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Simultaneous binding of divalent ligands to two identical molecules is a widespread phenomenon
in biology and chemistry. Here, we describe this binding event as a divalent ligand AA that can
bind to two identical monovalent molecules B to form the complex AA · B2. Cases where the total
concentration [AA]T is either much larger or much smaller than the total concentration [B]T have
been studied earlier, but a description of intermediate concentrations is missing. In this paper, we
describe the general case of any ratio of ξ ≡ [B]T /[AA]T . We show that the concentration of the
intermediate complex AA · B is governed by a cubic equation and discuss several scenarios in which
this cubic equation simplifies. Our numerical results, which cover the entire range of 0 < ξ < ∞,
are relevant to processes wherein the concentrations of free ligands and proteins both decrease upon
binding. Such ligand and protein depletion is expected to be important in cellular contexts, e.g., in
antigen detection and in coincidence detection of proteins or lipids.

I. INTRODUCTION

Chemical binding is at the heart of many processes
in biology, including oxygen binding to hemoglobin, self
assembly, antibodies binding to antigens, and growth fac-
tors binding to their transmembrane receptors [1–6]. In
many cases, binding interactions should be specific and
strong, yet reversible [7–10]. One way to accomplish such
a “molecular velcro” [7] is through ligands containing
many ligating units per molecule: Multivalent ligands
are known to bind transmembrane receptors more read-
ily than their monovalent counterparts (with one binding
site per ligand). This makes multivalent ligands inter-
esting in clinical applications, for example, where less
therapeutic cargo is needed for the same response. The
intuitive explanation why multivalent ligands bind more
readily to, for instance, receptors on a plasma membrane
or a viral envelope, is that, after the binding of a first
ligating unit with association constant K1, the other lig-
ating units are close to other membrane-bound receptors
as well. Around a first bound unit, a second ligating
unit is thought to sweep out a semi circle with a radius
set by the (fixed) distance between ligating units [11–14].
This is typically a nanometers length, meaning that the
effective concentration of ligating units belonging to a
partly-bound multivalent ligand is much higher than the
concentration of unbound ligands nearby. More gener-
ally, for flexible rather than stiff linkers between ligating
units [15, 16], increased effective concentrations can be
determined rigorously by statistical mechanics [17, 18].

In turn, high effective concentrations are reflected in
a high association constant K2 for binding a second lig-
ating unit of a multivalent ligand, and the same for fur-
ther binding steps. Systems for which K2/K1 > 1 are
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called cooperative [19–22]. In the above example of large
effective concentrations, one speaks of apparent cooper-
ativity. This is to distinguish it from true cooperativity,
which refers to binding pockets whose binding affinity
changes when nearby pockets are occupied, as happens
for the binding of oxygen to hemoglobin [23]. In either
way, the hallmark of cooperativity is the switching from
mostly-unbound to mostly-bound ligands over a narrow
protein-concentration range [19].

Ligand-protein binding models often have governing
equations that simplify when one molecular species is as-
sumed to be present in excess compared to other species.
While this assumption may be appropriate to certain sys-
tems and experiments, it is not always the case. One ex-
ample is when two types of ligands compete for the bind-
ing of one type of receptor. In this case, the relative con-
centrations of the ligands must be important—unless the
receptor is in excess to both types of ligand, in which case
there would be no competition for it. When no molecu-
lar species is in excess to the other present in the system,
binding can significantly reduce the concentration of un-
bound species. Such depletion is difficult to capture in
theoretical models, even for the steady state, as govern-
ing algebraic equations are typically nonlinear and with
a high polynomial order. Two notable exceptions where
the concentrations of all species can be expressed analyti-
cally are monovalent ligand-monovalent receptor binding
[1] and the competitive binding of two different monova-
lent ligands to one type of monovalent protein [24].

