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Abstract

Single-cell genomics assays have emerged as a dominant platform for interrogating complex biological 

systems. Methods to capture various properties at the single-cell level typically suffer a tradeoff between cell 

count and information content, which is defined by the number of unique and usable reads acquired per cell. We 

and others have described workflows that utilize single-cell combinatorial indexing (sci)1, leveraging 

transposase-based library construction2 to assess a variety of genomic properties in high throughput; however, 

these techniques often produce sparse coverage for the property of interest. Here, we describe a novel adaptor-

switching strategy, ‘s3’, capable of producing one-to-two order-of-magnitude improvements in usable reads 

obtained per cell for chromatin accessibility (s3-ATAC), whole genome sequencing (s3-WGS), and whole 

genome plus chromatin conformation (s3-GCC), while retaining the same high-throughput capabilities of 

predecessor ‘sci’ technologies. We apply s3 to produce high-coverage single-cell ATAC-seq profiles of mouse 

brain and human cortex tissue; and whole genome and chromatin contact maps for two low-passage patient-

derived cell lines from a primary pancreatic tumor. 

Main 

The core component of many sci- assays, as well as ATAC-seq, is the use of transposase-based library 

construction. While the transposition reaction itself (tagmentation) is highly efficient, viable sequencing library 

molecules are only produced when two different adaptors, in the form of forward or reverse primer sequences, 

are incorporated at each end of the molecule. This occurs only 50% of the time (Figure 1a, left). To combat this 

inefficiency, strategies including the use of larger complements of adaptor species3, incorporation of T7 

promoters to enable amplification via in vitro  transcription4–6, or reverse adaptor introduction through targeted7 

or random priming8 have been developed; however, these methods are often complex and result in limited 

efficiency improvements. Here, we present a novel means of adapter replacement to produce library molecules 

tagged with both forward and reverse adaptors for top and bottom strands, overcoming this efficiency bottleneck. 

This format permits the use of a DNA index sequence embedded within the transposase adaptor complex, 

enabling single-cell combinatorial indexing (sci) applications, where two rounds of indexing are performed — the 

first at the transposition stage, and second at the PCR stage1,9,10. 

Our strategy, symmetrical strand sci (s3; Figure 1a, right) uses single-adapter transposition to incorporate 

the forward primer sequence, the Tn5 mosaic end sequence and a reaction-specific DNA barcode. As with 
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standard tagmentation workflows, extension through the bottom strand is then performed to provide adaptor 

sequences on both ends of each molecule; however, the s3 transposome complexes contain a uracil base 

immediately following the mosaic end sequence. Use of a uracil-intolerant polymerase therefore prevents 

extension beyond the mosaic end into the DNA barcode and forward adaptor sequence. A second template oligo 

is then introduced that contains a 3’-blocked locked nucleic acid (LNA) mosaic end reverse complement 

sequence with a reverse adaptor sequence 5’ overhang. This oligo favorably anneals to the copied mosaic end 

sequence, due to the higher melting temperature of LNA, and acts as a template for the library molecule to 

extend through and copy the reverse adaptor. This results in all library fragments having both a forward and 

reverse adaptor sequence. The LNA-templated extension is carried out over multiple rounds of thermocycling to 

ensure maximum efficiency of reverse adaptor incorporation. Furthermore, adapter sequences are designed 

such that standard sequencing recipes can be used instead of the custom workflows and primers that are 

required for current indexed transposition technologies11,12. 

We first sought to establish the s3 technique to assess chromatin accessibility. In s3-ATAC, nuclei are 

isolated and tagmented using our single-ended, indexed transposomes and carried through the adaptor-

switching s3 workflow (Figure 1a). To ensure we attain true single-cell libraries without contamination from other 

nuclei, and minimal barcode collisions, we performed a mixed-species experiment on primary frozen human 

cortical tissue from the middle frontal gyrus and frozen mouse whole brain tissue (Figure 1b). We elected to 

perform this test on primary tissue samples instead of an idealized cell line setting to more accurately capture 

the rates of cross-cell contamination. Levels of crosstalk were assessed at both points of possible introduction: 

the tagmentation and PCR stages; by mixing nuclei from the two samples before tagmentation as well as after. 

Additionally, pure species libraries were produced by leveraging the inherent sample multiplexing capabilities of 

sci workflows. In the experimental condition where nuclei were mixed prior to any processing, i.e. pre-

tagmentation, we observed a total estimated collision rate of 5.53% (Figure 2dc; 2 × 2.77% detected human-

mouse collisions), comparable to existing methods and tunable based on the number of nuclei deposited into 

each PCR indexing reaction. Zero collisions were observed in the post-tagmentation experimental conditions, 

suggesting no molecular crosstalk during s3 adapter switching or PCR. 

In total, we generated 2,175 human and 837 mouse single-cell ATAC-seq profiles passing quality filters 

(Methods) across four PCR indexing plates (Figure 1b). We then assessed the total unique sequence reads 

obtained per cell as a function of the total aligned reads, i.e. the library complexity. One of our mixed species 

plates was sequenced to beyond 50% saturation (duplicate reads / total reads), to represent the sequencing 

depth obtained where diminishing returns of increased sequence depth become excessive9. For the mouse cells, 

the mean sequencing saturation per cell was 63.6% and resulted in a median unique read count per cell of 

178,069 (mean = 258,859). The human cells reached a mean sequencing saturation of 56.6% with a median 

unique reads per cell of 99,882 (mean = 175,361). We additionally sequenced a plate that contained only human 

cells to a mean sequencing saturation of 70.4% which produced a median of 100,280 (mean = 146,937) unique 

reads per cell.  When compared to other single-cell ATAC-seq datasets performed on mouse whole brain tissue, 

our mouse s3-ATAC libraries contain substantially greater reads per cell with 17.1x, 11.6x and 7.8x fold 

improvement compared to snATAC, 10X Genomics scATAC, and dscATAC, respectively (Figure 1d)14–16. Read 

count increases can be indicative of poor ATAC-seq library quality, with increased depth reflecting increased 

noise and loss of signal at open chromatin regions. To address this, we first assessed read pair insert sizes,  

revealing the characteristic nucleosome-size banding distribution of ATAC-seq (Figure 1e)17. We next calculated 

transcription start site (TSS) enrichment using the approach defined by the ENCODE project (Methods). This 

produced significant enrichment for both species at 13.4 for human, well above the ‘ideal’ standard (>7) and 13.5 

for mouse, within the acceptable range and just below ideal (>15). Similarly, the fraction of reads in pile-up 

genomic regions (“peaks”; FRiP) was comparable to other single-cell ATAC technologies at 31.95% and 29.15% 
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as measured using 292,156 and 174,653 peaks for human and mouse cells respectively. However, FRiP is 

largely dependent on the number of peaks called, which influenced heavily by cell number and total sequence 

depth obtained. When expanding to a human cortex high-depth ATAC-seq peak set, a mean of 48.1% of reads 

were present in peaks, and mean of 78.2% of reads for mouse cells using a high-depth mouse brain ATAC-seq 

peak set (Methods). 

