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Abstract:  
Spodoptera frugiperda (fall armyworm) is a notorious pest that threatens maize production 
world-wide. Current control measures involve the use of chemical insecticides and transgenic 
maize expressing Bacillus thuringiensis (Bt) toxins. Although several additional transgenes have 
confirmed insecticidal activity in other plants, limited research has been conducted in maize, at 
least partially due to the technical difficulty of maize transformation. Here, we describe 
implementation of a sugarcane mosaic virus (SCMV) vector for rapidly testing the efficacy of 
transgenes for the control of S. frugiperda in maize. Four categories of proteins were tested using 
the SCMV vector: (i) maize defense signaling proteins: peptide elicitors (Pep1 and Pep3) and 
jasmonate acid conjugating enzymes (JAR1a and JAR1b); (ii) maize defensive proteins: the 
previously identified ribosome-inactivating protein (RIP2) and maize proteinase inhibitor (MPI), 
and two proteins with predicted but unconfirmed anti-insect activities, an antimicrobial peptide 
(AMP) and a lectin (JAC1); (iii) lectins from other plant species: Allium cepa agglutinin (ACA) 
and Galanthus nivalis agglutinin (GNA); and (iv) spider and scorpion toxins: peptides from 
Urodacus yaschenkoi (UyCT3 and UyCT5) and Hadronyche versuta (Hvt). In most cases, S. 
frugiperda larval growth on maize was reduced by transient SCMV-mediated overexpression of 
genes encoding these proteins. Additionally, experiments with some of the SCMV-expressed 
genes showed effectiveness against two aphid species, Rhopalosiphum maidis (corn leaf aphid) 
and Myzus persicae (green peach aphid). Together, these results demonstrate that SCMV vectors 
can be exploited as a rapid screening method for testing the efficacy and insecticidal activity of 
candidate genes in maize.   
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Introduction: 
Maize (Zea mays) is one of the world’s most important cereal crops, serving not only as a food 
source for humans and livestock, but also as a raw material for the production of ethanol and 
other industrial products (Ai and Jane, 2016; Chaudhary et al., 2014). The needs of an ever-
expanding population will lead to increasing demands on maize production in the coming years. 
Therefore, maintaining adequate maize yields will require reducing not only reducing the cost of 
agricultural inputs, but also the negative impacts of biotic and abiotic stresses that that limit 
maize productivity.  

More than 100 species of insect pests limit maize productivity in agricultural fields 
(McMullen et al., 2009; Meihls et al., 2012). Among these pests, one of the most damaging is 
Spodoptera frugiperda (fall armyworm; Figure 1a), a lepidopteran species that is indigenous to 
the Americas but recently has become invasive in Africa and Asia (Food and Agriculture 
Organization of the United Nations, 2018; Goergen et al., 2016). By consuming all above-
ground plant parts, S. frugiperda larvae reduce photosynthetic area, cause developmental delays, 
and decrease yield.  

Currently available S. frugiperda control methods, both application of chemical 
insecticides (Togola et al., 2018) and transgenic maize producing Bacillus thuringiensis (Bt) 
toxins (Huang et al., 2014; Tabashnik and Carrière, 2017), are becoming less effective as the 
insects develop resistance. Therefore, there is a need to screen for additional transgenes that can 
be used to enhance maize resistance to S. frugiperda feeding. Broadly, such approaches can 
include upregulation of maize defense signaling, overexpression of individual maize defensive 
proteins, and expression of exogenous insecticidal proteins.  

Plant elicitor peptides (Peps) trigger anti-herbivore defense responses (Huffaker, 2015; 
Huffaker et al., 2013; Poretsky et al., 2020). In maize, ZmPep1 and ZmPep3 upregulate defenses, 
at least in part by induction of the jasmonic acid (JA) signaling pathway (Huffaker et al., 2013, 
2011). A key step in the JA pathway is the conjugation of JA with isoleucine by JAR1 
(JASMONATE RESISTANT 1) enzymes (Koo and Howe, 2009; Staswick et al., 2002) to form 
JA-isoleucine. Expression of JAR1a and JAR1b, two of the five predicted JAR genes in maize 
(Borrego and Kolomiets, 2016), is highly induced by Spodoptera exigua (beet armyworm) 
herbivory (Tzin et al., 2017). Thus, these maize genes are good targets for overexpression to 
enhance resistance against S. frugiperda. 

