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 27 
Summary  28 

Despite the intimate link between cell organization and function, the principles underlying intracellular 29 
organization and the relation between organization, gene expression and phenotype are not well 30 
understood. We address this by creating a benchmark for mean cell organization and the natural 31 
range of cell-to-cell variation. This benchmark can be used for comparison to other normal or 32 
abnormal cell states. To do this, we developed a reproducible microscope imaging pipeline to 33 
generate a high-quality dataset of 3D, high-resolution images of over 200,000 live cells from 25 34 
isogenic human induced pluripotent stem cell (hiPSC) lines from the Allen Cell Collection. Each line 35 
contains one fluorescently tagged protein, created via endogenous CRISPR/Cas9 gene editing, 36 
representing a key cellular structure or organelle. We used these images to develop a new multi-part 37 
and generalizable analysis approach of the locations, amounts, and variation of these 25 cellular 38 
structures. Taking an integrated approach, we found that both the extent to which a structure’s 39 
individual location varied (“stereotypy”) and the extent to which the structure localized relative to all 40 
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the other cellular structures (“concordance”) were robust to a wide range of cell shape variation, from 41 
flatter to taller, smaller to larger, or less to more polarized cells. We also found that these cellular 42 
structures varied greatly in how their volumes scaled with cell and nuclear size. These analyses 43 
create a data-driven set of quantitative rules for the locations, amounts, and variation of 25 cellular 44 
structures within the hiPSC as a normal baseline for cell organization. 45 
 46 
Introduction  47 

A living cell must organize all of its millions of subcellular components and processes in space 48 
and time through as many as four orders of magnitude. At the nanometer scale, specific molecular 49 
interactions permit the assembly of macromolecules and organelles to perform and regulate cell 50 
function. More global cell behaviors, however, can occur over scales of tens of microns, such as the 51 
coordinated protrusion of a cell front and retraction of a rear during cell migration (Lauffenburger and 52 
Horwitz, 1996). Identifying the rules of cell organization and understanding how they facilitate global 53 
behaviors across this broad span of spatial scales is an immensely complex and daunting task that 54 
must also incorporate dynamic changes across a broad temporal spectrum. However, to understand 55 
cell organization at the level of the major intracellular machinery and organelles (cellular structures), 56 
requires the study of only ~25-50 of these structures. This enormously reduces the dimensional 57 
complexity, making feasible the quest for an interpretable and testable set of rules that govern cell 58 
organization and how this organization changes as cells transition to alternative normal or abnormal 59 
cell behaviors. For example, measuring the locations of each of these cellular structures relative to all 60 
the others, as well as the total volume occupied by each structure, creates a rich set of quantitative 61 
rule-building constraints for generating and testing models of cell organization (Johnson et al., 2015; 62 
Macklin et al., 2020).  63 

A significant potential challenge, even for this approach, is that cells must behave robustly yet 64 
respond sensitively to their ever-changing environments. As a result, a population of normal, 65 
putatively identical cells might exhibit significant cell-to-cell variability. Thus, it is important to establish 66 
a baseline with which different kinds of cells can be compared. This baseline should represent the 67 
typical, or mean, cell within the population, as well as the full range of normal variation of the 68 
population itself. An abnormal cell phenotype may exhibit not only a shift in the mean but also a shift 69 
in the variation (Roggiani and Goulian, 2015). Therefore, a meaningful and useful description of 70 
normal cell organization requires quantitative measurements, not just of the locations or amounts of 71 
each of the cellular structures, but also how they vary within a large group of normal cells.  72 

To establish a normal baseline for cell organization, we turned to human induced pluripotent 73 
stem cells (hiPSCs), which represent an early embryonic cell state and an ideal human model system. 74 
hiPSCs are naturally immortal, karyotypically normal, and can be induced to differentiate into other 75 
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cell types (Drubin and Hyman, 2017). We previously developed methods to generate a series of 76 
isogenic clonal hiPSC lines expressing fluorescent protein tags for visualizing specific organelles and 77 
cellular structures via endogenous CRISPR/Cas9 gene editing. We performed extensive quality 78 
control on these lines to create the Allen Cell Collection (Roberts et al., 2017a). In this work, we 79 
imaged 25 lines from this collection, each containing one fluorescently tagged protein representing a 80 
key cellular structure or organelle.  81 

Here we present the hiPSC Single-Cell Image Dataset, an unprecedented collection of high-82 
resolution, 3D images of over 200,000 live cells. To analyze this large-scale dataset, we develop 83 
generalizable, quantitative methods that permit direct comparisons of the similarity of overall cell and 84 
nuclear shapes for 3D cell image data, to build a simple and human-interpretable “shape space”. This 85 
approach facilitates the robust identification of clusters of cells that are most similar to each other in 86 
their overall shape. We also introduce a generalizable method to parameterize fluorescence intensity 87 
distributions in 3D cell images; this method allows the actual distribution observed for a particular cell 88 
to be robustly “morphed” into another similar cell shape, without losing substantial quantitative 89 
information about fluorescence localization. We then apply these methods to determine which 90 
structures are most highly stereotyped with respect to their cell-to-cell variation, and also which pairs 91 
of structures are most similar to each other, throughout the normal hiPSC shape space. These 92 
analyses create a data-driven set of quantitative rule-building constraints for the locations, amounts, 93 
and variation of 25 cellular structures within the hiPSC as a normal baseline for cell organization and 94 
a fundamental benchmark for comparison with future analyses of cell shape and cell organization for 95 
cells in different states. 96 
 97 
Results 98 

 99 
An hiPSC Single-Cell Image Dataset contains over 200,000 live, high-resolution, 3D cells 100 
spanning 25 cellular structures 101 

We previously developed methods and quality control workflows to create the Allen Cell 102 
Collection (Roberts et al., 2017a) and www.allencell.org) of hiPSC lines, each expressing a single 103 
endogenously tagged protein representing a particular organelle or cellular structure. Here we created 104 
15 additional cell lines and used a total set of 25 cell lines permitting a holistic view of cells at the level 105 
of their the major organelles, cellular structures, and compartments (Table 1).  106 

hiPSCs grow in tightly packed, epithelial-like monolayer colonies (Roberts et al., 2017a), 107 
requiring well-defined imaging assay guidelines for reproducible data collection. We grow these cells 108 
on Matrigel-coated glass plates compatible with high-resolution imaging while preserving their normal 109 
pluripotent state (Roberts et al., 2017a). We built an, automated microscopy imaging pipeline to   110 
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Table 1: Fluorescently tagged cellular structures used to create the hiPSC Single-Cell Image Dataset  111 

 Structure Protein Gene Location AICS line 
 nucleoli (DFC) fibrillarin FBL nuclear AICS-0014 cl. 6 
 nucleoli (GC) nucleophosmin NPM1 nuclear AICS-0057 cl. 50 
 nuclear speckles SON SON nuclear AICS-0094 cl. 24 
 cohesins SMC-1A SMC1A nuclear AICS-0068 cl. 9 
 histones H2B H2BC11 nuclear AICS-0061 cl. 36 
 nuclear envelope lamin B1 LMNB1 nuclear periphery AICS-0013 cl. 210 
 nuclear pores Nup153 NUP153 nuclear periphery AICS-0069 cl. 88 
 ER (Sec61 beta) Sec61 beta SEC61B cytoplasm AICS-0010 cl. 55 
 ER (SERCA2) SERCA2 ATP2A2 cytoplasm AICS-0046 cl. 51 
 mitochondria Tom20 TOMM20 cytoplasm AICS-0011 cl. 27 
 peroxisomes PMP34 SLC25A17 cytoplasm AICS-0033 cl. 115 
 endosomes Rab-5A RAB5A cytoplasm AICS-0040 cl. 35* 
 lysosomes LAMP-1 LAMP1 cytoplasm AICS-0022 cl. 37 
 Golgi sialyltransferase 1 ST6GAL1 cytoplasm AICS-0025 cl. 44* 
 centrioles centrin-2 CETN2 cytoplasm AICS-0032 cl. 19*** 
 microtubules alpha-tubulin TUBA1B cytoplasm AICS-0012 cl. 105 
 plasma membrane CAAX AAVS1 cell periphery AICS-0054 cl. 91*** 
 actin filaments beta-actin ACTB cell periphery AICS-0016 cl. 184 
 actin bundles alpha-actinin-1 ACTN1 cell periphery AICS-0007 cl. 79** 
 actomyosin bundles non-muscle myosin IIB MYH10 cell periphery AICS-0024 cl. 80 
 gap junctions connexin-43 GJA1 cell periphery AICS-0053 cl. 16 
 tight junctions ZO-1 TJP1 cell periphery AICS-0023 cl. 20 
 desmosomes desmoplakin DSP cell periphery AICS-0017 cl. 65 
 adherens junctions beta-catenin CTNNB1 cell periphery AICS-0058 cl. 67 
 matrix adhesions paxillin PXN cell periphery AICS-0005 cl. 50 
  

* biallelic edit, ** line not yet released, *** mTagRFP-T fluorophore tag instead of mEGFP fluorophore tag  
Bold AICS line number indicates cell lines published previously (Roberts, et al., 2017). 
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reproducibly generate the living colonies, imaged the cells in 3D using spinning-disk confocal 112 
microscopes to collect standardized 3D information, and processed these images to create the hiPSC 113 
Single-Cell Image Dataset (Figure 1). We mostly imaged cells halfway towards the centers of large, 114 
well-packed colonies, as cells behaved most consistently in this region. We also captured variations in 115 
colony area and locations within the colony, and enriched for images with mitotic cells when 116 
necessary (Figure 1A). To keep track of the position of each image within each colony, we collected 117 
low magnification overview images of the entire well prior to the high magnification imaging.  118 

We included fluorescent cell membrane and DNA dyes to reference the locations of 119 
intracellular fluorescent protein (FP)-tagged structures relative to the cell boundary and the nucleus or 120 
mitotic chromosomes. Cells were imaged live and in 3D at high resolution (120x magnification, 1.25 121 
numerical aperture, NA), generating 18,186 fields of view (FOVs) in four acquisition channels, 122 
representing the fluorescently tagged protein, the cell membrane and DNA dyes, and the transmitted 123 
light channel (Figure 1A&B). Measuring the locations of each of the 25 cellular structures within cells 124 
required segmentation approaches that demarcate structure, as well as the cell and nuclear 125 
boundaries within these 3D images. To do this, we used the Allen Cell and Structure Segmenter (the 126 
Segmenter), a fully-accessible, Python-based 3D segmentation software package (Chen et al., 2018). 127 
For each of the 25 cellular structures, we used the tagged protein to identify the location and 128 
morphology of the structure, rather than the location of the FP-tagged protein, itself (Figure S1). The 129 
tightly packed, epithelial-like nature of hiPSCs, as well as the need for highly-accurate 3D cell 130 
boundaries to minimize cellular structure misassignment to neighboring cells required deep learning-131 
based segmentation approaches to create a robust, scalable, and highly accurate 3D cell and nuclear 132 
segmentation algorithm ((Chen et al., 2018) and 3D Segmentation in Methods) applicable to all FOVs 133 
in this dataset (Figure S1).  134 

From each FOV, individual cells were segmented using the plasma membrane dye, resulting 135 
in a single-cell image dataset consisting of 216,062 cells (Figure 1C). Every individual cell is labeled 136 
with a unique ID, permitting the persistent association of relevant metadata including the full set of 137 
experimental parameters, position within the original FOV, and structure segmentations with 138 
versioned software captured for future data provenance. Additional cell, nuclear, and structural 139 
features were extracted and associated with each cell ID, e.g. cellular structure volume, generating a 140 
rich single-cell image dataset for analysis. Both the FOV images and the single-cell dataset are 141 
available for use by the community as downloadable files (allencell.org/data-downloading.html) and 142 
through interactive online visual analysis tools that require no software installation or expertise 143 
(cfe.allencell.org). For the analyses described below, we used the subset of 203,737 interphase cells, 144 
excluding the 11,238 cells undergoing mitosis and a few outliers (Table S1).  145 
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Figure 1. An hiPSC Single-Cell Image Dataset contains over 200,000 live, high-resolution, 3D cells 147 
spanning 25 cellular structures. The dataset was generated by a microscopy pipeline composed of 148 
three main parts; Data Collection, Image Processing and Single Cell Feature Extraction. A) Data 149 
Collection: the sample preparation starts with a vial of frozen gene-edited hiPSCs from a line from the 150 
Allen Cell Collection, expressing an endogenous, fluorescently tagged protein representing a 151 
particular cellular structure. The cell cultures are expanded in 6-well plates on an automated cell 152 
culture platform. At each passage cells are seeded into optical grade, glass bottom 96-well plates to 153 
create imaging samples. Bright field overview images of each well are inspected and only wells 154 
meeting pre-determined quality controls are passaged from the 6-well plates and imaged from the 96-155 
well plates. The image acquisition of live cells starts with a 12X overview image of each well on a 156 
spinning-disk confocal microscope. Imaging sessions are conducted using three modes. In mode A, 157 
the 12X overview images of colonies are segmented by an automated script to generate sets of 158 
coordinates for positions within imageable colonies, located approximately halfway between the 159 
colony edge and colony center. Imageable colonies are those that meet size, morphology, and 160 
position-within-a-well criteria. In mode B, the microscope operator adjusts the location of the field of 161 
view (FOV) to enrich for mitotic cells via appropriate cell and DNA morphology visible with live bright 162 
field viewing and confirmed by DNA staining (yellow arrows). In mode C, three regions of colonies are 163 
imaged, the edge, ridge (just inward from the edge), and center. Cells were labeled with fluorescent 164 
DNA and membrane dyes and then imaged at each pre-selected colony position. Z-stacks were 165 
acquired at 120X in four channels, representing the bright field, cell membrane dye (magenta), DNA 166 
dye (cyan) and the fluorescently tagged cellular structure (grayscale), also shown in (B). Mode A and 167 
C panels show Golgi (via sialyltransferase) and microtubules (via alpha-tubulin), respectively. B) 168 
Image Processing: The hiPSC Single-Cell Image Dataset consists of a total of 18,186 curated FOVs, 169 
which are available for download. An example z-stack is shown. On the left is the maximum intensity 170 
projection of all 65 slices with all fluorescent channels combined, in the colors indicated in the panels 171 
on the right. “Cutting” the z-stack in half exposes the view of a single slice (slice 32) in the middle of 172 
the stack, shown for each individual channel, including the bright field channel. We applied 3D 173 
segmentation algorithms to each of the fluorescent channels to identify boundaries in 3D of the cells 174 
via the membrane dye (magenta), the nuclei and mitotic DNA via the DNA dye (cyan), and each of the 175 
25 cellular structures via their fluorescent protein tag (grayscale; Golgi shown here). Resulting 3D 176 
segmentations for cell membrane, DNA, and structure channels are also shown as a side view, the 177 
xz-cross-section along the yellow dotted line. All segmentation algorithms were developed and 178 
performed using the Allen Cell and Structure Segmenter. C) Single Cell Feature Extraction: A total of 179 
216,062 single cells were segmented from the FOVs. Metadata related to the sample, experiment, 180 
and microscopy was collected and associated with each individual cell. Appropriate features were 181 
extracted for each cell from the cell, the nucleus or mitotic DNA, and the cellular structure 182 
segmentations, including measurements such as the height and volume. These cells, including both 183 
the images and the segmentations as well as the metadata and features are all available for 184 
download. The hiPSC Single-Cell Image Dataset includes 25 cell lines representing key organelles 185 
and cellular structures located throughout all of the major compartments of the cell. One 186 
representative cell example per structure is shown as a 3D visualization in the 5x5 grid. Scale bars 187 
are 10 µm unless otherwise noted. 188 
 189 
A PCA-based cell and nuclear shape space reveals interpretable modes of shape variation  190 

To embrace the great diversity of these 203,737 3D images of cells spanning 25 cellular 191 
structures and directly compare cellular organization across this large population, we built a cell and 192 
nuclear shape-based coordinate system (Figure 2), adapting a standard Principal Component 193 
Analysis (PCA)-based dimensional reduction approach (Pincus and Theriot, 2007). First, we aligned 194 
all cells to their centroids, preserving both, the biologically relevant, apical-basal axis (z-axis in lab 195 
frame of reference) and the longest axis of the cell perpendicular to that axis (longest axis in x-y 196 
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plane). Next, we used a spherical harmonic expansion (SHE, (Marshall et al., 1996; Ruan and 197 
Murphy, 2019)) to accurately parameterize each 3D cell and nuclear shape with a set of orthogonal 198 
periodic basis set functions, defined on the surface of a sphere. For each cell and nuclear boundary, 199 
we retained the first 16 degrees of the SHE, corresponding to 289 coefficients for each shape. The 200 
joint vector of 578 SHE coefficients for each cell was sufficient for accurate reconstruction of the 201 
original cell and nuclear shape with high spatial precision (Figure 2A&B). The joint vectors for all cells 202 
(578 SHE coefficients) were then subjected to PCA. We found that the first eight principal components 203 
represented about 70% of the total variation in cell and nuclear shape (Figure 2C). With this 204 
dimensionality reduction, the cell and nuclear shapes for each individual cell can be approximately 205 
reconstructed from a small vector with only eight components. This dimensionality reduction also 206 
organizes the cells into a simple, intuitive 8-dimensional generative “shape space”. For example, the 207 
origin (0,0,0,0,0,0,0,0) of the shape space can be reconstructed via the values of the SHE coefficients 208 
representing this location in the 8-dimensional coordinate system, and then be visualized as an 209 
idealized cell shape that statistically represents the average, or mean, shape of all of the cells in the 210 
data set (Figure 2D). Similarly, idealized shapes can be reconstructed by traversing across each of 211 
the eight orthogonal axes in the shape space. 212 

To build a human-interpretable understanding of the modes of shape variation in our 213 
population, we reconstructed cell and nuclear shapes at regular intervals separated by 0.5 standard 214 
deviation units along every axis of this shape space (Figure 2E, Movie S1). These idealized cells 215 
represent “map points” within the shape space, that can be used to identify and cluster individual real 216 
cells that are similar in shape to each idealized map point and to each other. Intuitively, these 217 
mathematically orthogonal modes of shape variation appear to describe expected variable cell shape 218 
features that are independent of one another. For example, Shape Mode 1, the mode representing 219 
the greatest amount of shape variation, appeared to largely reflect the height of the cell, and Shape 220 
Mode 2 appeared to largely reflect the overall volume of the cell (Figure S2A). The fact that these two 221 
biologically meaningful modes of shape variation correspond to the two top modes identified by the  222 
PCA indicates that, within this dataset, the total height of the cell is largely independent of its overall 223 
volume. Indeed, for the hiPSCs grown in self-organized colonies, the colony size and cell position 224 
within the colony appear to be the primary determinants of cell height (see “Statistical Analysis of ...” 225 
section in Methods). The remaining Shape Modes 3 to 8 represented other systematic ways the 226 
shapes of these epithelial-like cells might be expected to vary, including tilting along the major or 227 
minor xy-axes (Shape Modes 3 and 4) or elongation along the major axis (Shape Mode 5). In Shape 228 
Modes 1, 2, and 5, nuclear shape changed concomitant with cell shape, while in the other shape 229 
modes, nuclear shape changed very little as the shape mode axis was traversed. Instead, for these 230 
modes it was the position and orientation of the nucleus within the cell that adjusted concomitant with 231 
cell shape (Figure 2E and MovieS1). For completeness, we also independently calculated shape  232 
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Figure 2. A Principal component analysis (PCA)-based cell and nuclear shape space reveals 234 
interpretable modes of shape variation in hiPSCs. A) Segmented 3D single-cell images of a cell and 235 
its nucleus are used as the input for a 2D alignment algorithm. The cell image is rotated in the xy-236 
plane by θcell degrees around its centroid such that its longest axis becomes parallel to the x-axis. The 237 
same rotation angle θcell is applied to the segmented nuclear image. The resulting aligned images of 238 
the cell and nucleus are used as the input for spherical harmonics expansion (SHE) of degree Lmax = 239 
16 resulting in a total of 289 SHE coefficients for each the cell and the nucleus. These 578 240 
coefficients, together, now can be used to reconstruct the cell and nuclear shape as two separate 3D 241 
meshes with high fidelity. After reconstruction, the nuclear mesh is translated to the correct position 242 
relative to the cell centroid. xlab, ylab and zlab denote the lab frame of reference and xcell and ycell 243 
represent the x and y coordinates in the rotated cell frame of reference. B) Mean distance between 244 
points in the original meshes of cell (left) and nucleus (right) to their corresponding closest points in 245 
the reconstructed meshes as the number of coefficients in the SHE increases. Each gray line is one 246 
cell (left; n=300 randomly selected samples) or nucleus (right; n=300 randomly selected samples). 247 
Black lines represent the mean. The dashed vertical lines indicate the number of coefficients for SHE 248 
degree Lmax =16. C) SHE coefficients were calculated for all of the n=203,737 cells and nuclei in the 249 
analysis dataset. PCA was used to reduce the dimensionality from 2x289 SHE coefficients into the 250 
first eight principal components (PCs). D) Each PC was normalized into units of standard deviation, 251 
generating eight shape modes, which together are referred to as the cell and nuclear shape space. 252 
Each shape mode is sampled at nine map points. These map points are located at -2σ to 2σ in steps 253 
of 0.5σ (σ = standard deviation). Only one shape mode is permitted to vary at a time. The top 254 
example shows the mean cell and nuclear shape, represented by the map point (0,0,0,0,0,0,0,0). 255 
These nine map points for each of the eight shape modes are used as the input for an inverse PCA 256 
transform to obtain the corresponding SHE coefficients and their corresponding 3D reconstructions at 257 
these map points. The top view corresponds to an intersection between the 3D mesh of the cell and 258 
nucleus reconstructions and the xy-plane. Side views 1 and 2 correspond to an intersection between 259 
the 3D meshes and the xz- or yz-planes, respectively. E) 2D projections of 3D meshes obtained for 260 
each of the nine map point bins of each of the eight shape modes. The center bin in all modes is the 261 
identical mean cell shape. The most relevant of the three possible views is shown for each mode, as 262 
indicated on the far left. All three views for each shape mode and map point can be seen in Movie S1. 263 
Human-interpretable names for these shape modes are indicated on the right. F) Overlay of mesh 264 
projections of the cell (magenta) and nucleus (cyan) for the two most extremes map points (at -2σ, 265 
lighter shade and +2σ, darker shade) of each shape mode. 266 
 267 
spaces using only the overall cell shape and only the nuclear shape, which generally showed similar, 268 
biologically meaningful, modes of variation (Figure S2B&C). 269 
 270 
Building integrated average cells throughout the shape space via SHE coefficient-based 271 
parameterization and 3D morphing 272 

