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Abstract 

Purpose 

To improve the signal-to-noise ratio (SNR) of highly accelerated volumetric MRI while preserve 

realistic textures using a generative adversarial network (GAN). 

Methods 

A hybrid GAN for denoising entitled “HDnGAN” with a 3D generator and a 2D discriminator was 

proposed to denoise 3D T2-weighted fluid-attenuated inversion recovery (FLAIR) images acquired in 

2.75 minutes (R=3×2) using wave-controlled aliasing in parallel imaging (Wave-CAIPI). HDnGAN 

was trained on data from 25 multiple sclerosis patients by minimizing a combined mean squared error 

and adversarial loss with adjustable weight λ. Results were evaluated on eight separate patients by 

comparing to standard T2-SPACE FLAIR images acquired in 7.25 minutes (R=2×2) using mean 

absolute error (MAE), peak SNR (PSNR), structural similarity index (SSIM), and VGG perceptual loss, 

and by two neuroradiologists using a five-point score regarding gray-white matter contrast, sharpness, 

SNR, lesion conspicuity, and overall quality. 

Results 

HDnGAN (λ=0) produced the lowest MAE, highest PSNR and SSIM. HDnGAN (λ=10-3) produced the 

lowest VGG loss. In the reader study, HDnGAN (λ=10-3) significantly improved the gray-white contrast 

and SNR of Wave-CAIPI images, and outperformed BM4D and HDnGAN (λ=0) regarding image 

sharpness. The overall quality score from HDnGAN (λ=10-3) was significantly higher than those from 

Wave-CAIPI, BM4D, and HDnGAN (λ=0), with no significant difference compared to standard images. 

Conclusion 

HDnGAN concurrently benefits from improved image synthesis performance of 3D convolution and 

increased training samples for training the 2D discriminator on limited data. HDnGAN generates 

images with high SNR and realistic textures, similar to those acquired in longer times and preferred by 

neuroradiologists.  

 

Keywords: denoising, Wave-CAIPI, T2-weighted FLAIR, multiple sclerosis, generative adversarial 

network, adversarial loss 
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Introduction 

High-resolution volumetric brain MRI is widely used in clinical and research applications to provide 

rich and detailed anatomical information and delineation of structural pathology. For example, 3D T2-

weighted fluid-attenuated inversion recovery (FLAIR) imaging is highly sensitive to white matter 

abnormalities due to its excellent suppression of cerebrospinal fluid signal and is therefore routinely 

used to characterize lesion pathology in a wide range of neurological disorders1. A main barrier to 

greater adoption of volumetric MRI in clinical protocols is the long acquisition time (typically ~5-7 

minutes), which may lead to patient anxiety and motion artifacts that compromise diagnostic quality, 

especially for children, elderly subjects, and some patient populations who cannot tolerate long scans. 

 

Modern fast imaging techniques2-5 can accelerate volumetric brain MRI with an acceleration factor 

much higher than that can be provided by conventional parallel imaging methods (e.g., 3 for 2D and 

2×2 for 3D in SENSE6 and GRAPPA7). For example, wave-controlled aliasing in parallel imaging 

(Wave-CAIPI)5 employs a corkscrew gradient trajectory with CAIPI shifts in the ky and kz directions to 

efficiently encode k-space and uniformly spread the voxel aliasing and can achieve 10× acceleration 

with negligible g-factor and image artifact penalties. However, the signal-to-noise ratio (SNR) (∝

1/acceleration factor) of highly accelerated images is intrinsically lower compared to those acquired 

with mild acceleration factors due to substantially less acquired k-space signals.  

 

Convolutional neural networks (CNNs) have superior performance in image restoration tasks such as 

super-resolution8,9 and denoising10 and provide a promising strategy to improve the SNR of highly 

accelerated images. However, CNNs using the voxel-wise mean squared error (MSE) as the loss 

function tend to generate blurry images lacking textural details in both super-resolution and denoising 

tasks even though MSE or related metrics such as peak SNR (PSNR) can be minimized or maximized. 

