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Abstract: In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection, the relationship between brain tropism, 
neuroinflammation and host immune response has not been well characterized. We analyzed 
68,557 single-nucleus transcriptomes from three brain regions (dorsolateral prefrontal cortex, 
medulla oblongata and choroid plexus) and identified an increased proportion of stromal cells and 
monocytes in the choroid plexus of COVID-19 patients. Differential gene expression, pseudo-
temporal trajectory and gene regulatory network analyses revealed microglial transcriptome 
perturbations, mediating a range of biological processes, including cellular activation, mobility 
and phagocytosis. Quantification of viral spike S1 protein and SARS-CoV-2 transcripts did not 
support the notion of brain tropism. Overall, our findings suggest extensive neuroinflammation in 
patients with acute COVID-19. 
 
 
One Sentence Summary: Single-nucleus transcriptome analysis suggests extensive 
neuroinflammation in human brain tissue of patients with acute coronavirus disease 2019. 
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Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), is currently the most urgent healthcare issue in the world. The 
central nervous system (CNS) is not the primary organ affected by SARS-CoV-2; however, 
neurological symptoms have frequently been reported in COVID-19 patients (1, 2). Systematically 
studying neurological disease in COVID-19 patients presents several challenges, including, having 
only a subset of the population of patients with neurological symptoms, an inability to sample CNS 
tissues directly, and difficulties in distinguishing direct neuroinvasion vs. systemic viremia within 
the brain. Brain autopsies have demonstrated acute hypoxic injury (3), as well as plausible SARS-
CoV-2 tropism (4-7) in the CNS. Studies in neuronal organoids have provided conflicting results 
about the tropism of SARS-CoV-2 on neurons (6, 8, 9) or epithelial cells in the choroid plexus (10, 
11). As such, in order to fully understand the neurological impact of COVID-19, it is critical to 
perform an unbiased and comprehensive high-resolution exploration of the transcriptomic 
landscape in human brain tissue from patients with COVID-19.   

To characterize the CNS effect of SARS-CoV-2, we performed viral load quantification in human 
brain tissue from 5 COVID-19 patients and 4 controls (Fig. 1a). We note that all COVID-19 cases 
were classified as severe; the clinical characteristics of donors are detailed in Data S1. For each 
donor, we targeted 3 brain regions, which included the dorsolateral prefrontal cortex (PFC), 
medulla oblongata (medulla) and choroid plexus (ChP). Immunoblotting was negative for the 
presence of viral spike S1 protein in all tissues examined (Fig. S1). We then performed 
transcriptome analysis covering >99% of SARS-CoV-2 genome and all potential serotypes. For 
each brain region and donor, we included a single dissection with the exception of the PFC, from 
which we included separate dissections of cortical grey matter and white matter (for an illustrative 
example see Fig. S2), and generated, on average, 1.2 million reads per library. Across all samples, 
none of the sequencing reads mapped to the SARS-CoV-2 genome (Data S2). In addition, 
examination of additional brain regions (red nucleus and substantia nigra), using fluorescence in 
situ hybridization for SARS-COV-2 spike protein, also failed to detect virus (Fig. S3). Overall, by 
employing three different experimental approaches, and exploring multiple brain regions, we did 
not detect SARS-CoV-2 in the postmortem brain tissue. 
 
We then characterized the molecular and cellular perturbations in the CNS of COVID-19 patients, 
independent of SARS-CoV-2 direct invasion, by performing droplet-based single-nucleus RNA 
sequencing (snRNA-seq) in the PFC, medulla and ChP in the same set of 5 patients and 4 controls 
(Fig. 1a). To better control for donor batch effects, we performed two dissections for each brain 
region and individual (Fig. S2), and all samples per donor (n=6) were pooled together using 
nuclear hashing. After preprocessing of snRNA-seq data, demultiplexing using hashtag-oligo 
intensity and quality control (see Methods), 68,557 high-quality single nuclei barcodes, 
demonstrating high technical reproducibility and a median of 2,817 genes, were available for 
downstream analysis (Fig. S4). Variance in gene expression was mostly driven by biological 
factors (cell type, brain regions and donor) (Fig. S5).  
 