Several recent review articles [19, 20, 22] discuss the
reversible binding of a divalent ligand AA to two identical
monovalent proteins B [Fig. 1(a)],

AA + 2B 
 AA · B + B 
 AA · B2 , (1)

as it is the simplest example of a binding reaction with
nontrivial effects of multivalency and cooperativity. Yet,
Eq. (1) has value in its own right: It captures hormone
action [25] and the binding of divalent antibodies to anti-
gens on pathogens [11, 12, 26–30]. Moreover, reaction of
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0 < [AA]T /[B]T <∞ [AA]T � [B]T[AA]T � [B]T

B

AA AA · B AA · B2

(a)

(b)

Figure 1. (a) Binding of two monovalent proteins B to a di-
valent ligand AA, to form the complexes AA · B and AA · B2.
(b) Different relative concentrations of [AA]T and [B]T .

the type of Eq. (1) were also realized in synthetic systems
[15].

From the law of mass action follow the reaction-rate
equations associated with Eq. (1). In turn, the steady
state of these equations yields two association constants
K1 and K2 as [see Appendix A]

K1 =
1

2

[AA · B]

[B][AA]
, K2 = 2

[AA · B2]

[B][AA · B]
, (2)

where factors of 1/2 and 2 account for the degeneracy of
the intermediate complex AA · B. An assumption under-
lying the derivation of Eq. (2) in terms of concentrations,
is that all species are well mixed. This assumption may
be violated when receptors cluster at the plasma mem-
brane [31, 32].

The reaction in Eq. (1) does not affect the total con-
centration [AA]T and [B]T of ligands AA and proteins
B—both bound and unbound—and, hence,

[AA]T = [AA] + [AA · B] + [AA · B2] , (3a)

[B]T = [B] + [AA · B] + 2[AA · B2] , (3b)

needs to be satisfied.

From the four expressions in Eqs. (2) and (3), in princi-
ple, the four unknown concentrations ([AA], [B], [AA · B]
and [AA · B2]) can be determined. Perelson and DeLisi
[29] studied the same equations for [AA]T � [B]T by
asserting [AA]T ≈ [AA]; Hunter and Anderson [19] stud-
ied the same equations for [AA]T � [B]T by asserting
[B]T ≈ [B] [Fig. 1(b)]. As we move away from these lim-
its, neither [AA]T ≈ [AA] nor [B]T ≈ [B] will hold as
the binding reaction in Eq. (1) causes ligand and pro-
tein depletion. Here, we study Eqs. (2) and (3) over the
complete range 0 < [B]T /[AA]T <∞.

II. MODEL

Inserting Eqs. (3a) and (3b) into Eq. (2) yields

[AA · B] = 2K1 ([B]T − [AA · B]− 2[AA · B2])

× ([AA]T − [AA · B]− [AA · B2]) , (4a)

[AA · B2] =
K2

2
([B]T − [AA · B]− 2[AA · B2]) [AA · B] .

(4b)

Next, we rewrite Eq. (4) in terms of the dimension-
less concentrations x3 = [AA · B]/[AA]T and x4 =
[AA · B2]/[AA]T , with the dimensionless association
constants (or, equivalently, “normalized concentration”
scales [19]) κ1 = K1[B]T and κ2 = K2[B]T , and with the
ligand-to-receptor ratio ξ = [B]T /[AA]T ,

x3 = 2κ1ξ
−1 (ξ − x3 − 2x4) (1− x3 − x4) , (5a)

x4 =
1

2
κ2ξ
−1 (ξ − x3 − 2x4)x3 . (5b)

We rewrite Eq. (5b) to

x4 =
κ2x3 (ξ − x3)

2(ξ + κ2x3)
. (6)

Inserting Eq. (6) into Eq. (5a) yields

ax33 + bx23 + cx3 + d = 0 , (7)

a ≡ κ1κ2 − κ22 ,
b ≡ 2ξ(κ1 − κ2)− 2κ1κ2 ,

c ≡ 2ξκ1(κ2 − 1)− ξ2(2κ1 + κ1κ2 + 1) ,

d ≡ 2ξ2κ1 .