Generative adversarial networks (GANs)11 have been demonstrated effective in reducing the blur effects 

and recovering realistic textures for digital photography12,13, optical coherence tomography14, 

microscopy15, x-ray computed tomography16,17 and MRI18-21, by pushing the restored images to the 

manifold of target images using a discriminator network that is trained to differentiate between the input 

and target images.  
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For volumetric imaging, 3D convolution in the generator network is advantageous for increasing the 

data redundancy from an additional spatial dimension for improved image synthesis performance and 

smooth transition between 2D image slices along all directions22-24, but 3D discriminators in GANs 

require a large number of training data, which are challenging to acquire in practice. Chen et al. utilized 

data from 1113 subjects to train a 3D GAN for brain MRI super-resolution19. Ran et al. split the whole-

brain volumes into small blocks (i.e., 32×32×6 voxels) to increase the sample number, which allowed 

them to train a 3D GAN for MRI denoising with data from 110 subjects20. Because of the intensive data 

requirement, the degraded images were simulated by adding noise to high-SNR images or down-

sampling high-resolution images from public database19,20 or only a shallow discriminator was used20 

in these studies.  

 

To address this challenge, we propose a hybrid denoising GAN (entitled HDnGAN) to improve the 

SNR of highly accelerated empirical images. HDnGAN adopts a 20-layer 3D generator and a 10-layer 

2D discriminator to benefit concurrently from improved image synthesis performance provided by the 

3D convolution in the generator and increased training samples from a limited number of subjects for 

the discriminator. In distinction to existing studies using simulated data17,19-21, the efficacy of HDnGAN 

is demonstrated on empirical Wave-CAIPI and standard T2-SPACE FLAIR data acquired on 33 

multiple sclerosis (MS) patients. The results are comprehensively and quantitatively assessed using 

different metrics and by neuroradiologists. The effects of adversarial loss’s contribution to the resultant 

image sharpness are also systematically characterized.  
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Methods 

Data acquisition 

This study was approved by the Institutional review board and was HIPAA compliant. With written 

informed consent, data were acquired in 33 patients undergoing clinical evaluation for demyelinating 

disease at the Massachusetts General Hospital as part of a separate clinical validation study of Wave-

CAIPI FLAIR compared to standard 3D T2-SPACE FLAIR25. All patients were scanned on a whole-

body 3-Tesla MAGNETOM Prisma MRI scanner (Siemens Healthcare) equipped with a 20-channel 

head coil. 

 

Standard FLAIR data were acquired using a 3D T2-SPACE FLAIR sequence with: repetition 

time=5000 ms, echo time=390 ms, inversion time=1800 ms, flip angle=120°, 176 sagittal slices, slice 

thickness=1 mm, field of view=256×256 mm2, resolution=1 mm isotropic, bandwidth=650 Hz/pixel, 

GRAPPA factor=2, acquisition time=7.25 minutes. Wave-CAIPI FLAIR data were acquired using a 

prototype sequence with matched parameter values except for: echo time=392 ms, bandwidth=750 

Hz/pixel, acceleration factor=3×2, acquisition time=2.75 minutes. 

 

Image processing 

Standard FLAIR images were non-linearly co-registered to Wave-CAIPI images using the “reg_f3d” 

function from the NiftyReg software26,27, which was initialized with an affine transformation derived 

from NiftyReg’s “reg_aladin” function. The non-linear registration was used to account for the subtle 

non-linear shifts of tissues in the images. Brain masks were created from Wave-CAIPI images using 

the unified segmentation algorithm in the Statistical Parametric Mapping software28.  

 

For each subject, a binary mask was created to exclude parts of the frontal lobe, temporal lobe, 

cerebellum, and brainstem where the residuals between Wave-CAIPI and standard FLAIR images were 

dominated by large image artifacts and geometric distortions rather than noise. Specifically, the absolute 

difference between the standardized Wave-CAIPI and co-registered standard FLAIR images was 

blurred using a Gaussian kernel with a standard deviation of 2 mm and then binarized using a threshold 

of 0.04. Only the MSE loss within this mask was used to optimize the generator (i.e., referred to herein 

as “loss mask”).  
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Generative adversarial network 

A GAN was used to perform image quality transfer from Wave-CAIPI to standard FLAIR images. The 

GAN consisted of a generator and a discriminator. The generator synthesized images similar to standard 

FLAIR images from Wave-CAIPI images, while the discriminator tried to distinguish synthesized 

images from the acquired standard FLAIR images. The generator and the discriminator were trained in 

synchrony to compete against each other. 