We performed de novo taxonomy based on the graph-based clustering and uniform manifold 
approximation and projection (UMAP) across all brain regions and samples, and identified 15 
major cell clusters (Fig. 1b). Clustering was independent of donor effect and technical variables, 
while differences between the brain regions were preserved (Fig. S6). Annotation of cell clusters 
based on expression of canonical gene markers identified the following populations: Excitatory 
neurons (Ex) that express SYT1 and SLC17A7; inhibitory neurons (In) that express SYT1 and 
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GAD1; Astrocytes (Ast1 and Ast2) that express AQP4; Ependymal cells (Ep) that express 
CFAP299; Oligodendrocyte progenitor cell (OPC) that express VCAN; Oligodendrocytes (Oli) that 
express MOBP; epithelial cells (Epi) that express HTR2C;  endothelial cells (End) that express 
FLT1; Mesenchymal cells (Mes) that express COL1A1; Pericytes (Per1 and Per2) that express 
PDGFRB; Microglial cells (Mic) that express APBB1IP; lymphocyte (LM) that express CD96 and 
monocytes (Mo), expressing CD163 (Fig. 1c; Fig. S7). Gene set enrichment analysis showed 
overlap for expected molecular pathways and functions, such as myelination for oligodendrocytes, 
chemical synaptic transmission for excitatory and inhibitory neurons and T cell activation for 
lymphocytes (Fig. S8). The expression profiles of each cell type show high concordance with 
previous snRNA-seq in human brain tissue (5, 12), peripheral blood cells and brain organoids (13) 
(Fig. S9), indicating the robust definition of cell subpopulations in the current study. 
We then assessed the relative proportions of the 15 major cell types in COVID-19 cases compared 
to controls across the three brain regions. For each cell cluster, we applied a linear mixed model 
to detect interaction between COVID-19 cases and brain regions, while controlling for donor 
effects. Among 45 combinations of cell types and brain regions, we identified 2 cell types from 
choroid plexus, including monocytes and mesenchymal cells, showing a significant increase in 
their relative proportions in COVID-19 cases (Fig. 1d). We did not detect any significant changes 
in the cell type composition of COVID-19 patients compared to controls in either the PFC or 
Medulla (Fig. S10). Overall, these results suggest that, in COVID-19, immune cells (monocytes 
and macrophages) extravasate from the blood vessels into the stroma of the choroid plexus, which 
is composed of mesenchymal cells.  

For each cell type and brain region, we applied linear mixed models to identify differentially 
expressed genes (DEGs) among COVID-19 patients and controls, while controlling for donor 
effects (see Methods). Among the 15 cell types and 3 brain regions, microglia in the PFC showed 
the highest number of perturbations, including 178 DEGs (Fig. 2a). Gene set enrichment analysis 
identified biological processes such as “macrophage activation” (8 genes, P = 9.3×10-6) and 
“phagocytosis” (14 genes, P = 1.9×10-6) as being enriched with the 178 DEGs in PFC microglia 
(Data S3). To further investigate transcriptomic changes in canonical pathways, we calculated 
activity scores across 186 KEGG molecular pathways. We then applied linear mixed models and 
identified differences in average activity levels across COVID-19 patients and controls (see 
Methods). We identified 16 pathways showing significant differences in activity levels in 
microglia of the PFC (Data S4).  As an illustrative example, we show the expression levels of the 
four most significant upregulated pathways (Fig. 2b). Together, these results suggest the strong 
activation of innate immune cells in COVID-19 brain parenchyma.  

We next calculated a pseudo-temporal trajectory score (PTS) in microglia, based on the 
progression of the transcriptional dysregulation in COVID-19 patients compared to controls (Fig. 
3a). PTS has a wide distribution, potentially indicating microglia in different stages of activation 
and, as expected, COVID-19 patients demonstrated higher PTS than controls (Fig. 3b). We 
categorized 646 commonly expressed microglia genes into four groups (increasing, decreasing, 
early transient and late transient) based on the expression patterns capturing progressive changes 
related to PTS (Fig. 3c, Data S5). The majority of genes were clustered as “increasing” (579 
genes), followed by late transient (36 genes), early transient (16 genes) and decreasing (15 genes). 
Genes within the “increasing” cluster were more perturbed in COVID-19 patients (estimated based 
on pi1 = 0.683), compared to the other 3 clusters (range of pi1 = 0.051 to 0.077) and were enriched 
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for 452 biological pathways, including “regulation of immune system process” (136 genes, p = 
1.75×10-16) and “apoptotic process” (104 genes, P = 3.19×10-5).  In the “early transient” group, 8 
out of the 16 genes, including CD83 and 3 heat shock proteins (HSP90AA1, HSPB1, HSPH1), 
belong to the “cell activation” pathway (P = 6.40×10-6), while the “late transient” group was 
enriched for the “cell mobility” pathway (P = 4.44×10-4).  
 
To further understand the impact of SARS-CoV-2 on the relationships between transcription 
factors (TFs) and target transcripts, we explored differences in gene regulatory networks (GRNs). 
Across all cell subpopulations, we identified 131 TF modules that regulated, on average, 272 genes 
per module (14) (Data S6). UMAP projection based on activity scores of GRNs reaffirmed the 
robustness of annotated cell types (Fig. S11). Used the regulon specificity score to rank TF 
modules based on cell population specificity (15) (Fig. S12), we uncovered well-known cell type 
specific TFs, such as PAX6 for astrocytes and IRX8 for microglial cells. We then tested whether 
changes in the activity level of the top 5 TFs for each cell population were associated with COVID-
19. PFC microglia were most affected and showed upregulation in the activity of 4 out of 5 TFs 
(IRF8, ATF5, SPI1, TAL1; at FDR 20%) in patients with COVID-19 (Fig. 4a; Data S7). 
Projecting microglia specific DEGs onto the GRNs of these 4 TFs showed the co-regulatory TF-
gene patterns affected in COVID-19 (Fig. 4b). Collectively, these results suggest GRNs 
corresponding to activated microglia response in patients with COVID-19. 

