Supplementary

Yingying Cao^{1*}, Xintian Xu², Simo Kitanovski¹, Lina Song³, Jun Wang¹, Pei Hao^{2,4*}, Daniel Hoffmann^{1*}

¹Bioinformatics and Computational Biophysics,
Faculty of Biology and Center for Medical Biotechnology,
University of Duisburg-Essen, Essen 45141, Germany
²Key Laboratory of Molecular Virology and Immunology,
Institut Pasteur of Shanghai, Center for Biosafety Mega-Science,
Chinese Academy of Sciences, Shanghai 200031, China
³Translational Skin Cancer Research,
German Consortium for Translational Cancer Research, Essen, Germany
⁴The Joint Program in Infection and Immunity:
a. Guangzhou Women and Children's Medical Center,
Guangzhou Medical University, Guangzhou 510623, China;
b. Institut Pasteur of Shanghai,
Chinese Academy of Sciences, Shanghai 200031, China

*To whom correspondence should be addressed; E-mail: daniel.hoffmann@uni-due.de, phao@ips.ac.cn, yingying.cao@uni-due.de.

1 Additional information about public data

All data can be downloaded from public repositories, the three main sources are NCBI (1) (https://www.ncbi.nlm.nih.gov/) and ENA (2) (https://www.ebi.ac.uk/ena) and BIG Data Center (3) (https://bigd.big.ac.cn/).

1.1 GSE147507 dataset (4)

From this dataset we downloaded: Biological triplicates of primary human lung epithelium (NHBE) which were mock treated or infected with SARS-CoV-2 (USA-WA1/2020) at an MOI

of 2; Biological triplicates of transformed lung alveolar (A549) cells which were mock treated or infected with SARS-CoV-2 (USA-WA1/2020) at an MOI of 0.2 or 2; Biological triplicates of transformed lung alveolar (A549) transduced with a vector expressing human ACE2, which were also mock treated or infected with SARS-CoV-2 (USA-WA1/2020) at an MOI of 0.2 or 2; Biological triplicates of transformed lung-derived Calu-3 cells which were mock treated or infected with SARS-CoV-2 (USA-WA1/2020) at an MOI of 2; COVID-19 patient samples: Uninfected human lung biopsies derived from one male (age 72) and one female (age 60) and used as control biological replicates, and lung samples derived from a single male COVID-19 deceased patient (age 74) which were processed in technical replicates. Library preparation method polyA+ selection was used to remove rRNAs before sequencing.

1.2 **GSE148729** dataset (5)

From this dataset we downloaded biological replicates of Calu-3, Caco-2 and H1299 cells which were mock treated or infected with SARS-CoV-2 (patient isolate BetaCoV/Munich/BavPat1/2020/EPI_ISL_406862) or SARS-CoV (Frankfurt strain) at an MOI of 0.3. Library preparation method polyA+ selection was used to remove rRNAs before sequencing Caco-2 and H1299 cells. For Calu-3 cells, two library preparation method polyA+ selection and rRNA-depletion were used respectively to remove rRNAs before sequencing.

1.3 **GSE153940** dataset

From this dataset we downloaded RNA sequencing data of Vero E6 cells which were either mock-infected or infected with SARS-CoV-2 USA-WA1/2020 (MOI = 0.3) with three replicates. However, when we downloaded the data one sample with accession number GSM4658806 was not available for downloading. Cells were harvested at 24 hours after infection, and rRNA-depletion method was used to extract RNA for sequencing.

1.4 GSE56189 dataset

From this dataset we downloaded: Biological triplicates of MRC5 and Vero E6 cells which were mock treated or infected with SARS-CoV (Urbani strain) or MERS-CoV (EMC/2012) at an MOI of 0.1 or 3. Library preparation method polyA+ selection was used to remove rRNAs before sequencing.

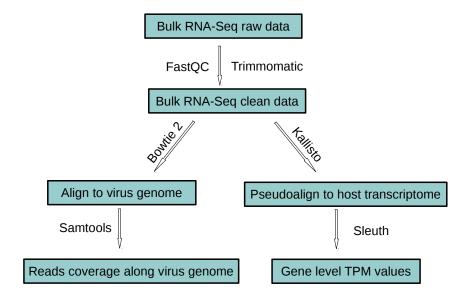
1.5 CRA002390 dataset (6)

This dataset is public available in https://bigd.big.ac.cn/gsa/browse/CRA002390. From this dataset we downloaded: The raw FASTQ data of PBMC and BALF samples of COVID-19 patients and corresponding PBMC controls.

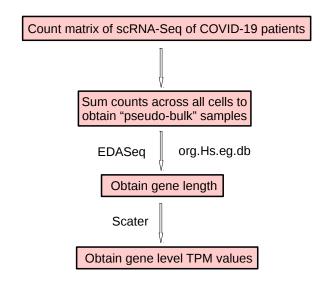
1.6 PRJNA434133 dataset (7)

From this dataset we downloaded the raw FASTQ data for BALF healthy control samples with accession numbers SRR10571724, SRR10571730, and SRR10571732.