While Eq. (7) for x3 can be solved analytically with Car-
dano’s formula, unfortunately, its solution, presented in
Appendix B, is too cumbersome to be helpful. In Ap-
pendices C–E, we analyse Eq. (7) for limiting values of
the ligand-to-receptor ratio, ξ � 1 and ξ � 1, and for
the case where the cooperativity parameter α = K2/K1

takes the value α = 1. The analytical results obtained
there help us interpret the numerical solutions of Eq. (7)
that we present below.

III. RESULTS

After Eq. (4), we reduced the four parameters [AA]T ,
[B]T , K1, and K2 of our original problem [Eqs. (2)
and (3)] to three dimensionless combinations κ1, κ2, and
ξ thereof. We choose these particular combinations to
tidy up the calculations of Section II and Appendices B–
F. But for the description of particular systems or ex-
periments, other dimensionless combinations of the four
dimensional parameters may be more appropriate. Ac-
cordingly, to recover the results of Ref. [29], we first vary
K1[AA]T for several ξ, fixing either K2[AA]T or K2[B]T :
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Figure 2. We show [AA · B2]/[AA]T (a) and [AA · B2]/[B]T
(b) as a function of K1[B]T for K2[AA]T = 1 (a) and
K2[B]T = 1 (b) and several ξ ≡ [B]T /[AA]T . As in Perel-
son and DeLisi [29], [AA · B2]/[B]T has a bell shape for small
ξ.

Figure 2 shows [AA · B]/[AA]T (a) and [AA · B2]/[B]T
(b) as obtained from Eqs. (7) and (6) as a function of
K1[AA]T for ξ = {0.2, 1, 1.5, 2, 5, 100} and K2[AA]T = 1
(a) and K2[B]T = 1 (b). Here, panel (b) generalizes the
“cross linking curves” of Fig. 3 of Ref. [29] to ξ val-
ues away from the limit ξ → 0. For ξ = 0.2, we show
Eq. (D5) (purple dashed line) as obtained by Ref. [29].
Small difference are visible in Fig. 2(b) between the pur-
ple dashed line and the purple diamonds, which means
that, for ξ = 0.2, Eq. (D5) approximates the numeri-
cal solution to Eqs. (6) and (7) well, but not perfectly.
This finding is in line with Appendix D, where we find
that Eq. (D5) contains errors of O(ξ3). Reference [29]
showed that max([AA · B2]/[B]T ) = 1/2 + 1/(K2[B]T )−√

1 +K2[B]T /(K2[B]T ). In our case of K2[B]T = 1, we
find max([AA · B2]/[B]T ) = 0.0857, which is indeed ob-
served in Fig. 2(b) up to ξ = 1. Moreover, the bell shape

of Eq. (D5) was shown to be symmetric around its max-
imal value [29]. With increasing ξ, however, we see that
this symmetry is broken. For ξ > 2, [AA · B2]/[AA]T
and [AA · B2]/[B]T are sigmoidal instead. Next, we show
Eq. (C2) (thick grey line), which corresponds to the limit
ξ → ∞ [19]. Small differences between this expression
and the numerical solution to Eqs. (6) and (7) for ξ = 100
are visible in both panels of Fig. 2. This finding is in
line with Appendix C, where we find that Eq. (C2) con-
tains errors of O(ξ−1). Finally, we note that bell-shaped
[AA · B]-curves appear for varying K1[AA]T only if one
fixes either K2[AA]T or K2[B]T . In experiments, con-
centrations are often more easily varied than association
constants. Yet, varying [AA]T at fixed K1 and K2[AA]T
would require K2 to vary as ∼ 1/[AA]T .

