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S1 Estimated diversification rates incorporating phylogenetic un-1

certainty and prior sensitivity2

To account for phylogenetic uncertainty in diversification rate estimates, we estimate diversification rates3

and mass extinctions on a total of 6 distinct trees from Wilberg et al. (2019), which we refer to as T1 to4

T6. Simultaneously, we investigate the sensitivity of our estimate to the prior expectation on the number5

of mass extinctions. Thus, we analyze each tree with a prior expectation of E(nME) = {0.1, 0.5, 1.0, 2.0, 5.0}6

mass extinctions. This leads to a total of 30 empirical analyses, which produce largely congruent results.7

In Figure S1 we plot the estimated rates of speciation, extinction, and fossilization, which is summarized in8

Figure 2 of the main text.9
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Figure S1: Estimated rates of speciation, extinction, and fossilization through time across all datasets and all priors on the
expected numbers of mass extinctions. Datasets are shown in rows, while different priors on the expected number of mass
extinctions are denoted by color. Solid lines are the posterior median rates, while shaded regions are the 90% CIs.
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S2 Additional empirical analyses10

S2.1 Extinct and extant only phylogenies11

We perform two analyses of subsampled trees to examine the contribution of fossil taxa to the signature of12

the mass extinction. First, we analyze a subtree of tree T1 consisting of only the extant Crocodylomorph13

taxa. This analysis detects no signal of the K-Pg mass extinction (Figure S3, top row), and the estimated14

speciation rate through time is effectively constant (Figure S2, top row). Both speciation and extinction rates15

are estimated to be lower than using the combined dataset (without fossils there is no fossilization rate to be16

estimated). Second, we analyze a tree consisting only of extinct Crocodylomorph taxa. This analysis strongly17

detects the K-Pg mass extinction (Figure S3, middle row). As with the extant-only analysis, the estimated18

speciation rate does not decrease towards the present, though it is otherwise similar to the diversification rate19

estimates obtained from the combined dataset (Figure S2). The extinction and fossilization rates estimated20

are almost identical to the combined analysis. Thus, at least for the Crocodylomorphs, the fossils provide21

the primary signal of the K-Pg mass extinction. Nevertheless, there is no harm in using a combined dataset.22

Diversification rates, however, do appear more sensitive to the exclusion of any taxa. Specifically, without23

the combined dataset it would not be possible to obtain the complete picture of historical diversification24

rates which includes the more ancient mass extinctions and recent decrease in speciation rate.25
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Figure S2: Estimated rates of speciation, extinction, and fossilization through time. Top row: only extant taxa used in
analysis (hence no fossilization rate). Middle row: only extinct taxa used in analysis. Bottom row: all taxa used in analysis
(reproduced from our main empirical analysis).
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Figure S3: Support for mass extinctions. Top row: only extant taxa use in analysis. Middle row: only extinct taxa used in
analysis. Bottom row: all taxa used in analysis (reproduced from our main empirical analysis).

S2.2 Assuming all fossils to be tips (treatment)26

We used the phylodynamic treatment parameter to investigate the effect of assuming that all fossils are tips27

and not sampled ancestors. Specifically, we re-analyze the tree with r1 = r2 = · · · = r100 = 1.0, which forces28

all tips to be fossils. This is not biologically meaningful, as leaving a fossil does not enforce the species to29

go extinct (there is no treatment), but this analysis provides insight into the effects and systematic bias of30

forcing fossils to all be tips.31

We find that the estimated signal of the K-Pg mass extinction is robust to assuming that all fossil taxa32

must be tips (Figure S5). However, the estimated diversification rates are noticeably different (Figure S4).33

Estimated speciation and extinction rates are much lower (by a factor of two), while the fossilization rate is34

overall higher (by a factor of three). The speciation rate does not display any decrease towards the present,35

and the extinction rate increases towards the present day. Note however, in cases with r > 0 that fossilization36

also implies the death of a lineage, and the total death rate is actually µ(t) + φ(t)r(t), which explains why37

the estimate extinction rate is lower when assuming that all fossils are tips.38
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Figure S4: Estimated rates of speciation, extinction, and fossilization through time when assuming that all fossils are tips
(treatment).
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Figure S5: Support for mass extinctions at all 99 timepoints when assuming that all fossils are tips (treatment).
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S3 Simulated data analyses39

We performed a simulation study to explore the power of our crocodylomorph analysis and the false positive40

rate. To assess power, we simulated trees from the posterior distribution of tree T1 with a prior expected41

number of 0.5 mass extinctions. We ensured that all simulated datasets experienced a mass extinction at42

the K-Pg boundary. To do this, we set the mass extinction death probability at the K-Pg to be 0.9 for43

any posterior sample that had a mass extinction death probability of less than 0.5 (this affects a very small44

proportion of simulations, as the estimated posterior probability of the K-Pg mass extinction was 0.998).45

To assess any tendency for false positives, we fit diversification rates through time for the same dataset46

but without the possibility of mass extinctions. Disallowing mass extinctions in the real-data inference could47

lead to inferred rates that produce temporal signatures that look like mass extinctions (Crisp and Cook,48