The human-interpretable understanding of each of the shape modes in this cell and nuclear 273 
shape space now permits us to take advantage of the variation of cell and nuclear shape within this 274 
dataset in two significant ways. First, this standardized shape space permits clustering of similarly 275 
shaped cells, facilitating investigation of the location of cellular structures while keeping any chosen 276 
3D spatial constraint constant. For example, we can measure how variable the locations of 277 
mitochondria are within cells of similar height. Second, the ability to analyze cellular structure location 278 
throughout this shape space permits us to consider each cell as its own “experiment” in intracellular 279 
organization, representing a particular point in the overall cell shape space comprising this normal 280 
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population. Thus, we can ask how robust the location of a cellular structure may be when it is 281 
subjected to systematic variation in cell and nuclear shape. For example, we can compare differences 282 
in structure locations or their variations between flat and tall cells, small and large cells, or cells with 283 
shapes that are less or more polarized. In brief, this shape space creates an opportunity to investigate 284 
how the rules of cellular organization change in response to a set of naturally occurring shape 285 
perturbations compared to the “mean” cell shape.  286 
To directly and quantitatively compare similarly shaped individual cells and their contents near a 287 
particular part of the shape space, we needed to map all of the possible locations of the contents of 288 
these cells into one identically bounded cell shape. Therefore, we developed a method to “morph” all 289 
of the locations of all of the points within a cell into the idealized reconstructed cell shape that best 290 
represents that cell shape (Figure 3). We took advantage of the SH expansion describing the outer 291 
cell boundary and the outer nuclear boundary and interpolated between the relevant SH coefficients. 292 
This generates a “cytoplasmic mapping” of successive 3D concentric shells between the nuclear and 293 
cellular boundaries at a specified spacing. Similarly, we generated a “nuclear mapping’” from the 294 
nuclear centroid to the nuclear boundary. We then created a “parameterized intensity representation” 295 
of all of the intensity values at all of these mapped locations within the cell. This parameterized 296 
intensity representation can then be transformed back into any cell or nuclear shape (Figure 3A). As 297 
a proof of concept, we first performed this internal mapping and transformation of all of the fluorescent 298 
signal within an individual cell back into that cell’s own original shape, permitting us to measure how 299 
well spatial information is conserved using this approach. Since this internal mapping is discrete, the 300 
resultant reconstructed intensity image will have gaps, which were filled using nearest neighbor 301 
interpolation. We then calculated the voxel-wise Pearson correlation of the original and recreated 302 
images of the same cell in 3D for individual cells representing each of the 25 cellular structures. We 303 
found that for most structures this correlation was very high, above r=0.8 (Figure S3A). Only those 304 
structures that localized to separate discrete spots displayed slight reductions in these correlation 305 
values, likely due to the discrete nature of both the parameterized intensity representation and the 306 
structures themselves.  307 

We next applied this approach to morph the parameterized intensity representation of each 308 
cell into the idealized cell and nuclear shape representing a nearby map point location in the shape 309 
space, creating a ‘morphed cell’ (Figure 3B). Now we can choose any map point within the shape 310 
space and identify a cluster of individual cells around that point, then create morphed versions of 311 
these cells and their contents to fit within the exact same idealized shape. In this way the location of 312 
the contents of each of these cells could be directly and quantitatively compared. The set of morphed 313 
cells within a chosen region in the shape space could also be aggregated via their parameterized 314 
intensity representations to generate an average of all of the intensities mapped within the cell and 315 
nuclear shape, or to quantify the variation in intensities via the coefficient of variation (Figure 3C). 316 
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Figure 3. Building integrated average cells throughout the shape space via SHE coefficient-based 318 
parameterization and 3D morphing. A) Bottom left image, labeled as 3-channel original z-stack, 319 
shows a 3D visualization of the original fluorescent protein (FP) intensities of tagged mitochondria (via 320 
Tom20, grayscale) in a single cell and nucleus, visualized via cell membrane dye (magenta) and DNA 321 
dye (cyan). Moving rightward along the bottom row are the steps to create the parametric intensity 322 
representation of the mitochondria via the FP signal in this cell. The second image, labeled 3D 323 
reconstruction, shows the SHE-based 3D reconstruction meshes of the segmentations of this cell and 324 
nucleus. The third image, labeled cellular mapping, shows the result of interpolating the SHE 325 
coefficients to create a series of concentric mesh shells (indicated by different colors) from the 326 
centroid of the nucleus (black dot) to the nuclear boundary (inner dashed contour) to create the 327 
nuclear mapping and from that nuclear boundary to the cell boundary (outer dashed contour) to create 328 
the cytoplasmic mapping. The intensity values in the FP channel are recorded at each mesh vertex 329 
location, resulting in a parameterized intensity representation that is shown in a matrix format in the 330 
fourth image. This parameterized intensity representation is then converted back into a 3D image, 331 
voxel by voxel, into the same reconstructed cell and nuclear shape, shown in the fifth image, labeled 332 
voxelization. Here the top view and side view 1 are shown with the intensity image in the FP channel 333 
in grayscale and the cell and nuclear boundaries in magenta and cyan lines, respectively. The top left 334 
image, labeled original FP channel, is the top view and side view of the same cell as in the 3-channel 335 
original z-stack panel on the bottom row. The intensity image in the FP channel, in this case 336 
mitochondria), is shown along with the cell and nuclear segmentations (magenta and cyan lines, 337 
respectively). The top right image, labeled nearest neighbor interpolation, is the voxelized 338 
parameterized intensity representation, now with gaps filled using nearest neighbor interpolation. 339 
Voxel-wise Pearson correlation in 3D is used to compare the input image (original FP channel) with 340 
the image reconstructed via the parametric intensity representation (nearest neighbor interpolation). 341 
B) The same 3D reconstruction and cellular mapping procedure is now applied to a cell and nuclear 342 
shape at any map point in the shape space, shown here to the Shape Mode 3 map point 343 
(0,0,1.5σ,0,0,0,0,0). In the fourth image, labeled morphed cell, the parameterized intensity 344 
representation of the FP channel is morphed into this shape-space based cell and nuclear shape 345 
creating a morphed cell with morphed structure location. C) Top panel shows images of three different 346 
example cells with tagged mitochondria), each located near the Shape Mode 3 map point 347 
(0,0,1.5σ,0,0,0,0,0), morphed into the reconstructed cell and nuclear shape of that map point. These 348 
three and all other morphed cells with tagged mitochondria within that map point bin in the shape 349 
space can be aggregated voxel by voxel to create an average morphed cell representing the average 350 
mitochondria locations (image labeled average) in that part of the shape space. Morphed cells can 351 
also be aggregated by calculating the standard deviation at each voxel of the morphed cell shape 352 
(Figure S3). The average and standard deviation morphed cells can be combined to calculate the 353 
structure-localized coefficient of variation, representing a quantitative measure of how variable the 354 
location of a structure is at any given voxel. D) FOV images of multiple cells (cell membrane indicated 355 
by magenta lines) with labeled matrix adhesions (via paxillin) at two z positions in the z-stack. Top left 356 
triangles in each image show the original FP image. Matrix adhesions are visible near the bottom of 357 
the cells (left) but considerable FP-tagged paxillin signal is visible both at the bottom and center (right) 358 
of cells. Bottom right triangles in each image show the result of the matrix adhesion specific 359 
segmentation, in which only the matrix adhesions themselves remain near the bottom of the cells as 360 
the target of the segmentation. E) Average morphed cells at the Shape Mode 3 map point 361 
(0,0,1.5σ,0,0,0,0,0), representing matrix adhesions (top row) and mitochondria (bottom row) 362 
generated using either the original FP images (left column) or the target structure segmentations (right 363 
column). F) Top view and side view 1 of average and structure-localized coefficient of variation 364 
morphed cells at the Shape Mode 3 map point (0,0,1.5σ,0,0,0,0,0), based on the target structure 365 
segmentations, representing five distinct cellular structures. See Figure S3 for examples for all 25 366 
structures and DataFile S1 for numbers of cells aggregated at each shape space bin. G) Eleven 367 
structures are rendered simultaneously to illustrate their relative spatial relationships in this 3D 368 
visualization (actomyosin bundles and mitochondria are labeled twice highlight their dual locations). 369 
The average morphed cells representing each of these structures at the Shape Mode 3 map point 370 
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(0,0,1.5σ,0,0,0,0,0), based on the target structure segmentations were combined in this image. For 371 
each of these, the average structure image was segmented using the default Surface option found in 372 
the Volume Viewer window of ChimeraX. Thresholds for each channel were selected arbitrarily to 373 
clarify dominant localization patterns observed in the voxel intensities. See Movie S2 for rotating 374 
image.  375 
 376 
This parametric intensity representation takes all intensities in the image into account, including any 377 
FP-tagged protein not localized to the target structure that the protein represents. For example, 378 
EGFP-tagged paxillin localized to matrix adhesions at the bottom of the cell but also throughout the 379 
cytoplasm. However, the segmentation target defined for this cell line included only the high intensity 380 
regions representing the matrix adhesions (Figure 3D). Applying this same cell morphing approach to 381 
the segmented versions of the cellular structure images (rather than to the FP images directly) permits 382 
the creation of average morphed cells containing the locations of the cellular structures that each 383 
tagged protein represents (Figure 3E). Our remaining analyses in this paper focus on the segmented 384 
structure images; but conceptually the same approach could also be applied to the raw intensity 385 
images. 386 

We clustered all cells in the dataset arbitrarily into nine bins along each of the eight shape 387 
modes at the standard deviation intervals shown in Figure 2 (Figure S3C) to create a total of 65 cell 388 
shape map points (the center bin is the same in all modes), into which we morphed each of the 25 389 
structures (Figure 3F and Figure S3D). By direct visual inspection, we found that the average 390 
morphed cells accurately represented the location patterns of these structures in individual, 391 
unmorphed cells (Figure S3D). We could then combine the average morphed locations of each of the 392 
25 structures into the same cell shape (11 integrated structures visualized in Figure 3G and Movie 393 
S2), creating integrated average morphed cells, which we did for each of the 65 map point cell 394 
shapes. 395 

 396 
The location stereotypy of cellular structures depends on the structure but not the cell shape 397 
 To measure how variable the location of each individual cellular structure is within the cell, we 398 
used individual morphed cell images based on the structure segmentations for each structure at each 399 
map point bin in the cell and nuclear shape space. We calculated the 3D voxel-wise Pearson 400 
correlation between pairs of individual morphed cell images within a shape bin for each of the 25 401 
cellular structures (Figure 4A) and averaged those correlation values to generate a measure of the 402 
“location stereotypy” of each structure (Figure 4B). Structures with a high stereotypy value have little 403 
cell-to-cell variation in their overall absolute positions for similarly shaped cells, while structures with a 404 
low stereotypy value may be found in distinct locations even for two cells whose shapes are very 405 
similar. Comparing the average stereotypy for each structure permitted us to rank structures that are 406 
most to least stereotyped in their location within the mean cell and nuclear shape. The most 407 
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Figure 4. The location stereotypy of cellular structures depends on the structure but not the cell 409 
shape. A) Overview of the process to calculate the stereotypy of cellular structures within the mean 410 
cell shape, using the nuclear envelope (via lamin B1) and mitochondria (via Tom20) as examples. 411 
Segmented images of each cellular structure within 300 cells located in the mean cell bin in the shape 412 
space were each morphed into the mean cell shape, creating, for example, 300 nuclear envelope and 413 
300 mitochondria morphed cells. The voxel-wise Pearson correlation was calculated for 300 unique 414 
pairs of morphed cells of same cellular structure and the results were organized as a correlation list. 415 
The mean value of the correlation list was defined as the mean location stereotypy for that structure. 416 
B) Box plots corresponding the values in the correlation list (see panel A) for each of the 25 cellular 417 
structures, represented by unique colors to the left of the y-axis. Dots represent the raw data (n=300), 418 
vertical black lines represent first and third quartile, boxes represent the interquartile range and the 419 
vertical black line inside the box is the mean. C) The process described in panel A was performed for 420 
cells in each of the 72 shape space bins to calculate the average location stereotypy for all 25 cellular 421 
structures throughout the shape space. Each heatmap value corresponds to the mean stereotypy of 422 
all 25 cellular structures for a given shape mode. Each row in the heatmap represents a different 423 
cellular structure, indicated by the same colors as in panel B. Columns in the heatmaps represent the 424 
nine binned map points along each shape mode (see Figure S3C). N = 300 morphed cells for each 425 
cellular structure and shape mode bin or the maximum number of cells available (see DataFile S1 426 
and Methods). 427 
 428 
stereotyped structures were the nuclear envelope (lamin B1) and the plasma membrane (CAAX 429 
domain of K-Ras, “CAAX”). These observations are effectively positive controls, because these two 430 
structures should be very similar to the cell and nuclear boundary shapes that were used as fixed 431 
points in the SHE interpolation. In decreasing order of stereotypy, the next highest were two nucleolar 432 
compartments, the Dense Fibrillar Component (DFC, via fibrillarin and the Granular Component (GC, 433 
via nucleophosmin), followed by the ER (both Sec61 beta and SERCA). Structures with the least 434 
location stereotypy within the mean cell included those with a low number of discrete separated 435 
locations near the top or bottom of the cell such as centrioles (via centrin-2), desmosomes 436 
(desmoplakin), and matrix adhesions (paxillin). They were followed by slightly increased stereotypy for 437 
cohesins (SMC-1A), endosomes (Rab-5A) and peroxisomes (PMP34). To control for any effects of 438 
variable spacing within locations of each of the 25 cellular structures, we performed a systematic 439 
downsampling of the voxel size (Figure S4A) and found little change to the stereotypy order of the 440 
structures (Figure S4B).  441 

We next investigated how much the location stereotypy changed in response to the set of 442 
naturally occurring cell shape perturbations represented by the systematic changes in cell shape 443 
along each of the eight shape modes compared to the “mean” cell shape. Strikingly, we found very 444 
little change in the magnitude or rank order of the location stereotypy throughout the entire shape 445 
space, demonstrating that the stereotypy of all of these 25 structures was extremely robust to overall 446 
cell shape variation (Figure 4C and Figure S4C&D).  447 
 448 
The location concordance of all 25 cellular structures to each other suggests a robust, ordered 449 
compartmentalization of the cell  450 
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The analysis described above enables quantitative ranking of the cell-to-cell variation in 451 
localization of each tagged cellular structure relative to that same structure in a different cell. Also of 452 
interest is the relative similarity of the absolute localizations of each tagged structure as compared 453 
with every other structure. To measure the relationships of the locations of each of the 25 cellular 454 
structures relative to all the others, we calculated the 3D voxel-wise Pearson correlation between the 455 
average morphed cell images for all pairs of structures (pairwise structure location “concordance”) 456 
within the mean cell shape (Figure 5A). We then performed a hierarchical clustering analysis of the 457 
concordance values. This clustering is purely data-driven based on the images alone. Importantly, we 458 
found that the location concordance of these cellular structures clustered naturally into an ordered 459 
compartmentalization of the cell, from the center of the nucleus outward (Figure 5B and colors in 460 
Table 1). The four top-level clusters included structures localized to the nucleus, nuclear periphery, 461 
cytoplasm, and cell periphery, respectively. A priori, we expected to find strong concordance for 462 
several cellular structure sets, including the two nucleolar structures (DFC and GC), the two structures 463 
at the nuclear periphery (nuclear envelope and nuclear pores), the two ER tags (Sec61 beta and 464 
SERCA), and the three structures with primary localization to the apical cell-cell contacts (gap 465 
junctions (connexin-43), tight junctions (ZO-1), and desmosomes (desmoplakin)). The concordance 466 
hierarchy confirmed the expected strong concordances within each of these sets, validating this 467 
analysis approach. 468 
We also identified several other notably high relative concordances such as the tight concordance 469 
between lysosomes (LAMP-1) and Golgi (sialyltransferase 1), consistent with their enrichment in 470 
location in the cytoplasm near the top of the cells and the known role of Golgi in regulating lysosome 471 
localization (Hao et al., 2018; Wang and Hong, 2002). Mitochondria (Tom20) and peroxisomes 472 
(PMP34) were more tightly concordant with each other than either structure was with endosomes 473 
(Rab-5A), even though direct visual examination of individual peroxisome-tagged and endosome-474 
tagged cells did not easily highlight this distinction. However, this observation is consistent with the 475 
known association between mitochondria and peroxisomes (reviewed in (Fransen et al., 2017).  476 

Next, we investigated how much the concordance between all pairs of the 25 cellular 477 
structures changed in response to changes in cell shape, as described above for the stereotypy 478 
analysis. Overall, we found very little change in the hierarchical compartmentalization of these 25 479 
structures throughout the shape space (Figure 5C, Figure S5). Some structures showed an overall 480 
decrease in the magnitude of concordance with other structures in the shape mode bins furthest from 481 
the mean. These structures also had greatly decreased numbers of cells available in these bins for 482 
this calculation, for example actin filaments (beta-actin) or cohesins (SMC-1A) in the furthest bins of 483 
Shape Mode 1, and so these decreases may not be biologically meaningful (DataFile S1). 484 

 485 
 486 
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Figure 5. The location concordance of all 25 cellular structures to each other suggests a robust, 488 
ordered compartmentalization of the cell. A) Overview of the process to calculate the location 489 
concordance between all pairwise-combinations of the 25 cellular structures within the mean cell 490 
shape. The voxel-wise Pearson correlation was calculated between pairs of average morphed cells, 491 
based on the structure segmentations, morphed into the mean cell shape. This created a correlation 492 
matrix including each of the 25 cellular structures with elements of this matrix representing the 493 
location concordance between two cellular structures. B) The heatmap representing the location 494 
concordance for every pair of 25 cellular structures in the mean cell shape. Each heatmap value 495 
corresponds to the Pearson correlation value between the two indicated structures. The correlation 496 
matrix is used as input for a clustering algorithm to produce the dendrogram shown alongside the 497 
heatmap. Dendrogram branches are color coded according to major cell compartments (nucleus in 498 
blue, nuclear periphery in cyan, cytoplasm in orange and the cell periphery in magenta). Lengths of 499 
dendrogram branches represent the distance between clusters. C) The process to create the 500 
concordance heatmap for the mean cell shape in B was repeated for the reconstructed cell and 501 
nuclear shapes at the -2σ and 2σ shape space map points for each of the eight shape modes. Each 502 
heatmap represents one shape mode. The lower triangle represents shape space map point -2σ and 503 
the upper triangle represents shape space map point 2σ. For sake of clarity, diagonals are colored in 504 
white and black lines are used to separate the lower and upper triangles. The number of cells 505 
analyzed for each cellular structure and shape mode bin can be found in DataFileS1. 506 
 507 
The impact of cell and nuclear size on the variation in cellular structure size is structure-508 
dependent 509 
 Intracellular structures exhibit cell-to-cell variation not only in their locations but also in how 510 
much of a given structure is present in the cell. So far, we have found that neither the variability in 511 
each location of each structure in the cell nor their relative locations to each other changed much with 512 
cell volume (Shape Mode 2; Figure 5C). However, it has previously been shown that the volume of 513 
several cellular structures in the cell does correlate with overall cell volume, including the nucleus and 514 
mitochondria (reviewed in (Marshall, 2020)). We therefore used our large dataset to perform a 515 
systematic and comparative analysis of the relationship between cellular structure volume and five 516 
relevant size metrics (cell volume, cell surface area, nuclear volume, nuclear surface area, and 517 
cytoplasmic volume) for the 15 cellular structures in this dataset validated for structural volume 518 
analysis (Figure 6 and Figure S1). We used simple linear regression to fit the data and calculated the 519 
percent of the variation in cellular structure volumes that can be explained by each of the four cell and 520 
nuclear size metrics (“percent explained variance”; Figure 6A). The rolling average, a non-linear 521 
model fit, and analyses in which we considered the geometrical relationship between the volume and 522 
surface area of the roundest nuclei all showed similar results, validating the simple linear regression 523 
approach (Figure 6B, Figure S6A&B, and Methods). We found that the percent explained variance 524 
attributable to these overall cell size metrics was substantially greater for some structures, such as 525 
mitochondria (Tom20; 54%) than for other structures, such as endosomes (Rab-5A; 2%, Figure 526 
6D&E). We also found that for nuclear structures like the nucleolar DFC (fibrillarin), more of the 527 
variance in their volumes could be explained by nuclear volume than by cell volume (77% vs. 68%, 528 
respectively; Figure 6F&G). 529 
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Each of the five cell and nuclear size metrics themselves, of course, also correlate with each 530 
other (Figure 6A), thus obscuring their potential to independently explain the variance in the volumes 531 
of the 15 cellular structures. To disentangle these correlations, we applied a multivariate model and 532 
calculated the total percentage of the variance explained for each of these structures by the 533 
combination of all four direct cell and nuclear size metrics (‘total explained variance”; see ‘all metrics” 534 
column in Figure 6A). For all but two of the cellular structures, the total explained variance was at 535 
least 28%; but this percentage varied widely depending on the structure (x-axis in Figure 6H). At the 536 
lowest end were the centrioles (centrin-2), which we expected to be very small as they are discrete 537 
structures that should not get bigger as cells grow, and thus invariant with all size metrics. At the 538 
highest end were the nuclear envelope (laminB1) and the plasma membrane (CAAX), which we 539 
expected would correlate well with nuclear and cell surface areas, respectively. Notably, the volumes 540 
of all three nuclear body structures (nucleolar DFC, GC, and speckles) were the next-most tightly 541 
correlated to the optimal linear combination of cell and nuclear size metrics.  542 
We then used the multivariate model to calculate the unique contributions of both cell size metrics vs. 543 
both nuclear size metrics vs. the unique contributions of each of the four metrics individually (Figure 544 
6A). For all five nucleus-related structures, the variance in structure volume was better explained by 545 
nuclear size metrics than by cellular size metrics. For the nuclear envelope, more of the variance was 546 
uniquely attributable to the nuclear surface area than nuclear volume; this anticipated result confirmed 547 
the validity of this approach. Unexpectedly, the variance in nuclear speckle (SON) volumes was most 548 
uniquely attributable to the nuclear surface area and not the nuclear volume, although speckles 549 
localize throughout the nucleoplasm.  550 