 

Generator 

A modified 3D U-Net29 was used as the generator (Fig. 1a) (2.3 million parameters), which predicted 

the residual between the Wave-CAIPI and standard image volume. Specifically, all max pooling, up-

sampling, and batch normalization layers were removed, and the number of kernels at each layer was 

kept constant (n=64). This modified U-Net created several short paths from early layers to later layers 

to alleviate the vanishing-gradient problem and strengthen feature propagation with a moderate number 

of parameters. It represented an intermediate network between a plain network (e.g., VDSR9 and 

DnCNN10) without any short paths and a densely connected network (e.g., DenseNet30) that 

comprehensively connects each layer to every other layer. 

 

Discriminator 

The discriminator of SRGAN12 was adopted (13.1 million parameters) (Fig. 1b), with spectral 

normalization incorporated in each layer to stabilize training31. The discriminator was designed to 

classify 2D image slices rather than 3D blocks to increase the number of training samples to ensure that 

the GAN could be optimized on data from a limited number of subjects. Specifically, the discriminator 

used all axial, coronal, and sagittal image slices of the resultant 3D image blocks from the generator as 

separate samples during the training.  

 

Loss function 

The loss function ℒ consisted of a content loss ℒ  from the generator and an adversarial loss 

ℒ  from the discriminator as: 

ℒ = ℒ + 𝜆ℒ , (1) 
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where λ determines the contribution of ℒ  to ℒ . ℒ = ℒ  when λ=0 and ℒ =

ℒ  when λ=∞. Intermediate 𝜆 values achieve mixed content loss and adversarial loss. 

 

The content loss was defined as the voxel-wise MSE, calculated as: 

ℒ =
1

𝑁

1

𝑁
𝐼 , , − 𝐺 (𝐼 ) , ,

, , ∈ℳ

, (2) 

where 𝐼  and 𝐼  denote standard and Wave-CAIPI image volumes; 𝐺  is the 3D generator 

parametrized by 𝜃 ; 𝑖, 𝑗, 𝑘 are coordinates within the loss mask ℳ with minimum image artifacts 

and distortions; 𝑁  is the number of voxels within the loss mask; 𝑁  is the number of blocks for 

training.  

 

The adversarial loss was defined as: 

ℒ = − log 𝐷 𝑆 𝐺 (𝐼 ) , (3) 

where 𝐷  is the 2D discriminator parametrized by 𝜃 ; 𝑆 (: ) denotes the operation of selecting the 

mth slice out of all 𝑁  axial, coronal and sagittal slices from the synthesized image block 

𝐺 (𝐼 ) ; 𝐷 𝑆 𝐺 (𝐼 )  is the probability that an image slice is classified as a real 

standard FLAIR image. For better gradient behavior, − log 𝐷 𝑆 𝐺 (𝐼 )  was minimized 

rather than log 1 − 𝐷 𝑆 𝐺 (𝐼 ) 12. 

 

GAN training 

HDnGAN was implemented using the Keras application program interface (https://keras.io) with a 

Tensorflow backend (https://www.tensorflow.org) in Python, trained on data from 20 patients, and 

validated on data from an additional 5 patients using an NVIDIA GeForce RTX 2080 Ti GPU.  

 

Because of the limited GPU memory, the generator was trained on input and output image blocks 

consisting of 64×64×64 voxels (18-27 blocks from each patient), and the discriminator was trained on 

input image slices consisting of 64×64 voxels (64×3 axial, coronal, and sagittal image slices from each 
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block). For each subject, Wave-CAIPI and standard FLAIR images were skull-stripped and 

standardized by subtracting the mean intensity and then dividing by the standard deviation of the image 

intensities of the brain voxels from Wave-CAIPI data. All data were flipped along the anatomical left-

right direction to augment the training data. 