2009; Stadler, 2011; May et al., 2016). Trees simulated using parameter values drawn from the posterior49

distribution could appear to have mass extinctions and inference of simulated datasets may favor mass50

extinctions when there were none. Thus, this should provide a worst-case scenario on false positives. To51

ensure that we had sufficient resolution, we analyzed 250 trees for each scenario, and took the first 20052

analyses that passed convergence cutoffs.53

In the main text, we focused on the number of inferred mass extinctions per-dataset. In doing so, we54

used a 2 log Bayes factor threshold of 10 to determine if a mass extinction was detected or not. This cutoff is55

motivated by examining the distribution of all posterior probabilities in support of mass extinctions pooled56

across all break times and all simulated analyses. In the “false positive” analyses without mass extinctions,57

approximately 1% of all (99× 200) possible mass extinctions would be inferred to be significant at a Bayes58

factor cutoff of 2 (Figure S6), and there are a number of mass extinctions above a cutoff of 6. Thus, to59

cut down on spurious inference of mass extinctions, we use a cutoff of 10 for determining support for mass60

extinctions. The rationale behind the rather high significance threshold is multiple testing, because we tested61

jointly for 99 possible mass extinctions, one per epoch.62

To assess the accuracy of our estimated rates through time, we use the mean relative absolute error,63

1/n
∑n
i=1[(θ̂i − θi)/θi], where we take the posterior median as the parameter estimate. The distribution of64

relative errors for speciation and extinction are in general low (Figure S7). The accuracy for speciation and65

extinction rate estimates is comparable to what was found in Magee et al. (2020) in both their analyses where66

only speciation varied and their analyses where both speciation and extinction varied. The fossilization rate67

is apparently much more difficult to estimate, the average error is much higher (Figure S7). Further, where68

speciation and extinction rates are generally underestimated, the fossilization rate is generally overestimated.69

Estimation error is larger when compound parameters like net diversification (λ(t) − µ(t)) are considered,70

suggesting that we are actually estimating the rates parameterized, and not compound parameters.71
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S4 Model adequacy72

To assess the adequacy of our model performance, we employ posterior predictive simulations. Specifically,73

we simulate trees for the same mass extinction priors (0 and 0.5) and dataset (T1) as we use for our false74

positive and power analyses. For each of the three converged chains, we subsample to 2500 posterior samples,75

for each of which we simulate one tree, for a total of approximately 7500 trees (in a few cases the simulator76

failed). As mentioned above, in cases where the K-Pg mass extinction probability was estimated to be less77

than 0.5, we set the mass extinction probability to 0.9, this affects approximately 0.2% of the simulated78

datasets with mass extinctions. The first 250 of these trees include the same trees for which we performed79

our simulated data analyses.80

We employ 16 summary measures of phylogenies, many of which are standard in the literature. They81

are:82

1. Colless’ (normalized) imbalance statistic, (Colless, 1982). Larger values mean trees are more imbal-83

anced than expected under lineage-exchangeable models like the one derived in this paper.84

2. Tree length, the sum of all branch lengths in the tree.85

3. Tippyness, the proportion of all branch lengths that are edges subtending a (fossil or extant) tip (Fiala86

and Sokal, 1985; Rohlf et al., 1990).87

4. Tippyness (extant), the proportion of all branch lengths that are edges subtending an extant tip. This88

statistic should be sensitive to misspecification of the random sampling model assumed for sampling89

events (Fiala and Sokal, 1985; Rohlf et al., 1990).90

5. Tippyness (extinct), the proportion of all branch lengths that are edges subtending a fossil tip. Com-91

bined with tippyness (extant), this statistic allows one to localize issues with tippyness.92

6. Longest branch, the length of the longest branch in the tree (Duchene et al., 2019). Computed such93

that sampled ancestors break up branches.94

7. The gamma statistic of (Pybus and Harvey, 2000), a measure of the concentration of branch lengths95

towards the root of the tree.96

8



0.00 0.10 0.20 0.30

0
5

10
15

Colless

D
en

si
ty

p = 0.98
p = 0.99

0 20000 60000

0e
+

00
4e

−
05

tree length

power
false positives

p = 0.11
p = 0.11

0.30 0.40 0.50 0.60

0
2

4
6

8
10

tippyness

p = 1
p = 1

0.00 0.10 0.20

0
50

10
0

15
0

20
0

tippyness (extant)

p = 0.99
p = 0.99

0.35 0.45 0.55 0.65

0
2

4
6

8
10

14

tippyness (extinct)

D
en

si
ty

p = 0.98
p = 0.94

50 100 150 200

0.
00

0
0.

01
0

0.
02

0

longest branch

p = 0.14
p = 0.14

−10 0 10 20 30

0.
00

0.
04

0.
08

0.
12

gamma

p = 0.28
p = 0.33

200 400 600 800

0.
00

0
0.

00
2

0.
00

4
0.

00
6

waiting time tree−length variance

p = 0.79
p = 0.72

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

min time of max lineages

D
en

si
ty

p = 0.91
p = 0.93

20 60 100 140

0.
00

0
0.

01
0

0.
02

0

average sample age

p = 0.67
p = 0.66

180 200 220 240

0.
00

0.
02

0.
04

maximum sample age

p = 0.89
p = 0.89

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

proportion of samples below

p = 0.32
p = 0.27

0.015 0.020 0.025

0
20

60
10

0

r̂

D
en

si
ty

p = 0.11
p = 0.11

0 500 1500

0.
00

00
0.

00
10

0.
00

20

# tips

p = 0.11
p = 0.11

0 50 100 200

0.
00

0
0.