To assess whether microglia activation has a beneficial or deleterious effect, we imputed the 
genetically regulated transcriptomic changes (16) associated with severe COVID19 outcomes by 
leveraging genetic variation from the COVID-19 Host Genetics Initiative and gene expression 
models from brain (17, 18) and blood (19) tissues (see Methods, Data S8 for full results). We 
included both brain and blood tissue models to better capture the transcriptome profiling of the 
microglial cell lineage (20, 21). We identified 12 significant genes (at FDR 5%) in brain and blood 
(AP000295.1, CCR3, CR936218.2, CRHR1, FYCO1, IFNAR2, IL10RB, IL10RB-AS1, 
LRRC37A4P, MAPT-AS1, OAS1, OAS3) that were associated with hospitalized COVID-19 
patients, with respect to the general population. Nominally significant gene-trait associations (P < 
0.05) from the imputed blood transcriptome were enriched (OR=1.64, P=0.030, fisher’s exact test) 
with GRNs that are associated with the top 4 microglia specific TFs (IRF8, ATF5, SPI1, TAL1) 
(Fig. 4c). Enrichment was observed only for genes predicted to be downregulated (OR=1.89, 
P=0.035, fisher’s exact test), compared to genes predicted to be upregulated in susceptible 
individuals (OR=1.35, P=0.25, fisher’s exact test). In addition, OAS1, which was predicted to be 
downregulated in susceptible individuals (FDR-adjusted P = 0.003), was involved in 3 microglia 
specific GRNs (SPI1, IRF5, TAL1, Fig. 4b). Overall, the gene expression perturbations in 
microglia had the opposite effect compared to the genetically regulated transcriptomic changes, 
suggesting that microglia activation in acute COVID-19 patients represents a beneficial host 
response. 

In summary, to better understand the impact of acute COVID-19 on the CNS, we studied its effects 
across 3 functionally distinct regions of the human brain (prefrontal cortex, choroid plexus and 
medulla oblongata). Although no virus was detected, single-nucleus gene expression analysis 
revealed extensive differences in brains of COVID-19 patients when compared to controls; 
specifically, in the ChP and PFC. We observed a relative increase in the proportions of infiltrating 
immune cells in the ChP, suggesting potential migration of SARS-CoV-2-carrying monocytes 
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across the blood–brain barrier. Microglia residing in the PFC displayed dysregulated gene 
expression in response to SARS-CoV-2 infection. The majority of the microglial DEGs were up-
regulated, mediating a myeloid-driven inflammatory response that involved a range of biological 
processes, including cellular activation, mobility and phagocytosis. This is consistent with 
previous studies (5, 7) that have also described increased inflammatory response of microglia in 
COVID-19 cases. Finally, by leveraging genetic variation to infer differences in COVID-19 
susceptible individuals, we provided support for a potential beneficial role of microglia activation 
during the acute COVID-19 phase.  

Although there is evidence that SARS-CoV-2 spike protein can be detected in the brain, including 
cortex (22), choroid plexus (5) and medulla oblongata (7, 23), immunoblotting, 
immunohistochemistry and viral genome RNA-seq indicate that the virus was not present at the 
time of death in the specimens included in this study. The ability to detect SARS-CoV-2 in the 
CNS is affected by the duration of COVID-19 infection (7). In addition, only a subset of COVID-
19 patients indicates non-zero SARS-CoV-2 RNA copies in CNS, which are more difficult to 
detect in brain parenchyma compared to the olfactory mucosa (7). Although our focus was on 
immune cells, there is evidence, in addition to microglia activation, for COVID-19 related 
transcriptional changes in a range of brain cell-types including astrocytes, oligodendrocytes and 
excitatory neurons (5). The observed differences in the number of DEGs, and the cell-types 
affected, might be explained by the experimental design: two versus a single dissection per brain 
region and individual. If we only consider a single dissection per brain region and individual in 
our analysis, the number of DEGs increases (data not shown) and involves perturbations among 
every major CNS cell type.  