Next, to describe a dilution experiment, we vary [AA]T
and [B]T at fixed ξ = [B]T /[AA]T . Different from be-
fore, we fix the dimensionless cooperativity parameter
α ≡ K2/K1, as it is often set solely by (fixed) molecular
properties [17, 18]. Figure 3 shows numerical results for
[AA · B]/[AA]T (a) and [AA · B2]/[AA]T (b) as a func-
tion of κ1 = K1[B]T , for several ξ and α = 1. In this
case (α = 1), the cubic term in Eq. (7) vanishes, and
the remaining quadratic equation can be easily solved
analytically [cf. Eq. (E2)]. Moreover, [AA · B2]/[AA]T is
governed by a simple expression [Eq. (E5a)]. A salient
feature of the curves in Fig. 3(a) are the plateaus for
K1[B]T � 1. For ξ ∼ 1, their height is given by
[AA · B]/[AA]T = ξ(1 − ξ/2) + O

(
κ−11

)
[cf. Eq. (E4)],

as indicated by the crosses in Fig. 3(a). Notably, the
maximal plateau height occurs at ξ = 1, as also fol-
lows from Eq. (E4). Next, we compare our numerical
results for ξ = 0.2 (purple diamonds) to the expres-
sions derived in Ref. [29] [cf. Eqs. (D4) and (D5)] (pur-
ple dashed lines). These panels reinforce our analytical
insights of Appendix D, namely, that the expressions de-
rived in Ref. [29] contain errors of O(ξ3); hence, describe
[AA · B]/[AA]T and [AA · B2]/[AA]T decently, but not
perfectly, at ξ = 0.2. Finally, note that [AA · B] cannot
exceed the total concentrations of its constituents, [AA]T
and [B]T ; hence, 0 < [AA · B]/[AA]T < min(1, ξ). Like-
wise, for [AA · B2], we find that 0 < [AA · B2]/[AA]T <
min(1, ξ/2). The data in Fig. 3 satisfies these constraints.

For the same parameters as in Fig. 3, Fig. 4
shows the receptor occupancy θ ≡ x3/2 + x4 =
{[AA · B]/2 + [AA · B2]} /[AA]T for α = 1 [Fig. 4(a)] and
α = 100 [Fig. 4(b)]. We see that increasing cooperativ-
ity shifts θ curves to smaller K1[B]T values and that θ
switches from θ ≈ 0 to θ ≈ 1 over a narrower range of
K1[B]T . To characterise the slope of θ, we numerically
determined the Hill coefficient

nH ≡
∂ log[θ/(1− θ)]

∂ log κ1

∣∣∣∣
κ∗
1

, (8)

where κ∗1 is such that θ(κ∗1) = 1/2; hence,

nH =
κ∗1

(1− θ)2
∂θ

∂κ1

∣∣∣∣
κ∗
1

= 4κ∗1
∂θ

∂κ1

∣∣∣∣
κ∗
1

. (9)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.14.426724doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426724


4

10−4 10−2 100 102

K1[B]T

0.0

0.1

0.2

0.3

0.4

0.5
[A

A
·B

]/
[A

A
] T

K2/K1 = 1

(a)

ξ
∞ (Ref. [19])

100

5

2

1.5

1

0.2

0.2 (Ref. [29])

10−4 10−2 100 102

K1[B]T

0.0

0.2

0.4

0.6

0.8

1.0

[A
A
·B

2
]/

[A
A

] T

K2/K1 = 1

(b)

ξ
∞ (Ref. [19])

100

5

2

1.5

1

0.2

0.2 (Ref. [29])

Figure 3. Theoretical predictions for a dilution experiment.
We show [AA · B]/[AA]T (top row), [AA · B2]/[AA]T (mid-
dle row) as a function of K1[B]T for α ≡ K2/K1 = 1 for
ξ ≡ [B]T /[AA]T = {0.2, 1, 1.5, 2.0, 5.0}. Also shown are
approximations to [AA · B]/[AA]T and [AA · B2]/[AA]T for
ξ � 1 [see Eqs. (C1)–(C3) and Ref. [19]] and for ξ � 1 [see
Eq. (D4) and Ref. [29]]. Panel (a) shows the analytical pre-
dictions from Eq. (E4) for K1[B]T � 1 with crosses.