With ample signal, we next sought to discern cell types present within the complex tissues. For each species, 

we used  peaks called on aggregate data to construct a count matrix followed by dimensionality reduction using 

the topic-modeling tool cisTopic18 which we then visualized using UMAP19, performed graph-based clustering at 

the topic level, and processed via Signac20. Clear separation of cell types was observed using marker gene 

signal and differential accessibility profiles (Figure 1g-h, Supplementary Figure 1)16,21. Notably, even with the 

modest cell count produced by this experiment, the quality improvements allow us to interrogate subclusters of 

inhibitory neurons previously difficult to distinguish in atlas-level datasets (Figure 1i)22.  With our improved cell 

depth, we were able to discern caudal and medial ganglionic eminence inhibitory neurons by marker gene 

coverage plots across 342 GAD1+ cells (“CGE” and “MGE”, respectively; Figure 1j). From these, we identified 

157 GAD1+, ADARB2+ CGE cells and 168 GAD1+,LHX2+ MGE cells. We separated 17 cells (subcluster 4) with 

apoptotic stress markers likely due in part to post-mortem sampling, which could potentially compound common 

single cell ATAC analyses. Aggregated genomic signal over our Topic-based dimensionality reduction was used 

to support our marker gene cell subtype discrimination and describe differentially accessible loci in human 

cortical inhibitory neurons (Figure 1k). 

We then extend the improvements in data quality produced by s3-ATAC to other sci- workflows. This includes 

our previously-described sci-DNA-seq method9 that produces single-cell whole genome sequencing libraries (s3-

WGS) and a novel strategy to incorporate the core components of HiC library preparation but without ligation 

junction enrichment to produce whole genome and chromatin conformation information (s3-GCC; Figure 2a). 

Both strategies disrupt nucleosomes to acquire sequence reads uniformly across the genome9. We first tested 

s3-WGS by producing two small-scale libraries on the euploid lymphoblastoid cell line, GM12878. The first library 

comprised only four wells at the PCR stage for a target of 60 cells, allowing us to sequence the library to high 

depth (Figure 2b). This produced a median passing read count per cell of 12,789,812 (mean = 15,238,184), 

across 45 QC-passing cells (75% cell capture efficiency). With our sequenced library at 72.35% saturation; our 

complexity is notably higher than the predecessor sci-DNA-seq technology which produced a median of 43,367 

reads per cell (mean = 103,138) at the same sequencing saturation (295 and 148 fold improvement in median 

and mean, respectively; Figure 2d)9. The second preparation performed comparably, though sequenced to a 

lower total depth (15.98% saturation). We also confirmed that the coverage was uniform by assessing the median 

absolute deviation (MAD) across 500 kbp bins, which fell within 0.152 ± 0.025 (mean ± s.d.), comparable to other 

single-cell genome sequencing techniques (Figure 2d)9,23,24. 

We performed s3-WGS and s3-GCC on two cultures of a cell line derived from a primary pancreatic ductal 

adenocarcinoma (PDAC) tumor (Figure 2b). PDAC is a highly-aggressive cancer that typically presents at an 

advanced stage, making early detection and study of tumor progression key25. PDAC studies suffer from a low 

cancer cell fraction, thus we used a patient derived cell line (PDCL) generated directly from tumor and maintained 

at fewer than 10 passages. This method allows for multiple modalities of characterization and perturbation, while 

maintaining the heterogeneity present in the tumor sample26. We profiled two PDCL cultures (referred to as 

PDAC-1 and PDAC-2) to capture variance that may arise during passaging from a parent line derived from a 

tumor harboring a driver mutation in the oncogene KRAS (p.G12D). For our s3-WGS preparations, we produced 

773 and 256 single-cell libraries with a mean passing read counts of 1,181,128 and 1,299,949 for PDAC-1 and 

2 (at a combined median of 28.46% saturation), respectively. The s3-GCC libraries contained 57 and 145 cells 
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produced a mean passing read count of 973,397 and 1,588,926 (combined median 73.25% sequencing 

saturation) for PDAC-1 and 2, respectively (Figure 2e). MAD scores for the two lines were greater than that of 

the euploid karyotype of GM12878, 0.219 ± 0.041 (mean ± s.d.); however, this is expected given the widespread 

copy number alterations present in the samples. In addition to the WGS component, the s3-GCC libraries also 

contained reads that were identified as chimeric ligation junctions that provide HiC-like chromatin conformation 

signal. Across both samples, we identified a mean of 118,048 reads per cell that capture genomic contacts at 

least 50 kbp apart from one another, a 14.8-fold improvement over the previous single-cell combinatorial indexing 

technique, sci-HiC13 (Figure 2f). Read pairs spanning ≥50 kbp accounted for a median of 15.6% and 17.0% of 

the total reads obtained per cell, which equates to an enrichment of 361- and 402-fold over that of the s3-WGS 

libraries for PDAC-1 and 2, respectively. 

We first focused our analysis on the s3-WGS and the WGS component of the s3-GCC libraries to examine 

the copy number alterations present. To get a sense of the genomic landscape, we first performed copy number 

calling on whole exome sequencing (WES) libraries that were generated using primary tumor tissue and in bulk 

on the PDCL line (Figure 2g). This revealed a profile of copy number aberrations at finer resolution, with a more 

pronounced profile in the PDCL sample, likely due in part to the absence of euploid stromal cell contamination. 

