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Human immunogenetic variation in the form of  HLA and KIR types has been shown to be strongly associated 
with a multitude of  immune-related phenotypes. We present MiDAS, an R package enabling statistical association 
analysis and using immunogenetic data transformation functions for HLA amino acid fine mapping, analysis 
of  HLA evolutionary divergence as well as HLA-KIR interactions. MiDAS closes the gap between inference of  
immunogenetic variation and its efficient utilization to make meaningful discoveries.

The major histocompatibility complex (MHC) is the region in the 
genome with the highest density of  statistical associations with 
disease phenotypes. The majority of  these associations are related 

to the central role of  classical Human Leukocyte Antigen (HLA) proteins 
in immune responses in the context of  autoimmunity, infectious disease, 
and also cancer.1 Another complex genomic locus relevant for immune 
responses is the leukocyte receptor complex (LRC) on chromosome 19, 
which, among other genes, harbors the killer cell immunoglobulin like 
receptors (KIR). KIR predominantly mediate function and education 
of  Natural Killer (NK) cells, but can also be found on subsets of  T cells.2 
They display a high degree of  copy number as well as allelic variation. 
Many KIR are receptors for HLA class I ligands, but these interactions 
are highly specific and depend on individuals’ HLA and KIR genotypes, 
segregating on different chromosomes.2

The extreme amount of  genetic variation has made it challenging to 
accurately characterize individuals’ HLA and KIR genotypes, but 
besides dedicated typing methods, there are now multiple tools available 
for inference from next generation sequencing or single nucleotide 
polymorphism (SNP) array genotyping data at scale.3–5 However, the 
availability of  immunogenetic variation data is only the first necessary 
step in uncovering and understanding its role in immune-related traits, 
and statistical considerations are more complex when compared to the 
millions of  common single nucleotide polymorphisms (SNPs) or copy 
number variants (CNVs) in our genomes that predominantly have two 
allelic states.
Statistical association analyses of  immunogenetic variants often focus 
on the presence vs. absence of  single HLA alleles. They are most often 
analyzed on 2-field level (formerly ‘4-digit’, e.g. HLA-DRB1*15:01), 
which defines the protein structure of  the HLA protein, as well as the 
composition of  its peptide binding groove and thus the repertoire of  

antigens it can present. HLA alleles can also be grouped on 1-field 
level, which often corresponds to the serological antigen carried by 
an allotype,6 or on the level of  supertypes, which present overlapping 
peptide repertoires based on their main anchor specificities.7 In addition, 
typing data and resulting association statistics can be available on the 
level of  G groups, which contain alleles that have identical nucleotide 
sequences across the exons encoding the peptide binding domains (exons 
2 and 3 for HLA class I and exon 2 for HLA class II alleles).8

MiDAS accepts HLA genetic data in up to 4-field (8-digit) resolution, 
checks it for consistency with official HLA nomenclature,6 and can 
reduce its resolution or transform it into supertypes or G groups, to 
allow consistent results reporting and cross-study comparability (Table 
1). MiDAS includes a function to test for deviations from Hardy-
Weinberg equilibrium (HWE) and provides the option list HWE P values 
or directly filter out significant alleles, and it is also possible to quickly 
compare allele frequencies in input data sets with published frequencies 
across different populations based on data from a comprehensive online 
database.9

In spite of  the vast number of  statistical associations in the MHC 
locus, the complex linkage disequilibrium in the region combined with 
the proximity of  genes with different immune-related or non-immune 
functions can make it difficult to pinpoint causal genes and variants.10 

However, due to the availability of  protein sequences for most known 
HLA alleles, it is possible to use HLA allele data to generate new 
variables for each amino acid position in a protein that differs across 
individuals. Such an approach was used to demonstrate that five variable 
amino acids across three HLA proteins explained most of  the MHC 
association with seropositive rheumatoid arthritis.11

MiDAS facilitates this process by inferring variable amino acid residues 
for all imported individuals with HLA allele data (Figure 1), based on 