Of the cytoplasmic structures, microtubules (alpha-tubulin, see Figure S1 for target 551 
segmentation of microtubule bundles), which localize throughout the cytoplasm (Figure S5D), had the 552 
highest percent variance explained by the optimal combination of the four size metrics, followed next 553 
by mitochondria, Golgi and lysosomes (x-axis in Figure 6H). Endosomes (Rab-5A) had one of the 554 
lowest percent explained variance values, almost as low as centrioles, even though they are spread 555 
out throughout the cytoplasm. For the cytoplasmic structures, some variation in their structure 556 
volumes was uniquely attributable to either cell or nuclear metrics; but in all cases the unique 557 
contribution of cell surface area on its own was negligible. While nuclear structures seem to be most 558 
tightly coupled to nuclear size metrics, cellular structures range more widely in how well the variance 559 
in their volumes was uniquely attributable to cell versus nuclear size metrics. We explored whether 560 
cell and nuclear shape might explain some of the variation in cellular structure volumes but found 561 
contributions from other shape modes to be negligible (Figure S6C). Overall, these results show that 562 
how well cell and nuclear size metrics account for the variation in cytoplasmic structure volumes is 563 
structure-dependent, consistent with the wide range of cell functions that these structures regulate.  564 

 565 
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Figure 6. The impact of cell and nuclear size on the variation in cellular structure size is structure-567 
dependent. A) Heatmap in four parts summarizing the results of a systematic, comparative analysis of 568 
the relationship between the volumes of 15 cellular structures and four cell and nuclear size metrics 569 
(cell and nuclear volume and surface area, also referred to as Cell vol, Cell area, Nuc vol, Nuc area in 570 
the heat map columns). The number of cells for each cellular structure can be found in Table S1. The 571 
very left of the heatmap shows the same compartmentalized cellular structure coloring scheme as in 572 
other figures. Heatmap part 1: the leftmost column, labeled scaling rate and colored in green indicates 573 
the percent scaling of cellular structure volumes relative to a doubling in cell volume. For example, a 574 
value of 83% for mitochondria indicates that mitochondrial volume is increased by 83% when the cell 575 
doubles in size (100%) (B and C). Heatmap part 2: the next five columns, each labeled with the four 576 
cell and nuclear size metrics plus cytoplasmic volume (the difference between cell and nuclear 577 
volume, labeled Cyto vol) are colored with the blue-red heatmap color range, labeled explained 578 
variance. These columns indicate the percent of variation in each cellular structure volume (and 579 
surface area for the cell and nucleus; rows) that can be statistically explained using the metrics 580 
indicated in each column. Negative values would represent a negative correlation relationship 581 
between the two variables (row and column), but are not present in this heatmap. These percent of 582 
explained variance values are a measure of the tightness of the coupling between cellular structure 583 
volume and specific cell and nuclear size metrics. Heatmap part 3: the center single column, labeled 584 
all metrics, uses a multivariate model that includes the four cell and nuclear size metrics. The values 585 
in this heat map column represent the total percent of variation in each cellular structure volume that 586 
can be statistically explained using a combination of all four metrics. Heatmap part 4: The last six 587 
columns colored with the orange heatmap color range, labeled unique explained variance, show the 588 
percentage of variation in each cellular structure volume that can be uniquely attributed to a single 589 
metric (each of the four cell and nuclear size metrics) or a pair of metrics (cell volume plus surface 590 
area as the cell size metrics – labeled cell v+a, nuclear volume plus surface area as the nuclear size 591 
metrics, labeled nuc v+a). This number is computed as the difference between the total explained 592 
variance (the all metrics column) and the variance explained by a model using all four cell and nuclear 593 
size metrics except for the metric (or pairs of metrics) indicated in that column. For example, the 594 
second orange heat map column, labeled Cell vol, indicates the percentage of explained variance that 595 
is lost when cell volume is removed from the multivariate model. Thus, this is the percent of explained 596 
variance that can be uniquely attributed to cell volume. B) Scatterplot comparing cell volume (x-axis) 597 
and nuclear volume (y-axis) across all cells (n=203,737). Cells are colored based on an empirical 598 
density estimate. The green line is a running average. The gray line depicts a linear regression model 599 
where variation in the nuclear volume (y-axis) is explained as a linear function of the cell volume (x-600 
axis). The explained variance (R2) in nuclear volume is 85% as stated in the top-left of the plot. The 601 
linear regression model is also used to calculate the scaling rate, i.e. how much larger (in %) nuclear 602 
volume is when cell volume doubles. Specifically, the regression model is evaluated for the cell 603 
volume interval from 1,160 to 2,320 µm3 (where the cell volume doubles) to determine to scaling 604 
percentage for nuclear volume. C) Line plots showing the relative volume scaling rate for three cellular 605 
structures (endosomes, peroxisomes and mitochondria) over the same cell volume doubling range as 606 
in B, from 1,160 to 2,320 µm3. The yellow lines represent the scaling rate, also indicated by the 607 
numbers in the top left corner of each of these plots. The regions filled in gray represent the 608 
interquartile range (IQR) measured across cells that were binned in 10 cell volume bins (y-axis). The 609 
xy-axes to the far left are used to indicate the values of the tick marks in each of the three plots. D-G) 610 
Similar scatterplots as in (B), correlating the volumes of mitochondria (D), endosomes (E), nucleoli 611 
(DFC, F and G) with either cell or nuclear volume (x-axes) along with statistical measures. H) 612 
Scatterplot comparing the total percent explained variance (x-axis contains the values in the all 613 
metrics column of the heatmap in (A) and the relative volume scaling rate (y-axis contains the values 614 
in the scaling rate column in the green heatmap in (A) across all of the 15 cellular structures. The 615 
error bars depict the 5-95% confidence intervals using a bootstrap analysis. The markers along the 616 
top and right side of the plot indicate the ranked order of the structures for that metric. 617 
Compartmentalized cellular structure coloring scheme is used to help identify specific structures.  618 
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 We also measured the relative volume “scaling rates” for each of these 15 cellular structures 619 
as the percentage increase in structure volume given one doubling in cell volume over a range that 620 
was well represented in our cell population, specifically from 1160 µm3 to 2320 µm3 (Figure 6A-C). 621 
For example, the volume of mitochondria increased by an average 83% (from 108 to 198 µm3) for this 622 
doubling in cell volume (an increase of 100%). The structures with the greatest relative scaling rates 623 
were the peroxisomes (via PMP34), followed closely by both nucleolar structures and then 624 
microtubules (y-axis in Figure 6H), all of which nearly doubled in structure volume with the doubling of 625 
cell volume. The structures with the lowest relative volume scaling rates were also the structures 626 
identified as having the lowest explained variance, that is the endosomes and centrioles. For most 627 
structures, however, we observed relative scaling rates of at least 60%, consistent with the simple 628 
expectation that larger cells typically would also have larger organelles. We observed lower scaling 629 
rates for the two structures whose volumes correlated most strongly with nuclear surface area, the 630 
nuclear envelope and nuclear speckles. This is consistent with surface area generally scaling less 631 
quickly than volume, for example, doubling the size of a perfect sphere leads to only a 59% increase 632 
in its surface area. The peroxisomes stood out as exhibiting an unusual pattern of both a high relative 633 
volume scaling rate and great variability in peroxisome volume from cell to cell. This systematic 634 
analysis of the relationship between cellular structure volume and cell and nuclear size metrics 635 
creates a rich set of quantitative constraints for modeling intracellular organization. 636 
 637 
Downsampling the hiPSC Single-Cell Image Dataset demonstrates generalizability of this 638 
multi-part analysis approach  639 

The over 200,000 individual cells spanning 25 cellular structures within the hiPSC Single-Cell 640 
Image Dataset permitted us to develop this multi-part, data-driven, computational approach that 641 
generates a collection of quantitative rule-building constraints for the locations, amounts, and degree 642 
of variation of a set of cellular structures within a population of 3D cell images. The four outputs of this 643 
approach are 1) a 3D cell and nuclear shape space with human-interpretable orthogonal shape 644 
modes; 2) measurements of the location stereotypy throughout the shape space; 3) measurements of 645 
the location concordance between all pairs of cellular structures throughout the shape space; and 4) 646 
measurements of the variation in the volumes of the cellular structure relative to cell and nuclear size. 647 
With this approach we have created a fundamental benchmark for comparison of these analyses of 648 
healthy, normal, undifferentiated hiPSCs with future studies of other populations of cells in different 649 
cell states, including differentiated cells, or cells in pathological states generated by pharmacological 650 
or genetic perturbations. However, broader adoption of this quantitative approach will depend on how 651 
generalizable these analyses are to other kinds of data sets, particularly those that have a 652 
substantially smaller number of cells. 653 

 654 
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Figure 7. Downsampling the hiPSC Single-Cell Image Dataset demonstrates generalizability of this 656 
multi-part analysis approach. A) Cell and nuclear shape space generated with 300 randomly selected 657 
cells from the analysis dataset. The figure shows 2D projections of 3D meshes obtained for each of 658 
the nine map point bins of each of the eight shape modes. The center bin in all modes is the identical 659 
mean cell shape. The most relevant of the three possible views is shown for each mode, as indicated 660 
on the far left. Humanly interpretable names for these shape modes are indicated on the right. PCA 661 
was used to reduce the dimensionality from 2x289 SHE coefficients into the first 8 PCs. Total 662 
explained variance by each component is shown in the bottom left plot. B) Mean stereotypy as a 663 
function the number of pairs of morphed cells used to compute the voxel-wise Pearson correlations. 664 
Cellular structures are grouped into three clusters: nucleus and nuclear periphery, cytoplasm and cell 665 
periphery. Dashed vertical lines indicate the minimum number of pairs of cells necessary to recover 666 
the stereotypy ranking shown in Figure S4. C) The left heatmap represents the location concordance 667 
for every pair of 25 cellular structures in the mean cell shape as in Figure 5B computed on all 668 
n=31,326 cells within the mean cell shape bin. The right heatmap represents the location 669 
concordance for every pair of 25 cellular structures in the mean cell shape calculated on a dataset 670 
composed by 300 randomly chosen cells per structure (except n= 252 for nuclear speckles, see 671 
DataFile S1) for a total number of n=7,452 cells within this mean cell shape bin. Each heatmap value 672 
corresponds to the Pearson correlation value between the two indicated structures. The correlation 673 
matrix is used as input for a clustering algorithm to produce the dendrogram shown alongside the 674 
heatmap. Dendrogram branches are color coded according to major cell compartments (nucleus in 675 
blue, nuclear periphery in cyan, cytoplasm in orange and the cell periphery in magenta). Lengths of 676 
dendrogram branches represent the distance between clusters. Dendrogram on the left and right side 677 
only differs by the cluster assignment of three cellular structures, the peroxisomes, centrioles, and 678 
adherens junctions, highlighted in red and marked with arrowheads. D) Systematic scaling analysis 679 
with n=300 randomly chosen cells per cellular structure. The Heatmap on the left is the equivalent to 680 
FigureScalingA and the scatterplot in the center is the equivalent of Figure 6H, but with the 681 
downsampled number of cells per structures. The plot on the right shows the effect of downsampling 682 
the dataset on the complete set of statistical measurements calculated and shown in the heatmap on 683 
the left. Here, the original set of measurements were compared to a new set of measurements 684 
calculated on a series of downsampled versions of the dataset with n cells per structure randomly 685 
selected (n=10, 20, 30, 50, 100, 200, 300, 500, 1,000, 1,500; x-axis), repeated three times. The root-686 
mean-square (RMS) difference between the two sets of measurements is shown in red and the 687 
number of cases, out of 300, where the absolute difference between the measurements was larger 688 
than 5% is shown in blue. A dataset size of 300 cells lies near the inflection point of both metrics. 689 
 690 

We therefore assessed the minimal dataset size required to maintain the scientific conclusions 691 
of each of these four analyses (Figure 7). For the cell and nuclear shape space, seven of the first 692 
eight shape modes were clearly recapitulated with just 300 randomly chosen segmented cells and 693 
nuclei (Figure 7A). The location stereotypy was greatly invariant to sample size (Figure 7B); the 694 
correct location stereotypy rank order of all 25 structures could be entirely recapitulated with just 35 695 
pairs of cells per structure per shape space bin. Next, we calculated the cellular structure pairwise 696 
concordance based on a random sampling of 300 cells per structure within the mean cell bin and 697 
found that only three structures changed their location in the hierarchical clustering dendrogram 698 
(Figure 7C). For these two analyses, sufficient cells would need to be imaged to ensure the required 699 
number of cells per desired shape space bin. Similarly, we repeated the full set of statistical analysis 700 
of cellular structure volume variation with a systematic reduction in numbers of cells per structure and 701 
found that we could recapitulate all of the biological observations reported above with 300 cells per 702 
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structure (Figure 7D). Overall, each of the four analyses could be successfully performed based on 703 
numbers of cells that could be reasonably collected by a single investigator imaging on a standard 704 
laboratory microscopy over the course of a few days.  705 
 706 
Discussion  707 

A major goal of cell biology is to determine how a subset of expressed genes dictate cellular 708 
phenotypes. To address this enormous challenge, we must develop approaches that can reduce the 709 
amount and complexity of the information contained in cell behaviors. While many others are 710 
approaching this using genomics and proteomics, our strategy is to approach this question from the 711 
perspective of cellular organization, because it is both a key readout and driver of cell behavior. We 712 
choose a dimensionally-reduced approach by focusing on the level of the major cellular structures. To 713 
do this, we developed new ways to convert raw image data of cells and their structures into 714 
dimensionally reduced information in a form that both summarizes the raw data and embraces the 715 
vast cell-to-cell variability observed even within a population of putatively identical cells. Our work 716 
toward this goal has included creating a collection of isogenic cell lines with FP-tagged cellular 717 
structures (the Allen Cell Collection), building and standardizing an automated microscopy imaging 718 
pipeline, creating new deep learning image processing algorithms, generating a large high-quality 719 
dataset, inventing a new multi-part analysis approach that generates a collection of quantitative rule-720 
building constraints (rules), and building tools to facilitate the democratization of these results such as 721 
an online 3D viewer to access the data. With this approach we determined  where, how much and 722 
how variable the various cellular structures are in an integrated and holistic manner. The initial 723 
objective is to identify quantitative relationships that can become rules of organization, and then to 724 
use these data to eventually develop and improve biological models and ultimately laws for 725 
understanding and predicting cellular organization in a wide variety of biological contexts.  726 
 This grand plan requires high-quality image data of cells and their structures. We introduce 727 
such a dataset here: the hiPSC Single Cell Image Dataset with over 200,000 live cells in 3D and 728 
spanning 25 major cellular structures. The scale and quality of this dataset permitted us to create a 729 
multi-part, data-driven, generalizable approach that transforms the image data into a dimensionally 730 
reduced and human-interpretable set of quantitative rule-building constraints for the locations, 731 
amounts, and degree of variation of each of these 25 cellular structures. These constraints comprise a 732 
quantitative benchmark for comparison to other cell types and states, e.g., those observed during 733 
hiPSC differentiation as they transition from their epithelial-like state into more mesenchymal-like 734 
cells, with consequent differences in intracellular organization. Second, these constraints are 735 
inherently quantitative and therefore can be used to both produce and test simulations and models of 736 
cell organization. For example, models that predict the organization of sets of cellular structures 737 
based on conceptual or mechanistic constraints would need to recreate the location, variability, 738 
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amount, and relative positional dependencies of these structures. Comparing these quantitative rule-739 
building constraints with those of cells in other cell states and testing how underlying mechanisms can 740 
generate these rules via models and simulations, will permit us to move towards a deeper 741 
understanding of cell organization, aspiring to find general principles.  742 

The analysis approaches presented here reveal some initial glimpses into new biologically 743 
interesting phenomena. The cell and nuclear shape space that represents the hiPSC Single-Cell 744 
Image Dataset revealed that we can reduce the vast complexity of 3D cell and nuclear shape into a 745 
human-interpretable understanding of the mean cell shape and the variation around it. It also creates 746 
a coordinate system by which we can now cluster groups of similar cells for further analysis and 747 
identify outliers. This shape space exposes a relationship between the behavior of the overall cell 748 
shape and the nuclear shape, which deserves deeper investigation. Next, the methods we developed 749 
to morph cells and their cellular structures together within clusters of similarly shaped cells permit both 750 
the analysis of cellular structure stereotypy and concordance. In principle, the overall concordance 751 
among structures can span a range. At one extreme, all structures could be coupled, e.g. every 752 
structure depending on every other structure; whereas at the other extreme, every structure could be 753 
independent from every other structure. We found that the location concordance of all the cellular 754 
structures clustered naturally into an ordered compartmentalization of the cell, from the center of the 755 
nucleus outward. Then we tested whether this result was valid for only a particular cell shape, e.g., 756 
the mean cell shape, or changed with systematic changes in that shape. We were surprised at how 757 
robust both the stereotypy and the concordance proved to be across all of the cell shape variation in 758 
our population.  759 

Our systematic analysis of how cellular structure volume relates to cell and nuclear size also 760 
raises interesting questions. The apparent lack of correlation between endosome volumes and cell 761 
and nuclear size could arise in several ways. First, endosome size may just depend on the size of 762 
other cellular structures, highlighting a need for experimental data that includes the size of other 763 
structures, going beyond just the cell and nuclear size. Second, we use Rab-5A as the marker for 764 
endosomes; but it marks only a subset of endosomes, the early endosomes, and perhaps different 765 
subsets of endosomes relate differently to cell and nuclear size. Interesting questions also follow from 766 
our observation that the variation in the volumes of all nuclear structures was better explained by 767 
nuclear size than cell size metrics; and furthermore, the nuclear surface area was more tightly 768 
coupled to these structures than to nuclear volume. Nuclear speckles, for example, exhibited a 769 
surprisingly strong relationship with nuclear surface area. This is intriguing in light of the possible 770 
connection between transcript splicing (which occurs at nuclear speckles) and increased rates of 771 
nuclear export (Valencia et al., 2008). This is the first time that the relationship between cellular 772 
structure size and cell and nuclear size has been compared among so many different cellular 773 
structures all in the same consistent experimental system.  774 
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Transcriptomics and proteomics are having a great impact in understanding how the “building 775 
blocks” of the cell generate and regulate cell behavior and disease. Recent single-cell versions of 776 
these studies, particularly for gene expression, together with dimension reduction approaches to 777 
statistically identify and separate groups of similar individual cells, have permitted new insights into 778 
different cell types and states. Our studies add a new dimension to these analyses by incorporating 779 
the spatial organization of cell structures, that is, where and when these parts come together in space 780 
and time to drive that function. Our approach relies on the well-established tight linkage between 3D 781 
cell organization and cell function, aspiring to use this to identify cell types and states from images, 782 
and relate them to single cell gene expression profiles (Gerbin et al., 2020). These approaches were 783 
built with live cell imaging in mind and thus are poised to incorporate dynamics. Recently, studies 784 
combining quantitative measures of sarcomere organization with gene expression in the same 785 
individual cardiomyocytes demonstrates the importance of incorporating the spatial cell organization 786 
metrics for a more complete classification of cell states (Gerbin et al., 2020).  787 

Other recent systematic image-based approaches have catalogued the location of human 788 
proteins in several cell types and used protein and structure locations within cells to identify 789 
differences in intracellular spatial patterns among cells in distinct states (Caicedo et al., 2017; Gut et 790 
al., 2018; Thul et al., 2017). Our work complements these approaches with its focus on analyses of 791 
3D cell organization at the level of cellular structures, and on the generation of quantitative 792 
measurements in a human-interpretable manner. Taken together, these studies bring a critical 793 
missing dimension, i.e., the spatio-temporal component, to the single cell revolution (Aldridge and 794 
Teichmann, 2020). Our study furthers this community goal by adding critical tools, data, and analyses 795 
that show the importance of studying large populations of cells and embracing their variations to 796 
further our understanding of the underlying rules that organize cells. As part of our mission, we aspire 797 
to democratize this emerging area of research; the full image dataset and analysis algorithms 798 
introduced here, as well as all the reagents, methods, and tools needed to generate them, are shared 799 
in an easily accessible way (Allencell.org). This data is available to all for further biological analyses 800 
and as a benchmark for new development of tools and approaches moving towards a holistic 801 
understanding of cell behavior.  802 
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MATERIALS AND METHODS 842 
 843 
RESOURCE AVAILABILITY 844 
 845 
Lead Contact 846 

Further information and requests for resources and reagents should be directed to and will be 847 
fulfilled by the Lead Contact, Susanne Rafelski (susanner@alleninstitute.org).  848 
 849 
Material Availability 850 

