A simple explanation for declining temperature sensitivity with warming

E. M. Wolkovich^{1,a}, J. L. Auerbach², C. J. Chamberlain³, D. M. Buonaiuto³,
 A. K. Ettinger⁴, I. Morales-Castilla⁵ & A. Gelman²

¹Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancou-

ver, British Columbia, Canada

²Department of Statistics, Columbia University, New York, NY 10027, USA

³Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA

⁴The Nature Conservancy in Washington, 74 Wall Street, Seattle, WA, USA

⁵GloCEE – Global Change Ecology and Evolution Group, Department of Life Sciences, Univer-

sity of Alcalà CTRA N-II, KM., 33,600, 28802, Alcalà de Henares, Spain

^aCorresponding author (ORCID: 0000-0001-7653-893X)

Abstract

Temperature sensitivity—the magnitude of a biological response per °C—is a fundamental concept across scientific disciplines, especially biology, where temperature determines the rate of many plant, animal and ecosystem processes. Recently, a growing body of literature in global change biology has found temperature sensitivities decline as temperatures rise (Fu et al., 2015; Güsewell et al., 2017; Piao et al., 2017; Chen et al., 2019; Dai et al., 2019). Such observations have been used to suggest climate change is reshaping biological processes, with major implications for forecasts of future change. Here we present a simple alternative explanation for observed declining sensitivities: the use of linear models to estimate non-linear temperature responses. We show how linear estimates of sensitivities will appear to decline with warming for events that occur after a cumulative thermal threshold is met—a common model for many biological events. Corrections for the non-linearity of temperature response in simulated data and long-term phenological data from Europe remove the apparent decline. Our results show that rising temperatures combined with linear estimates based on calendar time produce observations of declining sensitivity—without any shift in the underlying biology. Current methods may thus undermine efforts to identify when and how warming will reshape biological processes.

Significance statement: Recently a growing body of literature has observed declining temperature sensitivities of plant leafout and other events with higher temperatures. Such results suggest that climate change is already reshaping fundamental biological processes. These temperature sensitivities are often estimated as the magnitude of a biological response per °C from linear regression. The underlying model for many events—that a critical threshold of warmth must be reached to trigger the event—however, is non-linear. We show that this mismatch between the statistical and biological models can produce the illusion of declining sensitivities with warming using current methods. We suggest simple alternative approaches that can better identify when and how warming will reshape biological processes.

¹ 1 Main text

² Climate change has reshaped biological processes around the globe, with shifts in the timing of
³ major life history events (phenology), carbon dynamics and other ecosystem processes (IPCC,
⁴ 2014). With rising temperatures, a growing body of literature has documented changes in tem⁵ perature sensitivity—the magnitude of a biological response scaled per °C. Many studies have
⁶ found declining responses to temperature in recent decades (Fu et al., 2015; Güsewell et al.,
⁷ 2017; Piao et al., 2017; Dai et al., 2019) or lower sensitivities in warmer, urban areas (Meng
⁸ et al., 2020).

9

Most studies attribute changes in temperature sensitivity to shifts in underlying biological pro-10 cesses. For example, researchers have suggested weaker temperature sensitivities are evidence of 11 increased light limitation in the tundra (Piao et al., 2017), or a decline in the relative importance 12 of warm spring temperatures for spring phenological events (e.g., leafout, insect emergence) in 13 the temperate zone (Fu et al., 2015; Meng et al., 2020), as other environmental triggers (e.g., 14 winter temperatures that determine 'chilling') play a larger role. Yet, despite an increase in 15 studies reporting declining or shifting temperature sensitivities, none have provided strong evi-16 dence of the biological mechanisms underlying these changes (e.g., Fu et al., 2015; Meng et al., 17 2020). The missing mechanisms may be hidden in the data: environmental factors moderate 18 biological processes in complex ways (Chuine et al., 2016; Güsewell et al., 2017), are strongly 19 correlated in nature (e.g., Fu et al., 2015), and temperature variance shifts over time and space 20 (Keenan et al., 2020). 21

22

Here we propose a simpler alternative explanation: the use of linear models for non-linear responses to temperature. Researchers generally use methods with assumptions of linearity to calculate temperature sensitivities, often relying on some form of linear regression to compute a change in a quantity—days to leafout or carbon sequestered over a fixed time, for example per °C, thus ignoring that many biological responses to temperature are non-linear. We show, theoretically then with simulated and empirical data, how the use of linear methods for nonlinear responses can produce an illusion that the mechanisms underlying biological processes are

30 changing.