 

Network parameters were optimized by minimizing the loss function defined in Equations 1-3 using an 

Adam optimizer with default parameter values except for the learning rates which were set to 5×10-5 

and 2×10-4 for the generator and discriminator respectively. The generator and the discriminator were 

trained alternately for each batch. HDnGAN with eight different 𝜆 values (listed in Fig. 2) were trained 

and validated, each for 21 epochs and ~24 hours.  

 

Image quality evaluation 

Data from 8 separate patients were used for evaluation. For comparison, Wave-CAIPI images were also 

denoised by the state-of-the-art block-matching and 4D filtering (BM4D)32,33 method (default 

parameters, https://www.cs.tut.fi/~foi/GCF-BM3D). The mean absolute error (MAE), PSNR, structural 

similarity index (SSIM)34, and VGG perceptual loss35 were used to quantify the similarity between 

Wave-CAIPI, BM4D-denoised, and HDnGAN-denoised images and standard FLAIR images. 

 

Images were also evaluated by two neuroradiologists (C.N., S.C.) across five image quality metrics, 

including gray-white matter contrast, sharpness, SNR, lesion conspicuity, and overall quality. For 

HDnGAN, results generated using λ=10-3 were used for comparison. Images were scored using a five-

point scale: 1 nondiagnostic, 2 limited, 3 diagnostic, 4 good, 5 excellent. The group mean and standard 

deviation of the scores from each type of images were computed and compared. Moreover, t-tests were 

performed to assess whether there were significant differences between the image quality scores for 

different methods. Bonferroni correction was performed to account for multiple comparisons, which 

resulted in an adjusted P threshold of 0.005 (10 comparisons in total). 
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Results  

Different losses computed on the validation set smoothly decreased or increased and approached 

convergency at 21 epochs (Supplementary Information Fig. 1). Visually, the contribution of adversarial 

loss controlled the sharpness of resultant images (Fig. 2). For BM4D and HDnGAN with low 𝜆 values 

(i.e., 0, 10-5, 10-4) when MSE loss dominated, resultant images were smooth without high-frequency 

textures, as expected. When λ gradually increased, more textural details became apparent. Images from 

HDnGAN around λ=10-3 were visually very similar to the standard FLAIR images.  

 

The optimal λ varied for different image similarity metrics (Fig. 3). For MAE, PSNR, and SSIM, 

HDnGAN (λ=0) achieved the best performance (0.017±0.001, 32.512±0.323 dB, 0.935±0.008), 

substantially better than Wave-CAIPI input (0.025±0.001, 29.798±0.439 dB, 0.876±0.017) and slightly 

better than BM4D results (0.019±0.001, 31.656±0.363 dB, 0.922±0.011). When 𝜆 gradually increased, 

MAE, PSNR, and SSIM increased (or decreased) first, reached the maximum (or minimum) at λ=10-1 

and then became better. HDnGAN (λ=10-3) achieved the best performance in terms of VGG loss 

(0.011±0.002), improving significantly upon Wave-CAIPI inputs (0.020±0.003) and BM4D results 

(0.017±0.002). When 𝜆  gradually increased, VGG perceptual loss first decreased, reached the 

minimum at λ=10-3, then increased until λ=10-1, and finally decreased until λ=∞.   

 

Figure 4 demonstrated that HDnGAN (λ=10-3) generated high-quality image volumes with increased 

SNR, smooth transitions between imaging slices along all axial, sagittal, and coronal directions, and 

rich and realistic textural details. The difference and SSIM maps (Supplementary Information Fig. 2) 

showed that the residuals between the HDnGAN-denoised images and ground-truth high-SNR images 

did not contain anatomical structures. 

