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Abstract 14 

A major challenge in designing proteins de novo to bind user-defined ligands with high 15 

specificity and affinity is finding backbones structures that can accommodate a desired binding 16 

site geometry with high precision. Recent advances in methods to generate protein fold families 17 

de novo have expanded the space of accessible protein structures, but it is not clear to what 18 

extend de novo proteins with diverse geometries also expand the space of designable ligand 19 

binding functions. We constructed a library of 25,806 high-quality ligand binding sites and 20 

developed a fast protocol to place (“match”) these binding sites into both naturally occurring and 21 

de novo protein families with two fold topologies: Rossman and NTF2. 5,896 and 7,475 binding 22 

sites could be matched to the Rossmann and NTF2 fold families, respectively. De novo 23 

designed Rossman and NTF2 protein families can support 1,791 and 678 binding sites that 24 

cannot be matched to naturally existing structures with the same topologies, respectively. While 25 

the number of protein residues in ligand binding sites is the major determinant of matching 26 

success, ligand size and primary sequence separation of binding site residues also play 27 

important roles. The number of matched binding sites are power law functions of the number of 28 

members in a fold family. Our results suggest that de novo sampling of geometric variations on 29 

diverse fold topologies can significantly expand the space of designable ligand binding sites for 30 

a wealth of possible new protein functions. 31 

 32 

Author summary 33 

De novo design of proteins that can bind to novel and highly diverse user-defined small 34 

molecule ligands could have broad biomedical and synthetic biology applications. Because 35 

ligand binding site geometries need to be accommodated by protein backbone scaffolds at high 36 

accuracy, the diversity of scaffolds is a major limitation for designing new ligand binding 37 

functions. Advances in computational protein structure design methods have significantly 38 
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increased the number of accessible stable scaffold structures. Understanding how many new 39 

ligand binding sites can be accommodated by the de novo scaffolds is important for designing 40 

novel ligand binding proteins. To answer this question, we constructed a large library of ligand 41 

binding sites from the Protein Data Bank (PDB). We tested the number of ligand binding sites 42 

that can be accommodated by de novo scaffolds and naturally existing scaffolds with same fold 43 

topologies. The results showed that de novo scaffolds significantly expanded the ligand binding 44 

space of their respective fold topologies. We also identified factors that affect difficulties of 45 

binding site accommodation, as well as the relationship between the number of scaffolds and 46 

the accessible ligand binding site space. We believe our findings will benefit future method 47 

development and applications of ligand binding protein design. 48 

 49 

  50 
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Introduction 51 

Ligand binding is a major class of protein functions, and the ability to design ligand binding de 52 

novo has many important applications(1) such as engineering of biosensors and ligand-53 

controlled protein functions(2, 3). Naturally occurring proteins recognize their cognate ligands 54 

with high affinity and specificity using defined three-dimensional geometries of binding sites with 55 

high shape complementarity between ligands and proteins. For the formation of favorable 56 

hydrophobic and polar interactions, the chemical groups on the protein must be placed at 57 

specific spatial positions relative to the ligand(4, 5). Designing new ligand binding proteins 58 

therefore requires the ability to build binding sites with defined geometries into stable protein 59 

scaffolds that can accommodate the desired interaction geometry with high accuracy. While this 60 

approach has led to the successful design of enzymatic activity(6, 7), ligand binding proteins(8, 61 

9), and biosensors(2, 3, 10), it has been limited by both the availability of defined binding site 62 

geometries and stable protein scaffolds into which these binding sites can be placed(3). 63 

 64 

Several methods have recently been developed to address the first problem, increasing the 65 

number of potential ligand binding sites one could generate. The RIF docking method(11) 66 

generates ensembles of billions of side chain placements that make defined hydrogen-bonding 67 

and non-polar interactions with a target ligand. Other methods(12, 13) use statistics from the 68 

protein data bank (PDB) to find three-dimensional placements of amino acid residues that form 69 

favorable interactions with fragments of a ligand, which can then be assembled into complete 70 

binding site geometries. Protein-ligand interactions defined by these methods have been built 71 

successfully into a de novo designed beta barrel(11), and a parametrically designed helical 72 

bundle(13). 73 

 74 
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Naturally occurring proteins solve the second problem, finding a suitable protein backbone to 75 

accommodate a specific binding site geometry, not by using a different fold for each function but 76 

instead by evolving structural variation in existing protein fold families. This variation allows 77 