Figure 1. MiDAS data transformation 
functions. 
MiDAS can transform HLA and KIR input 
data to test association hypotheses beyond sin-
gle allele or KIR gene approaches. HLA alleles 
can be grouped according to their interactions 
with KIR, and sequence information is used to 
infer variable amino acid positions for statistical 
fine-mapping. Amino acid level information is 
also used to calculate evolutionary divergence 
of  HLA allele pairs for a given gene. If  both 
HLA and KIR data are available, biologically 
validated receptor-ligand interactions can be 
coded according to the definitions summarized 
by Pende et al.2
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sequence alignments from the IPD-IMGT/HLA database.12 It is then 
possible to perform a likelihood-ratio (‘omnibus’) test for each variable 
amino acid position in HLA proteins, determine the effect estimates for 
all residues at associated positions, and also to map the spectrum of  HLA 
alleles that contain each respective residue (Table 1, Figure 2).
Intra-individual diversity of  HLA alleles, assessed in terms of  
heterozygosity versus homozygosity or evolutionary divergence, is 
considered a useful proxy for the diversity of  antigens that can be 
presented by an individual’s HLA proteins. For example, HIV-positive 
patients with full heterozygosity for HLA-A, -B and -C were shown to 
progress more slowly to AIDS,13 which is likely at least in part due to 
an increased diversity of  presented peptides.14 Further, cancer patients 
treated with immune-checkpoint inhibitors responded better to the 
therapy if  they had an increased evolutionary sequence divergence in 
their HLA class I proteins.15 MiDAS can recode HLA alleles into new 
variables indicating heterozygosity at each locus, as well as Grantham’s 
distance for HLA class I genes (Table 1, Figure 1). Grantham’s distance 
can be calculated for amino acids in the whole peptide binding region 
of  HLA class I molecules, or restricted to the B- or F- binding pockets 
individually.16

Beyond their central role in antigen presentation, HLA class I molecules 

also function as ligands for KIR, and thus are able to impact NK cell 
education and function. Beyond interactions between specific HLA 
alleles and KIR, HLA alleles can also be grouped by MiDAS according 
to common epitopes into HLA-Bw4, -Bw6, -C1, and -C2 alleles (Figure 
1).2 HLA-Bw4 alleles show experimentally verified interactions with 
KIR3DL1, whereas HLA-Bw6 alleles have no known interaction with 
inhibitory KIR. HLA-C1 alleles show strong affinity for KIR2DL3, 
whereas HLA-C2 alleles show only weak affinity for KIR2DL3, but strong 
affinity for KIR2DL1. In terms of  examples for disease relevance, HLA-
Bw4 is a risk factor for ulcerative colitis in Japanese, and homozygosity 
for HLA-C1 was shown to be associated with reduced risk of  relapse in 
patients with myeloid leukemia after transplantation.17,18

Hypotheses including a potential NK cell involvement benefit from 
the availability of  both HLA and KIR typing data. MiDAS can load 
KIR data indicating the presence or absence of  individual KIR genes, 
and perform association analysis on the level of  these genes. But more 
importantly, if  both HLA alleles and KIR data are available, it generates 
new variables indicating the presence of  all experimentally validated 
interactions as summarized by Pende et al.2 Investigating the role of  
such HLA-KIR interactions has previously helped to better understand 
differential risk for pregnancy complications,19 pathogen immunity,20 or 
NK cell activity in recipients of  hematopoietic cell transplants.21

Variable type MiDAS 
experiment name Definition Reference Example 

use case

HLA alleles hla_alleles HLA allele status at 1- to 4-field resolution 12 1

hla_supertypes HLA class I alleles grouped into supertypes 7 28

hla_g_groups HLA alleles grouped according to identical nucleotide sequence in peptide binding domains 8 29

HLA amino acids hla_aa Variable amino acid positions and residues based on HLA allele sequence alignments 12 11

HLA intra-individual 
diversity hla_het Heterozygosity vs. homozygosity of  each classical HLA gene 13

hla_divergence HLA class I evolutionary divergence as measured by Grantham’s distance 30,31 15

HLA NK ligand status hla_NK_ligands Bw4 / Bw6, C1 / C2 allele group inference based on HLA allele matching table 2,32 17,18

KIR gene presence kir_genes Presence or absence of  specific KIR genes (binary variable) 33 34

HLA-KIR interactions hla_kir_interactions Experimentally verified ligand-receptor interactions between HLA class I and KIR 2 19-21

Custom hla_custom, 
kir_custom User-provided dictionaries for custom analyses

Figure 2. Example of  amino acid fine- 
mapping analysis.
Example analysis flow for HLA amino acid 
analysis. In the first step, HLA and clinical data 
were combined in a MiDAS object using the 
‘prepareMiDAS’ function, which also performed 
HLA data transformation to amino acid level 
(specified as ‘experiment’). Before the association 
analysis, a statistical model was defined. ‘term’ is 
a placeholder that is replaced by each tested ami-
no acid, covariates (‘covar’) can be categorical or 
numeric. It is also possible to define interaction 
terms (e.g. ‘term:covar’, not shown). ‘runMiDAS’ 
was then run twice, first to perform an omnibus 
test on all variable amino acid positions, and 
then to calculate effect estimates for all residues 
(F,Y,L) at the top-associated position (DQB1_9). 
‘getAllelesforAA’ was then used to map all HLA-
DQB1 alleles in the dataset to the three DQB1_9 
residues.
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Of  note, MiDAS also facilitates the testing of  specific, more refined 
hypotheses. For example, amino acid position 80 modulates the 
interaction of  HLA-Bw4 alleles with KIR,22  which can be modeled by 
subsetting HLA-Bw4 further according to amino acid level information. 
Data transformation can also be customized using user-supplied 
additional data dictionaries. A current shortcoming of  MiDAS is that 
allelic variation of  KIR, on top of  individual gene presence, is not 
considered, although it is of  demonstrated relevance in modulating 
interactions between KIR and their respective HLA ligands.23 Another 
use case for custom analyses is the transformation of  HLA allele data into 
quantitative variables such as allele-specific expression levels.24