Maize and other plants produce ribosome-inactivating proteins (RIPs) that block 
ribosome function by depurinating a specific adenine residue of the large ribosomal RNA (Bass 
et al., 2004; Zhu et al., 2018). These proteins, which are toxic for a variety of insects, including 
Lepidoptera (Shahidi-Noghabi et al., 2009) and Hemiptera (Hamshou et al., 2016), have been 
used previously in transgenic approaches. For instance, the expression of a maize kernel RIP1 in 
Nicotiana tabacum (tobacco) increased resistance to Helicoverpa zea (corn earworm) feeding 
(Dowd et al., 2003). The RIP2 gene is expressed in all maize tissues except the kernels (Bass et 
al., 2004). RIP2 expression was induced by S. frugiperda herbivory and recombinant RIP2 
protein decreased caterpillar growth on artificial diet (Chuang, Herde, et al., 2014). 
 Two additional classes of maize proteins with anti-herbivore activity are proteinase 
inhibitors and antimicrobial peptides (Campos et al., 2018; Koiwa et al., 1997). Proteinase 
inhibitors, which are produced by many plant families, impair the growth and survival of insects 
by disrupting the function of digestive enzymes. Maize proteinase inhibitor (MPI) expression 
was induced by both caterpillar herbivory and JA signaling (Cordero et al., 1994; Shivaji et al., 
2010; Tamayo et al., 2000). Heterologous expression of MPI in rice increased resistance to Chilo 
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suppressalis (striped stem borer) (Vila et al., 2005). Cyclotides are macrocyclic insecticidal 
peptides with the length of about 30 amino acids and a conserved cystine knot motif containing 
three disulfide bonds (Campos et al., 2018; Craik et al., 1999; Weidmann and Craik, 2016).  
Cyclotide Kalata B1 from Oldenlandia affinis decreased the growth of Helicoverpa armigera 
(corn earworm) larvae by rupturing epithelial cells in the midgut (Barbeta et al., 2008). 
Cycloviolacins, cyclotides from Viola odorata, negatively affected the probing and feeding 
behavior of Mysus persicae (green peach aphid), suggesting that cycloviolacins limit aphid 
population growth (Dancewicz et al., 2020). Among predicted antimicrobial peptides in maize, a 
few belong to the cyclotide family (Mulvenna et al., 2006; Noonan et al., 2017), but their 
efficacy against insects has not been confirmed. 

Plant lectins, carbohydrate-binding proteins that interact with glycoproteins and glycan 
structures in insect guts, have antinutritional or insecticidal effects (Macedo et al., 2015). For 
instance, snowdrop lectin (Galanthus nivalis agglutinin; GNA), onion lectin (Allium cepa 
agglutinin; ACA) and garlic (Allium sativum) leaf lectin reduce nutrient uptake and growth in 
wide range of insects (Vandenborre et al., 2011). Expression of a maize lectin gene, Jacalin 1 
(JAC1), is induced by JA, an indication that it may provide protection against herbivory (Van 
Damme et al., 2004). There can be additive or even synergistic effects if lectins are co-expressed 
or fused to scorpion or spider venom peptides. For instance, the insecticidal efficacy of GNA 
was increased by fusions to Hvt (Fitches et al., 2012), ButaIT from Mesobuthus tamulus (Fitches 
et al., 2010), AaIT from Androctonus australis (Liu et al., 2016), and δ-amaurobitoxin-PIla from 
Pireneitega luctuosus (Yang et al., 2014). 

Scorpion and spider venoms, which contain numerous insecticidal toxins (King and 
Hardy, 2013; Ortiz et al., 2015), have been explored as sources of insecticidal peptides. UyCT3 
and UyCT5, two antimicrobial peptides that are produced in the venom glands of Urodacus 
yaschenkoi (inland robust scorpion) decrease the fitness of Acyrthosiphon pisum (pea aphid) and 
the density of the primary symbiont, Buchnera aphidicola, suggesting that those are promising 
candidates for the production of insect-resistant transgenic plants (Luna-Ramirez et al., 2017). 
Similarly, ω-hexatoxin Hv1a (Hvt, also called ω-ACTX Hv1a) from Hadronyche versuta (Blue 
Mountains funnel web spider) is broadly effective against both lepidopteran and hemipteran 
pests when expressed in transgenic plants (Javaid et al., 2016; Ullah et al., 2015; Rauf et al., 
2019). Given the broad insecticidal activity of these spider and scorpion venom proteins, we 
hypothesized that they would also be effective in reducing S. frugiperda growth. 

Testing the effectiveness of transgenes for controlling pest insects on maize is limited by 
the high cost of maize transformation and the often greater than one-year timeline that is required 
to obtain transgenic maize plants for experiments. Therefore, we are proposing an alternate 
approach, whereby the efficacy of transgenes that enhance maize pest tolerance is tested by 
transient expression in maize using a virus vector. Sugarcane mosaic virus (SCMV), a positive-
sense single-stranded RNA virus, which has been adapted for efficient transgene expression in 
maize (Mei et al., 2019), is attractive vector for such experiments. Genes of interest are inserted 
between the SCMV P1 and HC-Pro cistrons in SCMV-CS3, a newly created plasmid vector, 
maize seedlings are infected by particle bombardment or Agrobacterium inoculation, and the 
pest resistance of the infected plants can be assessed after three weeks. Here we show that virus-
mediated expression of maize defense-regulating proteins, maize insecticidal proteins, and 
exogenous toxins can reduce the growth of insect pests. We demonstrate the insect-controlling 
properties of not only known proteins but also two maize proteins that were not previously 
confirmed to have anti-herbivore properties. Furthermore, we show that expression of transgenes 
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using SCMV also is effective in reducing production by two hemipteran pests, Rhopalosiphum 
maidis (corn leaf aphid; Figure 1b) and M. persicae (Figure 1c). 