01
0

0.
02

0
0.

03
0

# sampled ancestors

p = 0
p = 0

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4

proportion of extant samples

p = 0.28
p = 0.25

Figure S8: Posterior predictive distributions (red and blue) for each of 16 summary statistics. The observed value is shown
in black. Posterior predictive p-values are rounded to the nearest 1/100th and are represent proportion of posterior predictive
values below the observed value.

9



8. Waiting time tree-length variance, a measure designed to detect heterogeneity through time in the97

birth-death process. To compute, break the tree into intervals at every birth and sampling event. Let98

τi = ni∆i be the total tree length in time interval i, equal to the number of lineages in that interval99

multiplied by its duration in time. The statistic is then Var(τ ).100

9. Minimum time of maximum lineages, the most recent time in the lineage-through-time curve which101

has the maximum number of lineages, (Duchene et al., 2019). The minimum ensures uniqueness over102

multiple modes, though it means that for trees lacking serial samples the value will always be 0.103

10. Average sample age, the average age of all samples (including extant tips, fossil tips, and sampled104

ancestors) (Duchene et al., 2019).105

11. Maximum sample age, the oldest age of all samples (including extant tips, fossil tips, and sampled106

ancestors).107

12. Proportion of samples below the youngest branching time. This measure should be sensitive to mis-108

estimating φ(t) relative to λ(t)− µ(t) in the recent past.109

13. r̂, a crude methods-of-moments estimator of the net diversification rate, (Magallon and Sanderson,110

2001; Magee et al., 2020). This measure should capture whether the number of birth events in the111

trees are reasonable, relative to its age.112

14. The number of tips in the tree, including extant and fossil tips.113

15. The number of sampled ancestors in the tree.114

16. The proportion of samples which are extant samples. When there is only event-sampling at the present115

(Φi = 0 for i > 0), this statistic should be sensitive to how well φ(t) and Φ0 are matched.116

Overall, we find that model performance is adequate. Few statistics exhibit very small or very large117

posterior predictive p-values. Furthermore, for a number of statistics, the mode of the posterior predictive118

distribution and the observed value appear to align, indicating good fit with respect to those statistics.119

However, the observed phylogeny has no sampled ancestors, while almost every simulated tree contains at120

least one sampled ancestor. This is likely at least in part an artifact of the tree building process assuming all121

samples are tips, which can be modeled by setting the phylodynamic recovery parameter r to 1 (see above).122

Colless’ imbalance provides evidence for unmodeled among-lineage variation in diversification rates, as123

the observed tree imbalance is larger than most of the posterior predictive tree imbalances. The tippyness124

family of measures indicate some issues with the sampling model. Overall, predicted tippyness is lower than125

the observed tippyness. Looking at tippyness restricted to both extant and fossil tips, we can see that the126

larger driver here is the length of branches leading to extant tips. This could be explained if the 14 extant127

crocodylomorphs in the tree represent a diversified sample rather than a random one (Höhna et al., 2011).128

The tippyness restricted to fossil tips shows less misspecification, though there is still some discrepancy129

between the predicted and observed values. The lack of sampled ancestors could play a role here; fossil130

tips must have a branch subtending them, and this means that a tree with only fossil tips and no sampled131

ancestors will be longer than one where some fossil samples are sampled ancestors.132
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S5 Estimated diversity through time133

Once fit to the data, our models can be used to make inferences about the historical diversity through time134

of a group. These estimated diversity through time curves can be compared to other estimates, e.g., from135

the fossil record, to further validate the results. However, note that we estimate species diversity through136

time and not the number of genera or families which is common in paleontological studies.137

To estimate the diversity through time, for a set of posterior samples of diversification rates we simulate138

a complete tree, not allowing the tree to go extinct. Complete trees are necessary because reconstructed139

trees do not contain the record of all species alive at some time in the past, only those that contribute to the140

sample. Though since complete trees are quite large, this process is slow and running on a smaller number of141

posterior samples will most likely be needed. This procedure integrates out uncertainty in the diversification142

rates through time and appropriately explores the tails of the number of lineages in different intervals. In143

Figure S9, we show the inferred number of Crocodylomorph lineages through time using this approach (for144

the analysis of tree T1 with E(nME) = 0.5). Our model predicts a period of rapid growth up through the145

mid-to-late Jurassic, followed by a slow increase until the end Cretaceous mass extinction (K-Pg), which146

leaves a massive impact. Following the extinction, there is a period of slow growth into the Eocene, followed147

by a decline to the present.148
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S6 Fossil tip ages149

So far, we have shown that the signature of the K-Pg mass extinction is robust to (i) the choice of phylogeny150