Using the Wild Type WTC-11 hiPSC line background (Kreitzer et al., 2013), we previously 851 
generated the Allen Cell Collection of hiPSC lines in which each gene-edited cell line harbors a 852 
fluorescent protein endogenously tagged to a protein representing a distinct cellular structure of the 853 
cell (Roberts et al., 2017b). Fifteen additional Allen Cell Collection lines were generated using the 854 
same methods in this study. The cell lines are described at https://www.allencell.org and are available 855 
through Coriell at https://www.coriell.org/1/AllenCellCollection. For all non-profit institutions, detailed 856 
MTAs for each cell line are listed on the Coriell website. Please contact Coriell regarding for-profit use 857 
of the cell lines as some commercial restrictions may apply. 858 
 859 
Data and Code Availability 860 
The Datasets generated during this study are available at Quilt as packages:  861 
• Full dataset: https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset 862 
• 12X colony dataset: 863 

https://open.quiltdata.com/b/allencell/packages/aics/hipsc_12x_overview_image_dataset 864 
• Supplementary MYH10 repeat dataset: 865 

https://open.quiltdata.com/b/allencell/packages/aics/hipsc_single_cell_image_dataset_supp_myh1866 
0 867 

• Tutorials and demo for how to access the data for different purposes: 868 
https://github.com/AllenCell/quilt-data-access-tutorials 869 

• Original/source data for figures in the paper are available in Github: https://github.com/aics-870 
int/cvapipe_figure_notebooks  871 

 872 
The code supporting the current study has been deposited in Github repositories and the released 873 
code repositories and packages use the following packages in parts, including Numpy (Harris et al., 874 
2020), Scipy (Virtanen, 2020), Napari (Nicholas Sofroniew et al., 2019), Seaborn 875 
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https://seaborn.pydata.org/citing.html, Py Torch (Paszke et al., 2019), ITK (McCormick et al., 2014), 876 
pandas (McKinney, 2011), matplotlib (Hunter, 2007), and label free (Ounkomol et al., 2018): 877 
• Image segmentation code, trained models, and demo Jupyter notebooks have been released at 878 

https://github.com/AllenCell/segmenter_model_zoo. 879 
• Segmentation code used to reproduce structure segmentations from a set of algorithms to choose 880 

from, each with restricted numbers of parameters to tune are available at 881 
https://github.com/AllenCell/aics-segmentation. 882 

• Mitotic image classifier code (Falcon and Cho, 2020; Paszke et al., 2019), (for both training and 883 
testing) and all trained models are available at https://github.com/AllenCell/image_classifier_3d. 884 

• Code used to generate contact sheets for quality control single-cell visualizations of all segmented 885 
cells is available at https://github.com/AllenCellModeling/actk 886 

• Code used for feature calculation: 887 
o aicsfeature (https://github.com/AllenCell/aicsfeature) 888 
o spherical harmonics parameterization (https://github.com/AllenCell/aics-shparam) 889 
o cytoplasmic parameterization (https://github.com/AllenCell/aics-cytoparam) 890 

• Code used to perform organelle size-scaling analysis 891 
(https://github.com/AllenCell/stemcellorganellesizescaling) 892 

• Code used to perform morphing, compute shape modes, and calculate multi-resolution Pearson 893 
correlation analysis on 3D single cell images (Rocklin, 2015) 894 
(https://github.com/AllenCell/cvapipe_analysis) 895 

• Code to create 12X colony dataset and to perform cell height regression 896 
(https://github.com/AllenCell/colony-processing)  897 

• Software will be shared under the Allen Institute Software License and Contribution Agreement, 898 
subject to any applicable third-party licensing restrictions. 899 

• Datasets will be shared under the Allen Institute Terms of Use: 900 
https://alleninstitute.org/legal/terms-use/. 901 

 902 
METHOD DETAILS 903 
 904 
Cell lines and cell culturing 905 

The gene-edited cell lines used in this study were created using the parental WTC-11 hiPSC 906 
line, derived from a healthy, male donor (Kreitzer et al., 2013). Each gene-edited cell line harbors a 907 
fluorescent protein endogenously tagged to a protein representing a distinct cellular structure (Table 908 
1). The complete list of cell lines can be found in the Resource Table. The CRISPR/Cas9-mediated 909 
genome editing methodology used to generate these cell lines was previously described in (Roberts 910 
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et al., 2017b). The tagging strategy for AAVS1 safe harbor targeting was altered to additionally 911 
introduce a strong exogenous promoter for expression of CAAX-mTagRFP-T as described previously 912 
(Hockemeyer et al., 2009; Oceguera-Yanez et al., 2016). The identity of the unedited parental line 913 
was confirmed with short tandem repeat (STR) profiling testing (29 allelic polymorphisms across 15 914 
STR loci compared to donor fibroblasts (https://www.coriell.org/1/AllenCellCollection). Since WTC-11 915 
is the only cell line used by the Allen Institute for Cell Science, edited WTC-11 cells were not re-tested 916 
because they did not come into contact with any other cell lines. 917 

The culture and handling protocols for all used hiPSC lines was internally approved by an 918 
oversight committee and all procedures performed in accordance with the National Institutes of 919 
Health, National Academy of Sciences, and Internal Society for Stem Cell Research guidelines. All 920 
cell lines were expanded and grown on an automated cell culture platform developed on a Hamilton 921 
Microlab STAR Liquid Handling System (Hamilton Company). This platform is summarized in part in 922 
Figure 1A. Three daily workflows were performed on this platform, (1) plate maintenance, (2) 923 
passaging, and (3) Matrigel coating of plates. Plate maintenance included the replacement of old 924 
media with fresh media for both 6- and 96-well plates. Cells were cultured in a Cytomat 24 (Thermo 925 
Fischer Scientific) at 37°C and 5% CO2 in mTeSR1 medium with and without phenol red (STEMCELL 926 
Technologies), supplemented with 1% penicillin-streptomycin (Thermo Fischer Scientific). 927 

Cells were passaged every 4 days for up to 10 passages post-thaw. Cells were dissociated 928 
into a single cell suspension with 37°C StemPro Accutase cell dissociation reagent (Thermo Fisher 929 
Scientific) and counted with a Vi-CELL XR Series cell viability analyzer and associated Vi-CELL XR 930 
sample vials (Beckman CoulterA). Cells were re-plated in mTeSR1 medium supplemented with 1% 931 
penicillin-streptomycin (Thermo Fischer Scientific) and 10 mM Rho-associated protein kinase (ROCK) 932 
inhibitor (Stemolecule Y-27632, STEMCELL Technologies) for 24 hr. Cell culture plates used for cell 933 
expansion were clear-skirt, sterile, plastic 6-well plates with lid with condensation rings (Greiner Bio-934 
One). For imaging, samples were plated on glass-bottom, black-skirt, 96-well plates with #1.5 optical 935 
grade cover glass (Cellvis). Cells were seeded at a density of 1.3x103 to 3.0x103 in 96-well plates 936 
and at 80x103 to 175x103 in 6-well plates. 937 

For most of the dataset, cell culture plates were coated with growth factor reduced (GFR) 938 
Matrigel basement membrane matrix, phenol red-free (Lot # 5292003, Corning) diluted with Dulbeco’s 939 
modified eagle medium (DMEM)/F-12 (Thermo Fischer Scientific) for a final protein concentration of 940 
0.337 mg/mL. Matrigel coating was performed at 4°C with 100 µl and 1,500 µl added to each 96-well 941 
and 6-well, respectively. Plates were incubated at room temperature (RT) for 2hr and Matrigel 942 
removed before cell seeding. For the last two cell lines (cohesins and nuclear speckles) imaged on 943 
the pipeline, the Matrigel coating protocol was adjusted for improved cell plating. These cells were 944 
also plated on a new lot of Matrigel basement membrane matrix, phenol red-free (Lot # 9021357) at a 945 
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final protein concentration of 0.185 mg/mL. For these samples, glass bottom 96-well plates coated 946 
with Matrigel were incubated overnight at 4°C and for an additional 2 hr at 37°C before removing 947 
Matrigel at RT. Further details for cell culture reagents and consumables can be found in the 948 
Resource Table and standard protocols can be found at www.allencell.org.  949 
 950 
 951 
Cell culture and imaging sample quality control 952 

Rigorous and standardized quality control (QC) workflows for cell culture health were 953 
performed at each passage, before imaging the cells at high resolution, and following the completion 954 
of imaging a cell line. These QC workflows included cell and morphology assessment via microscopy, 955 
cell stemness marker expression with flow cytometry, and outsourced cytogenetic analysis. 956 
 hiPSC morphology was evaluated by expert scientists for both plastic 6-well and glass-bottom 957 
96-well plates and was examined 4 days post-passaging. Individual wells of plastic 6-well plates were 958 
deemed ready for passage when cells reached ~85% confluency and displayed typical morphologies 959 
associated with hiPSCs that have preserved the expression of stemness markers (Roberts et al., 960 
2017a). Exclusion criteria included, but were not limited to, under- or over-confluency, presence of 961 
morphology associated with differentiating cells, and over 5% of cell death. The morphology of cells 962 
and colonies grown on glass bottom 96-well plates was also examined prior to 3D field of view (FOV) 963 
image acquisition. 12X well overview images were used to exclude wells that did not meet the 964 
following four morphology criteria requirements: less than three occurrences of 1) colonies presenting 965 
atypical crater-like morphology, 2) lifted colonies (ball-like morphology), 3) partially lifted colonies 966 
(edges lifting) and 4) morphology associated with differentiation (Roberts et al., 2017a).  967 
 Following the completion of all 3D FOV image acquisition for a given cell line, two types of QC 968 
were performed to ensure hiPSCs had retained stemness marker expression and normal G-band 969 
karyotyping throughout the imaging period as previously described (Coston et al., 2020; Roberts et 970 
al., 2017a). All cell lines imaged during the three years of data acquisition and included in the hiPSC 971 
Single-Cell Image Dataset passed theses QC requirements.  972 
 973 
 974 
Image acquisition 975 

The following methods are described in the order they were performed for a given image 976 
acquisition workflow on the imaging pipeline. The image acquisition workflow and experimental setup 977 
evolved over the three years of dataset collection and was versioned as such. Below is the list of all 978 
pipeline image acquisition workflows and a description of each update and modification. The list of 979 
pipeline workflow versions used to acquire each cell lines can be found in Table 1. 980 
 981 
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Workflow 

version 

Description of changes and updates 

Pipeline 4.0 

Single camera system for interwoven acquisition of four channels. Original 

transmitted light = white light LED. Specimen exposed to dual peak emissions with 

highest at 460 nm and range of 400-700 nm. Collecting light with 525/50 bandpass 

filter, from 500-550 nm. Mode C acquisition performed without photoprotective 

cocktail. 

Pipeline 4.1 

Single camera system for interwoven acquisition of four channels. Same original 

transmitted light source as 4.0. Added photoprotective cocktail with mode C 

acquisition. 

Pipeline 4.2 

Single camera system for interwoven acquisition of four channels. Same original 

transmitted light source as 4.0. Photoprotective cocktail used with mode C 

acquisition. New emission filter added for acquisition of mTagRFP-T with a 600/50 

nm band pass filter. 

Pipeline 4.4 

Second camera added to all systems. Using dual camera system to image four 

channels (bright-405-488-638 nm) with interwoven acquisition of 2X two channels 

simultaneously. New Transmitted Light: Red 740 nm LED Transmitted Light. 

Specimen exposed to peak emission 740 with narrow range. Collecting light with 

706/95 bandpass filter, so from 660-750 nm. Using piezo z stage for fast movement 

in z. 

 982 
Microscopy 983 

Imaging was performed on Zeiss spinning-disk confocal microscopes with 10X/0.45 NA Plan-984 
Apochromat or 100X/1.25 W C-Apochromat Korr UV Vis IR objectives (Zeiss) and Zen 2.3 software 985 
(blue edition; Zeiss) unless otherwise specified. The spinning-disk confocal microscopes were 986 
equipped with a 1.2X tube lens adapter for a final magnification of 12X or 120X, respectively, a CSU-987 
X1 spinning-disk scan head (Yokogawa) and two Orca Flash 4.0 cameras (Hamamatsu). Standard 988 
laser lines were used at the following laser powers measured with the 10X the objective; 405 nm at 989 
0.28 mW, 488 nm at 2.3 mW, 561 nm at 2.4 mW and 640 nm at 2.4 mW unless otherwise specified. 990 
The following Band Pass (BP) filter sets (Chroma) were used to collect emission from the specified 991 
fluorophore; 450/50 nm for detection of DNA dye, 525/50 nm for detection of mEGFP tag, 600/50 nm 992 
for detection of mTagRFP-T tag and 706/95 nm for detection of cell membrane dye. Images were 993 
acquired with 200 ms exposure time unless otherwise specified. The microscope setup allowed us to 994 
collect either all channels with a single camera (Pipeline 4.0-4.2, see description above) or two 995 
channels simultaneously, either the bright field and mEGFP or the cell membrane and DNA dyes 996 
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(Pipeline 4.4, see description above). Cells were imaged in phenol red-free mTeSR1 media on the 997 
stage of microscopes outfitted with a humidified environmental chamber to maintain cells at 37°C with 998 
5% CO2 during imaging. Transmitted light (bright field) images were acquired using a white LED light 999 
source with broad emission spectrum (pipeline 4.0-4.2) or a red LED light source with peak emission 1000 
of 740 nm with narrow range and a BP filter 706/95 nm for bright field light collection (Pipeline 4.4 1001 
only). A Prior NanoScan Z 100 mm piezo z stage (Zeiss) was used for fast acquisition in z (Pipeline 1002 
4.4 only). 1003 
 1004 
Well overview and manual well position selection 1005 

Typical imaging sessions started with a bright field overview image acquisition of wells from 1006 
selected rows of a 96-well plate as 2D, 12X tiled images before cell membrane and DNA dye staining. 1007 
These well overview images were used for final evaluation of cell morphology (see above) and 1008 
manual or automated position selection for 3D FOV acquisition at 120X in wells satisfying QC criteria 1009 
requirements (see description above). Manual selection of positions to be imaged at 120X was 1010 
performed using the 12X overview images and stage function in Zen software. Manual position 1011 
adjustments were also made at 120X using streaming bright field imaging to satisfy the requirement of 1012 
each mode of imaging. 1013 

 1014 
Imaging modes 1015 

Colony position selection was performed manually using the stage function in Zen software or 1016 
as described below using an automated method (for the last six cell lines imaged) for imaging mode 1017 
A. One position per colony was selected approximately half-way between the colony edge and center 1018 
such that the imaged FOV did not fall at the edge nor at the center of the colony. In mode B, positions 1019 
were also selected as per mode A followed by manual adjustment of the FOV position using 1020 
transmitted light and streaming bright field imaging to navigate to a region enriched in mitotic cells. 1021 
This mode was used to substantially increase the number of mitotic cells imaged in an FOV by 3-fold. 1022 
Operators were trained on how to identify mitotic morphology from just bright field images using 1023 
merged DNA dye and bright field images (Figure 1A, mode B). In mode C, three positions per colony 1024 
were selected; a mid-center position area (as in mode A), a position right at the colony edge and a 1025 
position just inward from the edge in an area referred as the ridge due to the tendency of these cells 1026 
to grow taller until they flatten into the center area of the colony (Figure 1A; Figure S7). Due to the 1027 
increased photosensitivity of the cells located at the edge of the colony, a photoprotective cocktail 1028 
(see “Dye Staining” section below) was used when imaging in mode C to prevent premature cell 1029 
retraction, blebbing and death. Mode C positions were selected manually for all cell lines. 1030 
 1031 
 1032 
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Automated well position selection 1033 
We developed an automated method that segments the colonies from a 12X well overview 1034 

image and automatically suggests positions for 3D FOV acquisition based on the distance from the 1035 
edge of a colony satisfying mode A criteria (see description above). Tiles from the well overview 1036 
images were acquired with a 10% overlap and stitched using a processing function in Zen software. 1037 
The automated position selection method segmented the colonies in the image with the following 1038 
image processing steps developed in Python; 1) rescale intensity to increase contrast of colony edges 1039 
from background, 2) apply Sobel filter (Scikit-Image) to identify colony edges and fill the holes to 1040 
segment entire colony, 3) correct for segmentation artifacts with erosion, dilation on segmentation and 1041 
removal of small objects, 4) identify centers of individual colonies with a distance map on binary 1042 
segmentation, 5) separate connecting colonies using the center coordinates of colonies and binary 1043 
segmentation of colony areas with watershed method, and finally 6) compute a distance map for each 1044 
colony. Our criteria for position selection were as follows, 1) one position was selected per colony, 2) 1045 
no more than 10 positions were selected per well, 3) the position had to be from a colony greater than 1046 
34992 µm2 (corresponding to colony size with a uniform flattened and well-packed central area), 4) 1047 
the position had to be imaged approximately half-way between the edge and center of the colony 1048 
(mid-center). To fulfill these criteria, the algorithm first filtered colonies based on their size, and 1049 
selected mid-center colony positions (x-y coordinates). If more than 10 positions per well were 1050 
automatically identified, the method gave preference to positions selected in larger colonies and in 1051 
colonies closer to the center of the well. A graphical user interface was developed to assist users in 1052 
viewing and confirming the proposed algorithm-generated positions for 3D FOV imaging. The user 1053 
had the flexibility of moving, adding or deleting positions to finalize the list of FOV to be imaged at 1054 
higher magnification for that imaging session. The list of positions was then saved as a text file with 1055 
the stage coordinates and position number in the Zen software readable format (.czsh) and integrated 1056 
into the experiment xml file for 3D FOV imaging at 120X. 1057 
 1058 
DNA and cell membrane dye staining 1059 

Following well overview acquisition, the cell membrane and DNA of cells from selected wells 1060 
were stained with fluorescent dyes. Wells were first incubated at 37°C and 5% CO2 for 20 min with a 1061 
DNA dye, NucBlue Live (Thermo Fisher Scientific, 1:16.66) diluted in phenol red-free mTeSR1 1062 
medium. A cell membrane dye, CellMask Deep Red (CMDR, Thermo Fisher Scientific) was then 1063 
added to the well (in the continued presence of NucBlue Live) at a final concentration of 5X (earlier 1064 
lot) or 3X (last 2 lots, adjusted to provide equivalent contrast to noise ratio within a 2.5 hr imaging 1065 
session) and the 96-well plate was incubated for an additional 10 min at 37°C and 5% CO2. Each well 1066 
was washed once with phenol red-free mTeSR1 medium before a final 200 µl of phenol red-free 1067 
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mTeSR1 medium was added per well and the plate returned to the stage of the microscope. In mode 1068 
C acquisition, a photoprotective cocktail (1mM ascorbic acid, 0.3 U/ml OxyFluor and 10 mM lactate) 1069 
was mixed into the phenol red-free mTeSR1 media before it was added to the well. For consistency, 1070 
we limited the cell staining to a single row, or 10 wells, per plate at a time and imaged for a maximum 1071 
of 2.5 hr post completion of the staining protocol. We limited the imaging time to 2.5 hours since we 1072 
saw no adverse effects of the dyes on cell cycle (evaluated as % mitotic cells in cell colonies) or cell 1073 
viability (evaluated as increased presence of dead cells on top of colonies) within that time frame. We 1074 
imaged halfway between the edge and center of a colony to avoid imaging FOVs with reduced dye 1075 
penetration at the center of large, tightly packed colonies. 1076 
 1077 
3D FOV image acquisition 1078 

After the final wash with phenol red-free mTeSR1 media, plates were returned to the stage of 1079 
the spinning-disk confocal microscope and all 3D FOVs, at pre-selected positions, were acquired with 1080 
a 100X/1.25 NA objective at a final magnification of 120X. Four channels were acquired at each z-1081 
step (interwoven channels) in the following order: bright field, mEGFP or mTagRFP-T, CMDR and 1082 
NucBlue Live with laser powers and exposure times as stated above. For the single camera system 1083 
acquisition only, empty channels were acquired between each channel with 0.3 ms exposure time to 1084 
reduce noise introduced during the filter position change. This was necessary due to the long travel 1085 
range of the filter wheel moving between four different positions at each z-step. Pipeline 4.4 3D FOV 1086 
acquisition was performed with two cameras using two interwoven sets of simultaneous acquisitions. 1087 
In this case, bright field and CMDR channels were acquired on the back camera and all other 1088 
channels acquired on the left camera. Resulting images from either single or dual camera systems 1089 
were of 16 bits and 924 x 624 pixel2 in x-y dimension after 2x2 binning. Images from the dual-camera 1090 
system required channel alignment (see below). Following channel alignment, the final images were 1091 
cropped into a final size of 900 x 600 pixels2 in the x-y dimension. FOVs from both single and dual 1092 
camera systems had a final x-y pixel size of 0.108 µm and z-stacks composed of 50–75 z-slices (to 1093 
encompass the full height of the cells within an FOV) acquired at a z interval of 0.29�µm. 1094 
 1095 
 1096 
Post-acquisition FOV image processing 1097 
 1098 
Channel alignment for dual camera acquired images (Pipeline 4.4 only) 1099 