We then processed all single-cell libraries using SCOPE23 which revealed a highly altered genomic landscape 

within each of the two samples. In line with paired karyotyping and bulk exome data, we see a similar pattern 

per cell of multi-megabasepair copy number aberrations when performing breakpoint analysis on 500 kbp 

windows, with a median depth per window of 81 reads. Using the inferred copy number profile within genomic 

windows for the three samples, GM12878 and the two PDCL cultures, we performed hierarchical and K-means 

clustering on the Jaccard distance between cell breakpoint copy numbers at two different centroid counts. For 

our optimal centroid value, we found a relatively clean separation between cell lines (k=3), for subclonal analysis 

we used a higher centroid count at a local optima (k=6). s3-WGS and s3-GCC cells cluster dependent on PDCL 

culture, reflecting our ability to capture genome-wide copy number data in our s3-GCC libraries (Figure 2h). We 

generated pseudo-bulk clades from the single-cell read count bins, with an average of 211.3 cells per clade and 

an average read count of 3,750 per 50 kbp bin. This revealed multiple fixed and subclonal genomic arrangements 

(Supplementary Figure 2). In PDAC-1 and PDAC-2 we see shared copy number loss of tumor suppressor genes 

CDKN2A, SMAD4 and BRCA225,27. In PDAC-2 we observed a subclonal amplification of PRSS1, a mutation that 

was fixed within our sampling for PDAC-1 and is associated with tumor size and a higher tumor node metastasis 

(TNM) stage28. This suggests that while the lines have the same origin, each culture captured different subsets 

of tumor clonal populations. 

Duplications and deletions are not the sole form of genomic rearrangement that may induce a competitive 

advantage in cancer cell growth. Genomic inversions are difficult to assess through standard karyotyping and 

chromosome painting methods, whereas chromosomal translocations are difficult to uncover in whole-genome 

amplification methods, since only reads capturing the breakpoint would provide supportive evidence. To address 

both of these limitations, we utilized the HiC-like component of our s3-GCC libraries. Using read pairs spanning 

≥50 kbp, we produced chromatin contact maps that produced clear chromatin compartmentalization signal 

(Figure 2i)13. Single cells were separated by their distal contact information via HiCRep and observed distinct 

clusters by PDCLs29. Notably, even at this low sequencing depth, we were able to reliably tell PDCL line sparse 

contact profiles apart (Figure 2j, Supplementary Figure 3). Differences between the aggregated contact maps 

between clusters were then used to assess unique translocation and inversion events across the sampled cells. 

We found that our single-cell contact data uncovers an intrachromosomal translocation between the 8.5-9.5 Mbp 

and 88.5-91.0 Mbp regions of chromosome 12 (Figure 2k), containing ATP2B1, which is commonly 

overexpressed in PDAC30 and the tumor suppressor gene DUSP631 that is only present in PDAC-1. 
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Taken together, our s3 workflow represents marked improvements over the predecessor sci platform with 

respect to passing reads obtained per cell without sacrificing signal enrichment in the case of s3-ATAC, or 

coverage uniformity for s3-WGS. We also introduce another variant of combinatorial indexing workflows, s3-

GCC to obtain both genome sequencing and chromatin conformation, with improved chromatin contacts 

obtained per cell when compared to sci-HiC. We demonstrate the utility of these approaches by assessing two 

patient-derived tumor cell lines with genomic instability. Our analysis reveals patterns of focal amplification for 

disease-relevant genes, and uncover wide-scale heterogeneity at a throughput not attainable with standard 

karyotyping. Additionally, we highlight the joint analysis of our protocols for uncovering the chromatin 

compartment disrupting effect of copy number aberrations. Furthermore, the s3 workflow has the same inherent 

throughput potential of standard single-cell combinatorial indexing, with the ability to readily scale into the tens 

and hundreds of thousands of cells by expanding the set of transposome and PCR indexes. We also expect that 

this platform will be compatible with other transposase-based techniques, including sci-MET10, or CUT&Tag32. 

Lastly, unlike sci workflows, the s3 platform does not require custom sequencing primers or custom sequencing 

recipes, removing one of the major hurdles that groups may face while implementing these technologies. 

Figure Legends 

Figure 1 | Symmetrical strand single-cell combinatorial indexing ATAC-seq (s3-ATAC). (a) Schematic of 

standard sci-ATAC library construction (left). Schematic of s3-ATAC library construction with intermediate steps 

of adapter switching leading to increased genomic molecule capture rate (right). (b) Experimental flow through 

and plate layout for the mixed-species experiment, including tagmentation and PCR plate conditions per well. 

(c) Point plots of single cell libraries with counts of unique reads aligned to mouse or human chromosomes in a 

chimeric reference genome. Points are colored to reflect species assignment (see Methods) in both pre-

tagmentation mixing (left) and post-tagmentation mixing (right). (d) Comparison of library complexity for s3-ATAC 

mouse whole-brain sampled cells to previously reported data sets. All comparisons to our data are significantly 

less (Welch’s two-sample t-test, p value <0.01). Fold improvement of our library complexity per method is listed 

above the method14–16. (e) Insert size distribution of human and mouse libraries reflexing nucleosome banding. 

(f) Enrichment of reads at transcription start sites (“TSS”) for human and mouse libraries with enrichment 

calculation following ENCODE standard practices. (g) UMAP projection of mouse whole brain cell samples 

(n=837 cells) colored by cluster and cell type assignment. (h) UMAP projection human cortex cell samples 

(n=2,175 cells). (i) Subclustering and UMAP projection of human cortical inhibitory neurons (clusters 3 and 4 

from panel h., n=342) (j) Genome coverage track of human inhibitory neurons (n=342) aggregated over 5 

subclusters for genomic locations overlapping MGE and CGE marker genes LHX6 and ADARB2, respectively. 

(k) Hierarchical clustering of topic weight per cell (top). Hypergeometric test of gene set analysis enrichment for 

human inhibitory neuron marker genes (bottom; Fisher’s exact test, see Methods).  