 
Materials and methods 
 
Plants and insects 
Maize (Zea mays) plants, sweet corn variety Golden Bantam (West Coast Seeds, British 
Columbia, Canada) and inbred lines P39 and B73, were grown in a maize mix [0.16 m3 Metro-
Mix 360 (Scotts, Marysville, OH, USA), 0.45 kg finely ground lime, 0.45 kg Peters Unimix 
(Griffin Greenhouse Supplies, Auburn, NY, USA), 68 kg Turface MVP (Banfield-Baker Corp., 
Horseheads, NY, USA), 23 kg coarse quartz sand, and 0.018 m3 pasteurized field soil]. All 
plants, including those used for SCMV propagation and insect bioassays, were maintained in a 
growth chamber at 23°C with a 16:8 light:dark cycle. Unless specified otherwise, Golden 
Bantam maize was used for the described experiments.  

Eggs of S. frugiperda (fall armyworm) were purchased from Benzon Research (Carlisle, 
PA, USA) and maintained on an artificial diet (Fall Armyworm Diet, Southland Products Inc, 
Lake Village, AR, USA) in an incubator at 28°C. A colony of a genome-sequenced R. maidis 
lineage (W. Chen et al., 2019) was maintained on maize (Golden Bantam or P39) and a colony 
of a previously described tobacco-adapted strain of M. persicae (Ramsey et al., 2007) was 
maintained on Nicotiana tabacum (tobacco) at 23°C under 16:8 light:dark cycle. Both R. maidis 
and M. persicae were originally collected in USDA-ARS greenhouses by Steward Gray (Robert 
W. Holley Center for Agriculture & Health, Ithaca, NY, USA). 
 
Cloning of candidate genes into Sugarcane mosaic virus for protein expression 
The pSCMV-CS3 expression vector used in this work was derived from pSCMV-CS2 (Mei et 
al., 2019), which was modified to contain the CS3 restriction sites in the MCS between the P1 
and HC-Pro cistrons (Figure 2a). The modified pSCMV-CS2 genome plus the flanking 35S 
promoter and NOS terminator was amplified with SuperFi polymerase (ThermoFisher Scientific, 
Waltham, MA) using primers DCPacI 1380 F and DCPacI 1380 R (Supplementary Table S1). 
The pCAMBIA1380 backbone (www.cambia.org) was amplified with SuperFi polymerase using 
primers 1380F and 1380R (Supplementary Table S1). The two PCR fragments were 
subsequently assembled into pCAMBIA1380-SCMV-CS3, hereafter referred to as pSCMV-CS3, 
by Gibson Assembly (New England Biolabs, Ipswich, MA). pSCMV-GFP was created by 
amplifying the mEGFP coding sequence (Zacharias et al., 2002) using SuperFi polymerase with 
the GFP-Psp and GFP-SbfI primers (Supplementary Table S1). The resulting amplicon was 
digested with PspOMI and SbfI, gel purified and ligated into similarly digested pSCMV-CS3. 

Genes encoding maize defense regulators and protein toxins were amplified from the B73 
cDNA template with gene-specific primers containing restriction sites at the 5’ end for cloning 
into SCMV vector. PCR products were gel purified, digested with the corresponding restriction 
enzymes and cloned into the SCMV vector (Figure 2a). The UyCT3 and UyCT5 genes (codon 
optimized for maize), as well as the maize Pep1 and Pep3 genes, were synthesized by Genscript 
Biotech (Piscataway, NJ, USA) and cloned into the SCMV vector. To generate SCMV with Hvt, 
ACA, GNA, RIP2,  Hvt-ACA, Hvt*-ACA, RIP2-GNA, and Hvt-GNA, primers listed in 
Supplementary Table S1 and DNA synthesized by Genewiz (South Plainfield, NJ, USA) were 
used as template and the resulting PCR products were gel purified and cloned into PspOMI-SbfI 
cut SCMV by following the NEBuilder HiFi DNA Assembly method (NEB, Ipswich, MA, 
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USA). Primers, restriction sites, and cloning methods used in this study are listed in 
Supplementary Table S1. 
 
Inoculation of maize with SCMV constructs 
 SCMV constructs were delivered into maize plants by particle bombardment using a 
Biolistic PDS-1000/He system (Bio-Rad, Hercules, CA, USA) as described previously (Mei and 
Whitham, 2018). One µg of the plasmid DNA was coated on 3 mg 1.0 µm diameter gold 
particles, and the coated gold particles were distributed onto five microcarriers and allowed to air 
dry. Plants were placed in the dark 12 h before the particle bombardment. Two leaves of one-
week-old plants were bombarded with using 1,100 psi rupture disks at a distance of 6 cm 
(between stopping screen and leaves).  

Agroinoculation was used to initiate maize infections with the SCMV constructs 
containing Hvt, ACA, and UyCT3. The constructs were transformed into the Agrobacterium 
tumefaciens strain GV3101 and an A. tumefaciens suspension with optical density at 600 nm 
(OD600) = 1.0 in infiltration buffer (200 μM acetosyringone, 10 mM MES, pH 5.6, and 10 mM 
MgCl2) was injected above the coleoptile node of one-week-old plants.  
 After the initial infection by particle bombardment or Agroinoculation, SCMV constructs 
were further propagated by rub-inoculation. Leaf sap of SCMV-infected plants was prepared by 
grinding 0.5 g leaf tissue in 5 ml of 50 mM pH 7.0 potassium phosphate buffer. One-week-old 
maize plants were dusted with 600-mesh carborundum and mechanically inoculated by rubbing 
leaf sap from virus-infected maize plants on two leaves.  
 