proteins with the same fold topology (identity and connectivity of secondary structure elements) 78 

to tune the precise geometry of binding sites to recognize diverse ligands(14). This strategy has 79 

recently been mimicked by advances in computational protein design methods. These methods 80 

have generated de novo designed protein fold families with large numbers of diverse 81 

geometries(15, 16), which have significantly expanded the accessible designable protein 82 

structure space. The resulting de novo proteins might be able to support binding sites that 83 

cannot be built onto naturally occurring proteins in the PDB, but the extent to which de novo fold 84 

families could improve binding site design has not been explored. Understanding the 85 

relationship between the space occupied by protein structures, and the space available to 86 

support different functions, is important for developing methods to design proteins de novo that 87 

can bind to novel and highly diverse user-defined ligands. 88 

 89 

Here, we studied the ability of native and de novo fold families to support a large number of 90 

different ligand binding sites. We built a high-quality ligand binding site library from high 91 

resolution protein crystal structures. We then matched the binding site library to members of 92 

protein folding families using two protocols: a newly developed “fast matching” protocol and the 93 

standard method for matching in the Rosetta program for structure modeling and design(5). We 94 

calculated the number of matched binding sites for four fold families with two different 95 

topologies. We studied the effects of binding site sizes, ligand sizes and primary sequence 96 

separation of binding site residues on the matching success rates and determined the increase 97 

of numbers of matches with increasing the sizes of fold families. Together, we show that de 98 

novo fold family design is a promising approach to broaden the scope of designable ligand 99 

binding sites.  100 
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Results 101 

We first constructed a library of ligand binding sites from native proteins in the PDB. We 102 

extracted 25,806 ligands that have at most 100 heavy atoms as well as the ligand binding site 103 

residues from 23,238 cluster representative structures from the PDB95 database(17) where 104 

chains from the protein data bank are clustered at 95% identity (Methods). The extracted 105 

ligands have between 1 and 93 heavy atoms (Fig 1A,B). 80.6% percent of the ligands have 13 106 

or fewer heavy atoms, and 7,335 (28.4%) of the ligands have only 1 heavy atom. There are 107 

2,461 unique ligand types in the 25,806 binding sites. The distribution of ligand type frequencies 108 

has a long tail (S1 Table). There are 33 frequent ligand types that appear in over a hundred 109 

binding sites, while 1,817 ligand types only appear in single binding sites. The frequent ligand 110 

types include common crystallographic additives such as glycerol; 1,2-ethanediol; ions such as 111 

SO4
2- and Mg2+; and cofactors such as heme and flavin adenine dinucleotide (FAD). Ligands 112 

that appear in multiple binding sites are seen as vertical stripes in Fig 1B. Binding sites have 113 

between 2 and 41 residues, with 81.2% of the binding sites having 7 or fewer binding site 114 

residues. The number of protein residues in binding sites scales linearly with the number of 115 

ligand heavy atoms, with a slope 0.35 (Fig 1B). The frequencies of amino acid types in binding 116 

sites are different from those for whole proteins reported by UniProtKB/Swiss-Prot (Fig 1C). We 117 

defined the enrichment ratios of amino acids as their frequencies in ligand binding sites divided 118 

by their frequencies in whole proteins. The large aromatic side chains Trp, Tyr and Phe are the 119 

top 1, top 3 and top 6 enriched amino acid residues, respectively. His, characterized by its 120 

ability to coordinate metal ions and to catalyze chemical reactions, is the second most enriched 121 

amino acid residue. Asp and Arg are the 4th and 5th enriched amino acid residues, which may 122 

play important roles in interacting with charged ligands. Binding sites with single heavy atom 123 

ligands have different amino acid preference than those binding to ligands with at least two 124 

heavy atoms (Fig 1D). For the binding sites with single heavy atom ligands, the negatively 125 
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charged residues Asp and Glu, which can form favorable electrostatic interactions with 126 

positively charged metal ions, are highly enriched. The enrichment ratios of Asp and Glu are 4.6 127 

and 2.2, respectively. The top 5 enriched residues that bind to ligands with at least 2 heavy 128 

atoms are Trp, His, Tyr, Phe and Arg. 129 

 130 

The binding site library is useful for testing the ability of protein fold families to support ligand 131 

binding sites. A protein scaffold can in principle support a ligand binding site if the binding site 132 