Figure 2 | s3 whole genome sequencing (s3-WGS) and genome conformation capture (s3-GCC). (a) 

Schematic of sci-WGS and sci-GCC library construction. (b) Experimental flow through and plate layout for PDAC 

and control diploid line. (c) Boxplot of read count per cell for matched GM12878 cell line9. (d) Boxplot of MAD 

score per cell per sample and assay. (e) Boxplot of reads passing filter per cell. (f) Comparison boxplot of s3-

GCC and sci-HiC distal contacts (≥50kbp) per cell33. (g) Whole exome sequencing of the primary tumor and 

PDCL. Scatterplot of reads per bin with a shading of called copy number variation. (h) Single-cell whole genome 

copy number calling on 500 kbp bins genome-wide. Cells (rows) are hierarchically clustered and annotated by 

assay, sample, and assigned clade (left). (i) Representative single-cell contact maps (raw counts) at 1 Mbp 

resolution for chromosome 3 and ensemble contact map profile at 500 kbp resolution. (j) scHiCRep 

dimensionality reduction and clustering of single-cell distal contact profiles. (k) Subclonal translocation on chr12 

specific to PDAC-1. 
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Supplementary Figure 1 | Marker sets for gross cell type discrimination in human cortex and mouse 

whole brain data sets. Genome coverage plots for (a) mouse and (b) human cell types. Cells are separated 

into tracks based on clustering. 

Supplementary Figure 2 | Pseudobulk whole genome copy number calling. (a) Pseudobulk genome-wide 

relative copy number calling. Scatter plot of reads per bin (50 kbp) separated by clade and chromosome. Clade 

assignment shown on left and relate to Fig 2h. Recurrently mutated gene locations in PDAC25 highlighted along 

the read count bins for clade 6. Shading of plot colored by relative copy number in genomic locus. (b) Select 

genes with known copy number aberrations in PDAC bar plot for relative copy number per clade. Middle line per 

row is copy number neutral, amplifications in red and deletions in blue. 

Supplementary Figure 3 | Clustering of s3GCC profiles. (a) Topic contribution scores plotted over UMAP 

projection of s3-GCC cells. (b) Unique contacts ≥50 kbp displayed on UMAP dimensions for quality control 

purposes. 
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Methods 

PDCL propagation 

Low-passage, patient-derived cell lines (PDCLs) were propagated from rapidly dissociated PDAC tumors and 
cultured for continuous propagation in culture medium containing ROCK inhibitor (Y-276320)34. Briefly, 
approximately 50,000 viable, disaggregated tumor cells were plated to a 35mm diameter, collagen-coated well 
(Gibco, A11428-02) and passaged 1:3 while subconfluent until reaching 85% confluence on a 10cm diameter 
dish. From a fraction of these cells, DNA was extracted to validate the presence of KRAS-G12 mutations by 
ddPCR (Bio-Rad, 1863506) and to validate an STR profile that matches normal leukocyte DNA from the same 
patient (Genetica). PDCLs exhibited morphologies consistent with epithelial tumor cells and abundant KRT 
expression was detected by immunocytofluorescence using the monoclonal antibodies: AE1/AE3, C-11, and 
Cam5.2. 

Whole Exome Sequencing and Analysis 

Whole exome sequencing libraries for the patient blood sample, tumor biopsy, and PDCL were carried out by 
the Knight Diagnostic Research Cytogenetics Lab at OHSU. Libraries were prepared using 500 ng of fragmented 
gDNA using KAPA Hyper-Prep Kit (KAPA Biosystems) with Agilent SureSelect XT Target Enrichment System 
and Human All Exon V5 capture baits (Agilent Technologies), following manufacturer’s protocols. Sequencing 
was carried out using the Illumina HiSeq 2500 platform by the OHSU Massively Parallel Sequencing Shared 
Resource (MPSSR). Paired-end reads were aligned with bwa mem (v0.7.15-r1140) to GRCh38 (“hg38”,Genome 
Reference Consortium Human Reference 38 (GCA_000001405.2))35. The data was processed following the best 
practices workflow for the GATK pipeline (v4.1.9.0)36. Exome regions annotated as “protein-coding” were 
extracted from GenCode (v35)37 and used as the intervals for processing. The following commands were then 
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used for WES data normalization and segmentation with additional options were specified: PreprocessInvertals, 
CollectReadCounts, AnnotateIntervals, FilterIntervals, CreateRedCountPanelOfNormals (using the matched 
blood sample as the normal, with minimum-interval-median-percentile set to 5.0), and finally 
PlotDenoisedCopyRatios. The output was then plotted with ggplot2 (v3.3.2) in R (v4.0.0). The geom_rect 
function was used to shade the genomic region based on the relative copy number with segmentation interval, 
and geom_point was used to plot normalized bin reads. 

s3-ATAC Library Generation 

Prior to sample handling, 96 uniquely indexed transposome complexes were assembled using previously-
described methods11. Complexes were diluted to 2.5uM in a protein storage buffer composed of 50% (v/v) 
glycerol (Sigma G5516) , 100 mM NaCl (Fisher Scientific S271-3), 50 mM Tris pH 7.5 (Life technologies 
AM9855), 0.1 mM EDTA (Fisher Scientific AM9260G), 1 mM DTT (VWR 97061-340), and stored at -20°C. At 
the time of nuclei dissociation, 50mL of nuclei isolation buffer (NIB-HEPES) was freshly prepared with final 
concentrations of 10 mM HEPES-KOH (Fisher Scientific, BP310-500 and Sigma Aldrich 1050121000, 
respectively), pH 7.2, 10 mM NaCl, 3mM MgCl2 (Fisher Scientific AC223210010), 0.1 % (v/v) IGEPAL CA-630 
(Sigma Aldrich I3021), 0.1 % (v/v) Tween (Sigma-Aldrich P-7949) and diluted in PCR-grade Ultrapure distilled 
water (Thermo Fisher Scientific 10977015). After dilution, two tablets of Pierce™ Protease Inhibitor Mini Tablets, 
EDTA-free (Thermo Fisher A32955) were dissolved and suspended to prevent protease degradation during 
nuclei isolation.  