Confocal microscopy 
Three weeks post-inoculation, leaf samples were collected from the seventh or eighth leaves of 
maize plants infected with SCMV-GFP. The samples were observed at an excitation of 488 nm. 
The emitted fluorescence signal was monitored from 505 to 545 nm using a SP5 Leica Confocal 
Microscope in the Plant Cell Imaging Center of Boyce Thompson Institute. A scan of 
fluorescence across a range of wavelengths (lambda scan) was used to confirm that the observed 
signal was derived from GFP rather than endogenous maize fluorescence. 
 
Insect bioassays 
To determine the effect of defensive proteins on the growth of S. frugiperda, SCMV-infected 
plants, three weeks post-inoculation, were used for caterpillar bioassays. Five two-day-old 
caterpillars were placed on each plant and enclosed using perforated plastic bags (13 cm x 61 
cm, https://www.clearbags.com). The caterpillar fresh mass was measured one week later. For 
aphid bioassays, eight 10-day-old apterous adult R. maidis or ten 10-day-old apterous adult M. 
persicae were placed on each virus-infected plant 15-18 days after SCMV inoculation and 
enclosed using perforated plastic bags. The total numbers of aphids were counted one week later. 
 
RNA extraction, cDNA synthesis, RT-PCR, and quantitative real-time PCR (qRT-PCR) 
Three weeks post-inoculation and prior to the insect bioassays, leaf tissue was collected from the 
seventh or eighth leaves of infected plants, flash-frozen in liquid nitrogen, and stored at -80 °C. 
RNA was extracted using TRIzoL Reagent (Invitrogen, Carlsbad, CA, USA) and treated with 
RQ1 RNase-free DNase (Promega, Madison, WI, USA). One microgram of RNA was used to 
synthesize first-strand cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Foster City, CA, USA) with random primers. To verify the expression of insect 
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resistance genes cloned into the SCMV vector, qRT-PCR was conducted with gene-specific 
primers (Supplementary Table S1). For the inserts of less than 75 bp (Pep1, Pep3, UyCT3, and 
UyCT5), one primer was designed to bind to the insert and another primer was designed to bind 
to the region flanking the cloning site, with the amplification products ranging in size from 100-
150 bp. The reactions consisted of 5.0 µl of the PowerUp SYBR Green PCR master mix 
(Applied Biosystems), 0.6 µl primer mix (300 nM for the final concentration of each primer) and 
2 µl of cDNA (1:10 dilution with nuclease-free H2O) in 10 µl total volume. Template-free 
reactions were included as negative controls. The PCR amplification was performed on 
QuantStudio 6 Flex Real-Time PCR Systems (Applied Biosystems, Foster City, CA, USA) with 
the following conditions: 2 min at 50°C, 2 min at 95°C, 40 cycles of 95°C for 15 sec and 60°C 
for 1 min. Primer specificity was confirmed by melting curve analysis. Mean cycle threshold 
values of duplicates of each sample were normalized using two reference genes, Actin and EF1-
α. Relative gene expression values were calculated using 2-∆∆Ct method (Livak and Schmittgen, 
2001).  
 
Statistical analysis 
All statistical analyses were conducted using R (R Core Team, 2017). Data for gene expression 
and larval mass of S. frugiperda larvae, and aphid fecundity were compared using analysis of 
variance (ANOVA) followed by Tukey’s test or Dunnett’s test relative to the GFP control or t-
test. Gene expression data were log2 transformed before the statistical analysis to meet the 
assumptions of ANOVA but untransformed data are presented in the figures. Survival of S. 
frugiperda larvae was analyzed using non-parametric Kruskal-Wallis tests. Raw data underlying 
the bar graphs are presented in Supplemental Tables S2-S8. 
 
Results 
SCMV-GFP does not affect S. frugiperda growth on maize 
A previously described SCMV cloning vector (Mei et al., 2019) was modified to produce 
SCMV-CS3 (Figure 2a) and the mEGFP coding sequence (Zacharias et al., 2002) was placed in 
the multiple cloning site to produce SCMV-GFP. An empty vector control virus (SCMV-EV) 
and SCMV-GFP were used to inoculate one-week-old maize seedlings. Both SCMV-GFP and 
SCMV-EV caused mosaic symptoms within two weeks after inoculation and continued to spread 
in newly emerging leaves of the infected plants (Figure 2b). Three weeks post-inoculation, the 
GFP expression level was significantly higher in plants infected by SCMV-GFP than SCMV-EV 
(Figure 2c). Infected leaves were examined using confocal microscopy and the green 
fluorescence signal was only detected in leaves infected with SCMV-GFP (Figure 2d). Neither 
S. frugiperda larval survival (Figure 2e) nor larval growth (Figure 2f) differed significantly 
between plants infected by SCMV-GFP and SCMV-EV. SCMV-GFP was used as a transgene-
expressing virus control treatment in subsequent experiments to test the efficacy of insect 
growth-inhibiting proteins (Table 1) against S. frugiperda, R. maidis, and M. persicae (Figure 1a-
c). 
 
