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Abstract

Temperature sensitivity—the magnitude of a biological response per ◦C—is a fundamen-

tal concept across scientific disciplines, especially biology, where temperature determines the

rate of many plant, animal and ecosystem processes. Recently, a growing body of literature

in global change biology has found temperature sensitivities decline as temperatures rise (Fu

et al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such

observations have been used to suggest climate change is reshaping biological processes, with

major implications for forecasts of future change. Here we present a simple alternative ex-

planation for observed declining sensitivities: the use of linear models to estimate non-linear

temperature responses. We show how linear estimates of sensitivities will appear to decline

with warming for events that occur after a cumulative thermal threshold is met—a common

model for many biological events. Corrections for the non-linearity of temperature response

in simulated data and long-term phenological data from Europe remove the apparent decline.

Our results show that rising temperatures combined with linear estimates based on calendar

time produce observations of declining sensitivity—without any shift in the underlying biol-

ogy. Current methods may thus undermine efforts to identify when and how warming will

reshape biological processes.

Significance statement : Recently a growing body of literature has observed declining tempera-

ture sensitivities of plant leafout and other events with higher temperatures. Such results suggest

that climate change is already reshaping fundamental biological processes. These temperature

sensitivities are often estimated as the magnitude of a biological response per ◦C from linear

regression. The underlying model for many events—that a critical threshold of warmth must be

reached to trigger the event—however, is non-linear. We show that this mismatch between the

statistical and biological models can produce the illusion of declining sensitivities with warming

using current methods. We suggest simple alternative approaches that can better identify when

and how warming will reshape biological processes.
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1 Main text1

Climate change has reshaped biological processes around the globe, with shifts in the timing of2

major life history events (phenology), carbon dynamics and other ecosystem processes (IPCC,3

2014). With rising temperatures, a growing body of literature has documented changes in tem-4

perature sensitivity—the magnitude of a biological response scaled per ◦C. Many studies have5

found declining responses to temperature in recent decades (Fu et al., 2015; Güsewell et al.,6

2017; Piao et al., 2017; Dai et al., 2019) or lower sensitivities in warmer, urban areas (Meng7

et al., 2020).8

9

Most studies attribute changes in temperature sensitivity to shifts in underlying biological pro-10

cesses. For example, researchers have suggested weaker temperature sensitivities are evidence of11

increased light limitation in the tundra (Piao et al., 2017), or a decline in the relative importance12

of warm spring temperatures for spring phenological events (e.g., leafout, insect emergence) in13

the temperate zone (Fu et al., 2015; Meng et al., 2020), as other environmental triggers (e.g.,14

winter temperatures that determine ‘chilling’) play a larger role. Yet, despite an increase in15

studies reporting declining or shifting temperature sensitivities, none have provided strong evi-16

dence of the biological mechanisms underlying these changes (e.g., Fu et al., 2015; Meng et al.,17

2020). The missing mechanisms may be hidden in the data: environmental factors moderate18

biological processes in complex ways (Chuine et al., 2016; Güsewell et al., 2017), are strongly19

correlated in nature (e.g., Fu et al., 2015), and temperature variance shifts over time and space20

(Keenan et al., 2020).21

22

Here we propose a simpler alternative explanation: the use of linear models for non-linear re-23

sponses to temperature. Researchers generally use methods with assumptions of linearity to24

calculate temperature sensitivities, often relying on some form of linear regression to compute25

a change in a quantity—days to leafout or carbon sequestered over a fixed time, for example—26

per ◦C, thus ignoring that many biological responses to temperature are non-linear. We show,27

theoretically then with simulated and empirical data, how the use of linear methods for non-28

linear responses can produce an illusion that the mechanisms underlying biological processes are29
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changing.30

31

Many observed biological responses are the result of continuous non-linear processes that depend32

on temperature, which are discretized into temporal units for measurement. For example, a bio-33

logical response, such as leafout, occurs when a certain thermal sum is reached (Dijkhuis, 1956;34

Lindsey and Newman, 1956), and plants will reach this threshold more quickly—in calendar35

time—when average daily temperatures are warmer (Valentine, 1983; Lechowicz, 1984; Kramer,36

2012). Biologically, however, the plants may require the same temperature sum. Indeed any37

process observed or measured as the time until reaching a threshold is inversely proportional to38

the speed at which that threshold is approached. Temperature determines the speed of many39

biological processes (Bonan and Sirois, 1992; Hinrichsen, 2009; Hofmann and Todgham, 2010).40

Thus, at very low temperatures plants would never leaf out and at higher temperatures they41

could leaf out in only a matter of days—yet sensitivities estimated from linear regression at42

higher (warmer) temperatures would appear much lower than those observed at lower temper-43

atures. Warming acts to step on the biological accelerator, producing shifts in estimates when44

non-linear responses are modeled as linear.45

46

We show this by deriving the relationship between a biological response and temperature using47

a simple stochastic model, which describes the first time a random process hits a threshold (see48