For s3-ATAC tissue handling, primary samples of C57/B6 mouse whole brain were extracted and flash frozen in 
a liquid nitrogen bath, before being stored at -80°C. Human cortex samples from the middle frontal gyrus were 
sourced from the Oregon Brain Bank from a 50-year-old female of normal health status. Tissue was collected at 
21 hours post-mortem and then placed in a -80°C freezer for storage. An at-bench dissection stage was set up 
prior to nuclei extraction. A petri dish was placed over dry ice, with fresh sterile razors pre-chilled by dry-ice 
embedding. 7mL capacity dounce homogenizers were filled with 2mL of NIB-HEPES buffer and held on wet ice. 
Dounce homogenizer pestles were held in in ice cold 70% (v/v) ethanol (Decon Laboratories Inc 2701) in 15mL 
tubes on ice to chill. Immediately prior to use, pestles were rinsed with chilled distilled water. For tissue 
dissociation, mouse and human brain samples were treated similarly. The still frozen block of tissue was placed 
on the clean pre-chilled petri dish and roughly minced with the razors. Razors were then used to transport roughly 
1 mg the minced tissue into the chilled NIB-HEPES buffer within a dounce homogenizer. Suspended samples 
were given 5 minutes to equilibrate to the change in salt concentration prior to douncing. Tissues were then 
homogenized with 5 strokes of a loose (A) pestle, another 5 minute incubation, and 5-10 strokes of a tight (B) 
pestle. Samples were then filtered through a 35 µm cell strainer (Corning 352235) during transfer to a 15mL 
conical tube, and nuclei were held on ice until ready to proceed. Nuclei were pelleted with a 400 rcf centrifugation 
at 4°C in a centrifuge for 10 minutes. Supernatant was removed and pellets were resuspended in 1mL of NIB-
HEPES buffer. This step was repeated for a second wash, and nuclei were once again held on ice until ready to 
proceed. A 10uL aliquot of suspended nuclei was diluted in 90uL NIB-HEPES (1:10 dilution) and quantified on 
either a Hemocytometer or with a BioRad TC-20 Automated cell counter following manufacturer’s recommended 
protocols. The stock nuclei suspension was then diluted to a concentration of 1400 nuclei/uL. 

Tagmentation plates were prepared by the combination of 420 uL of 1400 nuclei/uL solution with 540 uL 2X TD 
Buffer (Nextera XT Kit, Illumina Inc. FC-131-1024). From this mixture, 8uL (~5000 nuclei total) was pipetted into 
each well of a 96 well plate dependent on well schema (Figure 1b). 1uL of 2.5uM uniquely indexed transposase 
was then pipetted into each well. Tagmentation was performed at 55°C for 10 minutes on a 300 rcf Eppendorf 
ThermoMixer. Following this incubation, plate temperature was brought down with a brief incubation on ice to 
stop the reaction. Dependent on experimental schema pools of tagmented nuclei were combined and 2uL 
5mg/mL DAPI (Thermo Fisher Scientific D1306) was added. 

Nuclei were then flow sorted via a Sony SH800 to remove debris and attain an accurate count per well prior to 
PCR. A receptacle 96 well plate was prepared with 9uL 1X TD buffer (Nextera XT Kit, Illumina Inc. FC-131-
1024,diluted with ultrapure water), and held in a sample chamber kept at 4°C. Fluorescent nuclei were then flow 
sorted gating by size, internal complexity and DAPI fluorescence for single nuclei following the same gating 
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strategy as previously described38. Immediately following sorting completion, the plate was sealed and spun 
down for 5 minutes at 500 rcf and 4°C to ensure nuclei were within the buffer. 

Nucleosomes and remaining transposases were then denatured with the addition 1uL of 0.1% SDS (~0.01% 
f.c.) per well. 4uL of NPM (Nextera XT Kit, Illumina Inc) per well was subsequently added to perform gap-fill on 
tagmented genomic DNA, with an incubation at 72°C for 10 minutes. 1.5 uL of 1uM A14-LNA-ME oligo was then 
added to supply the template for adapter switching. The polymerase based adapter switching was then 
performed with the following conditions: initial denaturation at 98°C for 30 seconds, 10 cycles of 98°C for 10 
seconds, 59°C for 20 seconds and 72°C for 10 seconds. The plate was then held at 10°C. After adapter switching 
1% (v/v) Triton-X 100 in ultrapure H2O (Sigma 93426) was added to quench persisting SDS. At this point, some 
plates were stored at -20°C for several weeks while others were immediately processed.  

The following was then combined per well for PCR: 16.5 ul sample, 2.5uL indexed i7 primer at 10 uM, 2.5uL 
indexed i5 primer at 10 uM, 3 uL of ultrapure H2O, and 25 uL of NEBNext Q5U 2X Master mix (New England 
Biolabs M0597S), and 0.5uL 100X SYBR Green I (Thermo Scientific S7563) for a 50 uL reaction per well. A real 
time PCR was performed on a BioRad CFX with the following conditions, measuring SYBR fluorescence every 
cycle: 98°C for 30 seconds; 16-18 cycles of 98°C for 10 seconds, 55°C for 20 seconds, 72°C for 30 seconds, 
fluorescent reading, 72°C for 10 seconds. After fluorescence passes an exponential growth and begins to inflect, 
the samples were held at 72°C for another 30 seconds then stored at 4°C. 

Amplified libraries were then cleaned by pooling 25 uL per well into a 15 mL conical tube and cleaned via a 
Qiaquick PCR purification column following manufacturer's protocol (Qiagen 28106). The pooled sample was 
eluted in 50 uL 10 mM Tris-HCl, pH 8.0. Library molecules then went through a size selection via SPRI selection 
beads (Mag-Bind® TotalPure NGS Omega Biotek M1378-01). 50 uL of vortexed and fully suspended room 
temperature SPRI beads was combined with the 50 uL library (1X clean up) and incubated at room temperature 
for 5 minutes. The reaction was then placed on a magnetic rack and once cleared, supernatant was removed. 
The remaining pellet was rinsed twice with 100 uL fresh 80% ethanol. After ethanol was pipetted out, the tube 
was spun down and placed back on the magnetic rack to remove any lingering ethanol. 31 uL of 10 mM Tris-
HCl, pH 8.0 was then used to resuspend the beads off the magnetic rack and allowed to incubate for 5 minutes 
at room temperature. The tube was again placed on the magnetic rack and once cleared, the full volume of 
supernatant was moved to a clean tube. DNA was then quantified by Qubit dsDNA High-sensitivity assay 
following manufacturer's instructions (Thermo Fisher Q32851). Libraries were then diluted to 2ng/uL and run on 
an Agilent Tapestation 4150 D5000 tape (Agilent 5067-5592). Library molecule concentration within the range 
of 100-1000bp was then used for final dilution of the library to 1 nM. Diluted libraries were then sequenced on 
High or Mid capacity 150 bp sequencing kits on the Nextseq 500 system following manufacturer’s 
recommendations (Illumina Inc. 20024907, 20024904). For greater sequencing effort, select libraries were also 
sequenced on a NovaSeq S2 flowcell, again following manufacturer’s recommendations (Illumina Inc. 
20028315). For both machines libraries were sequenced as paired-end libraries with 10 cycle index reads and 
85 cycles for read 1 and read 2.   