Figure 4(c) shows the α dependence of nH for several
ξ. As such, this figure generalizes Fig. 6 of Ref. [19],
which showed nH for ξ � 1 [Eq. (C4)], indicated here
with a thick grey line. We see that, for ξ = 100, the
numerically determined nH is close to predictions from
Eq. (C4). Conversely, we see that nH → 0 for ξ → 1. For
ξ < 1, we see in Fig. 4 (a) and (b) that θ < 1/2, leaving
nH undefined. The dots in Fig. 4(c) for α = 1 represent
the analytical expression Eq. (E7), which gives a perfect
match when compared with the numerical prediction.

At last, we mimic a titration experiment by varying
[B]T at fixed K1,K2 and [AA]T , i.e., varying κ1 at fixed
α and K1[AA]T (or κ2/ξ, in terms of our original di-
mensionless parameters). Figure 5 shows [AA · B]/[AA]T
(a) and [AA · B2]/[AA]T (b) for α = 10 and vari-
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Figure 4. The receptor occupancy θ for α = 1 (a) and α = 100
(b) and other parameters as in Fig. 3. Panel (c) shows the
Hill coefficient nH [Eq. (8)] for several ξ ≥ 1 (lines). The
thick grey line shows Eq. (C4), corresponding to ξ →∞. We
also show the predictions of Eq. (E7) for α = 1 (dots).
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Figure 5. Theoretical predictions for a titration experiment.
We show [AA · B]/[AA]T (a), [AA · B2]/[AA]T (b) as a func-
tion of K1[B]T for α ≡ K2/K1 = 10 and several K1[AA]T .

ous K1[AA]T . For K1[AA]T = 1/10, we see that
[AA · B]/[AA]T and [AA · B2]/[AA]T are similar to the
curves of Fig. 3 for ξ � 1. Different from Fig. 3(a)
and (b) is that [AA · B]/[AA]T does not develop plateaus
at large K1[B]T . Instead, both [AA · B]/[AA]T and
[AA · B2]/[AA]T shift towards larger K1[B]T for larger
K1[AA]T .

IV. DISCUSSION

Three points of discussion concerning our main
Eqs. (6) and (7) are warranted. First, instead of de-
riving the cubic Eq. (7) for x3 from Eqs. (2) and (3),
we may just as well have isolated x2 = [B2]/[AA]T . In-
deed, cubic expressions for x2 were reported in Eq. (S)
of Ref. [12] and Eq. (25) of Ref. [26] [which we rederive
in Appendix F]. However, neither of those articles dis-

cussed the dependence of [AA · B] and [AA · B2] on the
parameter K1,K2, [AA]T , and [B]T in much detail.

Second, to model antibody binding to surface-bound
antigens, Refs. [11, 12] expressed concentrations of anti-
gens and (partly) bound complexes in numbers per unit
area [12, 26]. We note, however, that the governing equa-
tions of Refs. [12, 26] could also be cast into the form
of Eqs. (2) and (3), that is, with volumetric concentra-
tions only, and the effect of reduced positional freedom
of surface-bound molecules absorbed into the constants
K1 and K2. Conversely, though volumetric concentra-
tions appear in our Eqs. (2) and (3), this set of equations
can just as well describe a binding process wherein either
AA or B is confined to a thin (membrane) surface (see
also page 13 of Ref. [1]). Next, Refs. [11, 12] postulated
specific relations between K2 and K1. Here, we studied
Eqs. (2) and (3) for general K1 and K2 instead. Hence,
in order to apply our mathematical framework to specific
binding reactions, one should first determine α = K2/K1,
for example, with the methods of Refs. [17, 18].

Third, the constraint of particle conservation in homo-
bivalent ligand-monovalent receptor binding—described
in this article—can be especially relevant in cellular con-
texts, where few molecules of either species may be
present. However, for tiny systems with small numbers of
particles, the reaction rate equation-type modelling that
underlies our results breaks down. One should then ac-
count for stochasticity [33], possibly using our continuum
results as a benchmark.