(ii) the prior on the number of mass extinctions (iii) the exclusion of extant taxa (iv) the (tree inference)151

assumption that all taxa are tips. We have also shown that the model is largely adequate, and that any152

inadequacies are shared with models lacking mass extinctions. One factor that we have not addressed is the153

ages of the fossils. To assess robustness to fossil ages, we simulate 1000 trees based on T1 where we replace154

the ages with uniform draws from the stratigraphic ranges provided by Wilberg et al. (2019) (rejecting any155

draws of ages that would produce negative branch lengths). Fossil ages are likely important to identifying156

mass extinctions: simulated trees with mass extinctions often exhibit a band of fossil tips just prior to a157

mass extinction. By drawing new ages independently, we produce a sort of worst-case scenario where this158

signal gets maximally eroded.159

Examination of the resampled LTT curves shows that there is still a clear drop (caused by the fossil160

tips), though there is uncertainty about the timing and magnitude of this drop (Figure S10). We can also161

compare summary statistics of these LTT curves to our posterior predictive distributions. Specifically, we162

can compare the number of fossils in the interval immediately prior to the observed K-Pg mass extinction163

to the predictive distributions from analyses with and without mass extinctions. For this comparison, we164

use the analysis with E(nME) = 0.5, and we normalize the number of fossils to the peak of the LTT curve165

for comparability between large trees and small trees (the model for mass extinctions kills a proportion of166

lineages, rather than a fixed number). The resampled LTT curves show a somewhat smaller drop than in167

the empirical tree T1, but the drop is more in line with trees simulated with mass extinctions than simulated168

without (Figure S11). Further, pooling both the interval immediately prior to the K-Pg with the next oldest169

recovers essentially the entire drop. Overall, these resampled datasets suggest that the signature of the K-Pg170

mass extinction is robust to the fossil ages.171

Figure S10: The LTT curve of T1 from Wilberg et al. (2019) (black), and 1000 LTT curves created by resampling the fossil
times uniformly from the stratigraphic ranges. All resampled curves show a large drop around the time of the observed K-Pg
mass extinction, suggesting they also contain evidence of the effect of the K-Pg.
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Figure S11: Distributions of the number of fossil samples in the time shortly before the observed K-Pg mass extinction for
resampled versions of tree T1. For comparison between large and small trees, we normalize this number to the peak of the
LTT curve. The blue histogram is the posterior predictive distribution based on the analysis with E(nME) = 0.5, while the red
histogram is an analysis with no mass extinctions. The light grey histogram is the analog of the blue and red histograms, while
the dark grey additionally includes fossils in the next oldest interval. The black line is the value in tree T1. Both resampled
distributions show much larger numbers of fossil samples than expected without a mass extinction, suggesting that the signal
of the K-Pg is robust to fossil times.
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S7 Interpretation of the terms in the Likelihood of the General-172

ized Episodic Fossilized Birth-Death Process173

In the main text we only provided a brief explanation of our likelihood function. To make the explanation174

easier to understand, we reproduce the likelihood function again. The probability density of a phylogenetic175

tree Ψ is176

f(Ψ) =
2I+H−||A||−1

(I +H − ||A||)!
(i)177

×
∏
t∈N

[
λ(t)

]
(ii)178

×
∏
t∈F

[
φ(t)

(
r(t) +

(
1− r(t)

)
E(t)

)]
(iii)179

×
∏
t∈A

[
φ(t)

(
1− r(t)

)]
(iv)180

×
l∏
i=1

[
ΛKi
i

(
2ΛiE(si) + (1− Λi)

)L(si)−Ki
]

(v)181

×
l∏
i=1

(1−Mi)
L(si) (vi)182

×
l∏
i=0

[
(1− Φi)

(L(si)−Ii)ΦIii (1−Ri)Ti
183

(Ri + (1−Ri)E(si))
Ii−Ti

]
(vii)184

×
∏
t∈B

[D(to)

D(ty)

]
(viii)185

(S1)186
187

Term (i) is the probability of the topology. There are I +H − ||A|| tips (fossil samples without sampled188

ancestors and extant samples) which have (I + H − ||A||)! labelings. Furthermore, there are (I + H −189

||A||− 1) internal nodes which have 2(I+H−||A||−1) left-right orientations. Since we do not consider left-right190

orientations in phylogenetics, the probability of the tree topology is 2I+H−||A||−1

(I+H−||A||)! .191

Term (ii) is the probability of the observed serial speciation in the tree (Figure 4g). Each of these happens192

with a probability density given by the speciation rate at that time.193

Term (iii) is the probability of the serially-sampled tips (Figure 4c-d). To be a tip, the sample must have194

no sampled descendants, which can occur in two ways. The sampling event may be treated, which happens195

with probability φ(t)r(t). Alternately, the sampled lineage may not be treated, and the lineage simply has196

no sampled descendants, which happens with probability (φ(t)(1− r(t))E(t)).197

Term (iv) is the probability of the sampled ancestors (Figure 4c). We must sample the ancestor, and198

then it must go untreated (if it were treated, it would be a sampled tip).199

Term (v) is the probability of the observed and unobserved speciation events at tree-wide speciation200

burst events (Figure 4e). The probability of the observed burst speciation events is ΛKi
i . The probability of201

the lineages without observed burst speciation events is, (2ΛiE(si) + (1 − Λi))
L(si)−Ki . Lineages may not202

have observed burst speciation events for two reasons. A lineage might experience a burst speciation, but203

one of its children goes unsampled (leaving one continuous lineage in the reconstructed phylogeny), which204

happens with probability 2ΛiE(si). Alternately, the lineage may not experience a burst speciation at all,205

which happens with probability (1−Λi). In the case that there is no burst speciation at a particular interval206

time si (Λi = 0) then there are no burst speciations (Ki = 0), and term (v) is 1.207

Term (vi) is the probability of all lineages surviving a tree-wide mass extinctions events (Figure 4f).208

Each lineage that spans the ith mass extinction survives with probability (1−Mi). We do not assume the209
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possibility of observing any deaths at the time of the mass extinction.210