s3-WGS Library Generation 

Prior to processing the following buffers were prepared: 50mL of NIB HEPES buffer as described above, as well 
as 50mL of a Tris-based NIB (NIB Tris) variant with final concentrations of 10 mM Tris HCl pH 7.4, 10 mM NaCl, 
3mM MgCl2, 0.1 % (v/v) IGEPAL CA-630, 0.1 % (v/v) Tween and diluted in PCR-grade Ultrapure distilled water. 
After dilution, two tablets of Pierce™ Protease Inhibitor Mini Tablets, EDTA-free were dissolved and suspended 
to prevent protease degradation during nuclei isolation. 

s3-WGS library preparation was performed on cell lines as follows. For patient derived PDCL cell lines, cells 
were plated at a density of 1x106 on a T25 flask the day prior to processing. At harvest, cells were washed twice 
with ice cold 1X PBS (VWR 75800-986) and then trypsinized with 5mL 1X TrypLE (Thermo Fisher 12604039) 
for 15 minutes at 37°C. Suspended cells were then collected and pelleted at 300 rcf at 4°C for 5 minutes. For 
suspension-growth cell lines (GM12878), cells were pipetted from growth media and pelleted at 300 rcf at 4°C 
for 5 minutes.  
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Following the initial pellet, cells were washed with ice cold 1mL NIB HEPES twice. After the second wash, pellets 
were then resuspended in 300 uL NIB HEPES. Nuclei were aliquoted and quantified as described above, then 
aliquots of 1 million nuclei were generated based on the quantification. The aliquots were pelleted by a 300 rcf 
centrifugation at 4°C for 5 minutes and resuspended in 5 mL NIB HEPES. 246 uL 16% (w/v) formaldehyde 
(Thermo Fisher 28906) was then added to nuclear suspensions (f.c. 0.75% formaldehyde) to lightly fix nuclei. 
Nuclei were fixed via incubation in formaldehyde solution for 10 minutes on an orbital shaker set to 50 rpm. 
Suspensions were then pelleted at 500 rcf for 4 minutes at 4°C and supernatant was aspirated. Pellet was then 
resuspended in 1 mL of NIB Tris Buffer to quench remaining formaldehyde. Nuclei were again pelleted at 500 
rcf for 4 minutes at 4°C and supernatant was aspirated. The pellet was washed once with 500uL 1X NEBuffer 
2.1 (NEB B7202S) and then resuspended with 760 uL 1X NEBuffer 2.1. 40 uL 1% SDS (v/v) was added and 
sample was incubated on a ThermoMixer at 300 rcf set to 37°C for 20 minutes. Nucleosome depleted nuclei 
were then pelleted at 500 rcf at 4°C for 5 minutes and then resuspended in 50 uL NIB Tris. A 5 uL aliquot of 
nuclei was taken and diluted 1:10 in NIB Tris then quantified as described above. Nuclei were diluted to 500 
nuclei/uL with addition of NIB Tris, based on the quantification. Dependent on experimental setup, the 420 uL of 
nuclei at 500 nuclei/uL were then combined with 540 uL 2X TD buffer. Following this, nuclei were tagmented, 
stained and flow sorted, genomic DNA was gap-filled and adapter switching was performed as described for the 
s3-ATAC protocol. Library amplification was performed by PCR as described above with fewer total cycles (13-
15) likely due to more initial capture events per library. Libraries were then cleaned, size selected, quantified and 
sequenced as described previously. 

s3-GCC Library Generation 

The same cultured cell line samples were harvested as described for s3-WGS library generation, and processed 
from the same pool of fixed, nucleosome depleted nuclei. Following quantification of nuclei, the full remaining 
nuclear suspensions (~2-3 million nuclei per sample) were pooled respective of sample. Nuclei were pelleted at 
500 rcf at 4°C for 5 minutes and resuspended in 90 uL 1X Cutsmart Buffer (NEB B7204S). 10 uL of 10U/uL AluI 
restriction enzyme (NEB R0137S) was added to each sample. Samples were then digested for 2 hours at 37°C 
at 300 rpm on a ThermoMixer. Following digestion, nuclear fragments then underwent proximity ligation. Nuclei 
were pelleted at 500 rcf at 4°C for 5 minutes and resuspended in 100uL ligation reaction buffer. Ligation buffer 
is a mixture with final concentrations of 1X T4 DNA Ligase Buffer + ATP (NEB M0202S), 0.01 % TritonX-100, 
0.5mM DTT (Sigma D0632), 200 U of T4 DNA Ligase, diluted in ultrapure H2O. Ligation took place at 16°C for 
14 hours (overnight). Following this incubation, nuclei were pelleted at 500 rcf at 4°C for 5 minutes and 
resuspended in 100 uL NIB HEPES buffer. An aliquot of nuclei were quantified as described previously, and 
were then diluted, aliquoted, tagmented, pooled, DAPI stained, flow sorted, genomic DNA was gap-filled and 
adapter switching was performed as described for the s3-ATAC protocol. Library amplification occurred at the 
same rate as the s3-WGS libraries (13-15 cycles) and libraries were subsequently pooled, cleaned, quantified 
and sequenced as described above. 