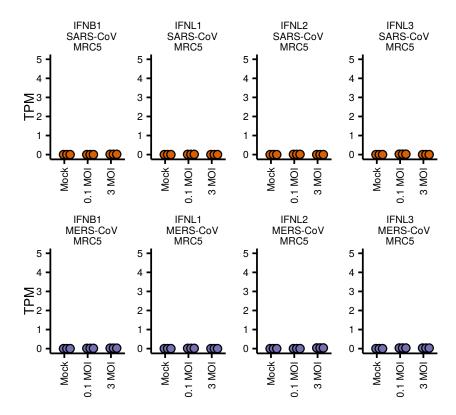
1.7 GSE145926 dataset (8)

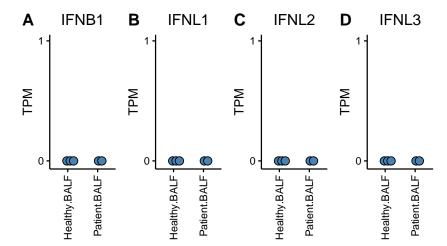

From this dataset we downloaded the preprocessed single cell RNA-Seq data of BALF samples from 6 severe COVID-19 patients and 3 mild COVID-19 patients.

1.8 PRJNA526088 dataset (9)


From this dataset we downloaded the preprocessed single cell RNA-Seq data of BALF sample from a healthy control with accession number GSM3660650.

2 Supplementary figures


Fig. S1:


Fig. S2:

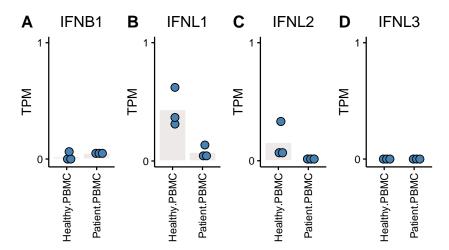
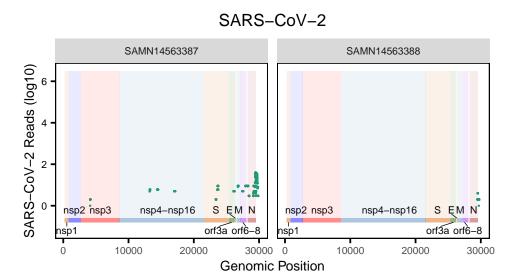

Fig. S3:

Fig. S4:


Fig. S5:

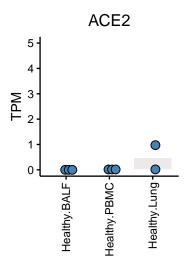

Fig. S6:

Fig. S7:

Fig. S8:

References

- 1. D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, *et al.*, Database resources of the national center for biotechnology information. *Nucleic acids research* **36**, D13–D21 (2007).
- 2. R. Leinonen, R. Akhtar, E. Birney, L. Bower, A. Cerdeno-Tárraga, Y. Cheng, I. Cleland, N. Faruque, N. Goodgame, R. Gibson, *et al.*, The european nucleotide archive. *Nucleic acids research* **39**, D28–D31 (2010).
- 3. N. G. D. C. Members, *et al.*, Database resources of the national genomics data center in 2020. *Nucleic Acids Research* **48**, D24 (2020).
- 4. D. Blanco-Melo, B. E. Nilsson-Payant, W.-C. Liu, S. Uhl, D. Hoagland, R. Møller, T. X. Jordan, K. Oishi, M. Panis, D. Sachs, *et al.*, Imbalanced host response to sars-cov-2 drives development of covid-19. *Cell* (2020).
- 5. E. Wyler, K. Mösbauer, V. Franke, A. Diag, L. T. Gottula, R. Arsie, F. Klironomos, D. Koppstein, S. Ayoub, C. Buccitelli, *et al.*, Bulk and single-cell gene expression profiling of sarscov-2 infected human cell lines identifies molecular targets for therapeutic intervention. *bioRxiv* (2020).
- 6. Y. Xiong, Y. Liu, L. Cao, D. Wang, M. Guo, A. Jiang, D. Guo, W. Hu, J. Yang, Z. Tang, et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in covid-19 patients. *Emerging microbes & infections* 9, 761–770 (2020).
- 7. D. Michalovich, N. Rodriguez-Perez, S. Smolinska, M. Pirozynski, D. Mayhew, S. Uddin, S. Van Horn, M. Sokolowska, C. Altunbulakli, A. Eljaszewicz, *et al.*, Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. *Nature communications* **10**, 1–14 (2019).
- 8. M. Liao, Y. Liu, J. Yuan, Y. Wen, G. Xu, J. Zhao, L. Cheng, J. Li, X. Wang, F. Wang, *et al.*, Single-cell landscape of bronchoalveolar immune cells in patients with covid-19. *Nature medicine* pp. 1–3 (2020).
- 9. C. Morse, T. Tabib, J. Sembrat, K. L. Buschur, H. T. Bittar, E. Valenzi, Y. Jiang, D. J. Kass, K. Gibson, W. Chen, *et al.*, Proliferating spp1/mertk-expressing macrophages in idiopathic pulmonary fibrosis. *European Respiratory Journal* **54** (2019).