residues can be built onto the scaffold such that the key interactions between the ligand and 133 

binding site protein residues are preserved. The Rosetta matcher protocol(5) has been shown to 134 

be successful in matching ligand binding sites to protein scaffolds(8). However, the Rosetta 135 

matcher is too slow to match tens of thousands of binding sites to thousands of scaffolds 136 

because it samples all possible side chain rotamers of binding site residues. To perform all-137 

against-all matching between the library of ligand binding sites and the sets of scaffolds, we 138 

developed a new fast match protocol (Fig 2A). In the fast match protocol, the binding site is 139 

anchored and matched as a rigid body (Methods). This rigid body approximation drastically 140 

improved the matching speed. We tested the run time by matching the binding site library to the 141 

native NTF2 fold family (CATH superfamily 3.10.450.50)(18). The mean time to find a 142 

successful standard Rosetta match is 706 s while the mean time of a successful fast match is 143 

3.1s. As a trade-off, the rigid body approximation of the fast match method may discard binding 144 

sites that can be matched by the Rosetta matcher using alternative side chain rotamers. 145 

Therefore, in this study we focused on matching ligand binding sites using the side chain 146 

rotamers present in the original ligand binding site in the PDB. Using these original rotamers 147 

also let us directly compare the backbone geometries in the native binding sites and the 148 

backbone geometries in our scaffold libraries. 149 

 150 
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We matched the binding site library to backbone scaffolds of de novo designed Rossmann and 151 

NTF2 protein fold families generated by the loop-helix-loop unit combinatorial sampling (LUCS) 152 

method(15), as well as the two native fold families with the same topology from the CATH 153 

database(18) (Fig 2B, Methods). To determine if a fold family can support a given ligand 154 

binding site, we first used fast match to match the ligand binding site to all protein scaffolds in 155 

the family. Then we used the Rosetta matcher to match the binding site to the scaffolds that 156 

passed the fast match (Methods). To limit computational time, once the Rosetta matcher found 157 

a match for a given binding site, we skipped matching to further scaffolds in the same family. 158 

Since we used stringent matching criteria (Methods), the matched binding sites in the scaffold 159 

closely recapitulated the interactions between the ligands and binding site residues in the 160 

original protein structures from which the binding sites were derived (Fig 2C). 161 

 162 

Between 5896 and 7548 binding sites could be successfully matched by the Rosetta matcher to 163 

each fold family when considering all binding sites (Table 1). The number of binding site 164 

residues was the major determinant of the matching success rate (Fig 3). For the de novo 165 

Rossmann fold family, the success rates for 2, 3 and 4 protein residue binding sites were 166 

93.8%, 33.4% and 6.5%, respectively. Only 13 binding sites with 5 or 6 residues could be 167 

matched. There was no match for binding sites with more than 6 protein residues. Similar 168 

dependencies on binding site sizes were observed across the 4 different protein fold families 169 

(Table 2). Because almost all 2-residue binding sites could be matched and the matching 170 

success rates were low for binding sites with more than 3 residues, we used 3-residue binding 171 

sites to further study properties of successful matches. We constructed a new library of binding 172 

sites that all have 3 protein residues (Methods) and matched the binding sites to the scaffold 173 

libraries using the same protocol. The number of successfully matched 3-residue binding sites 174 

ranged from 2,142 to 3,715 (Table 1).  175 

  176 
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For the successfully matched 3-residue binding sites, we first analyzed the positions of matches 177 

relative to the surface of the scaffolds. For each scaffold, we used the Rosetta Layer residue 178 

selector(19) to assign layers to all of its residues in a side chain independent manner 179 

(Methods). Residues on the surfaces of scaffolds were assigned to the surface layer; deeply 180 

buried residues were assigned to the core layer; and the rest of residues were assigned to the 181 

boundary layer (Fig 4A). In all of the fold families, surface layer residues were most abundant, 182 

which accounted for 47%-63% of all residues. 29%-39% residues were in the boundary layer 183 

and 6%-20% residues were in the core layer (Fig 4B). NTF2 fold proteins had more surface 184 

layer residues which was likely due to the pocket of this fold. We defined the layer of each 185 

residue in a matched binding site as the layer of its matched scaffold residue position. The 186 

frequencies of matched residue layers are similar to the frequencies of scaffold layers (Fig 4C). 187 