Optical control images were acquired at the start of each data acquisition day to monitor 1100 
microscope performance. Optical control images of TetraSpeck microsphere beads or the “field of 1101 
ring” pattern on the Argolight HM slide (Argolight) were used to register and align the appropriate 1102 
channel images of an FOV acquired with two cameras. A z-stack of 10 to 30 z-slices of these patterns 1103 
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was acquired at 120X with all four fluorescent channels. Channel images from the 638 nm laser line 1104 
and 706/95 nm BP filter (back camera) and 488 nm laser line and 525/50 nm BP filter (left camera) 1105 
were used to generate an affine transformation matrix identifying the shift in x-y, rotation and scaling 1106 
factor between the 638 nm (from the back camera) and 488 nm (from the left camera) wavelength 1107 
channels. We used the z-slice with maximum focus along the z-axis. The two channel images were 1108 
pre-processed separately by normalizing the intensities and applying gaussian smoothing prior to 1109 
segmenting the objects such as individual beads or rings with intensity thresholding. Due to the nature 1110 
of the sample preparation of TetraSpeck beads, which randomly adhere to the glass, we excluded 1111 
some beads based on the following criteria: 1) overlapping beads, 2) beads that are outside of the 1112 
range of an expected bead size and intensity, and 3) beads that have inconsistent centroid location 1113 
(mass versus peak intensity). Centroid locations of segmented objects (beads or rings) from both 638 1114 
nm and 488 nm channels were compared and only objects in close proximity (within 5 pixels) between 1115 
the two channels were kept. The exclusion steps were not necessary with the stable and consistent 1116 
field of ring pattern of the Argolight HM slide. Using the two sets of centroid locations of objects, the 1117 
method estimated a similarity transform matrix with the “estimate_transform” function in scikit-image 1118 
that transforms the image with translation, rotation and scaling. The values from this matrix were also 1119 
used to identify any deviations from the normal trend indicating potential system performance issues 1120 
over time. The affine transformation matrix was applied on every z-slice of the channel acquired on 1121 
the back camera (bright field and 638 nm) and as such aligned to the reference channel images 1122 
acquired on the left camera (405 nm, 488 nm and 561 nm) with a Warp function (scikit-image). FOVs 1123 
were then cropped in x-y for a final dimension of 900 by 600 pixels2 to remove empty pixels 1124 
introduced in the bright field and 638nm channel images by the alignment. 1125 
 1126 
3D FOV image quality control 1127 

All 3D FOV images were visually inspected by experts for obvious issues related to the 1128 
experimental settings. Typical exclusion criteria were related to microscope acquisition system failures 1129 
(laser, exposure time, z-slice positioning in relation to cell height, empty or out of order channels), or 1130 
any other issues that would cause downstream processing to fail or analysis steps to identify outliers. 1131 
Some of these QC steps were also automated with a series of Python scripts to ensure a more 1132 
systematic and standardized way to catch problematic FOVs and exclude any outliers. To do so, 1133 
intensity metrics were extracted from each channel of each FOV and trends and averages were used 1134 
to determine exclusion thresholds or cutoff values. Overall, three main automated exclusion FOV QC 1135 
steps were applied to the hiPSC Single-Cell Image Dataset; channel intensity out of range, z-stacks 1136 
with incomplete cell height, and z-slice empty or out of order.  1137 
 1138 
 1139 
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FOV channel intensity quality control 1140 
The FOV channel intensity QC script calculated the minimum, maximum, median, 99.5th and 1141 

0.5th percentile pixel intensity value in each channel for each FOV. FOVs were flagged if the median 1142 
intensity of one channel was outside a predetermined range (low and high cutoffs, see values below). 1143 
These cutoff values were based on offset, noise and maximum intensity values of the microscopes, 1144 
fluorescent tags and dyes imaged. 1145 
Cutoffs for median intensity 1146 

Channels 
Low cutoff 

(AU) 

High cutoff 

(AU) 

bright 

field 
0 50000 

405 nm 400 430 

488 nm 400 1600 

561 nm 400 700 

638 nm 400 8000 
 1147 
Low cutoffs for the maximum intensity in the 405 nm (DNA) and 638 nm (cell membrane) 1148 

channels were also applied to ensure the minimum required contrast in the images for successful 1149 
single cell segmentation. 1150 
Cutoffs for max intensity 1151 

Channels 
Low cutoff 

(AU) 

405 nm 500 

638 nm 635 
 1152 
Given a normal distribution of FOV intensities, we also excluded from the dataset all individual 1153 

FOVs with a channel median intensity within the bottom 0.5th percentile of the whole dataset. We 1154 
calculated a z-score for each channel of each FOV and excluded all FOVs that had a channel 1155 
intensity with z-score of 2.58 below the mean. 1156 
 1157 
Automated detection of z-stack with incomplete cell height quality control 1158 

We automated the detection of z-stacks with incomplete cell height in a FOV due to mis-1159 
positioning or mis-sampling of a z-stack acquisition. The cell membrane channel (638 nm) was used 1160 
to determine whether the top and/or bottom of the cell were included in the z-stack image. The 1161 
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intensity of the cell membrane channel image was first normalized to the maximum intensity of the cell 1162 
membrane channel image. Next, the median intensity and contrast (maximum intensity-background 1163 
intensity)/maximum intensity) for each z-slice were calculated to generate an intensity and contrast 1164 
profile along the z-axis. Local maxima of the intensity profile were detected with a “peak detection” 1165 
method described in SciPy-image ((Virtanen, 2020); scipy.org), where the lower peak corresponds to 1166 
the bottom of a z-stack and the higher peak corresponds to the top of a z-stack. In the scenario where 1167 
more than 2 peaks were detected, the method used the top-most peak and the bottom-most peak and 1168 
the contrast profile to refine the measured range of the z-stack.  1169 

Thresholds of contrast values for bottom (0.2) and top (0.19) of a z-stack were estimated from 1170 
data trends of the entire dataset. Using these threshold values, the method iterated from the 1171 
top/bottom peaks detected to the full range of the z-stack and reported the closest z-slice to reach the 1172 
thresholds as the detected top/bottom of the cells for this z-stack. We also measured the rate of 1173 
change in contrast in the detected top and bottom 5 slices of each z-stack and flagged z-stacks as 1174 
incomplete cell height if the rate of change in the top 5 slices were smaller than -0.015 and the bottom 1175 
5 slices were smaller than -0.01 (in contrast units, see contrast definition above). To ensure cell height 1176 
completeness any FOV with detected top/bottom z-slices within 5 slices of the first and last slice of the 1177 
z-stack were flagged as either an "incomplete -missing top" or a “incomplete -missing bottom” and 1178 
excluded these FOVs from the datasets. 1179 
 1180 
Out of order z-stacks in FOV quality control 1181 

Out of order z-stacks were also observed. We generated an algorithm capable of identifying if 1182 
the z-stack first z-slice had the highest median intensity, indicating that the z-stacks were placed in 1183 
improper order by the acquisition software. We excluded any FOV with a first z-slice registering the 1184 
maximum intensity and flagged the FOV as “z-stacks out of order”.  1185 
 1186 
 1187 
3D segmentation  1188 
 1189 
Cell and nuclear segmentation 1190 

To segment each individual cell and its corresponding DNA from the membrane dye and DNA 1191 
dye channels of each 3D z-stack, we used the deep learning-based cell and nuclear instance 1192 
segmentation algorithm developed as part of Allen Cell and Structure Segmenter (Chen et al., 2018). 1193 
We combined the Segmenter’s Iterative Deep Learning workflow and the Training Assay approach to 1194 
ensure accurate and robust segmentation for downstream quantitative analysis. Complete step-by-1195 
step details of this algorithm are described in (Chen et al., 2018).The code, trained models, and demo 1196 
Jupyter notebooks have been released at https://github.com/AllenCell/segmenter_model_zoo. 1197 
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In the Training Assay approach, a secondary experimental assay that is more amenable to accurate 1198 
segmentation is linked to the primary assay for the purpose of training segmentation models. The 1199 
secondary assay is used to generate accurate segmentations, which are then imposed as the target 1200 
for training the model to segment the images of the primary assay. As a result, the final segmentation 1201 
model can achieve better accuracy and robustness even when running on the poorer-quality primary 1202 
assay images. We applied two training assays to develop the cell and nuclear segmentation 1203 
algorithm. 1204 

The first training assay (Figure S1E) addressed the challenge that the membrane dye images 1205 
suffered from very weak signal near the top of cells due to both dye labeling of a very thin membrane 1206 
and photobleaching even during a single z-stack acquisition via 3D spinning-disk confocal 1207 
microscopy. The secondary assay in this training assay used the CAAX cell line containing the 1208 
membrane-targeting domain of K-Ras tagged with mTagRFP-T, which made it possible to accurately 1209 
delineate cell boundaries, even near the top of cells. This training assay is described in detail in (Chen 1210 
et al., 2018). In brief, the first step of this training assay is to obtain the initial semantic (whole FOV) 1211 
segmentation of tagged CAAX signal on ten sample images using a semi-automatic algorithm based 1212 
on a seeded watershed. Seven images were sorted as having good segmentation and used to train a 1213 
CAAX segmentation model. We then applied this CAAX segmentation model on 312 CAAX images to 1214 
create a CAAX-based cell segmentation ground truth set, which we then used together with the 1215 
membrane dye images to train a membrane dye-based segmentation model. This model robustly 1216 
segmented cells including their dimly visible top boundaries, from the membrane dye images in all 1217 
18,186 FOV’s in the dataset. 1218 

The second training assay (Figure S1F) was to use images of mEGFP-tagged lamin B1 cells 1219 
for segmenting interphase nuclei and mEGFP-tagged H2B cells for segmenting mitotic DNA during 1220 
mitosis (representing the “nucleus” during nuclear envelope break-down). Lamin B1 and H2B both 1221 
provided more biologically accurate detection of the nuclear boundary. The shell of intensity around 1222 
the nucleus in tagged lamin B1 cells was more directly detectable in 3D than the DNA dye images and 1223 
both endogenously tagged structure cell lines had better signal to noise compared to both dyes. This 1224 
training assay is described in detail in (Chen et al., 2018). Briefly, we began with classic image 1225 
segmentation results for lamin B1 where the “shell” of lamin B1 is filled to represent the nucleus. We 1226 
sorted eight out of 80 images and used these to train a deep learning model to segment “nuclei” (i.e. 1227 
filled shells) from lamin B1 images. We then applied this model on 1,017 lamin B1 images to create a 1228 
lamin B1-based nuclear segmentation ground truth set, which we then used together with the DNA 1229 
dye images to train a DNA dye-based segmentation model for interphase nuclei. Regions containing 1230 
mitotic cells in these images were automatically identified and excluded from training, see (Chen et 1231 
al., 2018) for details. In parallel we used H2B images and a classic segmentation workflow to 1232 
generate a cleaner segmentation target for training a mitotic DNA segmentation model. We generated 1233 
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a set of 28 merged segmentation targets (mitotic DNA segmentation from H2B images and interphase 1234 
nuclei segmentation by applying the first interphase model on DNA dye images) to train an overall 1235 
DNA dye-based nuclear segmentation model. This is the model we applied to all 18,186 FOVs in the 1236 
dataset. 1237 

To convert the cell and nuclear segmentation model outputs into individual cells (i.e., instance 1238 
segmentation), we had to train two additional models: a “cell seeding” model and a “mitotic pair 1239 
detection” model. We took advantage of the DNA dye-based nuclear segmentation model to create a 1240 
deep learning based “cell seeding” model. This used a subset of 600 images from the same training 1241 
images as for the interphase DNA dye segmentation model, but with a modified segmentation target 1242 
obtained by shrinking the mask for interphase nuclei (and very early and very late mitosis DNA), and 1243 
generating a convex hull for the mask for other mitotic DNA. The binarized membrane segmentation 1244 
model output was used to cut the potentially falsely merged seeds from tightly touching nuclei and the 1245 
resultant seeds were applied back on the cell membrane segmentation output for use in a seeded 1246 
watershed to identify individual cells. We also trained a FasterRCNN-based mitotic pair detection 1247 
model, which permitted us to identify mitotic cells that were in anaphase and telophase/cytokinesis 1248 
and make sure they were segmented as one cell. Several other steps were performed to enhance the 1249 
robustness of the cell and nuclear segmentation for application at scale to the 18,186 FOVs in the 1250 
hiPSC Single-Cell Image Dataset. These are described in detail in (Chen et al., 2018) and included 1251 
training and applying a label-free segmentation model of nuclei and cell membrane to boost the 1252 
robustness when the signals in the DNA dye or membrane dye channel were extremely dim, as well 1253 
as several minor steps such as morphological refinement on the segmented nuclei and refinement of 1254 
the bottom of the cell. The very bottom surface of the cells protrudes out into the tightly packed 1255 
neighboring cells and the z-resolution does not permit proper disentangling of the overlapping parts. 1256 
We therefore automatically identified a z-slice with a reasonable cell segmentation near the bottom 1257 
and propagated it downward through all other z-slices to the bottom of the cell. 1258 

To validate the performance of the cell and nuclear segmentation results, we selected and 1259 
inspected a representative set of images (576 images from 22 different cell lines) at the single-cell 1260 
instance level. From this validation, we estimated the percentage of well-segmented cells and the 1261 
percentage of FOVs for which the segmentation of all cells and nuclei were successful without 1262 
obvious errors along the segmented boundaries. We developed an in-house scoring interface in 1263 
Python using Napari that allows for overlaying the segmentations on the original images and 1264 
inspecting them slice by slice in 3D. Each image was manually scored by at least two human experts. 1265 
We found that over 98% of individual cells were well-segmented and over 80% of images generated 1266 
successful cell and nuclear segmentations for all cells in the entire FOV. Based on these validation 1267 
results, we decided the cell and nuclear instance segmentation algorithm was sufficiently reliable to 1268 
be applied to all of the FOVs in the dataset. For quality control purposes, single-cell visualizations of 1269 
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all segmented cells were generated using https://github.com/AllenCellModeling/actk as a set of 1270 
contact sheets and all cells in the final dataset were manually reviewed for basic quality criteria such 1271 
as only one nucleus per cell except later in mitosis, no obviously chopped nuclei, and no especially 1272 
aberrant cell shapes due to segmentation errors. 1273 
 1274 
Cellular structure segmentation 1275 

We applied a collection of modular segmentation workflows from the Classic Segmentation 1276 
component of the Segmenter, each optimized for the particular morphological features of the target 1277 
cellular structures (Chen et al., 2018). Representative examples for each of the 25 FP-tagged cellular 1278 
structures are shown in Figure S1. For each structure, results of the segmentation workflow were 1279 
evaluated on sets of images representing the variation observed across imaged cells (e.g. different 1280 
regions of colonies) to ensure consistent segmentation quality across all images for each structure. 1281 
The algorithms for all but two of the 25 cellular structures were classic image segmentation workflows. 1282 
The exceptions were the plasma membrane (via CAAX) and the nuclear envelope (via lamin B1). All 1283 
Classic Segmentation workflows contain three parts: pre-processing, core segmentation algorithms, 1284 
and post-processing. For each part, there exists a set of algorithms to choose from, each with 1285 
restricted numbers of parameters to tune. All workflows are accessible at 1286 
https://github.com/AllenCell/aics-segmentation. For the plasma membrane, a deep learning-based 1287 
segmentation model was developed as part of the training assay for cell segmentation described 1288 
above. For the nuclear envelope, we developed an algorithm that combines multiple deep learning 1289 
models including (1) the lamin B1 filled segmentation model we developed for nuclear segmentation 1290 
training assay, (2) an overall lamin B1 segmentation model, (3) a lamin B1 seeding model, and (4) the 1291 
plasma membrane segmentation model developed for cell and nuclear segmentation model. Briefly, 1292 
we used the plasma membrane segmentation model output to cut the lamin B1 seeding model 1293 
outputs to generate one seed per interphase nucleus. Then, the seeds were applied on the overall 1294 
lamin B1 segmentation model via seeded watershed to obtain a one-voxel thick “shell” for each 1295 
interphase nucleus. The “shells” were merged with the overall lamin B1 segmentation as the final 1296 
lamin B1 segmentation result, which contained both complete nuclear envelope and properly segment 1297 
invaginations and lamin B1 during mitosis. More details can be found in (Chen et al., 2018). Both 1298 
models and code for CAAX and lamin B1 can be accessed via 1299 
https://github.com/AllenCell/segmenter_model_zoo. 1300 

We performed an additional validation step to determine whether a given target structure 1301 
segmentation was sufficient for interpretation in the cellular structure volume analysis (Figure 6). We 1302 
identified ten structures for which there were obvious caveats to the ability to use their target structure 1303 
segmentation for biological interpretations of how much of the target structure was present in each 1304 
cell and thus these ten structures were excluded from the structure volume analysis (Figure S1B-D). 1305 
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These three types of caveats included: (1) The cell boundary segmentation may have potential 1306 
segmentation errors in the very top slices of the cell. This type of error has a minor effect on the 1307 
overall segmentation of the cell but for structures localizing to the cell periphery at the very top of 1308 
cells, this caveat can cause structures to be miss-assigned to neighboring cells (including tight 1309 
junctions (ZO-1), gap junctions (connexin-43), desmosomes (desmoplakin; Figure S1B), adherens 1310 
junctions (beta-catenin), actin filaments (beta-actin), actin bundles (alpha-actinin-1), and actomyosin 1311 
bundles (non-muscle myosin IIB)). Therefore, these seven structures were not validated for cellular 1312 
structure volume analyses. (2) Structures localizing or partially localizing to a thin 3D surface (such as 1313 
the cell or nuclear periphery), especially when that surface is slanted, may suffer from non-uniform 1314 
accuracy between the middle and the top/bottom of that structure due to the anisotropic resolution of 1315 
the images. The accuracy of the nuclear pores target segmentation was sufficient to identify the 1316 
general location of nuclear pores in the cell for the location-based analyses but not sufficient to be 1317 
validated for use in the cellular structure volume analysis and thus this structure was excluded 1318 
(Figure S1C). This nuclear periphery caveat was also observed for perinuclear ER (both Sec61 beta 1319 
and SERCA2) and the nuclear lamina enriched localization of histones (H2B). However, these 1320 
structures were still well segmented for the cytoplasmic ER localized throughout the cell and for 1321 
histones localized throughout the nucleoplasm, each of which contributed more to overall structure 1322 
volume. Therefore, those structures were not excluded from the cellular structure volume analysis. 1323 
This caveat was also observed for structures that localize to the cell periphery (listed in the first 1324 
caveat), which were excluded from the structure volume analysis. (3) The segmentation result for 1325 
cohesins (via SMC1A) can depend on how far along a cell is in interphase and works well for most, 1326 
but not all, of interphase (Figure S1D). Therefore, this structure was excluded from the structure 1327 
volume analysis. Matrix adhesions (paxillin) localized to the very bottom of the cells where the 1328 
membrane dye signal does not permit accurate identification of cell boundaries (see “Cell and nuclear 1329 
segmentation” in Methods). Therefore, due to high likelihood of misassigment of matrix adhesions to 1330 
neighboring cells, they were excluded from the structure volume analysis. 1331 
 1332 
 1333 
Single cell dataset generation 1334 
 1335 
Single cell image generation 1336 

To build the single-cell version of the image dataset for downstream analysis, we extracted all 1337 
complete individual cells in each FOV automatically from the cell segmentation results of the image, 1338 
ignoring any cells that were not at least 4 pixels away from the image border in the xy-plane (~12 1339 
complete cells per FOV, on average). All images were rescaled to isotropic voxel sizes by 1340 
interpolating along the z dimension to upscale the voxel size from 0.108333 µm x 0.108333 µm x 0.29 1341 
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µm to 0.108333 µm x 0.108333 µm x 0.10833 µm. For each cell, a cropping region of interest (ROI) 1342 
was calculated by extending the 3D bounding box of the cell by 40 voxels in each direction in both x 1343 
and y and by 10 voxels in each direction in z. 1344 

This same cropping ROI was applied to the original intensity z-stacks to extract the DNA, 1345 
membrane and tagged structure for each cell. Similarly, the cropping ROI was used to extract the cell, 1346 
nuclear and structure segmentations for each cell within this ROI. These extracted segmentations 1347 
were then each masked by the cell segmentation result such that all voxels outside of the segmented 1348 
boundary of the cell was set to zero. A roof-augmented version of the cell segmentation was also 1349 
calculated for each cell to ensure proper inclusion of structures within the cell due to limited resolution 1350 
and accuracy near the top of the cells (see “Single cell basic feature extraction” section ). The roof-1351 
augmented cell segmentation is created by applying a morphological dilation (voxels only along the z-1352 
axis) at the top 25% of the cell segmentation mask. Each individual cell is thus associated with five 1353 
segmentations: DNA segmentation, cell segmentation, roof-augmented cell segmentation, structure 1354 
segmentation, and roof-augmented structure segmentation, which is masked by the roof-augmented 1355 
cell segmentation after ROI cropping. 1356 
 1357 
FOV-based feature extraction 1358 

FOV-based features were calculated for each cell. Specifically, we calculated (1) the 1359 
Euclidean distance from the nucleus of each cell to the nucleus of each complete neighboring cell 1360 
within the FOV, (2) the lowest and highest z position of all cells in this FOV, and (3) whether a cell is 1361 
located on edge of a colony, for those cells within colony edge FOVs (mode C edge; see image 1362 
acquisition methods). All details are released via https://github.com/AllenCell/cvapipe. 1363 
 1364 
Colony-based feature extraction 1365 

In addition to FOV-based and single-cell-based features, we extracted colony-based features. 1366 
For each 12X overview image and 120X FOV image taken, we extracted the name of the well in the 1367 
96-well plate and the stage coordinates at which the image was taken from the file metadata. To 1368 
obtain colony segmentations from the 12X overview images, we applied the same segmentation 1369 
method used for automated position selection (see “Automated well position selection” section 1370 
above). We then associated each segmented colony with a set of colony or well features including the 1371 
confluency of the well, the size of the colony, the centroid location of the colony in the overview 1372 
image, and whether the colony was touching the boundary of the overview image. We mapped the 1373 
position where the 120X FOV image was taken relative to the 12X overview image by using the 1374 
microscope stage coordinates, identified the colony in which that 120X FOV image was taken and 1375 
added colony features to this 120X FOV image. We also calculated the Euclidean distance between 1376 
the center of the FOV image and the nearest edge location of the colony. We added QC methods to 1377 
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ensure data accuracy and usability by flagging 120X FOVs with: (1) poor colony segmentations, 1378 
detected as well confluency less than 10%, (2) 120X FOV images that were taken outside of the 12X 1379 
overview image FOV and (3) 120X FOV images that were in a colony touching the edge of the 12X 1380 
overview image. These colony-based features were not only linked to each 120X FOV but also to all 1381 
of the individual cells associated with that FOV. 1382 
 1383 
Deep learning based single cell annotation 1384 