Term (vii) is the probability of all the observed sampling times at given tree-wide sampling events211

(Figure 4g). This includes the probability of all the sampled lineages, ΦIii , as well as the probability of all212

the unsampled lineages, (1 − Φi)
(L(si)−Ii). The probability of the sampled ancestors at this time is given213

by, (1 − r(si))Ti , which is the probability that the sampled ancestors are not treated. The probability of214

the sampled tips is (r(si) + (1− r(si))E(si))
Ii−Ti , which accounts for the possibility that the tip is treated215

r(si), or that it is untreated but leaves no sampled descendants (1− r(si))E(si). In the case that there is no216

sampling event at a particular interval time si (Φi = 0) then there are no event samples (Ii = 0 and Ti = 0),217

and that term in the product collapses to 1.218

Term (viii) is the probability of the observed branch segments (Figure 5). A branch segment is a portion219

of a branch that is uninterrupted by an interval time or an event (speciation, extinction, or sampling). The220

product of all branch segments yields the total probability of all the branches of the tree.221
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S8 Different Conditions of the Generalized Episodic Fossilized222

Birth-Death Process223

Survival of originI) Survival of rootII) Sampling of originIII) Sampling of rootIV) Sampling of root and 
survival of originV)

Present Present Present Present Present

Figure S12: Five different possible conditions for our generalized fossilized-birth-death process. I) The process survives until
the present. II) The process starts at the root and both descendants of the root survive until the present. III) Sampling at
least one lineage. IV) The process start at the root and both descendants have at least one lineage sampled. V) The process
starts at the root, both descendants have at least one lineage sampled, and the process survives until the present.

Birth-death models are often conditioned on specific events, see Stadler (2013) and Höhna (2015) for some224

discussion on the topic. However, when there are non-contemporaneous samples in the dataset which may225

be ancestral to other samples, conditioning becomes somewhat complex. The key issues for conditioning are226

whether it is assumed that the process starts at the root or the origin, and whether the descending lineage(s)227

is (are) assumed to leave any sampled descendant or specifically to have a descendant sampled at the present228

day. Consideration of these possibilities leads to five possible conditions, though conditioning is not strictly229

required.230

Survival of the origin We condition the process on survival of one lineage, i.e., at least on descendant of231

the lineage starting at the origin was sampled at the present. This condition represent a case when232

we have fossils and extant taxa and do not know if the fossils are stem fossils of the entire clade. The233

condition is obtained by computing 1− E(tor) with φ(t) = 0.234

Survival of the root We condition the process on survival of both lineages, i.e., at least one descendant of235

each lineage starting at the root was sampled at the present. This is the case for most macroevolutionary236

analyses without any fossils or if the fossils are known to belong within the crown group of the extant237

taxa. The condition is obtained by computing (1− E(tMRCA))2 with φ(t) = 0.238

Sampling of origin We condition the process to have at least one sample being a descendant of the origin.239

This is simply a minimal condition that at least something was observed/sampled. This condition240

represents the case if we would also consider complete extinct clades. The condition is obtained by241

computing 1− E(tor).242

Sampling of the root We condition the process to require that both lineages starting at the root are243

sampled. In this case, all taxa might be extinct but the root age is known or inferred as a parameter244

of the model. The condition is obtained by computing (1− E(tMRCA))2.245

Sampling of the root and survival of the origin We condition the process on sampling of both descen-246

dant lineages of the root and at least one sample at the present. In this case, we condition on this247

specific root age but one of the descendant lineages of the root might have gone extinct while the248

other descendant lineage from the root must have survived. The condition is obtained by computing249

(1− Eφ(t)=0(tMRCA))(1− Eφ(t)6=0(tMRCA)).250

For macroevolutionary analyses of diversification rates, condition (I) is the most adequate if we have251

both extinct and extant taxa, condition (II) if we have only extant taxa, and condition (III) if we have only252

extinct taxa. For phylodynamic applications, if it can safely be assumed that there are no sampled ancestors253
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prior to the first observed infection (which will always be true if r(t) = 1), condition (IV) may be used,254

otherwise only condition (III) is applicable. Conditioning on survival as in (I), (II), or (V) requires Φ0 > 0,255

and so is primarily of interest in macroevolutionary applications. Of these conditions, (II) is the strictest256

and requires prior knowledge that the MRCA of the extant samples is the MRCA of all samples. Condition257

(V) is less restrictive, requiring only that none of the fossils could be sampled ancestors prior to the first258

observed speciation event, which would apply if all fossils are within the crown group. We could additionally259

condition on the number of extant taxa N , as suggest by Gernhard (2008), although there is, as of today260

and to our knowledge, no solution known to condition on the number of extinct taxa.261

S9 Comparison to the Gavryushkina Model262

The model presented by Gavryushkina et al. (2014) represents the most parameter-rich model prior to the263

model in our paper, and is in fact a special case of this model. Specifically, the Gavryushkina model is the264

special case of ours where there are no mass extinction events (Mi = 0 ∀ i), no birth bursts (Λi = 0 ∀ i),265

and there is no distinction in treatment probability between φ-sampling and Φ-sampling (Ri = ri ∀ i).266

However, the presentation of the model in Gavryushkina et al. (2014) differs somewhat from ours, making a267

comparison between the two presentations useful.268

For clarity, in our presentation of the Gavryushkina model, we keep our parameterization and notation.269