To evaluate the positions of matches at the binding site level, we defined a depth score for each 188 

matched binding site. The depth score of a matched binding site is the number of boundary 189 

residues plus two times the number of core residues. The depth scores for binding sites 190 

matched to different fold families had similar distributions (Fig 4D). 20%-27% binding sites were 191 

entirely matched to protein surfaces and had depth scores of 0. The remainder of matched 192 

binding sites were buried to some extent. The majority of binding sites were in shallow pockets 193 

with depth scores ranging from 2 to 4. Only 8%-12% binding sites were matched to deeply 194 

buried positions with depth scores of 5 or 6. 195 

 196 

We then tested factors that affect the “matchability” of 3-residue binding sites. We compared the 197 

number of overlapping binding sites that were matched to both of two fold families to the 198 

expected number of overlapping binding sites (Fig 5A). If matching to one fold family is 199 

independent from matching to another fold family, the probability of overlapping binding sites 200 

should be the product of the probabilities of matching to each fold family. We compared 4 pairs 201 

of scaffold libraries (Fig 5A): de novo designed Rossmann folds versus de novo designed NTF2 202 
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folds (top left) or versus native Rossmann folds(top right), and native NTF2 folds versus de novo 203 

designed NTF2 folds (bottom left) or versus native Rossmann folds (bottom right). For all 4 pairs 204 

of scaffold libraries, the observed number of overlapping binding sites was significantly higher 205 

than the number of expected overlapping binding sites (chi-squared test p-value < 10-300). This 206 

result indicates that some binding sites had higher matchabilities (probabilities to be matched to 207 

multiple scaffold libraries). We investigated the contribution of ligand sizes to binding site 208 

matchabilities. As expected, the matching success rates for 3-residue binding sites decreased 209 

with an increase of the number of ligand heavy atoms (Fig 5B), likely because larger ligands are 210 

more likely to clash with the scaffold backbones. We also hypothesized that binding sites whose 211 

residues have larger separations in primary sequences are more difficult to match. To confirm 212 

that non-local binding sites are harder to match, we calculated the mean inter-residue primary 213 

sequence distances for each 3-residue binding site and plotted the mean distances against the 214 

matching success rates (Fig 5C). When the 3-residues in a binding site were consecutive in 215 

primary sequence, the mean primary sequence distance was 1.33, and the matching success 216 

rates were higher than 80%. The success rates dropped rapidly with the increase of mean 217 

distance and reached a plateau at low match success rates when the mean distance reached 218 

70.  219 

 220 

Next, we studied how the number of matched 3-residue binding sites grew with an increase of 221 

the number of scaffolds in fold families (Methods). The log of the number of matched binding 222 

sites scaled linearly with the log of the number of scaffolds (Fig 6A-D). This power law 223 

relationship was valid for both the number of fast matches and Rosetta matches across the 4 224 

different fold families. The powers of the power law functions (slopes of the log-log plots) ranged 225 

from 0.184 to 0.298. Since the powers were small, the increase of matches progressively 226 

diminished as the number of scaffolds got large. Because there is a limited number of 227 

designable structures for each fold family, the power law relationship cannot continue 228 
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indefinitely, but it can still provide a reasonable estimation of the upper bound of the number of 229 

matches. Extrapolating the de novo fold family power law relationships to the number of 230 

representative structures from the PDB95 database, i.e., 23,238 structures, the numbers of 231 

expected Rosetta matches for the Rossmann fold family and the NTF2 fold family would be 232 

7,346 and 6,640. Based on this analysis, the extrapolated numbers of matchable binding sites 233 

are still much smaller than the number of total binding sites, highlighting the importance of 234 

having diverse fold topologies for different functions.  235 

 236 

Finally, to understand how de novo scaffolds expand protein function space, we studied the 237 

binding sites that can be matched to de novo scaffolds but not to the native scaffolds of the 238 

same topology. We plotted the number of binding sites that were matched to only de novo fold 239 

families versus the number of de novo scaffolds (Fig 6E,F). For each topology, there are more 240 

than 1,000 binding sites that are exclusively matched to de novo scaffolds. These relationships 241 

also follow power law functions. The slopes are larger than the slopes of the total matches (Fig 242 