Each cell in the hiPSC Single-Cell Image dataset was automatically annotated by a deep 1385 
learning-based classifier into one of the following 7 annotation categories: interphase, prophase, early 1386 
prometaphase, prometaphase/metaphase, anaphase/telophase (unpaired cell), anaphase/telophase 1387 
(paired cell) or other (e.g. failed segmentations, dead cell segments, or dye blobs). Note: unpaired 1388 
cells in anaphase/telophase refer to cells where it was impossible to find the other member of the pair 1389 
(e.g. the other pair member is outside of the FOV). The automated classifier is a combination of a 1390 
rule-based classifier and an ensemble of three 9-class 3D ResNet50 models. First, a cell is annotated 1391 
as category anaphase/telophase (pair) if the nuclear segmentation satisfies the following three 1392 
criteria: (1) contains at least two connected components, (2) the ratio of the sizes of the largest two 1393 
connected components is greater than 0.64, an empirically determined value, (3) the distance 1394 
between the centroid of the largest two connected components is greater than 85 voxels. Otherwise, 1395 
the 9-class ResNet50 models are used. To train the ResNet50 models, we created a training set 1396 
consisting of 5,664 cells from the main dataset and through expert-annotation assigned these into 9 1397 
classes: 1-interphase, 2-prophase, 3-early prometaphase, 4-prometaphase/metaphase, 5-1398 
anaphase/telophase unpaired, 6-anaphase/telophase paired (but not necessarily satisfying all three 1399 
criteria), 7-failed segmentation, 8-dead cell segments and 9-dye blobs. Class 1 (interphase) 1400 
accounted for 43.5% of the data to ensure a balanced training set, while the total of classes 7, 8, and 1401 
9 accounted for 2.9%. Three ResNet50 models were trained with different training/validation splits. An 1402 
ensemble of these three models was used to make the final class predictions. These ResNet50 1403 
models were validated by testing on 100 cells that were held out from the training set. The model 1404 
generated eight incorrect predictions, but all were either incorrectly predicting mitotic stages (3/100) or 1405 
incorrectly predicting a cell in interphase to be in mitosis (5/100). The recall rate for interphase cells 1406 
was 100%. Cells that were predicted to be of classes 7, 8 or 9, or that generated prediction of low 1407 
confidence, were annotated as belonging to the “other” category and removed from the hiPSC Single-1408 
Cell Image dataset. The confidence score of a prediction was approximated as the highest probability 1409 
among all 9 classes. Confidence scores lower than 0.677 were considered low confidence and these 1410 
cells removed. The final automated 3D image classifier code (for both training and testing) and all 1411 
trained models are available at https://github.com/AllenCell/image_classifier_3d. 1412 
 1413 
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Single cell basic feature extraction 1414 
Methods described here are implemented in several repositories for different parts of the 1415 

analysis and begin with the hiPSC Single-Cell Image Dataset (see Data and code availability above). 1416 
The data table downloaded from Quilt contains 216,062 rows and 47 columns, where each row 1417 
corresponds to a single cell uniquely identified by its ID that is specified by the column CellId. The 1418 
columns contain both the necessary information about each cell (e.g., path to segmentations, path to 1419 
images, and important meta data) to calculate single cell features, as well as the calculated features. 1420 
These features are included ready to download for ease of use. Demos in 1421 
https://github.com/AllenCell/cvapipe_figure_notebooks can be used to produce the main figures from 1422 
these released features, while all these features can be reproduced with the released code (see Data 1423 
and Code availability above, (McKinney, 2011; Nicholas Sofroniew et al., 2019; Paszke et al., 2019; 1424 
Pedregosa et al.; Walt et al., 2014)). The cell segmentation, the DNA segmentation and the roof-1425 
augmented structure segmentation were used to extract basic cell, nuclear and cellular structure 1426 
features, respectively. The analysis dataset (see just below) contains only interphase cells, so the 1427 
DNA segmentation represents the nucleus. The cell or nuclear segmentation for each cell is used as 1428 
the input for calculating the following basic cell and nuclear features, respectively: (i) cell or nuclear 1429 
volume as the number of non-zero voxels in the input image. The single-voxel volume (0.108 µm)3 1430 
was used to rescale this feature for further analysis. (ii) cell or surface area as the number of voxel 1431 
sides facing the background in the input image. According to this metric, an isolated voxel has all its 6 1432 
sides facing the background and therefore a surface area equal to 6. The single-voxel-side area of 1433 
(0.108 µm)2 was used to rescale this feature for further analysis (iii) cell or nuclear height as the 1434 
distance in voxels along the z-axis between the bottom-most and top-most voxels in the input image. 1435 
The single-voxel height of 0.108 µm was used to rescale this feature for further analysis. To calculate 1436 
the volume of each cellular structure within a cell, the roof-augmented structure segmentation of that 1437 
cell was used as the input. This ensures proper inclusion of structures within the cell due to limited 1438 
resolution and accuracy near the top of the cells (see “Single cell image generation” section). The 1439 
volume of the cellular structure in the cell is calculated as the number of non-zero voxels in the input 1440 
image. We used the single-voxel volume (0.108 µm)3 to scale this feature for further analysis. These 1441 
single cell basic features were merged into the hiPSC Single-Cell Image Dataset as additional 1442 
columns and used in subsequent quantification and analysis. 1443 
 1444 
QUANTIFICATION AND STATISTICAL ANALYSIS 1445 
 1446 
Analysis dataset generation 1447 
 1448 
 1449 
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Mitotic cells removal 1450 
The first operation performed on the full dataset to create the analysis dataset was the 1451 

removal of all of the 11,238 mitotic cells. This is done by removing all rows of the data table for which 1452 
the column cell_stage is different from M0, the value used to flag interphase cells, resulting in a table 1453 
with 204,824 rows (cells). 1454 
 1455 
Outlier detection 1456 

In total, 1,087 (~0.5%) cells were identified and removed from the dataset, resulting in a table 1457 
with 203,737 rows that we refer to as the analysis dataset throughout the paper. These outliers fall 1458 
into two classes. First, there were 670 cells for which the structure volume was zero. Cells with an 1459 
empty structure segmentation could be real outliers (e.g., no FP signals within that specific cell) or 1460 
could indicate errors in either structure segmentation or cell and nuclear segmentation (see caveats in 1461 
the “Structure Segmentation” section). Since cells with zero structure segmentation only account for 1462 
~0.3% of the whole population, we considered all such cells with potential segmentation errors, even 1463 
minor, in cell and/or nuclear shapes as outliers. Second, we identified 417 cells, which were identified 1464 
as outliers by an automated bi-variate outlier detection algorithm. Here, “bi-variate” refers to the notion 1465 
that we looked at pairs of two variables to detect outliers and not at a single variable. As an example, 1466 
the outlier detection procedure identified cells as outliers that have a very large cell volume (first 1467 
variable) but very small nuclei (second variable), and clearly fall outside of the typical distribution of 1468 
cell and nuclear volume. The outlier detection algorithm uses Gaussian kernel density estimation on 1469 
the 2D space spanned by two variables, thereby assigning a probability to each of the cells. We use 1470 
density estimation in the same way for visualization of bi-variate associations in scatter plots (see 1471 
“Visualization of bi-variate association” section below and Figure 6). Cells with an extremely low 1472 
probability were identified as outliers. We applied this outlier detection to the 21 pairs of variables that 1473 
can be made of the seven main cellular and nuclear metrics: cell volume (µm3), cell surface area 1474 
(µm2), cell height (µm), nuclear volume (µm3), nuclear surface area (µm2), nuclear height (µm), 1475 
cytoplasmic volume (µm3). Cells with resultant probabilities smaller than 1e-20 were identified as 1476 
outliers (n=177). This outlier analysis was also applied to pairs of variables for the four following cell 1477 
and nuclear metrics (cell volume and surface area, nuclear volume and surface area) each with 1478 
cellular structure volume for the 15 structures validated for structural volume analysis, totaling 1479 
15x4=60 scatter plots. Cells with a probability smaller than 1e-10 in any of these 60 scenarios were 1480 
identified as outliers (n=240). The thresholds mentioned above were identified manually after 1481 
inspection of the scatter plots and visual inspection of many cells identified as outliers. The majority of 1482 
the inspected cells clearly showed imaging or segmentation artifacts. 1483 

 1484 
 1485 
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Statistical analysis for quality control of the hiPSC Single-Cell Image Dataset 1486 
To be able to map cells from the 25 cell lines into the same shape space and cluster similar 1487 

cells to integrate the location of their separately imaged structures we must first ensure that the cell 1488 
lines themselves are not an experimental source of cell and nuclear shape variation. Further, this 1489 
extensive dataset was acquired over a period of three years, including changes in the extent of 1490 
pipeline automation, necessary adjustments to the microscopes, the lots of Matrigel, and other such 1491 
experimental factors over the course of the imaging pipeline timeline (see “Imaging workflows” 1492 
section). Therefore, we performed an extensive analysis to identify and account for any potential 1493 
experimental contributions to cell shape variation (Figure S7). An analysis of how each of the Shape 1494 
Modes varied with respect to the timeline of the imaging pipeline revealed that only Shape Modes 1 1495 
and 2, representative of cell height and cell volume, showed any signs of possible systematic 1496 
experimental variation (Figure S7A). For cell height, we observed variation between cell lines 1497 
throughout the pipeline timeline, while for cell volume we only observed a possible systematic 1498 
difference between Pipeline 4.4 and the rest of the pipeline workflows (Figure S7B&C). The greatest 1499 
systematic effect on cell height over the pipeline timeline was visible in the sequential imaging of the 1500 
last two structures (nuclear speckles via SON and cohesins via SMC1A), which both contained flatter 1501 
cells. These differences were attributable to a change in both the lot of Matrigel and an adjustment to 1502 
the glass bottom well-plate Matrigel coating protocol as described above. This can be seen in a 1503 
control experiment comparing the tagged actomyosin bundles (via non-muscle myosin IIB) cell line 1504 
before and after this protocol change (Figure S7B). We separated the pipeline timeline into three 1505 
periods, the period before Pipeline 4.4, and then within Pipeline 4.4, the period before and after the 1506 
change in Matrigel coating protocol and compared both cell height and cell volume between these 1507 
periods. We found that while the adjusted Matrigel coating protocol decreased cell height significantly, 1508 
it did not affect cell volume. However, both cell height and cell volume were slightly and consistently 1509 
decreased during the entire Pipeline 4.4. Further investigation into possible causes revealed a 1510 
systematic inaccuracy in z spacing due to the use of a piezo z stage, which leads to an approximate 1511 
10% reduction in the z-step size and thus also in the overall height of the cell. When we corrected the 1512 
Pipeline 4.4 z-step size by this approximate amount, we found this could account for the cell height 1513 
difference. Cell volumes cannot be directly corrected by one single factor adjustment due to the varied 1514 
cell shapes. However, the slight, yet significant and consistent decrease in average volumes of all cell 1515 
lines imaged during Pipeline 4.4 can be accounted for by the same piezo-dependent problem. 1516 
Unfortunately, we could not retroactively determine the exact adjustment to the z-step size for each 1517 
independent image acquisition that was performed during Pipeline 4.4 and thus did not correct the 1518 
data for this issue. However, the magnitude of the effect was much smaller than the variation of cell 1519 
volumes and heights within the cell line datasets. 1520 
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In addition to these two systematic experimental sources of variation during Pipeline 4.4, we 1521 
observed variation in average cell height throughout the entire pipeline timeline. This suggested 1522 
additional possible sources of variation. We had experimentally observed that cell height seemed to 1523 
vary both with colony area and the location of cells within a colony (Figure 1A), suggesting that cell 1524 
height variation might be part of normal changes to cell packing behavior within a growing colony. To 1525 
test this observation quantitatively, we measured the cell area of a subset of colonies with accurate 1526 
colony segmentations as well as both the distance from the center of the FOV to the edge of the 1527 
colony and the average height of all the cells within that FOV. We transformed colonies and the 1528 
locations of FOVs within them into circular representations and compared the location patterns, cell 1529 
heights, and colony areas (Figure S7D). We found that smaller colonies tended to contain taller cells 1530 
while in larger colonies, cells closer to the colony periphery were taller than those towards the center 1531 
of colonies. Other than Shape Mode 1, representing cell height, none of the other shape modes 1532 
showed any colony-specific patterns within the dataset (Figure S7E). 1533 

We next investigated how much of the variation in cell height (median height of the cells in an 1534 
FOV) was explained by a set of eleven experimental variables including the distance of an FOV to the 1535 
colony edge representing the position of cells in a colony, the colony area, the cell line identity, and 1536 
several imaging pipeline settings (Figure S7F). We performed a Random Forest regression analysis 1537 
(Liaw and Wiener, 2002) and found we could predict cell height with moderate accuracy (R2 = 0.52) 1538 
based on this combination of eleven variables. When we removed cell line identity as a variable within 1539 
this regression analysis, the accuracy of cell height prediction barely change (R2 = 0.51). The feature 1540 
“FOV to colony edge distance” had the largest feature importance. Importantly, we found that cell line 1541 
identity was statistically correlated with several imaging pipeline settings that varied throughout the 1542 
imaging pipeline timeline.. All of the results above together confirm that cell line identity can contribute 1543 
to cell height variation due to the fact that each cell line was imaged under a particular set of imaging 1544 
conditions which varied throughout the imaging pipeline timeline, but that cell line identity itself does 1545 
not greatly contribute to the variation in cell height observed in the hiPSC Single-Cell Image Dataset. 1546 
 1547 
Circular colony mapping 1548 

We took advantage of the fact that many cells (n=104,269) of our hiPSC Single-Cell Image 1549 
Dataset could be associated with information relative to the colony where they came from (see 1550 
“Colony-based feature extraction” section), to visualize radially dependent spatial patterns of our cells. 1551 
This is achieved by mapping the location of cells in a colony into a unit circle, as illustrated in Figure 1552 
S7D. First, the distance from the center of the FOV to the closest edge point (d) is normalized by the 1553 
effective radius of the colony (Reff) to determine the relative distance ℓ=d/Reff. Then, all cells in the 1554 
FOV are mapped into a unit circle at radial distance ℓ from the edge of the circle. Each cell is assigned 1555 
to an angular location drawn from a uniform distribution of angles in the range [0,2π]. 1556 
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Random forest regression model to predict cell height from experimental features 1557 
A multivariate Random Forest regression model was trained to predict the median cell height 1558 

of all cells in an FOV from experimental, assay-dependent variables, including (1) cell growth 1559 
information from the confluency of cells in the well, Matrigel-coating protocol, the FP-tagged protein 1560 
name, and two cell passaging numbers, (2) colony features from the size of the colony the FOV was 1561 
imaged at and the distance between the FOV and the nearest colony edge, and (3) instrument 1562 
hardware configurations including the pipeline workflow information, the ID of the microscope which 1563 
the FOV was taken with and the piezo configuration of the microscope. We first calculated the median 1564 
cell height of an FOV from the single-cell segmentation that provides the height of each cell in the 1565 
FOV. We then pre-processed the continuous variables (FOV to colony edge distance, confluency, 1566 
colony area, total passages and passages post-thaw) with z-normalization, and labeled categorical 1567 
variables (cell line via its FP-tagged protein name, imaging mode, workflow ID, Matrigel protocol, 1568 
piezo setting, microscope ID) in R Studio. We added a control variable by randomly generating a 1569 
number that ranges from -3 to 3 for each FOV.  1570 

This analysis was based on the 20 cell lines that contain >100 FOVs each, with a total of 7,914 1571 
FOVs. The cell lines with the following tagged proteins (Table 1) were included: alpha-actinin-1, 1572 
alpha-tubulin, beta-actin, CAAX, centrin-2, connexin-43, desmoplakin, fibrillarin, H2B, lamin B1, 1573 
LAMP-1, non-muscle myosin IIB, Nup153, paxillin, Sec61 beta, sialyltransferase 1, SMC-1A, SON, 1574 
Tom20, and ZO-1. For each cell line, we randomly selected 90 FOVs for training, resulting in a 1575 
training dataset of 90*20 = 1,800 FOVs and used the remainder of the FOVs (n = 6,114) to evaluate 1576 
the model. We trained a Random Forest model with using all variables in R Studio with the 1577 
RandomForest package (Liaw and Wiener, 2002) with 500 trees. We also trained another Random 1578 
Forest model with all variables except cell line identify, again using 500 trees. We evaluated the 1579 
model by calculating the Coefficient of Determination (R2) on the test set (n = 6,114 FOVs). Feature 1580 
importance scores were calculated as the difference in mean squared error (MSE) between a model 1581 
including the feature in question and a model where the values of that feature were randomly 1582 
permuted across the samples. We repeated the sampling and model training 100 times to obtain 1583 
confidence intervals of model performance and feature importance as shown in FigureS7F (left). 1584 
 1585 
 1586 
Spherical harmonics expansion (SHE) of cell and nuclear shapes 1587 

In addition to the basic features described above, we also used SHE coefficients as shape  1588 
descriptors for cell and nuclear shape (Ruan and Murphy, 2019; Shen et al., 2009). We created a 1589 
publicly available open-source Python package, aics-shparam (see “Data and Code Availability” 1590 
section) to extract SHE coefficients from segmented images of cells and nuclei. 1591 
 1592 
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Cell and/or nuclear alignment 1593 
SHE coefficients are sensitive to the orientation of the shape they are extracted from. 1594 

Therefore, a given set of cells and nuclei can be used to create different versions of a shape space, 1595 
depending on how they are pre-aligned. To create the cell and nuclear joint shape space (Figure 2) 1596 
we wanted to preserve the apical basal axis of the cell, which is the z-axis in the lab frame of 1597 
reference. Therefore, we only aligned cells by rotation in the xy-plane. Cells and nuclei were rotated 1598 
such that the longest cell axis falls along the x-axis. The cell segmentation was used to estimate the 1599 
longest axis of the cell through a principal component analysis of the x and y coordinates of 1600 
foreground voxels. The longest axis was defined as the direction of the first principal component and 1601 
the alignment angle defined as the smallest angle between the longest axis and the x-axis. That cell 1602 
was then rotated by the alignment angle such that the longest axis was aligned with the x-axis. Cells 1603 
were rotated by using the function rotate from Python package scikit-image (Walt et al., 2014) with 1604 
zero order interpolation. The input image was also resized as necessary to fit the whole rotated cell. 1605 
The alignment procedure was implemented by the function align_image_2d in aics-shparam using 1606 
default parameters. This function returns the final alignment angle, which is then used to align other 1607 
images related to that cell, in this case the segmented images of the nucleus and the particular 1608 
cellular structure in the cell as well as the three channels of the z-stack containing the original images 1609 
of the membrane dye, DNA dye and FP-tagged structure. This was done using the function 1610 
apply_image_alignment_2d available in the same Python package. 1611 
 1612 
From segmented, aligned images to SHE coefficients and 3D meshes 1613 

Once a segmented image of a cell and nucleus is aligned, it is used as input for the function 1614 
get_shcoeffs from aics-shparam. This function first converts the input binary image into a 3D 1615 
triangular mesh using a traditional marching cubes algorithm from VTK Python library (Schroeder et 1616 
al., 2018). To improve the quality of the output mesh, the binary input image is convolved with a 1617 
Gaussian kernel with size σx=σy=σz=2, which is enough to smooth the image while retaining the 1618 
overall cell and nuclear shape. Next, the mesh is translated to the origin and the coordinates of the 1619 
mesh points are converted from cartesian to geographic coordinates (latitude, longitude and altitude). 1620 
Altitude coordinates are then interpolated, using nearest neighbor, over a (lat,lon) spherical grid where 1621 
each cell has a resolution of π/128. At this point, aics-shparam uses the Python package pyshtools 1622 
(Wieczorek and Meschede, 2018) to expand, up to degree Lmax, the equally spaced grid into 1623 
spherical harmonics coefficients using Driscoll and Healy’s sampling theorem (Driscoll et al., 1994). 1624 
We used Lmax=16 as the SHE degree expansion to parameterize both cell and nuclear segmentation 1625 
images. This was enough to guarantee a high fidelity mesh reconstruction, which can be quantified by 1626 
the average distance between closest points in the original and reconstructed 3D meshes. We 1627 
observed average distances of 0.33 µm +/- 0.1 µm for cells (n=300 randomly selected samples) and 1628 
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0.12 µm +/ -0.02 µm for nucleus (n=300 randomly selected samples). Compared to the voxel size of 1629 
our images (0.108 µm), we can say that Lmax=16 yields single pixel level precision for the nucleus 1630 
and about three voxels precision for the cell, in average. This degree of expansion results in 289 1631 
coefficients for each input. Therefore, the shape of each cell in our dataset can be represented by a 1632 
total of 578 coefficients (Figure 2A). 1633 

We can also recreate the 3D mesh representation of a particular set of SHE coefficients with 1634 
aics-shparam. The Driscoll and Healy’s sampling theorem allows one to obtain a spherical grid from 1635 
pre-computed SHE coefficients. These points on the spherical grid can be radially translated to their 1636 
actual values in the grid to give rise to a 3D non-spherical shape. 1637 
 1638 
 1639 
Building the cell and nuclear shape space 1640 
 1641 
Principal component analysis for dimensionality reduction 1642 