 

The results of the reader study (Fig. 5, Supplementary Information Table 1) demonstrated that 

HDnGAN (λ=10-3) significantly improved the input Wave-CAIPI images’ gray-white contrast 

(4.188±0.544 vs. 3.438±0.512, P=0.002) and SNR (3.750±0.447 vs. 3.063±0.250, P<0.001). In terms 

of image sharpness, it outperformed BM4D (4.189±0.403 vs. 3.000±0.365, P<0.001) and HDnGAN 

(λ=0) (4.189±0.403 vs. 3.125±0.619, P<0.001). The overall scores from HDnGAN (λ=10-3) were 

significantly higher than those from Wave-CAIPI (4.125±0.342 vs. 3.563±0.512, P<0.001), BM4D 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425779
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

(4.125±0.342 vs. 3.500±0.516, P<0.001), and HDnGAN (λ=0) (4.125±0.342 vs. 3.563±0.727, p=0.003), 

with no significant difference compared to the standard images (4.125±0.342 vs. 4.313±0.479, p=0.083).  
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Discussion 

This study leverages Wave-CAIPI and GAN to achieve fast volumetric MRI with high-fidelity image 

quality similar to the standard images acquired in longer scan time. The proposed HDnGAN not only 

improves SNR but also recovers realistic textures, the richness of which can be controlled by adjusting 

adversarial loss contributions. Reader assessment demonstrates clinicians’ preference for images from 

HDnGAN (λ=10-3) over those from Wave-CAIPI, BM4D, and HDnGAN (λ=0). 

 

The hybrid architecture of HDnGAN with a 3D generator and a 2D discriminator facilitates HDnGAN 

to be well-trained on limited empirical data (e.g., 25 patients here). The 3D discriminator requires 

substantially more data for training because its loss is computed for a single probability value that 

classifies the input image volume, while the loss is computed for each voxel for the generator. A deep 

3D discriminator with millions of parameters (13.1 million for our 2D discriminator) cannot be 

optimized using only ~650 blocks from 25 MS patients. This intensive data requirement poses a 

significant barrier to training a 3D GAN on empirical data, which is challenging to collect. Therefore, 

in previous studies, 3D GANs were only trained on simulated noisy data obtained by adding synthetic 

noise to high-SNR data from large-scale public databases. The generalization of these GANs to 

empirical data with different contrasts, noise levels and distributions is unclear. The use of 2D 

discriminator in HDnGAN substantially increases the training samples by 64×3 times by classifying all 

axial, coronal, and sagittal slices, which provides a practical solution for concurrent benefits from a 3D 

generator and a 2D discriminator and also mimics the visual inspection by radiologists who read 2D 

images from different views. 

 

We also systematically characterize the effects of adversarial loss on resultant image sharpness. Overall, 

larger adversarial loss weight leads to images with more textural details (Fig. 2) but higher MAE, PSNR, 

and SSIM (Fig. 3). In order to demonstrate this effect, we did not use the VGG perceptual loss in the 

optimization as in many previous studies, which confounds the origin of the resultant textural details. 

This effect enables an elegant way to control the output image sharpness, which could address the needs 

of radiologists who may have different preferences for the richness of textures. In our study, we select 

λ=10-3 which generates output images that are most similar to the standard FLAIR images as quantified 

by the VGG perceptual loss and by visual inspection (Fig. 2) (even though VGG was trained on natural 
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images from ImageNet database). In practice, λ could be selected or adjusted by radiologists accordingly 

to their preferences.  

 

Previous studies often perform a linear blending of the GAN generator network parameters13 or output 

images of models optimized using only the MSE loss and the adversarial loss13,21 to achieve different 

sharpness levels for image super-resolution. However, these two methods are sub-optimal 

(Supplementary Information Fig. 3-5). Visually, the network parameter blending fails to denoise Wave-

CAIPI images effectively, while the textures from the image blending method are less realistic than 

those from HDnGAN (λ=10-3). The VGG perceptual losses of both methods are higher than HDnGAN 

(λ=10-3) results, demonstrating the superiority of our method on controlling resultant image sharpness. 