Expression of endogenous maize genes using SCMV enhances S. frugiperda resistance 
We cloned the 69 bp sequences of the maize Pep1 and Pep3 defense elicitors (Huffaker et al., 
2011, 2013) into pSCMV-CS3 and inoculated seedlings of sweet corn variety Golden Bantam. 
Pep1 and Pep3 expression was confirmed by qRT-PCR three weeks post-inoculation (Figure 
3a,b). Relative to SCMV-GFP, infection with SCMV-Pep1 and SCMV-Pep3 caused increased 
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transcript accumulation of maize proteinase inhibitor (MPI; Figure 3c), a JA pathway marker 
gene with antiherbivore activity (Chuang, Ray, et al., 2014). Pep1 and Pep3 expression 
decreased the growth of S. frugiperda larvae on Golden Bantam maize by 25% and 51%, 
respectively, compared to GFP control plants (Figure 3d), but did not affect survival of the larvae 
(Table S4). Similar results were obtained for Pep3 using popcorn (P39) and field corn (B73) 
inbred lines (Figure 3e,f), showing that the effect on S. frugiperda growth is not specific to 
Golden Bantam.  
 We targeted previously investigated maize insect resistance genes (JAR1a, JAR1b, RIP2, 
and MPI) and two predicted resistance genes (AMP and JAC1) for overexpression using SCMV. 
A previously uncharacterized gene (GRMZM2G032198) encoding a maize cyclotide 
antimicrobial peptides was designated as AMP. Expression of both AMP and JAC1 was induced 
by S. frugiperda herbivory (Figure S1), suggesting that these genes are involved in maize insect 
resistance. The expression levels of JAR1a, JAR1b, RIP2, JAC1, AMP, and MPI were 
significantly higher in plants infected by the corresponding SCMV constructs than in SCMV-
GFP control plants (Figure 3g-j,m,n). SCMV-JAR1a and SCMV-JAR1b also significantly 
increased MPI expression (Figure 3k), confirming upregulation of JA-related defense pathways. 
More importantly, the growth of S. frugiperda larvae was up to 60% lower on plants expressing 
JAR1a, JAR1b, RIP2, JAC1, AMP, and MPI than on Golden Bantam control plants infected with 
SCMV-GFP (Figure 3l,o).  
 
Expression of scorpion insecticidal proteins reduces S. frugiperda growth 
To determine whether SCMV can be used to express heterologous insect resistance genes in 
maize, we cloned UyCT3 and UyCT5, which encode U. yaschenkoi venom toxins, into the 
SCMV vector. Transgene expression in maize was confirmed by qRT-PCR (Figure 4a,b). Both 
SCMV-UyCT3 and SCMV-UyCT5 reduced S. frugiperda weight on P39 and B73 plants 
compared to SCMV-GFP control plants (Figure 4c,d).  
 
Expression of fusion proteins using SCMV has additive effects on S. frugiperda 
Fusion of spider and scorpion neurotoxins with plant lectins can improve their toxicity (Fitches 
et al., 2012; Liu et al., 2016; Rauf et al., 2019). We investigated this effect in maize using 
SCMV constructs. Because SCMV vectors produce a polyprotein precursor from which 
functional proteins are cleaved by the NIa protease (Mei et al., 2019), we generated SCMV 
constructs with and without an NIa cleave site between the venom toxin and lectin to determine 
whether the proteins are more efficacious separately or as fusion proteins. The expression levels 
of H. versuta toxin (Hvt) and A. cepa agglutinin (ACA) genes were significantly higher in plants 
infected by each corresponding SCMV constructs than SCMV-GFP control (Figure 5a and 5b), 
and the presence of protease cleavage site between Hvt and ACA did not affect Hvt and ACA 
transcript accumulation. Expression of single proteins did not significantly decrease S. 
frugiperda growth relative to the GFP control (Figure 5c). However, the expression of fusion 
protein by SCMV-Hvt-ACA or two individual proteins of Hvt and ACA by SCMV-Hvt-cleavage 
site-ACA reduced the larval growth by 39% and 46%, relative to the GFP control (Figure 5c), 
respectively, suggesting an additive effect from the expression the two genes.  
 As the presence of a cleavage site between the two protein components did not increase 
efficacy (Figure 5c), we tested insecticidal activity of fusion proteins without viral protease 
cleavage sites in subsequent experiments. SCMV constructs were made with a maize defense 
gene, RIP2, and a spider insecticidal protein, Hvt, fused to G. nivalis agglutinin (GNA). We 

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2021. ; https://doi.org/10.1101/2021.01.13.425472doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.13.425472
http://creativecommons.org/licenses/by/4.0/


confirmed that each gene was expressed in plants infected by the corresponding construct 
(Figure 5d,e,g,h). Although the expression of GNA alone did not affect S. frugiperda larval 
growth, infection with SCMV-RIP2 and SCMV-RIP2-GNA reduced S. frugiperda growth by 
28% and 27%, respectively (Figure 5f). In the case of Hvt and GNA, neither gene by itself 
significantly reduced caterpillar growth. However, the SCMV-Hvt-GNA fusion construct 
significantly decreased S. frugiperda larval growth compared to GFP control protein (Figure 5i). 
Together, these results indicate that fusion proteins combining lectins and maize defense proteins 
or venom toxins can improve resistance against S. frugiperda. 
 