We used principal component analysis (PCA) to reduce the dimensionality of our joint vectors 1643 
for all cells (578 SHE coefficients) down to eight principal components. We used the PCA 1644 
implementation from the Python library scikit-learn (Pedregosa et al.) with default parameters (Figure 1645 
2B). Since the sign of a given principal component (PC) is arbitrary, we flipped the sign to ensure that 1646 
the average volume of cells with negative PC values was less than that of cells with positive PC 1647 
values. This was done independently for each PC. 1648 
 1649 
Identifying the primary modes of shape variation 1650 

To prevent cells with extreme shapes from affecting the interpretation of the PCs, we excluded 1651 
all cells that fell into the range 0th to 1st or 99th to 100th percentiles of each PC from subsequent 1652 
analysis. These percentile ranges are shown by the vertical red lines in Figure S3C. The total number 1653 
of cells left in the dataset was 175,935. We z-scored all PCs independently by dividing the PC values 1654 
by the standard deviation (σ) of that PC. The probability distribution of each z-scored PC is shown in 1655 
Figure S3C. The z-scored principal components are referred to as “shape modes“ and the 1656 
combination of the first 8 shape modes creates the 8-dimensional generative shape space used 1657 
throughout this paper. We used the inverse of the PCA transform generated above to map shapes 1658 
from the shape space back into SHE coefficients, which in turn, can be used to reconstruct the 1659 
corresponding 3D shape. For example, the 8-components vector (0,0,0,0,0,0,0,0) represents the 1660 
origin of the shape space and its corresponding 3D shape is called the mean cell shape throughout 1661 
the paper (Figure 2C). 1662 

To systematically explore the shape space along each of the eight orthogonal axes, we let the 1663 
elements of the 8-component array vary, one at the time, over discrete map points with values -2σ, -1664 
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1.5σ, -1.0σ, -0.5σ, 0, 0.5σ, 1.0σ, 1.5σ and 2.0σ. The combination of all eight shape modes and nine 1665 
map points generates a grid of 8x9 3D shapes. Three different 2D views are used to visualize the 3D 1666 
shapes. Top views represent the intersection of the 3D reconstructed mesh with the xy-plane, the 1667 
equivalent of a single xy-slice through the center of the cell. In the same way, side views 1 and 2 1668 
represent the intersection of the 3D reconstructed shape with the xz- and yz-plane. To easily assign 1669 
real cells to map points in the shape space, each shape mode is binned into nine bins of width 0.5σ, 1670 
each centered around one map point, as represented by the black vertical lines in Figure S3C. 1671 

Cell and nuclear 3D mesh reconstructions using the inverse PCA transform are centered at 1672 
the origin. Therefore, a few extra steps are required to translate the nuclear mesh back to its correct 1673 
location relative to the center of the cell. We average all of the nuclear locations relative to their cell 1674 
center for all the real cells within particular shape mode bin (Figure S3C). For example, to correct the 1675 
nuclear location of the 3D mesh corresponding to the 8-components vector (0,0,0,0,0,-1.5σ,0,0) of 1676 
Shape Mode 6 (Figure 2C), one would use the average location of all real cells that fall into the bin 1677 
highlighted in blue in Figure S3C. Both the cell meshes and nuclear meshes with corrected locations 1678 
for all shape modes are saved in VTK polydata format (Schroeder et al., 2018) for further analysis. 1679 
 1680 
Alternative versions of the shape space 1681 

In addition to the joint cell and nuclear shape space, we also generated independent cell-only 1682 
and nucleus-only shape spaces. For the cell-only shape space, the PCA was applied only on the cell 1683 
SHE coefficients to reduce the data dimensionality from 289 to 8. For the nucleus-only shape space, 1684 
images of DNA segmentation were aligned independently from any cell information. Nuclei were 1685 
rotated such that the longest nuclear axis fell along the x-axis. The DNA segmentation was used to 1686 
estimate the longest axis of a nucleus through a principal component analysis of the x and y 1687 
coordinates of foreground voxels. The longest axis was defined as the direction of the first principal 1688 
component and the alignment angle defined as the smallest angle between the longest axis and the x-1689 
axis. That nucleus was then rotated by the alignment angle such that the longest axis was aligned 1690 
with the x-axis. Aligned images of nuclei were used as input for SHE coefficients calculation. PCA was 1691 
applied only on the nuclear SHE coefficients to reduce the data dimensionality from 289 down to 8. 1692 
After dimensionality reduction through PCA, these two alternative shape spaces were analyzed 1693 
identically to the joint cell and nuclear shape space to identify the main modes of shape variation 1694 
shown in Figure SB&C. 1695 
 1696 
 1697 
SHE coefficient-based parameterization and 3D morphing to build integrated average cells 1698 
 1699 
 1700 
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Cytoplasmic and nuclear mapping 1701 
Pre-computed SHE coefficients were interpolated to morph the nuclear centroid mesh into the 1702 

nuclear surface mesh and the nuclear surface mesh into the cell surface mesh. First, the nuclear 1703 
centroid of each cell is described by the SHE coefficients representing a one-pixel radius (0.108 µm) 1704 
3D spherical mesh. These SHE coefficients representing the nuclear centroid and the pre-computed 1705 
cell and nuclear SHE coefficients are concatenated and computationally described by a 3x289 matrix. 1706 
This matrix is linearly interpolated to generate a 64x289 matrix. The interpolation is done by the 1707 
function interp1d form scikit-learn in such a way that it guarantees that 1st, 3-th and 64th rows of the 1708 
output matrix correspond exactly to SHE coefficients of centroid, nuclear and cell. SHE coefficients of 1709 
each row of the interpolated matrix can be used to reconstruct corresponding 3D meshes. Meshes 1710 
corresponding to rows 32 to 64 in the interpolated matrix are translated to a location that corresponds 1711 
to a linear interpolation between nucleus and cell centroid. The visualization of subsequent 3D 1712 
meshes (subsequent rows) causes the effect of mesh interpolation, as shown in Figure 3A, where we 1713 
show only eight out of the 64 possible meshes (differently colored regions), including centroid (black 1714 
dot) nuclear and cell meshes (represented by dashed lines). 1715 
 1716 
Parameterized Intensity representation 1717 

Each of the 3D meshes is composed of points with xyz-coordinates. As the meshes are being 1718 
generated from the interpolated matrix point by point, we can visit the corresponding xyz location in 1719 
the aligned images that were used to generate the cell and nuclear SHE coefficients in the first place 1720 
and associate the intensity value of that location with the mesh xyz coordinate. We can record either 1721 
the original intensity values or the segmented intensity values since both types of images were 1722 
aligned. The results can be organized as a matrix as shown in Figure 3A for the original FP signal. 1723 
This matrix encodes a parameterized intensity representation of the cell. 1724 

This parameterized intensity representation can be used to reconstruct the aligned image that 1725 
was used as the original input. We start with an empty image. We assign the value of each element of 1726 
the parameterized intensity matrix to its closest xyz location in the empty image. We call this 1727 
procedure voxelization and it produces a sparse representation of the original aligned image as 1728 
shown in Figure 3A. The gaps in this image are due to the fact that our parameterized intensity 1729 
representation samples only as many voxels of the original image as we have points in the 3D mesh. 1730 
The gaps can be filled in by a nearest neighbor interpolation to produce an image that looks very 1731 
similar to the original aligned image, as shown at the top of Figure 3A. We used the function 1732 
NearestNDInterpolator from scikit-learn to perform the multidimensional nearest neighbor 1733 
interpolation. We used the voxel-wise Pearson correlation coefficient in 3D to evaluate the similarity 1734 
between reconstructed and original aligned images. We also performed an analysis between 1735 
reconstructed and original aligned images on 32 randomly selected cells of all 25 cellular structures 1736 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562


 56 

when the parameterized intensity representation is used to encode either original FP or segmented 1737 
intensities (Figure S3A&B). 1738 
 1739 
Generating morphed cells 1740 

The cellular mapping procedure described above only requires cell and nuclear SHE 1741 
coefficients. Therefore, it can be applied to cell and nuclear shapes obtained for all map points of all 1742 
shape modes. This is illustrated in Figure 3B for map point (0,0,1.5σ,0,0,0,0,0) of Shape Mode 3. The 1743 
parameterized intensity representation of any given real cell can now be voxelized into any map point 1744 
shape that underwent cellular mapping, to generate a morphed version of the real cell into that shape. 1745 
This is illustrated in Figure 3 by morphing the FP signal from the real cell shown in panel (A) into the 1746 
shape of map point (0,0,1.5σ,0,0,0,0,0) of Shape Mode 3 shown in panel (B). To prevent morphed 1747 
cells from containing overly distorted signal intensity locations compared to the real cells, for instance 1748 
by morphing a very flat real cell into a very tall shape (e.g. map point (2σ,0,0,0,0,0,0,0) of Shape 1749 
Mode 1), we restrict our ourselves to apply the morphing only when the real cell shape and the map 1750 
point shape are similar. This is achieved throughout the paper by allowing only cells of a given map 1751 
point bin (Figure S3C) to be morphed into the corresponding map point shape. For example, only 1752 
cells that fall into the bin highlighted in blue in Figure S3C are allowed to be morphed into the shape 1753 
corresponding to map point (0,0,0,0,0,-1.5σ,0,0) of Shape Mode 6. The number of cells per structure 1754 
available in each bin of each shape mode is shown in Table S1. We selected 300 randomly chosen 1755 
cells (or the maximum number of cells available) per cellular structure and per shape mode and 1756 
morphed these cells into their corresponding map point shapes. These morphed cells are stored as 1757 
multichannel TIFF files and were used further for stereotypy analysis as described below. 1758 
  1759 
Aggregating morphed cells 1760 

We compute the average and standard deviation of parameterized original FP and segmented 1761 
intensity representations for all cells of each structure across map points of all shape modes of the 1762 
shape space. This computation produces average and standard deviation parameterized intensity 1763 
representations that could also be morphed into map point shapes of shape modes as described 1764 
above. Results of these average and standard deviation images for all 25 cellular structures are 1765 
shown as the first three columns of Figure S3C for map point (0,0,1.5σ,0,0,0,0,0) of Shape Mode 3. 1766 
To quantify the location variation of each cellular structure, we normalized the standard deviation 1767 
images by the average images to create coefficient of variation images. To prevent areas with very 1768 
low average values (effectively very low original FP or segmented intensities) from greatly impacting 1769 
the coefficient of variation, we defined the structure-localized coefficient of variation. The structure-1770 
localized coefficient of variation is computed as the coefficient of variation limited to a set of voxels 1771 
containing intensities above a set threshold. The threshold was chosen to be the median of all non-1772 
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zero voxels in the average image. Structure-localized coefficients of variation for all 25 cellular 1773 
structures are shown as the 4th column of Figure S3C for map point (0,0,1.5σ,0,0,0,0,0) of Shape 1774 
Mode 3. Aggregated cells are saved as 5D hyperstacks and used for visualization and concordance 1775 
analysis, as described below. 1776 
 1777 
Visualizing integrated average morphed cells 1778 

Average images of cellular structures morphed into the same map point shape are rendered 1779 
simultaneously to illustrate the spatial relationships of different structures based on their average 1780 
location in cells of a particular shape. Each volumetric channel of the 5D hyperstacks generated in the 1781 
previous section for Shape Mode 3 was segmented using the default Surface option found in the 1782 
Volume Viewer window of ChimeraX (Pettersen et al., 2020). Thresholds for each channel were 1783 
selected manually to clarify dominant localization patterns observed in the voxel intensities. 1784 
 1785 
 1786 
Stereotypy calculation from morphed cells 1787 

We used morphed cell images to quantify the location stereotypy of a given cellular structure 1788 
across different cells with similar shape. All 300 morphed cells available for each shape mode map 1789 
point for each cellular structure were used to generate unique pairs of images. We calculated the 1790 
voxel-wise Pearson correlation between all pairs of images, as illustrated in Figure 4A for lamin B1 1791 
(top) and mitochondria (bottom). The values of the resulting correlation coefficients represent a 1792 
distribution of stereotypy values for each set of 300 cells. The distributions of stereotypy values for all 1793 
25 cellular structures for the mean cell shape are represented by the box plots in Figure 4B. The 1794 
mean of the distribution of stereotypy values is called the mean stereotypy. The mean stereotypy 1795 
values calculated for all 25 cellular structures across map points of all shape modes are shown as 1796 
heatmaps in Figure 4C. To highlight the difference between mean stereotypy values relative to the 1797 
mean cell shape, we created difference heatmaps as shown in Figure S4C, where the mean 1798 
stereotypy of the mean cell bin is subtracted from the mean stereotypy of other map points. 1799 
 1800 
 1801 
Concordance calculation from average morphed cells 1802 

We used the 5D hyperstacks of average morphed images generated as described above to 1803 
quantify the location concordance of all 25 cellular structures. The average morphed image of each 1804 
structure for a given map point of a particular shape mode was used to build a voxel-wise correlation 1805 
matrix as shown in Figure 5A. The element (i,j) of this matrix gives the concordance between 1806 
structures i and j. The 25x25 correlation matrix is used as input for a hierarchical clustering algorithm 1807 
to cluster all 25 cellular structures according to their relative concordance. We used the function 1808 
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cluster.hierarchy.linkage of type “average” from the Python package scipy (Virtanen, 2020) to produce 1809 
the clustering represented by the dendrogram in Figure 5B calculated for the mean cell. 1810 

Concordance matrices were also calculated across map points for all shape modes. These 1811 
matrices are represented by heatmaps across shape modes in Figure 5C, where the lower and upper 1812 
triangle of each heatmap represent extreme opposite map points (see figure legend). To highlight the 1813 
difference between concordance values relative to the mean cell, we create difference heatmaps as 1814 
shown in Figure S5B. 1815 
 1816 
 1817 
Multiscale stereotypy and concordance analysis 1818 

Both stereotypy and concordance analysis were also performed across different spatial scales 1819 
to investigate whether cellular structures display non-trivial behavior compared to what was observed 1820 
in our initial analysis. Images for this analysis at different spatial scales were created by effectively 1821 
downsampling the original images in all three dimensions by factors of 2 (see Figure S4A). The initial 1822 
voxel-size of the morphed cell images was 0.108 µm. The downsampling process was repeated 1823 
seven times to reach a voxel-size of ~13.82 µm. 1824 
 1825 
 1826 
Cellular structure size scaling analysis 1827 

Statistical associations between volumes and areas of cells, nuclei and 15 cellular structures 1828 
show how strongly these metrics are coupled to each and how they scale with respect to each other. 1829 
 1830 
Description of data used for cellular structure size scaling analysis 1831 

This statistical analysis uses six metrics: The cell volume (µm3) and surface area (µm2), the 1832 
nuclear volume (µm3) and surface area (µm2), the cytoplasmic volume (µm3), calculated by 1833 
subtracting nuclear volume from cell volume, and the cellular structure volume (µm3). The cell and 1834 
nuclear metrics are available for all cells (n=203,737) and calculated based on the segmentation of 1835 
the cell and nucleus, respectively. The cellular structure volume is based on the segmentation of the 1836 
FP-tagged structure in the cell and is applied to the 15 cellular structures validated for structure 1837 
volume analysis. (see “Structure segmentation” section; Table S1). If multiple pieces (connected 1838 
components) of the structure are present in this cell, structure volume gives the total volume of all 1839 
connected components. 1840 
 1841 
Linear regression model to compute statistical coupling between metrics 1842 

We employed a simple linear regression model (y = ax + b) to compute the amount of 1843 
explained variance in the dependent variable y by the independent variable x. Linear regression 1844 
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models were calculated with x as one of the five cell and nuclear metrics (cell volume and area, 1845 
nuclear volume and area, cytoplasmic volume) and y as one of all six metrics (including cellular 1846 
structure volume). In the case of structure volume, the model was computed for each structure 1847 
separately, using only those cells that correspond to the structure in question. The explained variance 1848 
in y due to x, or the R2 statistic (coefficient of determination), was computed for all models and is 1849 
shown in Figure 6B. We used a bootstrap analysis (n=100 bootstraps) to calculate the 5-95% 1850 
confidence interval, visualized as horizontal error bars in Figure 6H. 1851 
 1852 
Linear regression model to compute cellular structure scaling rates  1853 

Using the same simple linear regression model (y = ax + b), we calculated the “scaling rate” of 1854 
each cellular structure relative to cell volume. The scaling rate gives the increase in volume (or area) 1855 
of a cellular structure as cell size is doubled. In this case x is cell volume and y is one of the other five 1856 
metrics. Using a histogram density estimation of cell volume, we determined the interval with the most 1857 
cells where the cell volume doubles. This interval is from x0 = 1160 µm3 to x1 = 2320 µm3. These x 1858 
values are then evaluated with the learned regression model to get the corresponding y values, 1859 
termed y0 and y1. The scaling rate is computed as (y1-y0)/y0 * 100%. Figure 6B depicts this process 1860 
to compute the scaling rate for nuclear volume. In this case y0 is 346 µm3 and y1 is 669 µm3, giving a 1861 
scaling rate of 93%. The scaling rates across all metrics is given in Figure 6A. We used a bootstrap 1862 
analysis (n=100 bootstraps) to calculate the 5-95% confidence interval, visualized as vertical error 1863 
bars in Figure 6H. 1864 
 1865 
Multivariate regression model to isolate the effect of cell and nuclear metrics in explaining 1866 
structure volumes 1867 

Cell and nuclear metrics show a large degree of collinearity, which makes it non-trivial to 1868 
isolate the effect of one particular cell or nuclear metric on structure volume. We used multivariate 1869 
regression models to isolate the effect of cell and nuclear metrics. In contrast to univariate regression 1870 
models (y = ax + b, where is x a vector and a is scalar), multivariate models have multiple dependent 1871 
variables (y = aX + b, where X is a matrix with p columns and a is a vector with p entries). We first 1872 
computed the explained variance in cellular structure volume using cell volume, cell surface area, 1873 
nuclear volume and nuclear surface area as independent variables. Note that cytoplasmic volume is a 1874 
linear combination of cell and nuclear volumes and does not need to be added to the model. Then, we 1875 
remove a single metric or a pair of metrics from the independent variables and recalculate the model. 1876 
The “unique explained variance” ascribed to the metric or pair of metrics is calculated as the 1877 
difference in explained variance between the full model, i.e. containing the four metrics and the model 1878 
where the metric or pair of metrics was left out. Specifically, the metrics (pairs) for which this unique 1879 
explained variance was computed were cell volume and cell surface area (cell v+a), cell volume, cell 1880 
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surface area, nuclear volume and nuclear surface area (nuc v+a), nuclear volume, and nuclear 1881 
surface area. The total explained variance (using all four metrics) as well as the unique explained 1882 
variance portions are depicted in Figure 6A. 1883 
 1884 
Non-linear regression models to compute statistical coupling between metrics  1885 

For each of the linear regression models described above, we also computed a more complex, 1886 
non-linear model. Specifically, given a linear regression model y = aXl + b, where the design matrix Xl 1887 
contains either a single vector or multiple columns, we expanded the design matrix Xl using two steps: 1888 
1) for all pairs of columns in Xl, we computed the pointwise product and added these new columns to 1889 
the design matrix; and 2) for each column in the design matrix we added four copies and raised the 1890 
values of these new columns to the following four powers: 1/3 (cube root), 1/2 (square root), 2 1891 
(square), 3 (cube). The resulting design matrix, Xc, was then used in the linear regression model y = 1892 
aXc + b to compute the explained variances. A visualization of the explained variances using simple 1893 
regression models compared with the non-linear models with interaction effects is shown in Figure 1894 
S6B. 1895 
 1896 
Visualization of bi-variate association using scatter plots 1897 

Associations between pairs of metrics were visualized in scatter plots, where each cell is 1898 
plotted as a point in the two-dimensional space spanned by the two metrics, x (on the x-axis) and y 1899 
(on the y-axis). The number of cells is stated in the upper left corner. The regression model is 1900 
depicted as a gray straight line (y = ax + b) and the explained variance in y due to x (the R2 statistic) 1901 
is also stated in the upper left corner. There are two additional graphical aspects to improve the 1902 
interpretation of these bi-variate associations: 1) A green line is shown that depicts the running 1903 
average. Briefly, the values of metric x are binned in 100 equally spaced bins. For each of these bins, 1904 
the mean value for metric y is computed from all cells in that bin, i.e. unless the number of cells in the 1905 
bin is below 50 in which case no value is recorded. The green line is the running average of metric y 1906 
as a function of the bin centers. 2) Cells are colored according to a density estimate. Briefly, a kernel 1907 
density estimate is performed in the two-dimensional space. Based on this estimation, each cell is 1908 
assigned a probability. The probabilities are transformed to cumulative probabilities and normalized, 1909 
such that the cell with the highest probability, i.e. the one within the highest density region, gets a 1910 
value of 1. By aligning the probabilities with a colormap, cells are colored to convey the density. The 1911 
use of cumulative probabilities ensures that the colors have the same interpretation across different 1912 
plots, i.e. different metrics. See Figure 6. 1913 
 1914 
 1915 
 1916 
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Generalizability analysis 1917 
To test the generalizability of our multi-part analysis approach of the locations, amounts, and 1918 

their variation of the 25 cellular structures we ran the main analyses shown in this paper on subsets of 1919 
the analysis dataset where we selected (by downsampling) a much smaller number of cells per 1920 
structure. 1921 
 1922 
Shape space generalizability 1923 

Using the main analysis dataset (n = 203,737 cells) including the 578 SHE coefficients, we 1924 
randomly selected 300 cells and we applied PCA on the 300x578 table to reduce its dimensionality 1925 
down to eight principal components. The resulting shape space is analyzed identically to the main 1926 
shape space. 1927 
 1928 
Stereotypy and concordance generalizability 1929 