Computational Analysis 

Preprocessing 

The initial processing of all library types was the same. After sequencing, data was converted from bcl format to 
FastQ format using bcl2fastq (v 2.19.0, Illumina Inc.) with the following options with-failed-reads, no-lane-
splitting, fastq-compression-level=9, create-fastq-for-index-reads. Data were then demultiplexed, aligned, de-
duplicated using the in-house scitools pipeline (ref 38). Briefly, FastQ reads were assigned to their expected 
primer index sequence allowing for sequencing error (Hamming distance ≤2) and indexes were concatenated to 
form a “cellID”. Reads that could be assigned unambiguously to a cellID were then aligned to reference genomes. 
For s3-WGS and s3-GCC libraries, paired reads were aligned with bwa mem (v0.7.15-r1140) to hg3835. For s3-
ATAC libraries, reads were first aligned to a concatenated hybrid genome of hg38 and GRCm38 (“mm10”, 
Genome Reference Consortium Mouse Build 38 (GCA_000001635.2)). Reads were then de-duplicated to 
remove PCR and optical duplicates by a perl (v5.16.3) script aware of cellID, chromosome and read start, read 
end and strand. From there putative single-cells were distinguished from debris and error-generated cellIDs by 
both unique reads and percentage of unique reads.   
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s3-ATAC Analysis 

Barnyard Analysis 

With single-cell libraries distinguished, we next quantified contamination between nuclei during library 
generation. We calculated the read count of unique reads per cellID aligning to either human reference or mouse 
reference chromosomes (Figure 1C). CellIDs with ≥90% of reads aligning to a single reference genome were 
considered bona fide single-cells. Those not passing this filter (2.7%,19/687 cells for pre-tagmentation barnyard) 
were considered collisions. Collision rate was estimated to account for cryptic collisions (mouse cell-mouse cell 
or human cell-human-cell) by multiplying by two (final collision rate of 5.5%). Bona fide single-cell cellIDs were 
then split from the original FastQ files to be aligned to the proper hg38 or mm10 genomes with bwa mem as 
described above. Human and mouse assigned cellIDs were then processed in parallel for the rest of the analysis. 
After alignment, reads were again de-duplicated to obtain proper estimates of library complexity. 

Tagmentation Insert Quantification  

To assess tagmentation insert size, samtools isize (v. 1.10) was performed and plotted with ggplot2 (v3.3.2) in 
R (v4.0.0) using the geom_density function (default parameters, Figure 1E). To assess library quality further, we 
generated tagmentation site density plots centered around transcription start sites (TSSs). We used the 
alignment position (chromosome and start site) for each read to generate a bed file that was then piped into the 
BEDOPS closest-feature command mapped the distance between all read start sites and transcription start sites 
(v 2.4.36)39. From this, we collapsed binned distances (100bp increments) into a counts table and generated 
percentage of read start site distances within each counts table. We plotted these data using R and ggplot2 
geom_density function (default parameters) subset to 2000 base pairs around the start site to visualize 
enrichment. TSS enrichment values were calculated for each experimental condition using the method 
established by the ENCODE project (https://www.encodeproject.org/data-standards/terms/enrichment), 
whereby the aggregate distribution of reads ±1,000 bp centered on the set of TSSs is then used to generate 100 
bp windows at the flanks of the distribution as the background and then through the distribution, where the 
maximum window centered on the TSS is used to calculate the fold enrichment over the outer flanking windows. 

Library Complexity Analysis  

To project library complexity through sequencing effort, pre-de-duplicated cellID read sets were used to build a 
projection as follows8. Reads were randomly subsampled starting at 1% of the total reads with 5% of data added 
in increasing increments to build a simple saturation curve per cellID. A summarized saturation curve per species 
was generated and plotted in ggplot2 using the geom_smooth function, descripting the curves mean, median 
and standard error.  For comparison to publicly available data sets of a matched tissue type, we focused our 
analysis on the mouse brain libraries. We plotted our PCR plate sequenced to 36.4% ± 17.4% unique reads/total 
reads for comparison to three other single-cell ATAC-seq methods which have been applied to post-natal mouse 
whole brain14–16. Data passing self-reported filters were used for comparison and plotted with ggplot 
geom_boxplot function. Welch’s two-sample T test comparisons between unique reads per cell were calculated 
with the t.test function in base R for a one-sided alternative hypothesis. 

Dimensionality Reduction  

Pseudo-bulked data (agnostic of cellID) was then used to call read pile-ups or “peaks” via macs2 (v.2.2.7.1) with 
option –keep-dup all40. Narrowpeak bed files were then merged by overlap and extended to a minimum of 500bp 
for a total of 292,156 peaks for human and 174,653 peaks for mouse. A scitools perl script was then used to 
generate a sparse matrix of peaks × cellID to count occurrence of reads within peak regions per cell. FRiP was 
calculated as the number of unique, usable reads per cell that are present within the peaks out of the total 
number of unique, usable reads for that cell for each peak bed file. Cells with less than 20% of reads within 
peaks were then filtered out. Tabix formatted files were generated using samtools and tabix (v1.7). The counts 
matrix and tabix files were then input into a SeuratObject for Signac (v1.0.0) processing20,41.We performed LDA-
based dimensionality reduction via cisTopic (v0.3.0)with 27 topics for mouse cells and 24 topics for human 
cells18. The number of topics were selected after generating 25 separate models per species with topic counts 
of 5,10,20-30,40,50,55,60-70 and selecting the topic count using selectModel based on the second derivative of 
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model perplexity. Cell clustering was performed with Signac FindNeighbors and FindClusters functions on the 
topic weight × cellID data frame. For FindClusters function call, resolution was set to 0.3 and 0.2 for human 
and mouse samples, respectively. The respective topic weight × cellID was then projected into two dimensional 
space via a uniform manifold approximation and projection (“UMAP”) by the function umap in the uwot package 
(v0.1.8, Figure 1g-h)42. Cis-coaccessibility networks (CCANs) were generated through the Signac wrapper of 
cicero (v1.3.4.10)43. Genome track plots with CCAN linkages were generated through Signac function 
CoveragePlot for marker genes previously described20. Differential accessibility between clusters in one by one, 
and one by rest comparisons were generated using Signac function FindMarkers using options: test.use = 'LR', 
and only.pos=T, with latent.vars = 'nCount_peaks', to account for read depth. Cell type per cluster was assigned 
based on genome track plots and differentially accessible sites.  