6A-D), indicating that binding sites that can match to both native and de novo fold families 243 

saturate quickly. 244 

  245 
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Discussion 246 

Advances in computational protein structure sampling methods(20) have expanded the 247 

accessible structure space of de novo designed proteins. In particular, two recently developed 248 

computational methods(15, 16) are capable of engineering de novo protein families that contain 249 

defined variations in geometry of proteins that share the same overall fold topology. We probed 250 

the functional implications of de novo protein fold families generated by the LUCS method(15) 251 

by matching known ligand binding sites to both native and de novo fold families. We found that 252 

thousands of ligand binding sites that cannot be matched to native fold families can be matched 253 

to LUCS-generated members of de novo fold families of the same topology, showing that LUCS 254 

generated structures expand both the accessible protein structure and the accessible protein 255 

function space. The number of matched binding sites increased as a power law function of the 256 

number of scaffolds. This relationship allowed us to estimate the upper bound of matches as the 257 

number of scaffolds grew and showed that, in addition to geometric variation, different fold 258 

topologies are necessary to support diverse functions.  259 

 260 

Previous studies have shown that computationally generated artificial (ART) compact 261 

homopolypeptide structures can match virtually every native ligand binding pocket(21, 22). In 262 

contrast, the native and de novo fold families we studied here can only be matched to a limited 263 

fraction of native binding sites. A likely reason is that we only used structures with two 264 

topologies while the ART structures are generated using secondary structure preferences from 265 

thousands of random PDB structures with many different fold topologies. These two behaviors 266 

together support that the diversity of topologies is important for the repertoire of native ligand 267 

binding functions. Additionally, the de novo designed structures we used were subjected to 268 

filters for a set of physical properties such as core packing, hydrogen bonding and surface 269 

exposed hydrophobic patches(15). These filters are designed to eliminate structures that are not 270 
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likely to fold, whereas the ART structures are model polyleucine homopolypeptides. 271 

Requirements for folding places diverse additional constraints on the accessible conformational 272 

space of protein structures.  273 

 274 

Using the new fast match protocol introduced here as well as the Rosetta matcher, we were 275 

able to match a library of high-quality binding sites to de novo protein fold families. To engineer 276 

new ligand binding proteins, the matching step is typically followed by sequence design(3, 8) to 277 

optimize the binding site protein environment. Ligand binding site design is a challenging 278 

problem because the designed sequence must simultaneously be compatible with the protein 279 

fold and precisely place binding site residues in their desired geometries for favorable 280 

interactions with the ligand. Given the typically high stability of de novo designed protein 281 

families(15, 23), matches generated by the protocol described here could be good model 282 

systems for testing binding site design algorithms.  283 

 284 

Another advantage of using de novo fold families for ligand binding site design is that the 285 

systematic sampling of diverse geometries could provide an ensemble of negative states. Using 286 

negative states in design has been shown to improve accuracy in protein stability prediction(24). 287 

Thus, a de novo ensemble of negative states may increase success rates of ligand design 288 

where high accuracy in both sampling and scoring designs is required. Ensembles of different 289 

conformational states in de novo fold families also pave the way to engineer ligand binding-290 

induced conformational changes. Small molecule-induced switches could be designed by 291 

building a ligand binding site in one of the structures in the de novo fold family and tuning the 292 

free energy gaps between the ligand binding state and the other states. We envision that de 293 

novo designed protein fold families will play an important role in designing functions such as 294 

ligand binding and protein switches. 295 

  296 
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Methods 297 

Binding site library construction 298 

Ligand binding sites were extracted from the PDB95(17) database. The representative pdb 299 

structures for each cluster, which were listed in the pdb_95.cod file, were used for binding site 300 

extraction. The representative structures were filtered by resolution. Only crystal structures 301 

whose resolutions were better than 2 Å were kept. Ligand residues were identified by built-in 302 

functions in PyRosetta(25). In this study, we focused on ligands that had at most 100 heavy 303 

atoms. Ligands that had average heavy atom B-factors greater than 60 Å2 were filtered out. 304 

Ligands that did not have protein residues within 5 Å were also excluded from subsequent 305 

processing. We calculated the Rosetta 2-body energy scores(26, 27) between ligands and 306 

protein residues that have at least one heavy atom within 5 Å from any ligand heavy atom. 307 