V. CONCLUSION

We have laid out a unified description of the reversible
binding of a bivalent ligand to two identical monovalent
proteins. The same process has been studied previously,
but only in concentration limits of either much more lig-
ands than proteins or vice versa. We have described
the binding process for any concentration of ligands and
proteins. Comparable concentrations of species can oc-
cur both in in vivo and in synthetic biological systems.
Our theoretical work is built on classical reaction-rate
equations. At steady state these reduce to four coupled
equations for the concentrations [AA], [B], [AA · B], and
[AA · B2] of unbound, partly bound, and fully bound
protein-ligand complexes, with dependence on four pa-
rameters K1,K2, [AA]T , and [B]T . Only in the limits
ξ = [B]T /[AA]T → ∞ and ξ → 0 do we recover the
results of [Hunter and Anderson, Angewandte Chemie
International Edition 48, 7488 (2009)] and of [Perelson
and DeLisi, Mathematical Biosciences 48, 71 (1980)]; at
finite ξ, their results contain errors of O(ξ−1) and O(ξ3),
respectively. As we move away from these two limits,
the concentrations [AA · B] and [AA · B2] exhibit a rich
and nontrivial dependence on K1[B]T . For example, we
showed how [AA · B2] transition from the bell-shaped
crosslinking curves of Ref. [29] to sigmoidal shapes, and
how intermediates [AA · B] persist even at high K1[B]T .
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Our work can be a stepping stone to study the effect
of nontrivial protein-to-ligand ratios on hetero bivalent
interactions [14, 34–36]. Future work could include how
comparable molecular concentrations affect the competi-
tion between monovalent and divalent receptors for diva-
lent ligands [28, 37].
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mass action follow the reaction-rate equations,

d[AA]

dt
= k−1[AA · B]− 2k1[AA][B] , (A2a)

d[B]

dt
= k−1[AA · B]− 2k1[AA][B] , (A2b)

d[AA · B]

dt
= −k−1[AA · B] + 2k1[AA][B]

− k2[AA · B][B] + 2k−2[AA · B2] , (A2c)

d[AA · B2]

dt
= k2[AA · B][B]− 2k−2[AA · B2] , (A2d)

which need to be supplement with initial concentrations
of the four species, which we choose as

[AA](t = 0) ≡ [AA]T , (A3a)

[B](t = 0) ≡ [B]T , (A3b)

[AA · B](t = 0) = 0 , (A3c)

[AA · B2](t = 0) = 0 . (A3d)

Time-dependent concentrations were studied in [13].
Here, we focus on the steady state, for which Eqs. (A2a)
and (A2b) are identical and Eq. (A2c) is the sum of
Eqs. (A2a) and (A2d). Writing K1 = k1/k−1 and
K2 = k2/k−2 and considering the steady state, we ar-
rive at Eq. (2) of the main text.

Appendix B: General solution to Eq. (7)

Substituting x3 = u − a/3 into Eq. (7) yields the de-
pressed cubic

u3 + pu+ q = 0 , (B1)

p ≡ 3ac− b2
3a2

q ≡ 2b3 − 9abc+ 27a2d

27a3
,

whose solution, with Viète’s formula, reads

uk = 2

√
−p
3

cos

[
1

3
arccos

(
3q

2p

√
−3

p

)
− 2πk

3

]
for k = 0, 1, 2 . (B2)

Depending on the values of κ1, κ2 and ξ, the determinant
∆ = −(4p3 + 27q2) can be both positive and negative.
Hence, for different parameter settings, Eq. (7) has either
three real roots or one real and two complex roots.

Appendix C: Few divalent ligands [AA]T � [B]T
(ξ � 1)

For ξ � 1, Eq. (7) reduces to

− x3 (2κ1 + κ1κ2 + 1) + 2κ1 +O
(
ξ−1
)

= 0

⇒ x3 =
2κ1

1 + 2κ1 + κ1κ2
+O

(
ξ−1
)
. (C1)

Inserting Eq. (C1) into Eq. (6) and again taking ξ � 1,
we find

x4 =
κ1κ2

1 + 2κ1 + κ1κ2
+O

(
ξ−1
)
. (C2)

The total receptor occupancy is found as

θ =
κ1 + κ1κ2

1 + 2κ1 + κ1κ2
+O

(
ξ−1
)
. (C3)

