Supplementary material for

Corynebacterium glutamicum regulation beyond transcription: Organizing principles and reconstruction of an extended regulatory network incorporating regulations mediated by small RNA and protein-protein interactions

[^0]
Supplementary figures

Supplementary figure 1. The overlap between the tree network models of C. glutamicum for nodes (left) and interactions (right).

Supplementary figure 2. Distribution of the genomic coverage (GC) and interactions coverage (IC) for the non-redundant set of regulatory networks from Abasy Atlas. The data points for the three C. glutamicum networks reported in this work are highlighted. Please note that the GC for the sRNA network is inflated by the sRNA nodes $(545 / 3072)$ although there are still 86 protein-coding genes more than in the all evidence network.

Supplementary figure 3. Overlap of transcription factors between the two transcriptional regulatory networks and the complete set of DNA-binding transcription factors in C. glutamicum.

Supplementary figure 4. Interaction zur-cg0042 part of the C. glutamicum strong network also recovered from S. coelicolor.

Supplementary figure 5. LexA auto-regulation part of the C. glutamicum network strongly supported and recovered from B. subtilis.

Supplementary figure 6. Interaction argR-arg C part of the C. glutamicum strongly supported and recovered from E. coli.

Supplementary figure 7. The interaction lexA-recA was recovered from E. coli (left) and is already part of the C. glutamicum network (right) strongly supported.

Supplementary figure 8. The interaction $n r d R$ - $n r d I$ was recovered from E. coli (left) and is already part of the C. glutamicum network (right) with non-strong evidence supporting it.

Supplementary tables

Supplementary Table 1. Interactions from other C. glutamicum strains or not mapping to a cg number. Please consider this is not an exhaustive list of regulations for other strains.

TF	TG	Effect
cg3247	NCgl2845	+
cg3247	NCgl1729	+
cg0702	cg1652	-
cg0702	cg1583	-
cg0702	cg3378	-
cg0702	cg0400	+
cg0702	NCgl0166	+
cg0702	cg1582	-
cg0702	cg3387	+
cg0702	NCgl0484	+
cg0702	cg0771	+
cg0702	cg3327	-
cg3224	NCgl1861	-
cg0702	cg0344	+
cg3247	NCgl2113	+
cg0702	NCgl2942	+
cg0702	NCgl2893	+
cg0702	cg1215	-
cg0702	cg3375	+
cg0702	NCgl0746	-
cg0146	NCgl18	+
cg0702	cg1528	-
cg0702	NCgl0608	+
cg0702	cg2252	+
cg3224	NCgl2817	-
cg0702	cg0345	+
cg0702	cg1581	-
cg2831	NCgl1806	+
cg3224	NCgl0361	+
cg0702	cg1584	-
cg3247	NCgl2738	-
cg3247	NCgl2237	-
cg0702	NCgl0580	+
cg3247	NCgl2861	+
cg0702	NCgl2970	+
cg0702	cg0661	-
cg3247	NCgl1758	+

cg0702	cg0018	+
cg3247	NCgl0404	$+$
cg0702	cg1214	-
cg3224	NCgl0360	+
cg3247	NCgl2858a	+
cg3247	NCgl1780	+
cg0702	cg1120	+
cg0702	cg3145	+
cg0702	cg0197	+
cg0702	cg0318	+
cg2831	NCgl1812	-
cg2831	NCgl1783	$+$
cg3247	NCgl1750	+
cg0702	NCgl0638	+

Supplementary Table 2. Interactions recovered from S. coelicolor, B. subtilis, and E. coli. The Average rank is the averaged ranking position between the three inferences with the three motif finding tools (smaller is better). The Status can take three values: 1) network for interactions that have been already experimentally validated and are part of one of the C. glutamicum networks; 2) potential new TG for the interactions mediated by a TF that is already a TF in one of the networks, but its regulation of the TG expression has not been experimentally validated; and 3) new $T F$ for interactions mediated by TFs with uncharacterized regulons, hence those that are not included in the current networks.