Expression of maize and scorpion genes enhances resistance to phloem-feeding herbivores 
To investigate whether our SCMV constructs also provide protection against phloem-feeding 
insects, we conducted aphid bioassays using P39 plants infected with a subset of the previously 
tested constructs: SCMV-GFP, SCMV-Pep3, SCMV-RIP2, SCMV-UyCT3, SCMV-UyCT5, 
SCMV-AMP, and SCMV-JAC1. GFP expression did not affect aphid numbers compared to the 
empty vector control (Figure 6a,b). By contrast, expression of maize defense proteins and 
scorpion toxins significantly decreased progeny production by both R. maidis (Figure 6a,c) and 
M. persicae (Figure 6b,d) compared to SCMV-GFP control.  
 
Discussion 
Artificial diet assays are commonly employed for testing the oral efficacy of novel insecticidal 
proteins against insect herbivores (Panwar et al., 2018; Yao et al., 2003; Fitches et al., 2012). 
However, growth inhibition on artificial diet does not always correlate well with the effects that 
are observed when the same insecticidal proteins are subsequently expressed in transgenic plants 
(Khan et al., 2020). Both the context of the surrounding plant tissue and the localization of the 
insecticidal proteins in the plants could affect their toxicity against insect herbivores. Therefore, 
rather than pre-screening insecticidal proteins by cloning in microbial systems, purification, and 
artificial diet assays, we propose that transient expression using a viral vector such as SCMV will 
be a more effective approach for rapidly testing the in planta efficacy of novel insecticidal 
proteins.  
 Reduced weight gain of S. frugiperda in response to SCMV-mediated expression of 
Pep1, Pep3, JAR1a, JAR1b, RIP2, MPI, UyCT3, and UyCT5 as single-gene constructs is 
consistent with previous reports of these genes providing protection against insect herbivory. 
Additionally, AMP and JAC1, two maize genes that are upregulated in response to S. frugiperda 
feeding (Figure S1), reduced caterpillar weight gain when overexpressed in maize. Although 
transcriptomic studies have identified numerous maize genes that are upregulated in response to 
arthropod feeding (Bui et al., 2018; Pan et al., 2020; Tzin et al., 2015, 2017; Yang et al., 2020; 
Guo et al., 2019; Song et al., 2017; Wang et al., 2017; Zhang et al., 2016), the majority of these 
genes have not been investigated for their role in plant defense against herbivory. This is at least 
in part due to the time and cost of creating maize lines that have individual genes overexpressed. 
Transient expression using SCMV, as we have done for AMP and JAC1, will accelerate the 
process of testing the defensing functions of maize genes that are induced in response to 
herbivory. 
 Although these genes increased resistance in other plant-insect studies (Liu et al., 2016; 
Ullah et al., 2015; Vandenborre et al., 2011), overexpression of Hvt, ACA, and GNA as single-
gene SCMV constructs in maize did not significantly reduce S. frugiperda weight gain. 
Nevertheless, expression of gene fusions, Hvt-ACA and Hvt-GNA, reduced S. frugiperda weight 
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gain, indicating that there are additive effects of the spider venom and the lectin (Figure 5c,i). 
This is consistent with other studies that the toxicity of spider and scorpion toxins was improved 
by combining with a lectin, which may facilitate the transfer of the venom proteins across the gut 
lumen (Fitches et al., 2002; Javaid et al., 2016; Nakasu et al., 2014; Rauf et al., 2019). In 
addition to these synergistic effects on larval growth, it is likely that the stacking of multiple 
toxic proteins with different modes of action in one viral construct will delay the development of 
resistance in insects (Head et al., 2017; Ni et al., 2017). In contrast to Hvt-lectin fusions, we did 
not observe an additive effect when RIP2 was linked to GNA (Figure 5f). This difference may be 
attributed to the differing origins of the toxin proteins expressed in the SCMV constructs. 
Whereas spider venoms like Hvt are injected directly into the hemolymph, the maize RIP2 
protein would be consumed orally by lepidopteran larvae. As an endogenous maize insecticidal 
protein, RIP2 may bind to an as yet unknown receptor and thereby enter the midgut cells and/or 
the insect hemolymph. Thus, these results suggest that the fusion proteins of non-maize toxins 
and lectins enhance the insecticidal activity of the fusion protein.  