Equations (C1) and (C2) coincide with Eqs. (S20) and
(S21) of Ref. [19], which are used draw Fig. 4 therein.
From Eq. (C3) we can find the Hill coefficient nH in terms
of the cooperativity parameter α,

nH =
2
√
α

1−√α . (C4)

Appendix D: Few monovalent receptors [AA]T � [B]T
(ξ � 1)

Next, we seek approximate solutions to Eq. (7) for ξ �
1. Accordingly, we insert the power series x3 =

∑n
i=0 aiξ

i

into Eq. (7), collect terms of equal order in ξ, and demand
the coefficient of each successive order in ξ to be zero. For
n = 3, we find

x3 = ξ − κ2 + 1

2κ1
ξ2 +

2κ22 + 3κ2 + 1− 2κ1(κ2 + 1)

4κ21
ξ3

+O(ξ4) . (D1)

We insert Eq. (D1) into Eq. (6) and find

x4 =
κ2
4κ1

ξ2 − κ2
4κ21

[
κ2 − κ1 −

κ2 − 1

κ2 + 1

]
ξ3 +O

(
ξ4
)
(D2)

Reference [29] attacked the same problem differently.
They stated that [AA] ≈ [AA]T can be assumed if
[AA]T � [B]T . Then, the term (1−x3−x4) in Eq. (5a),
which stems from [AA] should be replaced by 1, yielding

x3 = 2κ1ξ
−1 (ξ − x3 − 2x4) , (D3)

instead. Inserting x4 [Eq. (6)] as before now yields

κ2x
2
3 + (ξ + 2κ1)x3 − 2κ1ξ = 0

⇒ x3 =
ξ + 2κ1

2κ2

[√
1 +

8κ1κ2ξ

(ξ + 2κ1)2
− 1

]
, (D4)

equivalent to Eq. (19) of Ref. [29].
We insert Eq. (D4) into Eq. (6) and find

x4 =
(ξ + 2κ1)2

8κ1κ2

[
1 +

4κ1κ2ξ

(ξ + 2κ1)2
−
√

1 +
8κ1κ2ξ

(ξ + 2κ1)2

]
.

(D5)
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equivalent to Eq. (20) of Ref. [29].
As Eqs. (D4) and (D5) were derived setting x1 = 1,

argued on the basis of ξ � 1, the ξ-range of validity of
these expression is not obvious. Expanding Eq. (D4) for
small ξ,

x3 = ξ − κ2 + 1

2κ1
ξ2 +

2κ22 + 3κ2 + 1

4κ21
ξ3 +O(ξ4) , (D6)

we see that Eqs. (D1) and (D6) differ at O(ξ3). Prac-
tically, setting κ1 = κ2 = 102, the two approximations
Eqs. (D1) and (D6) differ from the numerically found
root by 0.0001% and 0.52% at ξ = 0.1 and 0.5% and 50%
at ξ = 1, respectively. As expected: at smaller ξ, both
approximations are very decent. For ξ ∼ 1, Eq. (D1)
performs better.

Likewise, expanding Eq. (D5) for small ξ yields

x4 =
κ2
4κ1

ξ2 − κ2(κ2 + 1)

4κ21
ξ3 +O

(
ξ4
)

(D7)

Again, differences between Eqs. (D2) and (D7) appear
at O(ξ3). Concluding, Eqs. (19) and (20) of Ref. [29],
contain errors of O(ξ3).

Appendix E: No cooperativity, α = κ2/κ1 = 1

In absence of cooperativity (K1 = K2) we have that
κ1 = κ2 ≡ κ and Eq. (7) simplifies to

2κ2x23 − ξ
[
2κ2 − 2κ− ξ(2κ+ κ2 + 1)

]
x3 − 2κ2ξ2 = 0 ,

(E1)

The quadratic Eq. (E1) is solved by

x3 =
ξ
[
2κ2 − 2κ− ξ(2κ+ κ2 + 1)− (κ+ 1) Ξ

]
4κ2

, (E2)

with

Ξ =
√
κ2(ξ − 2)2 + 2κξ2 + 4κξ + ξ2 . (E3)

For the interpretation of the plateaus at κ � 1 in
Fig. 3(a), we note that, for κ� 1 and ξ ∼ 1,

x3 = ξ(1− ξ/2) +O
(
κ−1

)
. (E4)

Equation (E4) breaks down for ξ > 2, as x3 > 0 is re-
quired.

