-scale functional 60 

networks that are assumed to reflect spontaneous information integration during internal mentation 61 

(Raichle et al., 2001; Greicius et al., 2003; Smith et al., 2009; Brookes et al., 2011; Engel et al., 2013), 62 

i.e., the basis of thinking. While functional magnetic resonance imaging (fMRI) was crucial for the 63 

discovery and investigation of resting-state networks, the low time resolution of BOLD variations does 64 

not allow us to study the neurophysiological mechanisms leading to these spontaneous co-65 

fluctuations of spatially distinct brain areas. Intracranial local field potential recordings or scalp 66 

electro-/magnetoencephalography (EEG/MEG) are adequate for this purpose, as they record neuronal 67 

activity at their inherent time-scale, i.e. in the millisecond range (Roelfsema et al., 1997; Miller et al., 68 

2009; Baker et al., 2014; Fox et al., 2018; Vidaurre et al., 2018). Such studies revealed an essential key 69 

neuronal mechanism underlying information integration between different brain regions: Synchrony 70 

(Singer, 1999; Varela et al., 2001). Many studies have demonstrated that neuronal synchronization 71 

between brain areas is an important mechanism for the coordination of neuronal processing in 72 

anatomically distributed neuronal circuits (Engel et al., 1991; Contreras and Steriade, 1996; Roelfsema 73 

et al., 1997; Destexhe et al., 1999; Womelsdorf et al., 2007). A fundamental question is whether 74 

synchronous co-fluctuations between areas are simultaneous or time-lagged (Engel et al., 1991; 75 

Contreras and Steriade, 1996; Roelfsema et al., 1997; Destexhe et al., 1999; Fries, 2005; Womelsdorf 76 

et al., 2007; Siegel et al., 2008; Bosman et al., 2012; Van Kerkoerle et al., 2014). Because of delays due 77 

to axonal conduction and synaptic transmission, time-lagged fluctuations are necessarily appearing 78 

when the activation of one region is causally related to the activation of the other region, i.e. when 79 

one area transfers information to the other. Simultaneity, on the other hand, indicates a gathering of 80 

different brain areas converging into a functional unit to collectively maintain certain information 81 

without causal interactions between them. Such communality can be established spontaneously by 82 

dynamic recurrent connections or can be driven by a pacemaker (e.g., the thalamus) (Vicente et al., 83 

2008; Gollo et al., 2014). Undoubtedly, both mechanisms (time-lagged and simultaneous fluctuations) 84 

take place in the brain to processes, integrate and maintain the information, as numerous intracranial 85 

recordings in animals and humans have shown (Contreras and Steriade, 1996; Roelfsema et al., 1997; 86 

Womelsdorf et al., 2007; Siegel et al., 2008; Hipp et al., 2011). Unfortunately, simultaneous activity, 87 

which imposes zero-lag related signals are primarily ignored in EEG/MEG network analyses to avoid 88 

spurious phase relations resulting from volume conduction (Nolte et al., 2004; Stam et al., 2007; Hipp 89 

et al., 2012; Marzetti et al., 2013; Colclough et al., 2015). EEG/MEG source reconstruction (Michel et 90 

al., 2004; Michel and Murray, 2012; He et al., 2018) is, to some extent, able to overturn volume 91 
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conduction effects. Yet, the limited spatial resolution of EEG/MEG source reconstruction techniques 92 

leads to spurious temporal relations (Palva et al., 2018; He et al., 2019). To correct for these spatial 93 

leakage effects, orthogonalization of source signals is a standard method. However, this method also 94 

discards genuine simultaneous dynamics and therefore is insensitive to detect such.  95 

In this work, we aim to investigate simultaneous synchronization, i.e., quasi zero-lag relations between 96 

distant brain areas using high-density EEG source imaging (Michel et al., 2004; Michel and Murray, 97 

2012; He et al., 2018). To consider and correct for spatial leakage effects, we systematically compare 98 

actual with surrogate data having identical spatial properties in their source reconstruction. 99 

In summary, we demonstrate that physiologically meaningful quasi zero-lag synchrony between 100 

distant brain areas exists that cannot be explained by spatial leakage phenomena. We suggest that 101 

brief epochs of simultaneous synchronization signify functional convergence of distant neuronal 102 

population dynamics into distinct re-occurring states.  103 

Methods 104 

EEG recordings 105 

High-density EEG was recorded using an electrode net (Geodesic Sensor Net, Electrical Geodesics Inc., 106 