For readers looking at the original source material, our φ is their ψ and our Φ is their ρ. Note also that there270

are some differences due to the choice of the direction of time. In our formulation, time for all terms flows271

backwards, thus Ei−1(t) is an extinction probability for the interval preceding interval i. In the formulation272

of Gavryushkina et al. (2014), the preceding extinction probability would be Ei+1(t) (or more accurately,273

pi+1(t)).274

S9.1 Terms A and B275

Our term A is a generalization of that in the Gavryushkina model, in both cases we have,276

Ai =
√

(λi − µi − φi)2 + 4λiφi. (S2)

It can be seen that the term B in the Gavryushkina model is a special case of ours. Gavryushkina et al.277

(2014) define,278

Bi =
(1− 2(1− Φi)Ei−1)λi + µi + φi

Ai
, (S3)

and we define instead279

Bi =
(1− 2Ci)λi + µi + φi

Ai
(S4)

where Ci is defined as

Ci =I(Φi>0)

(
(1− Φi)Ei−1

)
+I(Λi>0)

(
(1− Λi)Ei−1(si) + ΛiE

2
i−1(si)

)
+I(Mi>0)

(
(1−Mi)Ei−1(si) +Mi

)
+I(Φi=0,Λi=0,Mi=0)

(
Ei−1(si)

)
. (S5)

When there are no mass extinctions or birth bursts and Ri = ri, this can be simplified to,

Ci =I(Φi>0)

(
(1− Φi)Ei−1

)
+ I(Φi=0)

(
Ei−1(si)

)
=(1− Φi)Ei−1, (S6)

which is the same definition as in Gavryushkina et al. (2014).280
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S9.2 Extinction Probabilities281

The extinction probability terms in Gavryushkina et al. (2014), pi(t), are a special case of our Ei(t). Using our si to282

represent the more recent boundary of the ith interval, Gavryushkina et al. (2014) define,283

pi(t) =
λi + µi + φi −Ai

eAi(t−si)(1+Bi)−(1−Bi)

eAi(t−si)(1+Bi)+(1−Bi)

2λi
. (S7)

We define

Ei(t) =
λi + µi + φi −Ai

(1+Bi)−e−Ai(t−si)(1−Bi)

(1+Bi)+e−Ai(t−si)(1−Bi)

2λi
. (S8)

When there are no mass extinction or birth burst events and Ri = ri, B is the same in both models, and our definition284

is simply theirs where the last term on the numerator has been multiplied by285

eAi(t−si)

eAi(t−si)
.

Thus, pi(t) in Gavryushkina et al. (2014) is a special case of the Ei(t) defined in this paper.286

S9.3 Branch Probabilities287

Despite the similarities in both terms A and B, and the extinction probabilities, our Di(t) has no direct equivalent288

simpler case in the Gavryushkina et al. (2014) model. We define our Di(t) such that, for a branch that starts at time289

to ends at time ty (ty < to), the probability of observing that uninterrupted branch is D(to)/D(ty). Gavryushkina290

et al. (2014) define a similar quantity, qi(t),291

qi(t) =
4eAi(t−si)

(eAi(t−si)(1 +Bi) + (1−Bi))2
. (S9)

We define Di(t) as292

Di(t) = Di−1(si)
4e−Ai(t−si)

((1 +Bi) + e−Ai(t−si)(1−Bi))2
. (S10)

In the simpler case where there are no mass extinctions or birth bursts and Ri = ri, multiplying by293 (
eAi(t−si)

eAi(t−si)

)2

,

shows us that294

qi(t) =
Di(t)

Di−1(si)
.

In essence, where Di(t) corresponds to the probability of an unbroken lineage between time t and time 0, qi(t) track295

the probability of an unbroken lineage between time t and the nearest younger interval time si. This difference is296

accounted for in Gavryushkina et al. (2014) by multiplying the likelihood by qi−1(t)L(si)−Ii at every time si, where297

L(si)− Ii is the number of lineages that are extant at the end of the interval, not counting the lineages sampled at298

the corresponding tree-wide event-sampling time.299

S10 Arranging terms in the likelihood300

We note that our arrangement of terms in the likelihood is not the only possible option. We defined our branch301

segments such that they do not span multiple intervals and no birth bursts, intensive sampling events, or mass302

extinctions are possible. Because of this, our Di(t) reflect only the continuous rates λ(t), µ(t), and φ(t), and the303

probabilities of birth bursts, intensive sampling events, and mass extinctions appear in separate (non-D) terms of304

the likelihood. We could instead have defined branch segments to only end at observed births and samples, in which305

case the branch segments would cross interval times and the probabilities of intensive sampling events, and mass306

extinctions would appear only in Di(t).307

We also note that we can exploit the structure of the phylogeny to simplify the calculation for branch segments,308

term (vii) in the likelihood function. Along a single lineage, the probabilities of adjacent branch segments will cancel309

out because ty for one segment becomes to for the next. For segments that begin with bifurcations, the addition of310
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a new lineage means that a single D(to) remains in the numerator. For segments that end in tips, there is no next311

segment, and thus D(ty) remains in the denominator. If we take T to be the set of all tip times, we can compute312

(vii) as,313

D(tor)
∏
t∈N

D(t)
∏
t∈T

1

D(t)
.
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S11 Related models314