Inserting Eq. (E2) into x4 [Eq. (6)] and θ ≡ x3/3 + x4
yields

x4 =
ξΩ
(
Ω + 4κ2

)
8κ2 (Ω− 4κ)

, θ =
ξ (κ+ 1) Ω

2κ (Ω− 4κ)
, (E5a)

where Ω is defined as

Ω ≡ κ2ξ − 2κ2 + 2κξ + 2κ+ ξ − (κ+ 1) Ξ . (E5b)

From Eq. (E5a) we find (with sympy)

κ∗ =
ξ

ξ − 1
,

∂θ

∂κ

∣∣∣∣
κ∗

=
(ξ − 1)2

2ξ(2ξ − 1)
, (E6)

hence

nH =
2(ξ − 1)

2ξ − 1
. (E7)

This expression only holds for ξ > 1. For ξ < 1, θ < 1/2;
hence, the condition of half occupancy in the definition
of the Hill coefficient is never fulfilled.

Appendix F: Cubic equation for x2

In terms of the dimensionless parameters (and x1 =
[AA]/[AA]T and x2 = [B]/[AA]T ), Eqs. (2) and (3) read

x3 = 2κ1ξ
−1x2x1 , (F1a)

x4 =
1

2
κ2ξ
−1x2x3 , (F1b)

1 = x1 + x3 + x4 , (F1c)

ξ = x2 + x3 + 2x4 . (F1d)

From Eqs. (F1c) and (F1d) we find

x1 = 1− x3 − x4 , (F2a)

x3 = ξ − x2 − 2x4 . (F2b)

From Eqs. (F1b) and (F2b) we find

x4 =
1

2
κ2ξ
−1x2(ξ − x2 − 2x4) (F3)

⇒ x4 =
κ2x2(ξ − x2)

2(ξ + κ2x2)
. (F4)

Inserting Eqs. (F2a) and (F2b) into Eq. (F1a) we find

ξ − x2 − 2x4 = 2κ1ξ
−1x2(1− x3 − x4)

= 2κ1ξ
−1x2(1− ξ + x2 + x4) . (F5)

Inserting Eq. (F4) gives

ξ − x2 −
κ2x2(ξ − x2)

ξ + κ2x2
=

2κ1ξ
−1x2

[
1− ξ + x2 +

κ2x2(ξ − x2)

2(ξ + κ2x2)

]
, (F6)

which yields

0 = x32κ1κ2 + x22 (2κ1κ2 + 2κ1ξ − κ2κ1ξ)
+ x2

(
ξ2 + 2κ1ξ − 2κ1ξ

2
)
− ξ3 , (F7)

or, in our original notation,

0 = [B]3K1K2 + [B]2 (2K1 −K2K1[B]0 + 2K1K2[AA]T )

+ [B] (1 + 2K1[AA]T − 2K1[B]T )− [B]T . (F8)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.14.426724doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.14.426724


9

With Eqs. (F7) and (F8), the original problem formu-
lation of four coupled equations in Eqs. (2) and (3) has
been reduced to a single cubic equation for [B]. As such,
it forms an alternative to the cubic equation for [AA · B]
in Eq. (7) of the main text. Equation (F8) is equivalent to
Eq. (25) of Ref. [26]—up to factor 2 discrepancies in a few

places, which we trace back to her Eq. (15), the counter-
part of our Eqs. (F1a) and (F1b), which does not include
prefactors 2 and 1/2. Redefining our K1 → K1/2 and
K2 → 2K2 lifts these discrepancies. Moreover, Eq. (F8)
is equivalent to Eq. (S) of Ref. [12] in the case that their
“nonreactive fraction parameter” nr is set to nr = 0.
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