Eugene, OR, USA) consisting of 256 electrodes that are interconnected by thin rubber bands. Each 107 

electrode includes a small sponge soaked with saline water to establish direct electrical contact with 108 

the participants' scalp. EEG was sampled at 1 kHz, referenced to the vertex. 109 

Participants (N=18, 30 ± 5 years, seven male) sat comfortably in an upright position in a darkened, 110 

electrically shielded room and were instructed to keep their eyes closed and relax for four to six (5.42 111 

± 0.95) minutes avoiding drowsiness. The local ethical committee, following the declaration of 112 

Helsinki, approved the study. Participants provided written, informed consent for their participation. 113 

EEG preprocessing 114 

EEG recordings were band-pass filtered between 1-40 Hz offline, and electrodes covering cheeks and 115 

nape were excluded. Time epochs contaminated with apparent artifacts were marked and excluded 116 

from further analyses. Noisy or bad electrodes were excluded from Independent Component Analysis 117 

(ICA) (Jung et al., 2000), which was used to remove stereotypical artifact components containing 118 

saccades, eye blinks, and cardiac artifacts. Afterward, the initially excluded channels were spline 119 

interpolated in space, resulting in 204 channels. The recordings were re-referenced to the common 120 

average and down-sampled to 125 Hz for further analysis. 121 

 122 
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EEG source imaging and functional network reconstruction 123 

We applied EEG source reconstruction using forward models based on realistic head geometry and 124 

conductivity data with consideration of skull thickness, i.e., Locally Spherical Model with Anatomical 125 

Constraints (LSMAC) (Brunet et al., 2011; Michel and Brunet, 2019). The grey matter was defined 126 

based on the MNI anatomical template model. The inverse solution space consisted of 5004 points 127 

equally distributed in this grey matter volume. The linear distributed inverse solution LAURA (Grave 128 

de Peralta Menendez et al., 2004) was used to calculate the current density distribution for each 129 

solution point at each moment in time. Dipole orientations were set to the first left singular vector of 130 

the xyz (3D) components in the resolution matrix of each source pointing outside of the brain to avoid 131 

sign ambiguities. 132 

Functional networks were defined as spatial patterns co-varying with fluctuations in selected regions 133 

of interest (ROI) defined in an atlas parcellation (Schaefer et al., 2017). We chose the posterior 134 

cingulate cortex (PCC) and the supplementary motor area (SMA) as two exemplary seed regions based 135 

on previous literature focusing on functionally distinct key regions (Seeley et al., 2007; Raichle, 2010; 136 

Engel et al., 2013).  The signal representing the activities in each ROI was defined as the first principal 137 

component of all dipoles within the given ROI (Rubega et al., 2018). Then, we calculated their signal 138 

envelope as the magnitude of the analytic signal using the Hilbert transform. To capture well-139 

pronounced spatial patterns that include these key regions, we thresholded the signal envelope at the 140 

mean plus standard deviation following previous work (Tagliazucchi et al., 2012). The network 141 

patterns were then determined by sites that covary with this seed signal. To illustrate the resulting 142 

spatial patterns, they were spatially thresholded using watershed transform, and the local maxima 143 

positively co-varying with the respective ROI are shown (Fig. 1).  144 

Surrogate data and spatial leakage estimation 145 

To systematically asses the bias introduced by spatial leakage we used surrogate data, which we 146 

derived from the actual data. To do so, we temporally shifted the source reconstructed signals of the 147 

actual data randomly in time for every solution point individually for each subject. That way, the initial 148 

source dynamics of the surrogate data are the same as the actual source estimates, but the temporal 149 

relations between solution points are demolished. To introduce spatial leakage, we then applied the 150 

same forward model as used for analyzing actual data to generate surrogate EEG. Afterwards, we 151 

applied the identical processing pipeline to this surrogate data, i.e. filtering scalp data and source 152 

estimation using the same inversion kernel as in the analyses of the actual EEG data. Because we used 153 

identical forward model and inverse method for analyzing actual and surrogated data, the spatial 154 

properties of the source estimates are the same. That way, there are no actual correlations between 155 
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the sources given the introduced random time shifts. Therefore, the resulting inter-areal correlation 156 

values in the surrogate source estimates are due to spatial leakage between selected areas. This 157 