In Table S1, we present an overview of related work on birth-death processes. It should be noted that there are315

essentially two classes of papers in this list. There are papers that are concerned with the theory of computing the316

probability density of a tree given parameters, which often allow rates to be any time-varying function. There are317

also papers concerned with inferring diversification rates from phylogenies, which generally impose more restrictive318

assumptions on how rates may vary. Note that we are excluding here the literature on birth-death processes where319

the rate varies among lineages, which are beyond the scope of this paper. We also exclude comparison of models for320

sampling at the present, Φ0, a more thorough discussion of which is available in Höhna et al. (2011); Höhna (2014).321

Table S1: Time-varying birth-death models
Parameters that are absent from a model are marked with a dash (–), and can be assumed to be 0 compared to a model that
includes that parameter. Rates through time are classified by whether they are assumed to be constant (const.), piecewise
constant or episodic (epis.), or whether they are allowed to be any time-varying function (any). Tree-wide events are either
present (any) in a model or they are absent (–), except for tree-wide sampling which may be restricted to a single event at
the present (Φ0). Conditioning includes conditioning on the various survival conditions discussed in Section S6 (I-V), and the
number of tips (N). No conditioning listed is equivalent to simply conditioning on the time since the origin or MRCA. As many
methods have been re-implemented in multiple software packages, the conditioning column only considers conditions used in
likelihood equations in the cited paper. ∗Stadler (2010) and MacPherson et al. (2020) consider conditioning on the number of
extant tips.

Model and citation λ(t) µ(t) φ(t) r(t) Λ M Φ R Conditioning

Nee et al. (1994) any any – – – – Φ0 – –
Gernhard (2008) const. const. – – – – – – I, II, N
Stadler (2009) const. const. – – – – Φ0 – I, II, N
Morlon et al. (2011) any any – – – – Φ0 – II
Höhna (2014) any any – – – – Φ0 – II, N
Stadler (2011) epis. epis. – – – any Φ0 – II, N
Höhna (2015) any any – – – any Φ0 – II, N
May et al. (2016) epis. epis. – – – any Φ0 – II, N
Stadler (2010) const. const. const. 0 – – – – II, III, N∗

Stadler et al. (2012) const. const. const. const. – – – – –
Stadler et al. (2013) epis. epis. epis. 1.0 – – any – II
Gavryushkina et al. (2014) epis. epis. epis. epis. – – any – II
(MacPherson et al., 2020) any any any ?? – any any – I-V, N∗

Present paper epis. epis. epis. epis. any any any any I-V
Most general model any any any any any any any any I-V, N
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S12 Special Cases of the Birth-Death-Sampling-Treatment Pro-322

cess323

In the following subsection we provide some special cases of our model. This simply shows that our model is a324

generalization of many previously published birth-death models, and how these models are related to another.325

S12.1 Episodic birth-death process326

We get the episodic birth-death process when we specify the parameters as follows:

φ(t) = 0

Φi = 0 ∀ (i > 0)

Mi = 0

Λi = 0

This simplifies our equations to327

Ci = Ei−1

and

f(Ψ) =
2I−1

I!

×
∏
t∈N

[
λ(t)

]
×
∏
t∈B

[D(to)

D(ty)

]

S12.2 Episodic birth-death process with mass extinctions328

We get the episodic birth-death process with mass-extinctions when we specify the parameters as follows:

φ(t) = 0

Φi = 0 ∀ (i > 0)

Λi = 0

This simplifies our equations to329

Ci = (1−Mi)Ei−1(ti) +Mi

and

f(Ψ) =
2I−1

I!

×
∏
t∈N

[
λ(t)

]

×
l∏

i=1

(1−Mi)
L(si) (vi)

×
∏
t∈B

[D(to)

D(ty)

]

S12.3 Episodic fossilized-birth-death process330

We get the (purely continuous) episodic fossilized-birth-death process for purely extinct taxa when we specify the
parameters as follows:

r(t) = 0

Φi = 0

Mi = 0

Λi = 0
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This simplifies our equations to331

Ci = Ei−1(ti)

and

f(Ψ) =
2H−||A||−1

(H − ||A||)!

×
∏
t∈F

[
(φ(t)E(t))

]
×
∏
t∈A

[
φ(t)

]
×
∏
t∈N

[
λ(t)

]
×
∏
t∈B

[D(to)

D(ty)

]

S12.4 Skyline transmission process332

We get the skyline transmission-process model (Gavryushkina et al., 2014) by specifying parameters as follows,

Φi = 0

Mi = 0

Λi = 0

This simplifies our equations to333

Ci = Ei−1(ti)

and334

f(Ψ) =
2H−1

H!

×
∏
t∈F

[
φ(t)

(
r(t) +

(
1− r(t)

)
E(t)

)]
×
∏
t∈A

[
φ(t)(1− r(t))

]
×
∏
t∈N

[
λ(t)

]
×
∏
t∈B

[D(to)

D(ty)

]

S12.5 Episodic transmission process with event-samples335

We get the episodic sampled ancestor skyline model of (Gavryushkina et al., 2014) as follows,

Mi = 0

Λi = 0

Ri = r(si)

This simplifies our equations to336

Ci = (1− Φi)Ei−1(ti)

and337
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f(Ψ) =
2I+H−||A||−1

(I +H − ||A||)!