Ligand binding site residues were defined as protein residues that had favorable van der Waals, 308 

electrostatic or hydrogen bond interactions with the ligand. A residue was included in a binding 309 

site if the sum of its Rosetta energy(27) terms fa_atr, fa_elec, hbond_bb_sc and hbond_sc was 310 

less than -1 Rosetta energy units (REU). We excluded protein residues from consideration that 311 

had total Rosetta scores greater than 50 to avoid poorly modeled residues, such as those who 312 

have severe clashes with the protein environment. We also excluded all residues with missing 313 

heavy atoms in the PDB file. We only kept ligand binding sites that have at least two protein 314 

residues. To prevent overcounting ligands in structures which had multiple chains of the same 315 

protein in their asymmetric units, only one binding site was extracted for the same ligand in a 316 

given structure. 317 

 318 

Fast match protocol 319 

We developed a new fast match protocol to rapidly match the library of binding sites to the sets 320 

of protein scaffolds. During the fast match, a ligand binding site is treated as a rigid body. When 321 
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the fast matcher matches a ligand binding site to a scaffold, it first iterates through all pairs of 322 

binding site protein residues and scaffold residues. For each pair of residues, the protocol 323 

superimposes the N, Ca and C atoms of the binding site residue to the corresponding atoms in 324 

the scaffold residue. The remainder of the binding site is transformed as a rigid body. Then the 325 

matcher finds the closest scaffold residues to each binding site protein residue. The distances 326 

between residues are defined as the Ca-Ca distances. If all distances between binding site 327 

protein residues and their closest scaffold residues are within 2 Å, the backbone N, Ca and C 328 

atoms of the binding site protein residues are superimposed to the N, Ca and C atoms of their 329 

closest scaffold residues. The superimposition minimizes the root mean squared deviation 330 

(RMSD) between the corresponding atoms. If the RMSD is within 1 Å, the cosine of angles 331 

between the vectors pointing from Ca to Cb of corresponding residues are calculated. If all the 332 

cosine values are greater than 0.7, clashes between the matched binding site and the scaffold 333 

backbone are checked. Two atoms are defined to clash when the distance between them is less 334 

than the sum of their Lennard-Jones radii times a scale factor of 0.6. The match is accepted if 335 

the ligand and protein side chains from the binding site do not clash with the scaffold backbone 336 

atoms that are not matched to binding site residues. 337 

 338 

Standard Rosetta matcher 339 

For each binding site successfully matched to a scaffold using fast match, we ran the standard 340 

Rosetta matcher(5). We made mol2 files for ligands using Open Babel(28) and generated ligand 341 

parameter files with the molfile_to_params.py script distributed with Rosetta. The relative 342 

positions of a ligand and a binding site protein residue are defined by 6 heavy atoms. On the 343 

ligand side, the heavy atom closest to the protein residue and the two ligand heavy atoms 344 

closest to the first ligand heavy atom are defined as the anchor atoms. On the protein residue 345 

side, the heavy atom closest to the ligand and two protein atoms closest to the first protein 346 

heavy atom are defined as the anchor atoms. For each binding site, we generated a constraint 347 
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file where the relative positions between the ligand anchor atoms and protein residue anchor 348 

atoms were constrained. We used stringent matching criteria similar to those used in previous 349 

work(8, 12). The relative distances between ligands and binding site residues are sampled at 350 

ideal values; the relative angles and torsions are sampled at the ideal values and ±10° from the 351 

ideal values. The binding sites were matched using the standard Rosetta matcher with the 352 

following command: 353 

 354 

match.linuxgccrelease -match:output_format PDB -match:match_grouper 355 

SameSequenceGrouper -match:consolidate_matches -match:output_matches_per_group 1 -356 

use_input_sc -in:ignore_unrecognized_res -ex1 -ex2 -enumerate_ligand_rotamers false -357 

match::lig_name LIG_NAME -match:geometric_constraint_file CST_FILE -s SCAFFOLD_PDB -358 

match::scaffold_active_site_residues POS_FILE 359 

 360 

where LIG_NAME is the 3-letter name of the ligand, CST_FILE is the constraint file, 361 

SCAFFOLD_PDB is the pdb file of the scaffold structure and POS_FILE is the file that stores 362 

the matchable residues. In this study, all residues on a scaffold are matchable. 363 

 364 

Construction of scaffold libraries 365 

The de novo Rossmann and NTF2 fold families were reported in ref.(15). The scaffolds in these 366 

fold families were generated by the LUCS method and filtered by a set of designability 367 

filters(15). We randomly selected 1,000 scaffolds from each de novo fold family as the scaffold 368 

set for ligand binding site matching. The native fold families of Rossmann and NTF2 folds were 369 

obtained from the CATH database(18). The native Rossmann fold scaffolds were extracted from 370 

the CATH 3.40.50.1980 superfamily and the native NTF2 family structures were from the CATH 371 