We calculate the mean stereotypy of all 25 cellular structures morphed into the mean cell for 1930 
different numbers of pairs of morphed cells. We varied the number of pairs of morphed cells used to 1931 
average the Pearson correlation scores from 2 to 300 with a step size of one (Figure 7B). By visual 1932 
inspection we determined the minimum number of pairs of cells required to recover the ranking of 1933 
cellular structure mean stereotypy from 300 pairs of cells to be 35 pairs. The morphed cells used here 1934 
were randomly sampled from the 300 morphed cells available per cellular structure per map point of 1935 
each shape mode generated as described in the “Generating morphed cells” section above. 1936 

For location concordance, we selected a set of 300 cells chosen at random for each cellular 1937 
structure within the mean cell shape bin (except n= 252 for nuclear speckles, see DataFile S1). We 1938 
used the 5D hyperstacks of average morphed cell images from this downsampled dataset as 1939 
described above to calculate the location concordance.  1940 
 1941 
Downsampling cellular structure size scaling analysis  1942 

We created downsampled versions of the dataset with n cells per structure randomly selected 1943 
(n=10, 20, 30, 50, 100, 200, 300, 500, 1000, 1500), each with three repeats. The regression models 1944 
to compute explained variances and scaling rates were recalculated on these downsampled versions 1945 
of dataset. Figure 7D shows these statistics for a single repeat of n=300. This figure also shows how 1946 
the recalculated numbers differ from the original numbers as a function of the number of cells per 1947 
structure.  1948 
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ADDITIONAL RESOURCES 1949 
The Allen Cell Collection, the hiPSC Single-Cell Image Dataset, protocols, the Allen Cell Discussion 1950 
Forum and additional information can be found here: (https://www.allencell.org/) 1951 
 1952 
RESOURCES TABLE 1953 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides, and Recombinant Proteins 

mTeSR™1 Medium STEMCELL 

Technologies 

Cat#85850 

mTeSR™1 Medium Without Phenol Red  

 

STEMCELL 

Technologies 

Cat#05876 

L-Ascorbic acid Sigma-Aldrich SKU A4403 

OxyFluor™  Oxyrase Cat#OF-0005 

DL-Sodium lactate 60% (w/w) in aqueous 

solution 

VWR Cat# AA41529-AK 

Penicillin-Streptomycin  Thermo Fisher 

Scientific 

Cat#15140122 

Y-27632 (Dihydrochloride)  STEMCELL 

Technologies 

Cat#72308 

Matrigel Growth Factor Reduced (GFR) 

Basement Membrane Matrix, Phenol Red-free, 

LDEV-free  

Corning Cat#356231; 

Lot#5292003; 

Lot#9021357  

DMEM/F12 (1:1) 1X  Thermo Fischer 

Scientific 

Cat#11039021 

DPBS (1X)  Thermo Fischer 

Scientific 

Cat#14190144 

StemPro™ Accutase™ Cell Dissociation 

Reagent 

Thermo Fischer 

Scientific 

Cat#A1110501 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562


 63 

CellMaskTM Deep Red Plasma Membrane 

Stain  

Thermo Fisher 

Scientific 

Cat#C10046; 

Lot#1813792 (5X 

final concentration); 

Lot#1853335 and 

#1900978 (3X final 

concentration) 

NucBlueTM Live ReadyProbesTM Reagent  Thermo Fisher 

Scientific 

Cat#R37605 

Tetraspeck microsphere   

Deposited Data 

hiPSC Single-Cell Image Dataset; 

“hipsc_single_cell_image_dataset” - contents: 

216,062 cells (includes 18,186 FOVs, 25 

structures) 

 

 

https://open.quiltd

ata.com/b/allencel

l/packages/aics/hi

psc_single_cell_i

mage_dataset/tre

e/1606093417/ 

 

Supplementary MYH10 repeat dataset  

 

https://open.quiltd

ata.com/b/allencel

l/packages/aics/hi

psc_single_cell_i

mage_dataset_su

pp_myh10 

 

12X colony dataset: 

 

https://open.quiltd

ata.com/b/allencel

l/packages/aics/hi

psc_12x_overvie

w_image_dataset 

 

Experimental Models: Cell Lines 
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AICS-0014 cl. 6, nucleoli (DFC) 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0014&Product=iP

SC 

CVCL_JM17 

 

AICS-0057 cl. 50, nucleoli (GC) 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0057-

050&PgId=166 

CVCL_VK85 

 

AICS-0094 cl. 24, nuclear speckles 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0094-

024&PgId=166 

CVCL_YU30 

 

AICS-0068 cl. 9, cohesins 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0068-

009&PgId=166 

CVCL_UK04 

 

AICS-0061 cl. 36, histones 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0061-

036&PgId=166 

CVCL_UD17 
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AICS-0013 cl. 210, nuclear envelope 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0013&Product=iP

SC 

CVCL_IR32 

 

AICS-0069 cl. 88, nuclear pores 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0069-

088&PgId=166 

CVCL_UD18 

 

AICS-0010 cl. 55, ER (Sec61 beta) 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0010&Product=iP

SC 

CVCL_JM14 

 

AICS-0046 cl. 51, ER (SERCA2) 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0046-

051&PgId=166 

CVCL_UD14 
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AICS-0011 cl. 27, mitochondria 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0011&Product=iP

SC 

CVCL_IR33 

 

AICS-0033 cl. 115, peroxisomes 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0033-

115&PgId=166 

CVCL_VK79 

 

AICS-0040 cl. 35, endosomes 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0040-

035&PgId=166 

CVCL_VK82 

 

AICS-0022 cl. 37, lysosomes 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-0022-

037&Product=iPS

C 

CVCL_LK42 
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AICS-0025 cl. 44, Golgi 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-0025-

044&Product=iPS

C 

CVCL_LK43 

 

AICS-0032 cl. 19, centrioles 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-0032-

019&Product=iPS

C 

CVCL_LK45 

 

AICS-0012 cl. 105, microtubules 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0012&Product=iP

SC 

CVCL_IR34 

 

AICS-0054 cl. 91, plasma membrane 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0054-

091&PgId=166 

CVCL_VK84 
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AICS-0016 cl. 184, actin filaments 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0016&Product=iP

SC 

CVCL_JM16 

 

AICS-0007 cl. 79, actin bundles Not released yet N/A 

AICS-0024 cl. 80, actomyosin bundles 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0024&Product=iP

SC 

CVCL_JM15 

 

AICS-0058 cl. 67, adherens junctions 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0058-

067&PgId=166 

CVCL_VK86 

 

AICS-0053 cl. 16, gap junctions 

https://www.coriell

.org/0/Sections/S

earch/Sample_De

tail.aspx?Ref=AIC

S-0053-

016&PgId=166 

CVCL_VK83 
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AICS-0023 cl. 20, tight junctions 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0023&Product=iP

SC 

CVCL_JM18 

 

AICS-0017 cl. 65, desmosomes 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0017&Product=iP

SC 

CVCL_IR31 

 

AICS-0005 cl. 50, matrix adhesions 

https://catalog.cor

iell.org/0/Sections

/Search/Sample_

Detail.aspx?Ref=

AICS-

0005&Product=iP

SC 

CVCL_IR30 

 

Software and Algorithms 

FlowJo version 10.2 Treestar  

Zen 2.3 (blue edition); version 23.69.1003; 

service pack 2.3.69.01000; hotfix 2.3.69.01003  

Zeiss   

Code used for feature calculation: 

aicsfeature 

https://github.com

/AllenCell/aicsfeat

ure 

 

Code used for feature calculation: 

spherical harmonics parameterization  

https://github.com

/AllenCell/aics-

shparam 
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cytoplasmic parameterization https://github.com

/AllenCell/aics-

cytoparam 

 

Code used to perform organelle size-scaling 

analysis 

https://github.com

/AllenCell/stemcel

lorganellesizescal

ing 

 

Code used to perform morphing, compute 

Shape Modes, and calculate multi-resolution 

Pearson correlation analysis on 3D single cell 

images 

https://github.com

/AllenCell/cvapipe

_analysis 

 

Mitotic classifier annotation: The final 

automated 3D image classifier code (for both 

training and testing) and all trained models  

https://github.com

/AllenCell/image_

classifier_3d 

 

Original/source data for figures in the paper 

are available in Github 

https://github.com

/aics-

int/cvapipe_figure

_notebooks 

 

Tutorials and demo for how to access the data 

for different purposes 

https://github.com

/AllenCell/quilt-

data-access-

tutorials 

 

Segmentation code used to reproduce the 

deep learning cell and nuclear segmentations, 

trained models and demo Jupyter notebooks 

https://github.com

/AllenCell/segmen

ter_model_zoo 

 

Segmentation code used to reproduce 

structure segmentation from a set of algorithms 

to choose from, each with restricted numbers 

of parameters to tune 

https://github.com

/AllenCell/aics-

segmentation. 

 

Code used to generate the contact sheet 

quality control single-cell visualizations of all 

segmented cells  

https://github.com

/AllenCellModelin

g/actk 
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Cell Feature Explorer – 216,016 cells (from 

18,186 FOVs); 25 structures; 10 features +/- 

apical and radial proximity 

https://cfe.allencel

l.org 

 

Allencell.org - Allen Institute for Cell Science 

website 

https://allencell.or

g 

 

ChimeraX, developed by the Resource for 

Biocomputing, Visualization, and Informatics at 

the University of California, San Francisco, 

with support from National Institutes of Health 

R01-GM129325 and the Office of Cyber 

Infrastructure and Computational Biology, 

National Institute of Allergy and Infectious 

Diseases 

https://www.cgl.uc

sf.edu/chimerax/d

ocs/credits.html 

 

Spinning-disk Confocal Microscope 

Observer.Z1 microscope stand Zeiss  

10X/4.5 NA Plan-Apochromat objective Zeiss Cat#420640-9900-

000 

100X/1.25 W C-Apochromat Korr UV Vis IR 

objective 

Zeiss Cat#421797-9970-

000 

Spinning-disk scan head CSU-X with Primary 

dichroic RQFT 405/488/568/647 BP filter 

Yokogawa M1N-E/FBO/C101; 

24V DC; P8X006; 

95P900140 

NucBlue Live dye: BP filter 450/50 Chroma Cat#ET450/50m 

mEGFP tag structure or bright field: BP filter 

526/50 

SEMROCK Cat#FF03-525/50 

CMDR dye: BP filter 690/50 Chroma Cat#690/50m 

mTagRFP-T tag structure: BP filter 600/50 Chroma Cat#ET600/50m 

Bright field: BP filter 706/95 Chroma Cat#ET706/95m 

Laser: LASOS 405 50mw  Zeiss Part#400600-9011-

000 

Laser: LASOS 488 100mw Zeiss Part#400600-9061-

000 
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Laser: LASOS 561 75mw  Zeiss Part#400600-9111-

000 

Laser: LASOS 638 75mw Zeiss Part#400600-9121-

000 

Transmitted light red; LAMBDA TLED+ with 

740 nm wavelength LED 

Sutter 

Instruments 

 

Transmitted light white; Attachment lamp VIS-

LED (400-700 nm) with collector for laser 

system 

Zeiss Part#423053-9060 

 

Orca Flash 4.0 V2+ cameras Hamamatsu Part#C1144-22CU 

Piezo drive: Prior NanoScan Z 100 µm piezo z 

stage: NZ100ZM/a 

Zeiss Part#2802000 224 

PECON Incubator XLmulti S1; (37°C with 5% 

CO2) 

Zeiss Part#2802000 224 

Stage insert: H201 k frame slim profile model Okolab Part#H201 k 

Other   

96-well glass bottom plate with high 

performance #1.5 cover glass 

Cellvis Cat#P96-1.5H-N 

CELLSTAR™ Cell Culture Multi-well Plates for 

Suspension Cultures, (6-well plate) 

Greiner Bio-One Cat#657185 

25cm² Rectangular Canted Neck Cell Culture 

Flask with Vented Cap 

Corning Cat#9381M10 

96-Well, Non-Treated, U-Shaped-Bottom 

Microplate 

Thermo Fischer 

Scientific 

Cat#08-772-54 

CytoFLEX S V4-B2-Y4-R3 Flow Cytometer (13 

Detectors, 4 Lasers) 

Beckman Coulter Cat#CO9766 

Argolight HM Slide  Argolight  

  1954 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562


 73 

References 1955 
 1956 
Aldridge, S., and Teichmann, S.A. (2020). Single cell transcriptomics comes of age. Nature 1957 
Communications 11, 4307. 1958 

Baghbaderani, A.A., Tian, X., Neo, B.H., Burkall, A., Dimezzo, T., Sierra, G., Zeng, X., Warren, K., 1959 
Kovarcik, D.P., Fellner, T., et al. (2015). cGMP-Manufactured Human Induced Pluripotent Stem Cells 1960 
Are Available for Pre-clinical and Clinical Applications. Stem Cell Reports 5, 647–659. 1961 

Caicedo, J.C., Cooper, S., Heigwer, F., Warchal, S., Qiu, P., Molnar, C., Vasilevich, A.S., Barry, J.D., 1962 
Bansal, H.S., Kraus, O., et al. (2017). Data-analysis strategies for image-based cell profiling. Nat 1963 
Methods 14, 849–863. 1964 

Chen, J., Ding, L., Viana, M.P., Hendershott, M.C., Yang, R., Mueller, I.A., and Rafelski, S.M. (2018). 1965 
The Allen Cell Structure Segmenter: a new open source toolkit for segmenting 3D intracellular 1966 
structures in fluorescence microscopy images. BioRxiv 491035. 1967 

Coston, M.E., Gregor, B.W., Arakaki, J., Borensztejn, A., Do, T.P., Fuqua, M.A., Haupt, A., 1968 
Hendershott, M.C., Leung, W., Mueller, I.A., et al. (2020). Automated hiPSC culture and sample 1969 
preparation for 3D live cell microscopy. BioRxiv 2020.12.18.423371. 1970 

Drubin, D.G., and Hyman, A.A. (2017). Stem cells: the new “model organism.” Mol Biol Cell 28, 1409–1971 
1411. 1972 

Falcon, W., and Cho, K. (2020). A Framework For Contrastive Self-Supervised Learning And 1973 
Designing A New Approach. ArXiv:2009.00104 [Cs]. 1974 

Fransen, M., Lismont, C., and Walton, P. (2017). The Peroxisome-Mitochondria Connection: How and 1975 
Why? Int J Mol Sci 18. 1976 

Gerbin, K.A., Grancharova, T., Donovan-Maiye, R., Hendershott, M.C., Brown, J., Dinh, S.Q., 1977 
Gehring, J.L., Hirano, M., Johnson, G.R., Nath, A., et al. (2020). Cell states beyond transcriptomics: 1978 
integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. BioRxiv 1979 
2020.05.26.081083. 1980 

Gut, G., Herrmann, M.D., and Pelkmans, L. (2018). Multiplexed protein maps link subcellular 1981 
organization to cellular states. Science 361. 1982 

Hao, F., Kondo, K., Itoh, T., Ikari, S., Nada, S., Okada, M., and Noda, T. (2018). Rheb localized on the 1983 
Golgi membrane activates lysosome-localized mTORC1 at the Golgi–lysosome contact site. J Cell Sci 1984 
131. 1985 

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, 1986 
E., Taylor, J., Berg, S., Smith, N.J., et al. (2020). Array programming with NumPy. Nature 585, 357–1987 
362. 1988 

Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R.C., Katibah, G.E., 1989 
Amora, R., Boydston, E.A., Zeitler, B., et al. (2009). Efficient targeting of expressed and silent genes 1990 
in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology 27, 851–857. 1991 

Hunter, J.D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science Engineering 9, 1992 
90–95. 1993 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562


 74 

Johnson, G.T., Autin, L., Al-Alusi, M., Goodsell, D.S., Sanner, M.F., and Olson, A.J. (2015). cellPACK: 1994 
a virtual mesoscope to model and visualize structural systems biology. Nature Methods 12, 85–91. 1995 

Kreitzer, F.R., Salomonis, N., Sheehan, A., Huang, M., Park, J.S., Spindler, M.J., Lizarraga, P., 1996 
Weiss, W.A., So, P.-L., and Conklin, B.R. (2013). A robust method to derive functional neural crest 1997 
cells from human pluripotent stem cells. Am J Stem Cells 2, 119–131. 1998 

Lauffenburger, D.A., and Horwitz, A.F. (1996). Cell migration: a physically integrated molecular 1999 
process. Cell 84, 359–369. 2000 

Liaw, A., and Wiener, M. (2002). Classification and Regression by randomForest. 2, 5. 2001 

Macklin, D.N., Ahn-Horst, T.A., Choi, H., Ruggero, N.A., Carrera, J., Mason, J.C., Sun, G., Agmon, E., 2002 
DeFelice, M.M., Maayan, I., et al. (2020). Simultaneous cross-evaluation of heterogeneous E. coli 2003 
datasets via mechanistic simulation. Science 369. 2004 

Marshall, W.F. (2020). Scaling of Subcellular Structures. Annu. Rev. Cell Dev. Biol. 36, 219–236. 2005 

Marshall, W.F., Dernburg, A.F., Harmon, B., Agard, D.A., and Sedat, J.W. (1996). Specific 2006 
interactions of chromatin with the nuclear envelope: positional determination within the nucleus in 2007 
Drosophila melanogaster. Mol Biol Cell 7, 825–842. 2008 

McCormick, M.M., Liu, X., Ibanez, L., Jomier, J., and Marion, C. (2014). ITK: enabling reproducible 2009 
research and open science. Front. Neuroinform. 8. 2010 

McKinney, W. (2011). “pandas: a foundational Pythonlibrary  for data  analysis  and statistics”. In 2011 
In:Pythonfor High Performance and Scientific Computing, p. 14.9. 2012 

Nicholas Sofroniew, Kira Evans, Juan Nunez-Iglesias, Ahmet Can Solak, Talley Lambert, 2013 
kevinyamauchi, Jeremy Freeman, Loic Royer, Shannon Axelrod, Peter Boone, et al. (2019). 2014 
napari/napari: 0.2.8 (Zenodo). 2015 

Oceguera-Yanez, F., Kim, S.-I., Matsumoto, T., Tan, G.W., Xiang, L., Hatani, T., Kondo, T., Ikeya, M., 2016 
Yoshida, Y., Inoue, H., et al. (2016). Engineering the AAVS1 locus for consistent and scalable 2017 
transgene expression in human iPSCs and their differentiated derivatives. Methods 101, 43–55. 2018 

Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F., and Johnson, G.R. (2018). Label-free 2019 
prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nature 2020 
Methods 15, 917–920. 2021 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, 2022 
N., Antiga, L., et al. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. 2023 
Advances in Neural Information Processing Systems 32, 8026–8037. 2024 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 2025 
Prettenhofer, P., Weiss, R., Dubourg, V., et al. Scikit-learn: Machine Learning in Python. MACHINE 2026 
LEARNING IN PYTHON 6. 2027 

Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I., Morris, J.H., and 2028 
Ferrin, T.E. (2020). UCSF ChimeraX: Structure visualization for researchers, educators, and 2029 
developers. Protein Sci. 2030 

Pincus, Z., and Theriot, J.A. (2007). Comparison of quantitative methods for cell-shape analysis. J 2031 
Microsc 227, 140–156. 2032 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562


 75 

Roberts, B., Haupt, A., Tucker, A., Grancharova, T., Arakaki, J., Fuqua, M.A., Nelson, A., Hookway, 2033 
C., Ludmann, S.A., Mueller, I.A., et al. (2017a). Systematic gene tagging using CRISPR/Cas9 in 2034 
human stem cells to illuminate cell organization. Mol Biol Cell 28, 2854–2874. 2035 

Roberts, B., Haupt, A., Tucker, A., Grancharova, T., Arakaki, J., Fuqua, M.A., Nelson, A., Hookway, 2036 
C., Ludmann, S.A., Mueller, I.A., et al. (2017b). Systematic gene tagging using CRISPR/Cas9 in 2037 
human stem cells to illuminate cell organization. Mol Biol Cell 28, 2854–2874. 2038 

Rocklin, M. (2015). Dask: Parallel Computation with Blocked algorithms and Task Scheduling. (Austin, 2039 
Texas), pp. 126–132. 2040 

Roggiani, M., and Goulian, M. (2015). Oxygen-Dependent Cell-to-Cell Variability in the Output of the 2041 
Escherichia coli Tor Phosphorelay. Journal of Bacteriology 197, 1976–1987. 2042 

Ruan, X., and Murphy, R.F. (2019). Evaluation of methods for generative modeling of cell and nuclear 2043 
shape. Bioinformatics 35, 2475–2485. 2044 

Schroeder, W., Martin, K., and Lorensen, B. (2018). The Visualization ToolkitAn Object-Oriented 2045 
Approach To 3D Graphics. 2046 

Shen, L., Farid, H., and McPeek, M. (2009). Modeling three-dimensional morphological structures 2047 
using spherical harmonics. Evolution 63, 1003–1016. 2048 

Thul, P.J., Åkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., 2049 
Björk, L., Breckels, L.M., et al. (2017). A subcellular map of the human proteome. Science 356. 2050 

Valencia, P., Dias, A.P., and Reed, R. (2008). Splicing promotes rapid and efficient mRNA export in 2051 
mammalian cells. Proc Natl Acad Sci U S A 105, 3386–3391. 2052 

Virtanen, P. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python | Nature 2053 
Methods. 2054 

Walt, S. van der, Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., 2055 
Gouillart, E., and Yu, T. (2014). scikit-image: image processing in Python. PeerJ 2, e453. 2056 

Wang, T., and Hong, W. (2002). Interorganellar Regulation of Lysosome Positioning by the Golgi 2057 
Apparatus through Rab34 Interaction with Rab-interacting Lysosomal Protein. Mol Biol Cell 13, 4317–2058 
4332. 2059 

Wieczorek, M.A., and Meschede, M. (2018). SHTools: Tools for Working with Spherical Harmonics. 2060 
Geochemistry, Geophysics, Geosystems 19, 2574–2592. 2061 

 2062 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2020.12.08.415562doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.415562