MiDAS allows flexible statistical analyses of  immunogenetic data 
with phenotypes on a diverse range of  measurement scales, including 
regression models or time-to-event data. Results are stored as data tables 
that display nominal and corrected P values, effect estimates, confidence 
intervals and variant frequencies. It is possible to execute likelihood-ratio 
(‘omnibus’) tests, for example to summarize amino acid residues at each 
position in the protein and identify the most relevant positions as basis for 
statistical fine-mapping. MiDAS can also perform stepwise conditional 
analyses to identify multiple statistically independent association signals 
within and across HLA genes, which is commonly observed.11 A range of  
genetic inheritance models can be selected (where applicable: dominant, 
recessive, additive, overdominant), as well as the preferred method for 
multiple testing correction and frequency cutoffs for variable inclusion, 
taking statistical power considerations into account (Figure 2).
MiDAS is freely available as an R package (MIT license), facilitating 
both hypothesis-driven and exploratory analyses of  immunogenetics 
data (https://github.com/Genentech/MiDAS). Of  note, MiDAS is not 
the first published software for immunogenetics association analysis. 
However, other tools are significantly more limited in terms of  data 
transformation, analysis functions and statistical model selection.25–27 
A tutorial with example data and analyses is available under https://
genentech.github.io/MiDAS/articles/MiDAS_tutorial.html.

Methods
MiDAS data structure
MiDAS accepts HLA types in a format that complies with official HLA 
nomenclature in up to 4-field resolution (e.g. ‘A*02:01:01:01’),6 one row 
per individual, and one column for each allele of  each gene (e.g. ‘A_1’, 
‘A_2’). KIR data is accepted in a  tabular format that indicates presence 
(‘1’ or ‘Y’) or absence (‘0’ or ‘N’) of  each KIR gene. Example input data 
tables are provided with the package to help putting users’ own data in 
the right format.
The ‘prepareMiDAS’ function combines HLA, KIR, and phenotypic 
data into an object that is a subclass of  a MultiAssayExperiment, which 
we termed ‘MiDAS’. HLA input data is transformed into counts tables 
encoding the copy number of  specific alleles, as a basis for statistical 
analysis. This function also offers the described data transformation 
options (e.g. NK cell ligands, HLA-KIR interactions). 
Compared to the MultiAssayExperiment, ‘MiDAS’ class makes several 
assumptions that allow us to use data directly as an input to statistical 
model functions. The most important assumptions are: the variable names 
are unique across MiDAS, each experiment has only one assay defined. 
Further, experiments are defined as matrices or SummarizedExperiment 
objects. The latter is used in cases where experiment specific metadata are 
needed for the analysis, including variable groupings used for omnibus 
tests, or information on the applicability of  inheritance models.
Statistical framework
The data analysis framework offered by MiDAS is flexible in terms of  
choice of  the statistical model, often used examples including logistic or 
linear regression, or cox proportional hazard models for time-to-event 
analyses. This flexibility is possible due to using ‘tidyers’ as introduced in 
the ‘broom’ package (https://broom.tidymodels.org). 
The MiDAS object is passed as a data argument to the function, and 
the chosen genetic variables are provided using a placeholder variable 
(‘term’). The defined model is passed to the ‘runMiDAS’ function, where 
the actual statistical analysis is performed. Here, the placeholder variable 
is substituted with the actual genetic variables in an iterative manner, 
allowing to test individual variables for association with the response 
variable. The use of  a placeholder allows the use of  more complex 

statistical models, e.g. gene-environment interactions (e.g. “lm(diagnosis 
~ ‘term’ + sex + ‘term’:sex)”.
‘runMiDAS’ offers different modes of  analysis. By default, the statistical 
model is iteratively evaluated with each individual genetic variable 
substituted for the placeholder. Then, test statistics from individual tests 
are gathered and corrected for multiple testing using a method of  choice 
as implemented in the ‘stats’ R package. Moreover, ‘runMiDAS’ offers 
a conditional mode to test for statistically independent associations of  
multiple genetic variables, which implements a simple stepwise forward 
selection method. Here, the iterative comparisons are made in rounds, 
and for each round the algorithm selects the top associated variable and 
adds it to the model as a covariate, until no more variables meet the 
selection criteria. Further, ‘runMiDAS’ includes an ‘omnibus’ mode that 
allows to test the role of  multiple grouped variables, using a likelihood 
ratio test. In particular, this is useful to score amino acid positions 
according to their omnibus P value, as compared to their individual 
residues.
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