3.10.450.50 superfamily. Because the automatic classification algorithm of the CATH database 372 

did not force all structures in a CATH superfamily to have a same topology, we manually 373 
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excluded the CATH structures that have different topologies from the de novo designed 374 

scaffolds. As a result, the native Rossmann fold scaffold set had 20 structures and the native 375 

NTF2 fold scaffold set had 103 structures. The C-terminal helices in de novo NTF2 scaffolds 376 

occluded the ligand binding pocket. In contrast, only 35 out of 103 native NTF2 scaffolds had C-377 

terminal helices. Among these native C-terminal helices, 31 helices pointed away from pocket 378 

entrances, and thus, did not affect the accessibility of ligand binding sites, leaving only 4 379 

scaffolds with pocket occluding C-terminal helices. We therefore trimmed the C-terminal helices 380 

in de novo NTF2 proteins to expose the ligand binding pocket. 381 

 382 

Construction of a library of 3-residue binding sites 383 

The 3-residue binding site library was constructed from the library of all binding sites. We 384 

eliminated binding sites with fewer than 3 residues. The binding sites with 3 protein residues 385 

were kept unchanged. For binding sites with more than 3 protein residues, we scored the total 386 

Rosetta two-body energy(26) between the ligand and each protein residue. We kept the 3 387 

protein residues with lowest total two-body energies and removed the remainder of the binding 388 

site residues. 389 

 390 

Assignment of layers to scaffold residues 391 

The Rosetta Layer selector(19) with the default settings was applied to assign layers to each 392 

scaffold residue. The layer of a residue was determined by a weighted count of the number of 393 

neighbor amino acid residues in a cone extending along its Ca-Cb vector. A residue is assigned 394 

to the surface layer if the weighted count is less than 2; a residue is assigned to the core layer if 395 

the weighted count is greater than 5.2; all other residues are assigned to the boundary layer. 396 

 397 

Calculation of the numbers of matches for subsets of fold families 398 
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During the process of matching a binding site to a fold family, we recorded the number of 399 

scaffolds in the fold family that we tested to find the first successful fast match and called this 400 

number the first-fast-match-encounter-number. The number of fast matches for a subset of a 401 

fold family with N scaffolds was defined as the number of binding sites with first-fast-match-402 

encounter-numbers smaller than or equal to N. The number of Rosetta matches for subsets of 403 

fold families were calculated in the same way. 404 

 405 

Data availability 406 

All relevant data are available in the manuscript and supporting information data files. Rosetta 407 

source code is available from rosettacommons.org. Scripts, the binding site library and the 408 

scaffold sets are available at https://github.com/Kortemme-409 

Lab/match_ligand_binding_sites/releases/tag/v1 .  410 
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TABLES 496 

 497 

Table 1. Number of matched binding sites 498 

Binding site 
library 

Match type Native 
Rossmann 

Native NTF2 De novo 
Rossmann 

De novo 
NTF2 

All binding 
sites 

fast 6860 (248)* 8761 (795) 9034 [2442]** 8909 [943] 

Rosetta 5896 (212) 7450 (580) 7475 [1791] 7548 [678] 

3 protein 
residue 
binding sites 

fast 3556 (324) 5714 (1306) 6537 [3305] 6128 [1720] 

Rosetta 2142 (199) 3541 (807) 3715 [1772] 3686 [952] 

 499 

* Numbers in parentheses are binding sites that cannot be matched to de novo scaffolds with 500 

the same topology. 501 

** Numbers in square brackets are binding sites that cannot be matched to native scaffolds with 502 

the same topology. 503 

 504 

Table 2. Dependency of matching success on binding site size (number of protein 505 

residues) 506 

Binding 
site 
size 

Native Rossmann Native NTF2 De novo 
Rossmann 

De novo NTF2 

 success 
count 

success 
rate 

success 
count 

success 
rate 

success 
count 

success 
rate 

success 
count 

success 
rate 

2 4590 80.9% 5340 94.2% 5328 93.8% 5359 94.4% 
3 1182 21.4% 1792 32.5% 1853 33.4% 1882 33.9% 
4 118 2.7% 272 6.3% 281 6.5% 276 6.4% 
5 6 0.2% 38 1.4% 12 0.4% 27 1.0% 
6 0 0 6 0.4% 1 0.06% 3 0.2% 
7 0 0 2 0.2% 0 0 1 0.1% 