Our observation of increased defense gene expression (Figure 3c) and reduced S. 
frugiperda weight gain (Figure 3d-f) on plants infected with SCMV-Pep1 and SCMV-Pep3, are 
consistent with experiments showing that pre-treatment of maize plants with Pep1 and Pep3 
increases JA levels, defense gene expression, and defensive metabolites, leading to reduced 
growth of S. exigua larvae (Huffaker et al., 2011, 2013). Under normal circumstances, peptide 
signaling is initiated when plasma membranes are disrupted and elicitor peptides are released 
from the cytoplasm into the apoplastic space (Bartels and Boller, 2015). Receptors on 
neighboring intact cells recognize these peptides and elicit downstream defense pathways (Lori 
et al., 2015). However, in our experiments, the expression of MPI was induced in plants infected 
by SCMV-Pep1 and SCMV-Pep3, even before initiation of caterpillar feeding (Figure 3c). 
Pathogen attack can cause plant proteins without secretory signals to be released into apoplast 
(Agrawal et al., 2010), and is possible that SCMV infection initiated Pep1 and Pep 3 signaling in 
this manner 

Induced defenses, in particular those regulated by the jasmonic acid pathway, typically 
are turned on after perception of insect herbivory by maize and other plants (Erb and Reymond, 
2019; Howe and Jander, 2008). However, initiation of jasmonate-regulated defenses takes time 
and some lepidopteran herbivores may have the ability to suppress jasmonate signaling (C.-Y. 
Chen et al., 2019). Therefore, targeted initiation of maize defense responses by expression of 
regulatory proteins in SCMV may be an approach for increasing pest resistance. Such virus-
mediated induction could be deployed in maize fields when there is the specific threat of insect 
pests such as S. frugiperda. 

Currently available insect-resistant transgenic maize varieties, in particular those 
expressing Cry, Cyt, or Vip genes from B. thuringiensis (Bravo et al., 2011; Chakroun et al., 
2016), are not effective against phloem-feeding insects such as Rhopalosiphum maidis (corn leaf 
aphid; Figure 1b) or Myzus persicae (green peach aphid; Figure 1c). Although the toxicity of Bt 
toxins can be increased by incorporating peptide sequences that bind to aphid guts (Chougule et 
al., 2013), this has not yet resulted in a commercially viable Bt toxin directed at hemipteran 
herbivores. Thus, there is an interest in identifying additional insecticidal proteins that can be 
expressed in the plant phloem to enhance aphid resistance. Our demonstration that transient 
expression of both endogenous maize proteins and insecticidal proteins from other species can 
reduce reproduction of R. maidis and M. persicae (Figure 6), suggests that SCMV-mediated 
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overexpression can be used to rapidly screen proteins for their effectiveness against hemipteran 
pests of maize. 
 Our results demonstrate the utility of SCMV-mediated overexpression for screening the 
efficacy of proteins that reduce insect growth on maize plants. Virus-mediated transient 
expression assays included genes encoding maize regulatory proteins, endogenous maize 
defensive proteins, and non-maize insecticidal proteins. The main advantage of the SCMV 
overexpression system is a timeline that makes it possible to test the effectiveness of single- and 
multi-gene constructs in actual maize plants in only two months. Although the main focus of our 
efforts was a lepidopteran herbivore, S. frugiperda, we also showed efficacy of SCMV constructs 
against two aphid species, R. maidis and M. persicae, suggesting that the SCMV-mediated 
transient expression approach will be broadly useful for experiments with both chewing and 
piercing/sucking herbivores of maize.  
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Table 1. Insect resistance genes that were tested in maize by transience expression using 
Sugarcane mosaic virus 

 
Source species Gene name GenBank ID MaizeGDB ID Description 
Zea mays Pep1 XM_008670579 GRMZM2G055447 Peptide elicitor 1 
Zea mays Pep3 XM_008670581 GRMZM2G339117 Peptide elicitor 3 
Zea mays JAR1a NM_001174342 GRMZM2G091276 Jasmonate-isoleucine conjugating enzyme 
Zea mays JAR1b NM_001361064 GRMZM2G162413 Jasmonate-isoleucine conjugating enzyme 
Zea mays RIP2 NM_001137489 GRMZM2G119705 Ribosome-inactivating protein 2 
Zea mays JAC1 NM_001148875 GRMZM2G050412 Jacalin 1, maize lectin 
Zea mays AMP NM_001371023 GRMZM2G032198 Cyclotide antimicrobial peptide 
Zea mays MPI X78988 GRMZM2G028393 Maize proteinase inhibitor 
Allium cepa ACA DQ255944  Onion lectin 
Galanthus nivalis GNA M55556   Snowdrop lectin 
Hadronyche versuta Hvt AJ938032   ω-hexatoxin-Hv1a, spider venom toxin 
Urodacus yaschenkoi UyCT3 JX274241   Scorpion venom toxin, antimicrobial peptide 
Urodacus yaschenkoi UyCT5 JX274242  Scorpion venom toxin, antimicrobial peptide 
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(a) Spodoptera frugiperda (b) Rhopalosiphum maidis (c) Myzus persicae