procedure provides bias estimates caused by spatial leakage for every connectivity metric, i.e. 158 

correlation, phase-locking value (PLV) and coherence for each individual subject. These bias estimates 159 

can be subtracted from the metrics of actual data as suggested previously (Ghuman et al., 2011; Palva 160 

and Palva, 2012) and used for statistical comparison. 161 

Synchrony between network nodes 162 

We investigated the correlation, lag, phase locking and coherence between network nodes. Between 163 

each pair, we determined the correlation for different lags of the signals using cross-correlation. To 164 

perform frequency-specific analyses, we applied wavelet transform (Morlet et al., 1982) for time-165 

frequency (TF) decomposition (1–40 Hz, 1 Hz steps). Parameters for the mother wavelet were set to 166 

the full width at half maximum of three seconds for the Gaussian kernel at a center frequency of 1 Hz. 167 

PLV and coherence was computed for every frequency bin and are reported as magnitudes herein and 168 

for the latter as real and imaginary part of the coherency (Lachaux et al., 1999; Lachaux et al., 2002) 169 

to compare with previous literature (Nolte et al., 2004). Simultaneous synchrony is indicated as peak 170 

correlation at zero-lag in the cross-correlogram and the real part of coherency. The time-varying phase 171 

in each ROI was computed using Hilbert transform in order to determine phase differences between 172 

regions for every time point. The distribution of these phase differences were illustrated as polar 173 

histograms. The cosine of these phase differences Δφ was used as instantaneous measure of 174 

simultaneous synchronization, which is 1 for zero phase difference (Deco and Kringelbach, 2016; 175 

Cabral et al., 2017). The duration of phase synchrony, which is centered around zero phase lag was 176 

determined by epochs of cos(Δφ) exceeding 0.5. Very short epochs smaller than 24ms, i.e. 3 time 177 

samples, were not considered as stable and therefore ignored for computing the average duration. All 178 

metrics were statistically compared to results derived from surrogate data. Paired comparisons were 179 

carried out using the Wilcoxon signed-rank test, which were Bonferroni corrected for multiple 180 

comparisons. 181 

Results 182 

Large-scale brain dynamics form briefly stable functional networks 183 

We found bilateral, symmetric posterior regions in the extrastriate cortex and inferior parietal lobe 184 

(IPL) to co-vary with the PCC’s source signal. In contrast, we found anterior areas of the bilateral 185 

prefrontal cortex and the thalamus to co-vary with the SMA (Fig. 1a-b). To rule out a potential source 186 

imaging bias that might cause these patterns, we performed the same analyses on the surrogate data. 187 

Importantly, we found no distant spatial local maxima forming a network pattern in the surrogate 188 
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data. Merely the respectively selected regions were present, meaning we did not observe co-varying 189 

regions using surrogate data (Fig. 6). 190 

The phase relations between nodes of these functional network patterns in the real data vary 191 

considerably in time. We observe epochs in which the phase differences remain small, meaning these 192 

two nodes fluctuate synchronously at these time points (Fig. 1c-d). The durations of these epochs are 193 

in the range between 54.1 and 79.1 milliseconds on average depending on the constellation. The 194 

durations of all pairs belonging to the same functional network are significantly longer than respective 195 

periods computed from surrogate data. The detailed duration of each pair and their respective p-196 

values are listed in Table 1.  197 

Simultaneous synchronization is present between distant neuronal populations  198 

We identified functional network patterns that are composed of distinct nodes that are symmetric in 199 

both hemispheres (Fig. 1). This finding already indicates that these distant regions co-vary on a highly 200 

resolved time scale. To directly test if the correlation between these nodes is significantly larger than 201 

the spatial leakage bias, we focused on the analyses of pairwise nodes for each network pattern. To 202 

provide more detail about these interactions, we investigated different time lags and frequency 203 

components. For the PCC based network, we focused on posterior bilateral IPL regions. The cross-204 

correlation between pairs of these network nodes peaks at zero-lag with values ranging between 0.1 205 

and 0.28, which is significantly higher than the spatial leakage bias observed in the surrogate data. 206 

The detailed values are listed in Table1.  Interestingly, the interhemispheric zero-lag correlation was 207 

highest in this posterior network. The frequency-specific PLV reached its maximum for this pair at 208 