 
Taken together, these findings indicate persistent activation of the innate immune response in the 
brains of patients with COVID-19. Based on our results, it is possible that the inflammatory 
response of microglia is induced from peripheral immune cells infiltrating CNS though the blood–
brain barrier. Another point of entry of SARS-CoV-2 to CNS is by crossing the neural–mucosal 
interface in olfactory mucosa (7). These two mechanisms are non-mutually exclusive and might 
be associated with different stages of disease progression and presentation of clinical symptoms. 
While this study sheds light on some putative mechanisms through which SARS-CoV-2 affects 
the CNS, additional research is needed to deepen our understanding of the molecular mechanisms 
mediating neurological symptoms in COVID-19. Conclusively, our study suggests extensive 
neuroinflammation and brain immune response in acute COVID-19 patients, even in the absence 
of direct evidence of SARS-CoV-2 neuroinvasion. 
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Fig. 1. Droplet-based single-nucleus RNA sequencing in the dorsolateral prefrontal cortex (PFC), 
medulla oblongata (medulla) and choroid plexus (ChP) of 5 COVID-19 patients and 4 controls. 
(A). Experimental design. Frozen specimens of human brain were dissected and subjected to a 
number of molecular assays, including single nuclei RNA-sequencing (snRNA-seq), viral genome 
RNA-seq and SARS-CoV-2 viral spike protein detection. (B) Uniform manifold approximation 
and projection visualization of annotated single nucleus data. Colors show annotated cell types. 
(C) Distribution of canonical gene markers on annotated cell populations. The range of violins are 
adjusted by the maximum and minimum in each row. (D) Cell composition of mesenchymal cells 
(Mes) and monocytes (Mo) in the choroid plexus stratified by case – control status. Only 
comparisons across tissues and cell types that survived false discovery rate correction are shown. 
Ast1 and Ast2: 2 groups of astrocytes. End: endothelial cells. Epi: Epithelial cells. Ep: ependymal 
cells. Ex: excitatory neurons. In: inhibitory neurons. LM: lymphocytes. Mes: Mesenchymal cells. 
Mic: microglia. Mo: monocytes. Oli: oligodendrocytes. Opc: Oligodendrocyte progenitor cell. 
Peri1 and Peri2: two groups of pericytes. 
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Fig. 2. Differential gene expression and gene set enrichment analyses in COVID-19 patients 
compared to controls. (A) Number of differentially expressed genes (DEGs) identified in cell types 
across three brain regions. Up- and down-regulated genes are shown in different colors. Cell types 
are ranked by the total number of DEGs across three brain regions. Cell types with no more than 
10 DEGs in any brain region are omitted. (B) Gene set activity scores of PFC microglia. The four 
most significant pathways among 186 KEGG gene sets are shown. The color of a violin indicates 
the median activity score of each individual. 
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Fig. 3. Pseudo-temporal trajectory score (PTS) analysis in microglia identified gene expression 
signatures with differential progression patterns in COVID-19 cases. (A) Pseudo-temporal 
trajectory in microglia across three brain regions. Red and blue colors label cells from COVID-19 
cases and controls, respectively. (B) PTS across 5 COVID-19 patients and 4 controls in PFC 
microglia. The color of violin plots indicates the median activity score of each individual. (C) We 
identified 4 types of gene expression progression patterns over the pseudo-temporal trajectory: 
increasing (blue), early transient (orange), late transient (green) and decreasing (red). A dashed 
line shows the profile of a representative gene in each group. 
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Fig. 4. Gene regulatory network (GRN) analysis revealed transcription factors (TFs) driving 
transcriptomic dysregulation in COVID-19 patients. (A) TF module scores in PFC microglia. The 
color of a violin indicates the median activity score of each individual. Four up-regulated TF 
modules (IRF8, ATF5, SPI1, TAL1) are shown. (B) Up-regulated TF modules in PFC microglia. 
Colored nodes show the transcription factors (blue, green, brown and purple), DEGs (red) and a 
genetically associated gene based on GWAS (yellow). Nodes without circles are genes regulated 
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by the transcription factors but are not DEGs. The regulatory network is trimmed to show only 14 
DEGs, ranked by P-values, and 10 non-DEG genes regulated by each transcription factor. (C) 
Enrichment of the GWAS associated genes in 4 microglia specific regulons: IRF8, ATF5, SPI1, 
TAL1. Circles show odds ratios for the overlap of nominally significant GWAS gene (n = 285 and 
560 for blood and brain respectively, P ≤ 0.05), imputed from a GWAS comparing hospitalized 
COVID with respect to the general population, and genes of 4 microglia specific regulons. Error 
bars show 95% confidence intervals of estimated odds ratios. “Up” those that are predicted to be 
upregulated (n = 140 and 297 for blood and brain respectively, P ≤ 0.05) and “Down” are those 
that are predicted to be downregulated (n = 145 and 263 for blood and brain respectively, P ≤ 
0.05). Analysis is limited to protein coding genes only. Significant enrichments (P ≤ 0.05, Fisher’s 
exact test) are denoted by “*”. 
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