Figure 1.  Insect species used in this study. (a) Spodoptera frugiperda, fall 
armyworm, (b) Rhopalosiphum maidis, corn leaf aphid, (c) Myzus persicae, green 
peach aphid.
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Figure 2.  Use of a sugarcane mosaic virus (SCMV) to transiently express GFP in maize. (a) Schematic 
diagram of the SCMV-CS3 cloning vector. A multiple cloning site (MCS) was inserted between P1 and 
HC-Pro genes of SCMV. 35S: cauliflower mosaic virus 35S promoter; T: NOS terminator. (b) Mosaic 
infection symptom of SCMV vector in maize three weeks post inoculation. (c) Transient overexpression 
of GFP in plants infected by SCMV-empty vector (EV) or -GFP. Gene expression was determined by 
qRT-PCR three weeks post-inoculation. Means +/- s.e. of N = 5, ***P < 0.001, t-test. (d) Confocal image 
of foliar GFP expression. (e, f) S. frugiperda survival and larval growth on plants infected by EV or 
SCMV-GFP. Two-day-old caterpillars were fed on infected plants for one week and caterpillar mass was 
determined. Means + s.e. of N = 10, NS= non-significant, ND = not  detected, EV = empty vector, MCS 
= multiple cloning site.
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Figure 3. Gene expression and Spodoptera frugiperda larval growth on plants expressing maize defense genes. 
(a,b) Transient overexpression  of Pep1 and Pep3 in Golden Bantam plants infected by SCMV-GFP, -Pep1 or -
Pep3. (c) The expression level of MPI in plants expressing SCMV-encoded GFP, Pep1, or Pep3. Gene 
expression was determined by qRT-PCR three weeks post inoculation. (d) Performance of S. frugiperda on 
Golden Bantam plants expressing GFP, Pep1, or Pep3. (e,f) Performance of S. frugiperda on P39 and B73 
plants expressing GFP or Pep3. (g-j, m,n) Transgene expression in Golden Bantam plants infected with SCMV-
GFP, -JAR1a, -JAR1b, -RIP2, -JAC1, AMP, or MPI. (k) The expression level of MPI in Golden Bantam plants 
expressing GFP, JAR1a, or JAR1b. (l, o) The performance of S. frugiperda on plants expressing GFP, JAR1a, 
JAR1b, RIP2, JAC1, AMP, or MPI. Caterpillars were confined on infected plants three weeks post inoculation 
and mass was measured one week later. Means +/- s.e. of N = 5 for gene expression; N = 10-12 for insect 
bioassays, *P < 0.05; **P < 0.01; ***P < 0.001 relative to GFP control, Dunnett’s test. 
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Figure 4. Gene expression and larval growth on P39 plants expressing heterologous insecticidal genes. (a, 
b) Transient overexpression of UyCT3 and UyCT5 in P39 plants infected by SCMV-GFP, -UyCT3 or -
UyCT5. Gene expression was determined by qRT-PCR there weeks post inoculation. (c) The performance 
of S. frugiperda on P39 plants expressing GFP, UyCT3 or UyCT5. (d) The performance of S. frugiperda on 
B73 plants expressing GFP or UyCT3. Five caterpillars were confined on infected plants three weeks post 
inoculation. Caterpillar weight was measured one week later. Means +/- s.e. of N = 5 for gene expression; 
N = 7-14 for insect bioassays, *P < 0.05; **P < 0.01; ***P < 0.001 relative to GFP control, Dunnett’s test. 
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Figure 5. Gene expression and larval growth on plants expressing heterologous insecticidal genes. (a, b) 
Transient overexpression of Hvt and ACA in plants infected by SCMV-GFP, -Hvt, -ACA, -Hvt-ACA or -
Hvt-*-ACA. * represents a protease cleavage site. (c) The performance of Spodoptera frugiperda on plants 
expressing GFP, Hvt, ACA, Hvt-ACA or Hvt-*-ACA. (d, e) Transient overexpression of RIP2 and GNA in 
plants infected by SCMV-GFP, -RIP2, -GNA or -RIP2-GNA. (f) Performance of S. frugiperda on plants 
expressing GFP, RIP2, GNA, or RIP2-GNA. (g, h) Transient overexpression of GNA and Hvt in plants 
infected by SCMV-GFP, -Hvt, -GNA, or -Hvt-GNA. (i) Performance of S. frugiperda on plants expressing 
GFP, Hvt, GNA, or Hvt-GNA. Gene expression was determined by qRT-PCR there weeks post-inoculation. 
Caterpillars were confined on infected plants three weeks post-inoculation and caterpillar weight was 
measured one week later. Means +/- s.e. of N = 5 for gene expression and N = 10-12 for insect bioassays. 
Different letters indicate significant differences, P < 0.05, ANOVA followed by Tukey’s HSD test.
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Figure 6. Total number of aphids on P39 plants expressing maize defense genes and scorpion 
toxin genes. (a,c) Rhopalosiphum maidis (b,d) Myzus persicae. Eight R. maidis adults or ten M. 
persicae adults were confined on plants infected by SCMV-EV, -GFP, -Pep3, -RIP2, -UyCT3, 
UyCT5, AMP or JAC1 three weeks post inoculation. Surviving aphids and their progeny were 
counted one week later. Means +/- s.e. of N = 8-10, *P < 0.05; **P < 0.01; ***P < 0.001 
relative to GFP control, Dunnett’s test.
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Figure S1. Gene expression of (a) AMP and (b) JAC1 in P39 maize plants damaged by 
Spodoptera frugiperda caterpillars. Two caterpillars were confined on plants. Gene expression 
was determined by qRT-PCR one day after placing the caterpillars. Means +/- s.e. of N = 6, **P < 
0.01; ***P < 0.001 relative to GFP control, t-test.
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