 

HDnGAN can be simply extended for different noise levels, MRI sequences and contrasts, imaging 

tasks (e.g., super-resolution), and image reconstruction using a generator that reconstructs images 

directly from k-space data. The acceleration factor of the Wave-CAIPI data used for our experiment 

was chosen not very high (6×) due to the use of 20-channel head coil. For 32-channel coils, HDnGAN 

could be employed to denoise Wave-CAIPI images with 10× and even higher acceleration to further 

reduce the scan time potential to within a minute. Further, HDnGAN could be used for Wave-CAIPI 

magnetization prepared rapid gradient echo (MPRAGE)36,37 and susceptibility-weighted imaging38 or 

images reconstructed using other methods such as compressed sensing and LORAKS3,4.  

 

Conclusion 

This study proposes a hybrid GAN for denoising entitled HDnGAN for improving the SNR of highly 

accelerated images while preserving realistic textural details. HDnGAN benefits from improved image 

synthesis performance from the 3D generator and increased training samples for training the 2D 

discriminator on empirical data from 25 MS patients. HDnGAN (λ=10-3) generates images most similar 

to high-quality images acquired in longer scan time, with the lowest VGG perceptual loss and higher 

preference than Wave-CAIPI images, BM4D-denoised results and HDnGAN (λ=0) by 

neuroradiologists. 
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Figure 1. HDnGAN architecture. HDnGAN consists of a 3D generator (a) and a 2D discriminator (b). 

The 3D generator is modified from U-Net by removing all max-pooling, up-sampling, and batch 

normalization layers and keeping the number of kernels constant (n=64) across all layers. The input of 

the generator is a noisy image volume (64×64×64 voxels). The output of the generator is an image 

volume with high signal-to-noise ratio (SNR). The 2D discriminator adopts the discriminator of 

SRGAN, with spectral normalization incorporated in each layer to stabilize training. The input of the 

discriminator is an axial, coronal, or sagittal image slice (64×64 pixels) from the image volume 

synthesized by the generator or the ground-truth high-SNR image volume. The output of the 

discriminator is the probability of the input image slice being classified as a real high-SNR image slice. 

The abbreviation k3n64s1 stands for a kernel size equal to 3×3 for the generator or 3×3×3 for the 

discriminator, a kernel number equal to 64 and stride equal to 1. 
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Figure 2. Effects of the adversarial loss on image quality. Representative axial image slices (rows a 

and c) and enlarged views of the left basal ganglia and left thalamus (rows b and d) from different 

methods and weights (λ) of the adversarial loss in a multiple sclerosis patient. For λ=0 (rows a, b, 

column iv), the training only minimizes the content loss (i.e., voxel-wise mean squared error). In this 

case, the GAN is effectively the generator. For λ=∞ (rows c, d, column vi), the training only minimizes 

the adversarial loss. Image similarity metrics including the mean absolute error (MAE), peak signal-to-

noise ratio (PSNR), structural similarity index (SSIM) and VGG perceptual loss (VGG) are listed to 

quantify the similarity between images from different methods and the standard FLAIR image. 
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Figure 3. Quantification of the effects of the adversarial loss. The similarity between images derived 

from different methods and the standard FLAIR images is quantified using the mean absolute error 

(MAE) (a), peak signal-to-noise ratio (PSNR) (b), structural similarity index (SSIM) (c), and VGG 

perceptual loss (d). The red, yellow, and blue dots and error bars represent the group mean and standard 

deviation of different metrics for Wave-CAIPI images, BM4D-denoised results, and results of 

HDnGAN trained with different weights for the adversarial loss. The metrics were calculated from eight 

patients for evaluation which were not used for training and validation.  
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Figure 4. Resultant images along different directions. Representative axial (column i), coronal 

(column iii), and sagittal (column v) image slices and enlarged regions (columns ii, iv and vi) from 

standard T2-SPACE FLAIR data (row a), Wave-CAIPI data (row b), BM4D-denoised results (row c), 

HDnGAN (λ=0) results (row d) and HDnGAN (λ=10-3) results (row e) from 3 different evaluation 

subjects.  
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Figure 5. Results of the multi-reader assessment. The group mean and standard deviation of image 

quality (gray-white contrast, sharpness, SNR, lesion conspicuity, and overall quality) scores (1 

nondiagnostic, 2 limited, 3 diagnostic, 4 good, 5 excellent) from two radiologists for the standard, 