31

Many observed biological responses are the result of continuous non-linear processes that depend 32 on temperature, which are discretized into temporal units for measurement. For example, a bio-33 logical response, such as leafout, occurs when a certain thermal sum is reached (Dijkhuis, 1956; 34 Lindsey and Newman, 1956), and plants will reach this threshold more quickly—in calendar 35 time—when average daily temperatures are warmer (Valentine, 1983; Lechowicz, 1984; Kramer, 36 2012). Biologically, however, the plants may require the same temperature sum. Indeed any 37 process observed or measured as the time until reaching a threshold is inversely proportional to 38 the speed at which that threshold is approached. Temperature determines the speed of many 39 biological processes (Bonan and Sirois, 1992; Hinrichsen, 2009; Hofmann and Todgham, 2010). 40 Thus, at very low temperatures plants would never leaf out and at higher temperatures they 41 could leaf out in only a matter of days—yet sensitivities estimated from linear regression at 42 higher (warmer) temperatures would appear much lower than those observed at lower temper-43 atures. Warming acts to step on the biological accelerator, producing shifts in estimates when 44 non-linear responses are modeled as linear. 45

46

We show this by deriving the relationship between a biological response and temperature using 47 a simple stochastic model, which describes the first time a random process hits a threshold (see 48 'A first-hitting-time model of leafout' in Supplementary Information). Our model holds the 49 temperature threshold for leafout constant (Hunter and Lechowicz, 1992; Zohner et al., 2020). 50 Even though the mechanism by which temperature leads to leafout does not change, the model 51 produces declining sensitivity—as measured in days per °C—with warming. Indeed, under this 52 model constant temperature sensitivity would be evidence that the temperature threshold is not 53 constant and the mechanisms underlying the leafout process have changed. 54

55

56 Simulations show that correcting for non-linearity using the transformation for an inverse relationship—

⁵⁷ log transformation—removes apparent declines in temperature sensitivity (Fig. 1, S2, code link).

⁵⁸ In empirical long-term leafout data from Europe, correcting for non-linearity in responses pro-

⁵⁹ duces little evidence for declining sensitivities with warming (Figs. 1, S6, S7). An apparent

decline in sensitivity for silver birch (*Betula pendula*) from -4.3 days/°C to -3.6 days/°C from 1950-1960 compared to 2000-2010 disappears using a log-log regression (-0.17 versus -0.22). We see similar corrections using 20-year windows, and a potential increase in sensitivity for European beech (*Fagus sylvatica*, see Tables S1-S2). Moreover, the variance of the leafout dates of both species declines as temperatures rise—(declines of roughly 50%, see Tables S1-S2), which is expected under our model as warming accelerates towards the thermal threshold that triggers leafout (and in contrast to predictions from changing mechanisms, see Ford et al., 2016).

67

Fundamentally rising temperature should alter many biological processes, making robust meth-68 ods for identifying these changes critical. In spring plant phenology, where declining sensitivities 69 are often reported (Fu et al., 2015; Piao et al., 2017; Dai et al., 2019), warming may increase 70 the role of 'chilling' (determined mainly by winter temperatures) and daylength (Laube et al., 71 2014; Zohner et al., 2016)—potentially increasing the thermal sum required for leafout at lower 72 values of these cues (Polgar et al., 2014; Zohner et al., 2017; Flynn and Wolkovich, 2018). Ad-73 justing our simulations to match this model yielded shifts in sensitivities with warming. Unlike 74 a model with no underlying biological change, however, after correcting for non-linearity, the 75 shifts in sensitivities remained and they occurred in step with the biological change (Fig. S4a, 76 c). In contrast, sensitivities estimated from a linear model showed shifts across the entire range 77 of warming, well before the simulated biological change (Fig. S4a, c). Further, we found that 78 an increase in the thermal sum required for leafout should yield larger in magnitude tempera-79 ture sensitivities, not smaller, as is often expected (e.g., Fu et al., 2015), thus highlighting the 80 complexity of identifying what trends to expect in sensitivities with warming (see 'Simulations 81 of common hypotheses for declining sensitivity' in Supplementary Information for an extended 82 discussion). 83

84

Our theoretical model and empirical results show that rising temperatures are sufficient to explain declining temperature sensitivity. It is not necessary to invoke changes to the mechanisms that underlie the biological processes themselves. Our results provide a simpler explanation for observations of declining temperature sensitivities, but do not rule out that important changes in biological processes may underlie such declines. Instead, our results highlight how the use

of linear models may make identifying when—and why—warming alters underlying biology far
 more difficult.