11Hz with a value of 0.34. In this case, the real part of the coherency is considerably higher than its 209 

imaginary part (Fig.2).  210 

For the SMA based network, we further examined the relation of the SMA to regions in the bilateral 211 

PFC and to the thalamus. The cross-correlation between these regions peaks at zero-lag with a value 212 

of ranging between 0.24 and 0.32, which is significantly higher than the spatial leakage bias observed 213 

in the surrogate data. The frequency-specific PLV reached its maximum at 10Hz with a value of 0.42 214 

for the interhemispheric PFC connection. Again, the real part of the coherency is higher than its 215 

imaginary part (Fig.3). These results show that actual zero-phase relations, indicating simultaneous 216 

synchronization, are present between relatively distant regions. 217 

For direct visual comparison of actual with surrogate data we also show the uncorrected metrics 218 

overlaid with the bias estimates in Fig.4 and Fig.5. These bias estimates are the higher, the closer a 219 

node pair is, but also the lower the spatial resolution between these areas is. For example, the zero-220 
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lag correlation peak of the surrogate data is higher for the intrahemispheric pairs (Fig.4b, top and 221 

bottom row), than the bias of the more distant interhemispheric pair (Fig.4b middle row). This is 222 

analogously the case for the PLV relations in Fig.4c. The same applies for comparing the top three rows 223 

in Fig.5c-d for the SMA based network. The bias due to spatial leakage is maximal between SMA and 224 

the thalamus, which is plausible given the low spatial resolution in subcortical areas (Fig.5, bottom 225 

row). In addition, spatial leakage is biasing the phase distribution of the surrogate data towards zero, 226 

i.e. right in the plots of Fig.4d and Fig.5d. In other terms, the phase distribution is not circular any 227 

more, but biased due to spatial leakage, which is best visible in Fig.5d, bottom row (displayed in red). 228 

Yet, for the actual recordings, the phase bin centered around zero exceeds this bias significantly 229 

(displayed in blue). 230 

 231 

 r pr PLV pPLV Dur [ms] pDur 

left IPL - PCC 0.20 0.0038 0.22 0.0011 69.9 0.0007 

left IPL - right IPL 0.28 0.0007 0.28 0.0007 79.1 0.0007 

right IPL - PCC 0.10 0.0123 0.15 0.0007 66.2 0.0024 

left PFC- SMA 0.24 0.0012 0.34 0.0007 57.1 0.0038 

left PFC - right PFC 0.31 0.0007 0.37 0.0007 54.1 0.0020 

right PFC – SMA 0.26 0.0012 0.34 0.0007 61.9 0.0009 

SMA – thalamus 0.32 0.0020 0.34 0.0012 75.8 0.0011 

Table 1. Correlation, PLV in the alpha range (8-12 Hz) and duration of each pair with respective p-232 

values (Wilcoxon sign rank test, Bonferroni corrected) 233 

  234 
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235 

Figure 1. Derivation and characterization of EEG source reconstructed networks. a) The envelope 236 

(blue) of source estimated activity (magenta) is thresholded to define periods of well-pronounced 237 

activity within a specific region of interest (here PCC). b) Nodes of the network co-varying with the 238 

PCC (net 1) during periods defined as indicated in a) and with the SMA (net 2) as region of interest 239 

marked with black arrows. c) Exemplary time course of instantaneous phase locking between lateral 240 

posterior regions of net 1 , matching the time period shown in a) in magenta; surrogate phase locking 241 

is shown in light blue. d) Polar histograms of the group, displaying the distribution of interhemispheric 242 

phase differences between lateral posterior (net 1) and anterior (net 2) regions as illustrated in b) in 243 

blue; surrogate phase differences in red. The radius for each phase bin displays the probability density 244 

function estimate of the respective phase differences.  245 
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 246 

Figure 2. Synchrony between the nodes of the PPC network after subtracting spatial leakage bias. a) 247 

Nodes of the network, edges are indicated as arrows. b) Cross-correlations between these two nodes 248 

are respectively maximal at zero lag.  c) PLV as function of frequency, group mean ± SEM. d) Real and 249 

imaginary part of the coherency, group mean ± SEM.  250 
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 251 
Figure 3. Synchrony between the nodes of the SMA network after subtracting spatial leakage bias. a) 252 