Subclustering 

After gross cell type assignment of mouse and human cell lines, human inhibitory neurons (GAD1+) clusters 3 
and 4 were subset from the SeuratObject.Those 342 cells were then iteratively clustered by performing the same 
cisTopic, UMAP, and Signac processing with the following changes20,42,44. CisTopic was performed on the full 
set of human peaks (292,156) with those 342 subset cells. 12 Topic models were constructed (5, 10, 20-30 
topics) and the 25 topic model was chosen on the second derivate of the model perplexity. A resolution of 0.5 
was used in the Signac FindClusters on the topic weight × cellID call to attain 5 subclusters. Coverage plots 
were generated as reported above for ADARB2 and LHX2 . Peaks were then assigned to topics using the 
cisTopic binarizecisTopics function with argument thrP=0.975 (mean count per topic: 2429 peaks). We then 
performed a simple gene set enrichment analysis on human cortical inhibitory neurons and subtypes based on 
RNA-identified marker genes defined previously21.We used a Fisher’s Exact test with the function fisher.test with 
function alternative.hypothesis=”greater” to look for enrichment of topic-assigned peaks in marker gene bodies 
for inhibitory neuron subclasses relative to all topic-assigned peaks. We filtered results to those with nominal 
enrichment (p value ≤ 0.05) and used ggplot geom_point with color reflecting the reported p-value and size 
proportional to odds ratio to generate a bubble plot (Figure 1K). 

s3-WGS and s3-GCC Analysis 

Quality Control    

s3-WGS and s3-GCC cellIDs were initially filtered to samples with either ≥1x105 or ≥1x106 unique reads (PDCL 
and GM12878 samples, respectivley). CellIDs were split after de-duplication into single-cell bam files. They were 
then processed via the pipeline in the package SCOPE (v1.1)23. The genome was split into 500 kbp bins with 
each bin being assigned a GC content and mappability score (generated through CODEX2)45. Reads with a 
mapping quality of Q ≥ 10 were counted in bins per cellID. Bins with a mappability score < 0.9 or GC content ≤ 
20% or ≥ 80% were removed (5449 bins passing filter). Additionally, cellIDs with low coverage were removed 
(1268 samples passing filter). Median absolute deviation (MAD) scores were calculated per cell on 500kb bins 
of cells passing filter as previously described23. Briefly, let Yi,j be the raw read count for the ith cellID of the jth bin 
(from 1.. n bins). Let Ni be a cell-specific scaling factor (total read depth) and Bj be a bin-specific normalization, 
output as beta.hat from the function normalize_codex2_ns_noK. Such that 
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𝑀𝐴𝐷 𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑑 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑)|) 

MAD scores were then plotted using the ggplot geom_jitter and geom_boxplot functions. 

Copy Number Calling 
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SCOPE assumes diploid cells within the sample for normalization steps. To this end we used GM12878 
lymphoblastoid cell line as our normal diploid samples and used an a priori estimate of 2.6N based on averaged 
PDCL karyotyping results (Figure 2c). We then used the SCOPE function normalize_scope_foreach with the 
following options: K=5, T=1:6 to normalize read distributions per cell. We segmented the genome into 
breakpoints per chromosome and inferred copy number per breakpoint per cell by segment_CBScs allowing for 
a simple nested structure of copy number changes (max.ns=1). To plot inferred copy number per cell, we used 
the R library ComplexHeatmap (v2.5.5) by function Heatmap46. Pairwise distance between cells was generated 
by Jaccard distance through the R library philentropy (v0.4.0)47 on windows categorized as “neutral” (2N), 
“amplified” (>2N) or “deleted” (<2N). Cells then underwent hierarchical clustering by the “ward.D2” argument in 
the function hclust. The resultant dendrogram was then cut into both 3 and 6 clades based on the two 
independent optimal k value searches using the find_k function in the R library dendextend (v1.14.0) given a 
range of 2 to 10 and 5 to 10 clusters, respectively (Figure 2i)48. Cells with shared clade membership were then 
combined into “pseudobulk” clades for higher resolution copy number calling. After combining counts data across 
50 kbp bins (and filtered as described above), we had 6 clades with 154, 250, 363, 100, 268 and 133 cells, with 
mean reads per bin of 1207, 2442, 4662, 2071, 2700, and 9416, respectively. These pseudobulk sampled were 
then normalized as described above with clade 6, containing 83.45% GM12878 cells (111/133 cells) as the 
normal diploid sample. The genome per sample was then segmented as described above and normalized reads 
per bin as well as segmentation calls were plotted with ggplot2 geom_point and geom_rect functions. Select 
genomic locations25 of recurrently mutated genes were vizualized and plotted using IGV with 5 bins (250kbp) up 
and downstream from the transcription start sites. (Supplementary Figure 2b)49. 

s3-GCC contact profile raw counts were generated for cellIDs passing the read count and SCOPE filters (215 
cells) as follows. For initial plotting of single-cell profiles, paired-end read bam files were filtered for an insert 
length of ≥50kbp via pysam50 and output as upper-triangle triple-sparse format at 1mbp bin sizes. Raw contact 
matrices were then plotted with R and ComplexHeatmap (Figure 2j, left). Merged ensemble plots were generated 
by summing single-cell contact matrices generated as described above for 500 kbp bins. Following this, we 
performed dimensionality reduction and clustering analyses using a topic modeling approach. We treated the 
GCC portion of single-cell sequencing fragments (read pairs seperated by a genomic distance higher than 1kb) 
as traditional distal interactions. We analyzed these cells using our previously established topic model for 
analysis and characterization of single-cell Hi-C data51. In the topic modeling framework, each cell is treated as 
a mixture of “topics” where each topic corresponds to a set of distal interactions. The model is trained in an 
unsupervised manner to find the optimum number of topics that best describe the data and associates each 
distal interaction with a probablistic mixture of topics.  

We trained a topic model using the GCC data with the default parameters in Kim et al. However, we altered one 
parameter, which is the range of distal interactions that are input into the model. Due to high coverage of s3-
GCC assays, we opted for distal interactions that are separated by a genomic distance of 20Mb or less, as 
opposed to original parameter where we used interactions that are separated by distances lower than 10Mb. 
After training, we found that the number of topics that best describe the data is 15. We visualized cells using 
UMAP and found that the majority of cells from two lines cluster separately. Overall, these results validate the 
Hi-C like characteristics of GCC data and further show that we can capture the subtle differences in chromatin 
organization of the two lines. 
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