92

Inferring biological processes from statistical artifacts is not a new problem (e.g., Nee et al., 93 2005), but climate change provides a new challenge in discerning mechanism from measure-94 ments because it affects biological time, while researchers continue to use calendar time. Other 95 fields focused on temperature sensitivity often use approaches that acknowledge the non-linearity 96 of responses (e.g., Yuste et al., 2004). Researchers have called for greater use of process-based 97 models (Keenan et al., 2020), which often include non-linear responses to temperature, but 98 rely themselves on exploratory methods and descriptive analyses for progress (Chuine et al., 99 2016). The challenge, then, is to interrogate the implicit and explicit models we use to interpret 100 data summaries, and to develop null expectations that apply across biological and calendar time. 101 102

103 References

Bonan, G. B., and L. Sirois. 1992. Air-temperature, tree growth, and the northern and southern
 range limits to *Picea-mariana*. Journal of Vegetation Science 3:495–506.

Chen, L., J. G. Huang, Q. Q. Ma, H. Hanninen, F. Tremblay, and Y. Bergeron. 2019. Long-term
changes in the impacts of global warming on leaf phenology of four temperate tree species.
Global Change Biology 25:997–1004.

Chuine, I., M. Bonhomme, J.-M. Legave, I. García de Cortázar-Atauri, G. Charrier, A. Lacointe,
and T. Améglio. 2016. Can phenological models predict tree phenology accurately in the
future? The unrevealed hurdle of endodormancy break. Global Change Biology 22:3444–
3460.

Dai, W. J., H. Y. Jin, Y. H. Zhang, T. Liu, and Z. Q. Zhou. 2019. Detecting temporal changes in
the temperature sensitivity of spring phenology with global warming: Application of machine
learning in phenological model. Agricultural and Forest Meteorology 279.

- Dijkhuis, F. J. 1956. Computation of heat unit accumulations in maize for practical application.
 Euphytica 5:267–275.
- ¹¹⁸ Flynn, D. F. B., and E. M. Wolkovich. 2018. Temperature and photoperiod drive spring phe-¹¹⁹ nology across all species in a temperate forest community. New Phytologist 219:1353–1362.
- Ford, K. R., C. A. Harrington, S. Bansal, J. Gould, Peter, and J. B. St. Clair. 2016. Will changes
- in phenology track climate change? A study of growth initiation timing in coast Douglas-fir.
- 122 Global Change Biology 22:3712–3723.
- ¹²³ Fu, Y. S. H., H. F. Zhao, S. L. Piao, M. Peaucelle, S. S. Peng, G. Y. Zhou, P. Ciais, M. T. Huang,
- A. Menzel, J. P. Uelas, Y. Song, Y. Vitasse, Z. Z. Zeng, and I. A. Janssens. 2015. Declining
- global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107.
- ¹²⁶ Güsewell, S., R. Furrer, R. Gehrig, and B. Pietragalla. 2017. Changes in temperature sensitivity
- ¹²⁷ of spring phenology with recent climate warming in Switzerland are related to shifts of the ¹²⁸ preseason. Global Change Biology 23:5189–5202.
- ¹²⁹ Hinrichsen, H. H. 2009. Biological processes and links to the physics. Deep-Sea Research Part
 ¹³⁰ Ii-Topical Studies in Oceanography 56:1968–1983.
- ¹³¹ Hofmann, G. E., and A. E. Todgham. 2010. Living in the now: Physiological mechanisms to
- tolerate a rapidly changing environment. Annual Review of Physiology 72:127–145.
- Hunter, A. F., and M. J. Lechowicz. 1992. Predicting the timing of budburst in temperate trees.
 Journal of Applied Ecology 29:597–604.
- ¹³⁵ IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge Uni ¹³⁶ versity Press, Cambridge, United Kingdom and New York, NY, USA.
- ¹³⁷ Keenan, T. F., A. D. Richardson, and K. Hufkens. 2020. On quantifying the apparent temper¹³⁸ ature sensitivity of plant phenology. New Phytologist 225:1033–1040.
- ¹³⁹ Kramer, P. 2012. Physiology of woody plants. Elsevier, New York.