‘A first-hitting-time model of leafout’ in Supplementary Information). Our model holds the49

temperature threshold for leafout constant (Hunter and Lechowicz, 1992; Zohner et al., 2020).50

Even though the mechanism by which temperature leads to leafout does not change, the model51

produces declining sensitivity—as measured in days per ◦C—with warming. Indeed, under this52

model constant temperature sensitivity would be evidence that the temperature threshold is not53

constant and the mechanisms underlying the leafout process have changed.54

55

Simulations show that correcting for non-linearity using the transformation for an inverse relationship—56

log transformation—removes apparent declines in temperature sensitivity (Fig. 1, S2, code link).57

In empirical long-term leafout data from Europe, correcting for non-linearity in responses pro-58

duces little evidence for declining sensitivities with warming (Figs. 1, S6, S7). An apparent59
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decline in sensitivity for silver birch (Betula pendula) from -4.3 days/◦C to -3.6 days/◦C from60

1950-1960 compared to 2000-2010 disappears using a log-log regression (-0.17 versus -0.22). We61

see similar corrections using 20-year windows, and a potential increase in sensitivity for Euro-62

pean beech (Fagus sylvatica, see Tables S1-S2). Moreover, the variance of the leafout dates of63

both species declines as temperatures rise—(declines of roughly 50%, see Tables S1-S2), which64

is expected under our model as warming accelerates towards the thermal threshold that triggers65

leafout (and in contrast to predictions from changing mechanisms, see Ford et al., 2016).66

67

Fundamentally rising temperature should alter many biological processes, making robust meth-68

ods for identifying these changes critical. In spring plant phenology, where declining sensitivities69

are often reported (Fu et al., 2015; Piao et al., 2017; Dai et al., 2019), warming may increase70

the role of ‘chilling’ (determined mainly by winter temperatures) and daylength (Laube et al.,71

2014; Zohner et al., 2016)—potentially increasing the thermal sum required for leafout at lower72

values of these cues (Polgar et al., 2014; Zohner et al., 2017; Flynn and Wolkovich, 2018). Ad-73

justing our simulations to match this model yielded shifts in sensitivities with warming. Unlike74

a model with no underlying biological change, however, after correcting for non-linearity, the75

shifts in sensitivities remained and they occurred in step with the biological change (Fig. S4a,76

c). In contrast, sensitivities estimated from a linear model showed shifts across the entire range77

of warming, well before the simulated biological change (Fig. S4a, c). Further, we found that78

an increase in the thermal sum required for leafout should yield larger in magnitude tempera-79

ture sensitivities, not smaller, as is often expected (e.g., Fu et al., 2015), thus highlighting the80

complexity of identifying what trends to expect in sensitivities with warming (see ‘Simulations81

of common hypotheses for declining sensitivity’ in Supplementary Information for an extended82

discussion).83

84

Our theoretical model and empirical results show that rising temperatures are sufficient to ex-85

plain declining temperature sensitivity. It is not necessary to invoke changes to the mechanisms86

that underlie the biological processes themselves. Our results provide a simpler explanation for87

observations of declining temperature sensitivities, but do not rule out that important changes88

in biological processes may underlie such declines. Instead, our results highlight how the use89
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of linear models may make identifying when—and why—warming alters underlying biology far90

more difficult.91

92

Inferring biological processes from statistical artifacts is not a new problem (e.g., Nee et al.,93

2005), but climate change provides a new challenge in discerning mechanism from measure-94

ments because it affects biological time, while researchers continue to use calendar time. Other95

fields focused on temperature sensitivity often use approaches that acknowledge the non-linearity96

of responses (e.g., Yuste et al., 2004). Researchers have called for greater use of process-based97

models (Keenan et al., 2020), which often include non-linear responses to temperature, but98

rely themselves on exploratory methods and descriptive analyses for progress (Chuine et al.,99

2016). The challenge, then, is to interrogate the implicit and explicit models we use to interpret100

data summaries, and to develop null expectations that apply across biological and calendar time.101

102
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Figure 1: Shifts in temperature sensitivities (response per ◦C) with warming occur

when using linear models for non-linear processes. Estimated sensitivities decline (in

magnitude) with warming in simulations (shading, estimated across 45 sites with a base tem-

perature of normal(6,4), variation comes from fluctuation in the Monte Carlo simulations) with

no underlying change in the biological process when sensitivities were estimated with linear

regression (left). This decline disappears when performing the regression on logged predictor

and response variables (right). Such issues may underlie declining sensitivities calculated from

observational data, including long-term observations of leafout across Europe (for Betula pen-

dula from PEP725 from for the 45 sites that had complete data for 1950-1960 and 2000-2010),

which show a lower sensitivity with warming when calculated on raw data, but no change in

sensitivity using logged data. Shading, symbols and lines represent means ± standard deviations

of regressions across sites. See Supplementary Information for a discussion of why estimated

sensitivities are -1 or lower in non-linear models.
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