Nodes of the network, edges are indicated as arrows. b) Cross-correlations between these two nodes 253 

are respectively maximal at zero lag. c) PLV as function of frequency, group mean ± SEM. d) Real and 254 

imaginary part of the coherency, group mean ± SEM. 255 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425731doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425731
http://creativecommons.org/licenses/by-nc-nd/4.0/


12/20 
 

 256 

Figure 4.  Synchrony between the nodes of the PPC network, uncorrected measures in comparison to 257 

spatial leakage bias. a) Nodes of the network, edges are indicated as arrows. b) Cross-correlation 258 

between these two nodes, actual (uncorrected) data is shown in magenta, bias in surrogate data in 259 

red. c) PLV as function of frequency, group mean ± SEM. d) Polar histograms showing the distribution 260 

of phase differences for actual data in blue and surrogate data in red. The radius for each phase bin 261 

displays the probability density function estimate of the respective phase differences.  262 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425731doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425731
http://creativecommons.org/licenses/by-nc-nd/4.0/


13/20 
 

 263 

Figure 5. Synchrony between the nodes of the SMA network, uncorrected measures in comparison to 264 

spatial leakage bias. a) Nodes of the network, edges are indicated as arrows. b) Cross-correlation 265 

between these two nodes, actual (uncorrected) data is shown in magenta, bias in surrogate data in 266 

red. c) PLV as function of frequency, group mean ± SEM. d) Polar histograms showing the distribution 267 

of phase differences for actual data in blue and surrogate data in red. For every constellation in this 268 

network, the most frequent phase difference is zero. The radius for each phase bin displays the 269 

probability density function estimate of the respective phase differences.  270 
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 271 

Figure 6. Absence of distant co-varying sites in surrogate data. a) The envelope (blue) of source 272 

estimated surrogate data (magenta) is thresholded to define periods of well-pronounced activity 273 

within a specific region of interest (here PCC). b) No distant local maxima were identified co-varying 274 

with the PCC (net 1), or with the SMA (net 2) marked with black arrows.  275 
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Discussion 276 

In this work, we investigate synchronous EEG source dynamics between distant brain regions. The 277 

functional network patterns we reconstruct revealed spatially well-separated remote brain regions. 278 

Investigating the temporally highly resolved phase relations indicating long-range synchronization, we 279 

actually observe quasi zero-lag related fluctuations between these distant regions. By comparing 280 

these results systematically to surrogate data with identical spatial properties in their source 281 

reconstruction, we demonstrate that the observed effects cannot be explained by spatial leakage 282 

phenomena.  283 

Large-scale brain dynamics form briefly stable functional networks 284 

In the reconstruction of functional network patterns, we focused on two key brain regions, i.e., the 285 

PCC and SMA. The PCC based network is composed of bilateral posterior areas of the extrastriate 286 

cortex and inferior parietal lobes. This network resembles the posterior subdivision of the default 287 

mode network that was previously reported using MEG recordings (Hipp et al., 2012; Vidaurre et al., 288 

2018). The SMA based network is composed of the bilateral prefrontal cortex and the thalamus, which 289 

are regions associated with the anterior part of the control network (Seeley et al., 2007; Raichle, 2010). 290 

We included analyses of thalamic signals because recent work (Krishnaswamy et al., 2017; Seeber et 291 

al., 2019) demonstrated the detectability of subcortical activities using EEG source imaging.  292 

However, we did not find a one to one correspondence between the network patterns we observed 293 

herein and the M/EEG amplitude correlation-based networks (Brookes et al., 2011; Samogin et al., 294 

2019) that were related to the well-known fMRI resting-state networks (Smith et al., 2009; Raichle, 295 

2010). This discrepancy might stem from the different time-scale of co-variation, i.e., the temporal 296 

precision, and coupling measure, which define these functional networks. In this work, phase relations 297 

are relevant, since we were aiming for high temporal precision reflecting long-range synchrony. In 298 

contrast, in fMRI and M/EEG amplitude envelope-based analyses, the temporal alignment on a second 299 

scale is sufficient for capturing correlated activities. Phase coherence and amplitude envelop 300 

correlation are two types of coupling measures suggested to reflect distinct mechanisms related to 301 

different functions (Engel et al., 2013).  302 

We report the nodes of these network patterns synchronizing in brief time intervals, typically in the 303 

range of 54 and 80 milliseconds.  These briefly stable epochs and their duration are in good agreement 304 

with previously reported time epochs for the EEG microstates (Michel and Koenig, 2018) and transient 305 

states derived from MEG recordings using Hidden Markov Models (HMM) (Vidaurre et al., 2018). 306 