- Laube, J., T. H. Sparks, N. Estrella, J. Höfler, D. P. Ankerst, and A. Menzel. 2014. Chilling
 outweighs photoperiod in preventing precocious spring development. Global Change Biology
 20:170–182.
- Lechowicz, M. J. 1984. Why do temperate deciduous trees leaf out at different times adaptation
 and ecology of forest communities. American Naturalist 124:821–842. Lechowicz, mj.
- Lindsey, A. A., and J. E. Newman. 1956. Use of official weather data in spring time temperature
 analysis of an Indiana phenological record. Ecology 37:812–823.
- Meng, L., J. Mao, Y. Zhou, A. D. Richardson, X. Lee, P. E. Thornton, D. M. Ricciuto, X. Li,
 Y. Dai, X. Shi, and G. Jia. 2020. Urban warming advances spring phenology but reduces the
 response of phenology to temperature in the conterminous United States. Proceedings of the
- ¹⁵⁰ National Academy of Sciences 117:4228.
- Nee, S., N. Colegrave, S. A. West, and A. Grafen. 2005. The illusion of invariant quantities in
 life histories. Science 309:1236–1239.
- Piao, S., Z. Liu, T. Wang, S. Peng, P. Ciais, M. Huang, A. Ahlstrom, J. F. Burkhart, F. Chevallier, I. A. Janssens, et al. 2017. Weakening temperature control on the interannual variations
 of spring carbon uptake across northern lands. Nature Climate Change 7:359.
- Polgar, C., A. Gallinat, and R. B. Primack. 2014. Drivers of leaf-out phenology and their
 implications for species invasions: insights from Thoreau's Concord. New Phytologist 202:106–
 15.
- Valentine, H. T. 1983. Budbreak and leaf growth functions for modeling herbivory in some
 gypsy-moth hosts. Forest Science 29:607–617.
- Yuste, J., I. A. Janssens, A. Carrara, and R. Ceulemans. 2004. Annual Q_{10} of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology 10:161–169.
- Zohner, C. M., B. M. Benito, J. D. Fridley, J. C. Svenning, and S. S. Renner. 2017. Spring
 predictability explains different leaf-out strategies in the woody floras of North America,
 Europe and East Asia. Ecology Letters 20:452–460.

¹⁶⁷ Zohner, C. M., B. M. Benito, J. C. Svenning, and S. S. Renner. 2016. Day length unlikely to
 ¹⁶⁸ constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate
 ¹⁶⁹ Change 6:1120–1123.

Zohner, C. M., L. D. Mo, T. A. M. Pugh, J. F. Bastin, and T. W. Crowther. 2020. Interactive
climate factors restrict future increases in spring productivity of temperate and boreal trees.
Global Change Biology 26:4042–4055.

Acknowledgements: Thanks to TJ Davies, A Donnelly, TM Giants, Y. Fu, D. Lipson, C.
Rollinson, Y. Vitasse for comments that improved the manuscript. IM-C acknowledges funding from the Spanish Ministry for Science and Innovation. NSERC (grant no. RGPIN05038
to EMW), Canada Research Chair in Temporal Ecology (EMW) and the Spanish Ministry for
Science and Innovation (grant no. PID2019/109711RJ-I00 to IM-C) provided funding.

178

Data & Code Availability: Code for simulations, PEP 725 analysis, and plots is provided here.
For empirical examples, we used PEP 725 phenological data and E-OBS climate data, both of
which are freely available via the links.

182

183 List of Supplementary Information:

184 A first-hitting-time model of leafout

185 Simulations of common hypotheses for declining sensitivity

186 Methods & results using long-term empirical data (PEP725)

187 Table S1-S2

188 Fig S1-S7

189

¹⁹⁰ Figures

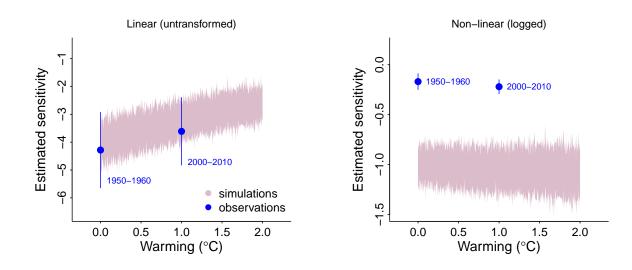


Figure 1: Shifts in temperature sensitivities (response per °C) with warming occur when using linear models for non-linear processes. Estimated sensitivities decline (in magnitude) with warming in simulations (shading, estimated across 45 sites with a base temperature of normal(6,4), variation comes from fluctuation in the Monte Carlo simulations) with no underlying change in the biological process when sensitivities were estimated with linear regression (left). This decline disappears when performing the regression on logged predictor and response variables (right). Such issues may underlie declining sensitivities calculated from observational data, including long-term observations of leafout across Europe (for *Betula pendula* from PEP725 from for the 45 sites that had complete data for 1950-1960 and 2000-2010), which show a lower sensitivity with warming when calculated on raw data, but no change in sensitivity using logged data. Shading, symbols and lines represent means \pm standard deviations of regressions across sites. See Supplementary Information for a discussion of why estimated sensitivities are -1 or lower in non-linear models.