Wave-CAIPI, BM4D, HDnGAN (λ=0), and HDnGAN (λ=10-3) images of eight evaluation subjects for 

evaluation. t-tests assess whether scores of HDnGAN (λ=10-3) images are significantly different from 

those for other images (*P < 0.005 due to Bonferroni correction). 
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Supplementary Information 

 

Supplementary Information Figure 1. Training convergence. The similarity between standard 

FLAIR images and Wave-CAIPI images (red dashed lines) as well as resultant images from HDnGAN 

trained with different weights for the adversarial loss at different epochs during the training (green, blue 

and black lines) is quantified using the mean absolute error (MAE) (a), peak signal-to-noise ratio (PSNR) 

(b), structural similarity index (SSIM) (c), and VGG perceptual loss (d). The metrics were calculated 

from five patients for validation. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2021. ; https://doi.org/10.1101/2021.01.07.425779doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.07.425779
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Supplementary Information Figure 2. Difference and SSIM maps. Maps of the difference (row a) 

and the structural similarity index (SSIM) (row b) between images from different methods and standard 

FLAIR images shown for a representative axial image slice from an evaluation subject.  
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Supplementary Information Figure 3. Effects of network parameter blending and image blending 

on image quality. Representative axial image slices (rows a and c) and enlarged views of the left basal 

ganglia and left thalamus (rows b and d) from GAN generator network parameter blending (rows a and 

b) and image blending (rows c and d) with different weights (α) of GAN generator parameters or images 

from GAN-oriented training in a multiple sclerosis patient. For α=0 (column i), the results are from 

mean squared error (MSE)-oriented training (i.e., only the voxel-wise MSE is minimized). For α=1 

(column vi), the results are from GAN-oriented training (i.e., only the adversarial loss is minimized). 

Intermediate results are from linear weighted summation of either model parameters at each layer 

(network parameter blending, rows a and b) or voxel-wise image intensity (image blending, rows c and 

d). Image similarity metrics including the mean absolute error (MAE), peak signal-to-noise ratio 

(PSNR), structural similarity index (SSIM) and VGG perceptual loss (VGG) are listed to quantify the 

similarity between images from different methods and the standard FLAIR image. 
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Supplementary Information Figure 4. Quantification of the effects of network parameter 

blending. The similarity between images derived from different methods and the standard FLAIR 

images is quantified using the mean absolute error (MAE) (a), peak signal-to-noise ratio (PSNR) (b), 

structural similarity index (SSIM) (c), and VGG perceptual loss (d). The red, yellow, blue, green, black, 

and light blue dots and error bars represent the group mean and standard deviation of different metrics 

for Wave-CAIPI images, BM4D results, HDnGAN (λ=10-3) results, HDnGAN (λ=0) results, HDnGAN 

(λ=∞) results and results of network parameter blending with different weights (α) of GAN generator 

parameters or images from GAN-oriented training. For α=0, the results are from mean squared error-

oriented training. The metrics were calculated from eight patients for evaluation.  
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Supplementary Information Figure 5. Quantification of the effects of image blending. The 

similarity between images derived from different methods and the standard FLAIR images is quantified 

using the mean absolute error (MAE) (a), peak signal-to-noise ratio (PSNR) (b), structural similarity 

index (SSIM) (c), and VGG perceptual loss (d). The red, yellow, blue, green, black, and light blue dots 

and error bars represent the group mean and standard deviation of different metrics for Wave-CAIPI 

images, BM4D results, HDnGAN (λ=10-3) results, HDnGAN (λ=0) results, HDnGAN (λ=∞) results 

and results of image blending with different weights (α) of GAN generator parameters or images from 

GAN-oriented training. For α=0, the results are from mean squared error-oriented training. The metrics 

were calculated from eight patients for evaluation.  
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Supplementary Information Table 1. Comparison of scores from the multi-reader study. Raw P 

values from t-tests that assess whether there are significant differences between image quality scores 

from different methods on the eight evaluation subjects from two neuroradiologists. Raw P values that 

indicate significant differences (P<0.005 due to Bonferroni correction) are marked in red. All P values 

are two-sided. 
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