However, the HMM states are derived from orthogonalized signals (Colclough et al., 2015) that 307 

discards zero-phase relations. EEG microstates are defined as stable topographies. If a particular 308 
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source network configuration maintains quasi-zero phase relations for a certain period, that 309 

necessarily leads to a stable topography of the scalp potential field. Therefore, the brief manifestation 310 

of specific quasi zero-lag related network patterns we describe in this work can be seen as the 311 

underlying source dynamics of the microstates.  312 

The temporal dynamics of these briefly stable epochs are characteristic for metastability, i.e., signified 313 

by a counterbalance between integrated, i.e. synchronous, and segregated epochs (Tognoli and Kelso, 314 

2014; Deco et al., 2015).  In terms of large-scale brain dynamics that means specific nodes of a network 315 

pattern are converging into synchrony, i.e. quasi zero-lag relationships, for brief epochs. These 316 

integrated, highly synchronous states fall abruptly apart, i.e. segregate, before the next integrated 317 

state is established. In that way, it is possible to develop dynamic representations flexibly since distinct 318 

states can be installed in different spatial configurations (Tononi and Edelman, 1998; Deco and 319 

Kringelbach, 2016; Ju and Bassett, 2020). 320 

Simultaneous synchronization is present between distant neuronal populations 321 

The fact that we observe spatially well-separated, co-varying sites as network patterns is the first 322 

indicator that these distant regions are functionally related at a millisecond time scale. These distant 323 

sites are absent when repeating these analyses with surrogate data (Fig.6). In addition to this spatial 324 

assessment, the functional results, e.g. PLVs, we describe herein significantly exceed the bias due to 325 

spatial leakage, which we derive from surrogate data. As expected, these bias estimates are the 326 

higher, the closer two areas are and the lower the spatial resolution at these sites is. Surprisingly, we 327 

found the interhemispheric interactions to be higher than the intrahemispheric interactions. Because 328 

the distance between respective regions is larger for the interhemispheric than the intrahemispheric 329 

pairs, this result cannot be an effect of spatial leakage. These findings together with the cross-330 

correlation peak at zero lag signify genuine simultaneous synchronization between these distant 331 

regions. 332 

The finding of long-range, simultaneous synchronization is in line with previous literature showing 333 

physiologically relevant, zero-lag relations (Engel et al., 1991; Contreras and Steriade, 1996; Roelfsema 334 

et al., 1997) in animals. Recently, a study using intracranial recordings showed interhemispheric zero-335 

lag synchronization in the human brain (O'reilly and Elsabbagh, 2020). Most of the previous studies 336 

investigating synchrony between distant areas were focusing on gamma oscillations (>30 Hz) induced 337 

by specific tasks (Engel et al., 1991; Roelfsema et al., 1997; Womelsdorf et al., 2007; Siegel et al., 2008; 338 

Van Kerkoerle et al., 2014). These gamma oscillations were found to facilitate feedforward processing, 339 

while mid-frequencies were related to feedback effects from higher areas (Von Stein et al., 2000; 340 

Bosman et al., 2012; Van Kerkoerle et al., 2014). Given these differences in task-induced and resting-341 
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state signals, it is plausible that the simultaneous fluctuations we describe here represent intrinsic 342 

synchrony during minimal sensory input. The finding of quasi zero-phase relations between distant 343 

areas might signify functional convergence in these regions during rest, in contrast to sensory-driven 344 

time-lagged oscillations induced by a specific task. In that sense, quasi zero-phase relations in 345 

distributed areas might relate to the representation and maintenance, rather than the processing of 346 

information. This long-range synchronization is briefly stable, not persistently, indicating flexible 347 

spatial reconfiguration pertaining to the establishment of particular, re-occurring states. Taken 348 

together, we suggest that the balance between temporal stability and spatial flexibility of long-range, 349 

simultaneous synchronization patterns is characteristic of the dynamic coordination of large-scale 350 

functional brain networks. As such, quasi zero-lag related EEG source fluctuations are physiologically 351 

meaningful if spatial leakage is considered appropriately, and should not be excluded in the analysis 352 

of functional connectivity using EEG/MEG source imaging.  353 

  354 
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