 507 

  508 
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FIGURES 509 

Figure 1 510 

 511 

Fig 1. The ligand-binding site library.  512 

A. Binding site examples. The Mg2+ ion is shown as a sphere; small molecules and protein 513 

residues are shown as sticks; carbon atoms are colored in green (small molecule) or grey 514 

(protein residues); oxygen atoms are colored in red; nitrogen atoms are colored in blue; polar 515 

interactions are shown as yellow dashed lines. B. Joint distribution of binding site sizes 516 

(numbers of binding site protein residues) and numbers of ligand heavy atoms. Binding site 517 

sizes are linearly correlated with the numbers of ligand heavy atoms. C, D. Amino acid (AA) 518 

frequencies (red, right y-axis) in ligand-binding sites and enrichment ratios (blue, left Y-axis) in 519 

ligand-binding sites compared to all residues in a protein. C. Distributions of all ligand binding 520 

sites. D. Distributions of single heavy atom ligand binding sites. 521 

  522 
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Figure 2 523 

 524 

Fig 2. Matching ligand binding sites to scaffold libraries.  525 

A. Schematic of the matching protocol. The ligand is represented as a yellow triangle. The 526 

ligand-binding site as a rigid body (green) is first matched to the scaffold (grey) by anchoring to 527 

a scaffold residue shown in the black circle. Then the binding site residues are aligned to the 528 

corresponding scaffold residues. Finally, the standard Rosetta matcher is applied to build the 529 

binding site side chains (magenta) onto the scaffold. B. The binding sites are matched to native 530 

and de novo designed scaffold families with Rossmann or NTF2 fold topologies. C. Examples of 531 

matches. The coloring scheme is the same as A. 532 

 533 
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Figure 3 534 

 535 

Fig 3. Matchability of ligand binding sites depends on the binding site size. 536 

Histograms of numbers of matches vs binding site sizes (number of protein residues in the 537 

binding site). Bindings sites that cannot be matched to any scaffold are shown in blue. Bindings 538 

sites that can be matched to at least one scaffold by the fast match method but cannot be 539 

matched by the standard Rosetta matcher are shown in orange. Binding sites that can be 540 

matched to at least one scaffold by the standard Rosetta matcher are in green. A-D. Results for 541 

4 scaffold libraries; scaffold sets are indicated in each panel title. 542 
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Figure 4 544 

 545 

Fig 4. Ligand binding sites are matched to all layers of scaffolds.  546 

A. An example of scaffold residue layers assigned to a scaffold (PDB:3FH1) from the native 547 

NTF2 fold family by the Rosetta Layer residue selector. The surface, boundary and core layers 548 

are colored in purple, green and orange, respectively. B. Distributions of residue layers in 549 

different scaffold libraries. C. Distributions of residue layers of binding sites matched to different 550 

scaffold libraries. D. Distributions of binding site depth scores matched to different scaffold 551 

libraries. 552 
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Figure 5 554 

 555 

Fig 5. Features affecting matching success rates of 3-residue ligand binding sites.  556 

A. Venn diagrams of the number of Rosetta-matched 3-residue binding sites between pairs of 557 

scaffold sets. The number in the overlapping region is the observed number of binding sites that 558 

can be matched to both scaffold sets, with the expected number in parentheses. The number in 559 

the non-overlapping region within a circle denotes the binding sites that can only be matched to 560 

this scaffold set. The number outside the circles denotes the binding sites that cannot be 561 

matched to either of the two scaffold sets. B. The numbers of ligand heavy atoms are negatively 562 

correlated with the match success rates. C. The mean primary sequence distances between 563 

binding site residues are negatively correlated with match success rates. 564 
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Figure 6 566 

 567 

Fig 6. Numbers of matches scale as power-law functions of numbers of scaffolds in fold 568 

families.  569 

A-D. Log-log plots of the number of 3-residue matches vs the number of scaffolds. E-F. Log-log 570 

plots of the number of 3-residue binding sites that can only be matched to de novo scaffolds of 571 

specific topologies vs the number of scaffolds. 572 
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Supporting information 573 

S1 Table. Ligand type frequencies in the binding site library. 574 

S1 File. Summary tables of matching results to all fold families. 575 
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