| TF | | TG | Average rank |
| :---: | :---: | :---: | :---: |$|$ Status

cg1585	cg0303	71.0	potential new TG
cg1486	cg2383	71.0	potential new TG
cg1585	cg1586	72.0	potential new TG
cg1585	cg2261	73.333	potential new TG
cg1098	cg1098	74.333	new TF
cg0484	cg2513	76.667	new TF
cg0313	cg0313	77.0	network
cg1486	cg1486	83.667	potential new TG
cg3202	cg3202	85.667	network
Recovered from B. subtilis			
cg 2114	cg2114	3.333	network
cg 2114	cg2141	11.667	network
cg 2114	cg1996	15.333	potential new TG
cg2624	cg2803	25.0	potential new TG
cg1585	cg1580	27.333	network
cg2624	cg1142	29.667	potential new TG
cg1585	cg1582	39.333	network
cg2516	cg3100	39.667	potential new TG
cg3097	cg0113	40.0	potential new TG
cg1817	cg1814	40.667	potential new TG
cg1817	cg1815	42.333	network
cg2516	cg2514	44.667	potential new TG
cg2114	cg1401	47.333	potential new TG
cg1817	cg1817	48.0	network
cg2516	cg3099	49.667	potential new TG
cg 2114	cg1560	49.667	network
cg 2114	cg0976	50.667	potential new TG
Recovered from E. coli			
cg1585	cg1580	19.0	network
cg2114	cg2114	62.667	network
cg 2114	cg2141	64.0	network
cg0350	cg2166	115.333	potential new TG
cg0350	cg3395	164.333	potential new TG
cg2899	cg2637	169.0	new TF
cg3224	cg2559	190.667	potential new TG
cg0350	cg1568	195.0	network
cg1585	cg3004	201.0	potential new TG
cg0350	cg2429	209.667	network
cg0350	cg1257	211.333	potential new TG
cg0350	cg0229	212.0	network
cg0001	cg0001	215.667	new TF
cg1327	cg1327	217.0	new TF

cg 2502	cg0591	224.0	potential new TG
cg0350	cg2175	229.667	potential new TG
cg0350	cg2126	232.0	potential new TG
cg1585	cg2167	235.0	potential new TG
cg0350	cg3068	243.667	potential new TG
cg0350	cg2870	243.667	potential new TG
cg0350	cg1145	244.0	network
cg1327	cg3141	250.667	new TF
cg2502	cg2782	253.667	potential new TG
cg2936	cg2933	254.333	network
cg2502	cg3237	255.0	potential new TG
cg0350	cg3308	256.0	potential new TG
cg0350	cg2102	263.0	potential new TG
cg0350	cg1492	266.667	potential new TG
cg0001	cg1525	273.667	new TF
cg 2112	cg2787	281.667	network
cg1425	cg0001	283.333	potential new TG
cg2502	cg2183	285.0	potential new TG
cg0350	cg2841	286.0	potential new TG
cg1585	cg2166	287.333	potential new TG
cg0350	cg1790	290.333	network
cg0350	cg3340	290.667	potential new TG
cg2502	cg2502	291.0	potential new TG
cg0350	cg3423	291.0	potential new TG
cg0350	cg1586	293.0	potential new TG
cg1327	cg1656	293.667	new TF
cg1585	cg2178	298.0	potential new TG
cg1585	cg0229	299.0	network
cg0350	cg0350	299.0	network
cg0350	cg0067	300.667	potential new TG
cg2114	cg2489	303.0	potential new TG
cg0350	cg0953	304.333	potential new TG
cg1425	cg0004	309.0	potential new TG
cg1585	cg1588	310.0	potential new TG
cg2112	cg2781	313.0	potential new TG
cg1585	cg1586	314.333	potential new TG
cg1585	cg1814	317.333	network
cg1327	cg1355	320.0	new TF
cg2112	cg2789	327.667	network
cg0001	cg0004	328.0	new TF
cg1327	cg2856	329.0	new TF
cg1425	cg0306	331.0	potential new TG

cg2899	cg2899	331.667	new TF
cg0350	cg0699	333.667	potential new TG
cg1425	cg0005	334.667	potential new TG
cg0350	cg0673	340.667	potential new TG
cg0350	cg3336	345.333	potential new TG
cg0350	cg1163	351.667	potential new TG
cg1327	cg1383	362.333	new TF
cg0350	cg2932	362.667	potential new TG
cg0001	cg1550	370.333	new TF
cg0001	cg0005	374.333	new TF
cg2114	cg1602	375.0	network
cg1327	cg2891	376.667	new TF
cg0350	cg2178	379.0	potential new TG
cg0350	cg3096	379.667	network

[^0]: Juan M. Escorcia-Rodríguez ${ }^{1}$, Andreas Tauch ${ }^{2}$, and Julio A. Freyre-González ${ }^{1, *}$
 1 Regulatory Systems Biology Research Group, Laboratory of Systems and Synthetic Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México. Av. Universidad s/n, Col. Chamilpa, 62210. Cuernavaca, Morelos, México
 ${ }^{2}$ Centrum für Biotechnologie (CeBiTec). Universität Bielefeld, Universitätsstraße 27, 33615. Bielefeld, Germany

 * Correspondence: jfreyre@ccg.unam.mx (J.A.F.G.)