×
l∏

i=0

[
(1− Φi)

(L(si)−Ii)ΦIi
i (1−Ri)

Ti(Ri + (1−Ri)E(si))
Ii−Ti

]
×
∏
t∈F

[
φ(t)

(
r(t) +

(
1− r(t)

)
E(t)

)]
×
∏
t∈A

[
φ(t)(1− r(t))

]
×
∏
t∈N

[
λ(t)

]
×
∏
t∈B

[D(to)

D(ty)

]

S12.6 Episodic transmission process with event-samples and perfect treatment338

We get the “birth-death skyline” model of (Stadler et al., 2013) as a simplification of the episodic sampled ancestor
skyline model by assuming perfect treatment as follows,

r(t) = 1

Mi = 0

Λi = 0

This simplifies our equations to339

Ci = (1− Φi)Ei−1(ti)

and340

f(Ψ) =
2H+I−1

(H + I)!

×
l∏

i=0

[
(1− Φi)

(L(si)−Ii)ΦIi
i

]
×
∏
t∈F

[
φ(t)

]
×
∏
t∈N

[
λ(t)

]
×
∏
t∈B

[D(to)

D(ty)

]
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S13 Validation of likelihood function of episodic fosslized-birth-341

death process342

The derivation of our likelihood function, i.e., the probability density function of a phylogenetic tree, relies heavily343

on the extinction probability E(t) and the probability of an observed lineage D(t). In the main text we provided our344

mathematical derivations. Here, we additionally validate the analytical solutions using forward simulations under the345

generalized fosslized-birth-death process. We started the simulations with one single lineage and simulated forward in346

time starting at T = {0.01, 0.02, . . . , 0.99, 1.0} time units in the past. We chose λ(t) = 1.0, µ(t) = 0.9 and φ(t) = 0.1.347

Additionally, we divided the total time into four epochs, thus, allowing for tree-wide events at t = {0.25, 0.5, 0.75}348

with probabilities Λ = {0.0, 0.0, 0.3}, M = {0.0, 0.5, 0.0} and Φ = {0.2, 0.0, 0.0}. We repeated the simulations 100,000349

times and recorded how often the process went extinct (E(t)) and how often exactly one lineage was observed (D(t)).350

Reassuringly, the probabilities obtained from the simulations and the analytical solutions match exactly (Figure S13).351

The major novelty of our generalized birth-death-sampling process are the tree-wide events for mass extinctions352

and bursts of births. Thus, our simulations focusing on the three tree-wide events are sufficient as the impact of the353

continuous rates of speciation, extinction and sampling is validated through comparisons with the special cases in354

the previous section.355
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Figure S13: Comparing the analytical solutions for E(t) and D(t) with probabilities obtained by forward simulating the
birth-death-sampling process. The analytical solutions match the expectations obtained through simulations.
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S14 Validation of likelihood function and implementation using356

simulation based calibration357

We performed a simulation based calibration to validate our episodic fossilized-birth-death process. Standard theory358

of Bayesian inference defines that, if the data are generated under exactly the same model as used for inference,359

then the true parameter values are included in the credible intervals exactly with the frequency corresponding to the360

size of the credible interval (Huelsenbeck and Rannala, 2004; Cook et al., 2006). For example, the true parameter361

value should be covered in a 90% credible interval in 90% of the simulation replicates, neither more or less often. A362

nice feature of simulation based calibration is that the validation only works if all three, the simulation method, the363

likelihood function and the inference method (e.g., the MCMC algorithm) are correctly implemented.364

To validate our episodic fossilized-birth-death process, we choose the following approach. We designed a model365

with four equal-length epochs over a total time of 67.69 time units for the speciation, extinction and fossilization rates.366

Our assumption is that four epoch are sufficient to capture any potential problem with the per-epoch implementation367

but still being computationally manageable to perform thousands of MCMC analyses.368

In principle, the choice of prior distribution does not matter. However, in practice, it is beneficial to choose realistic369

prior distributions so that trees simulated under parameters chosen from the prior distribution are reasonable, i.e., are370

neither too large nor too improbable to survive. Thus, we specified a prior distribution on the net-diversification rate371

instead of the speciation rate to ensure that the simulated parameter values yield a positive net-diversification rate372

and hence the probability of the process going extinct is not close to 1.0. We employed a lognormal prior distribution373

on the net-diversification rate λi−µi with mean 0.01 and standard deviation 0.58, lognormal prior distribution on the374

extinction rate µi with mean 0.01 and standard deviation 0.58, and a lognormal prior distribution on the fossilization375

rate φi with mean 0.04 and standard deviation 0.58. Additionally, we employed a Beta(20, 2) prior distribution on376

each the mass extinction death probability, the birth probability at a burst event, and the sampling probability at a377

tree-wide sampling event.378

We implemented a forward simulator (which was also used for the posterior predictive distributions) and simulated379

trees given the parameter values drawn from the prior distribution. We conditioned the simulation on the root age380

of the extant tree (condition II, survival of the root). Then, we performed a standard MCMC algorithm using the381

same method as for the empirical analyses except that we used independent per-epoch priors instead of the HSMRF382

priors. The MCMC simulation was run for 10,000 iterations with 30 moves per iteration. We repeated this procedure383

10,000 times to compute the frequency of how often the true parameter values were covered in the credible interval.384

Finally, we computed and plotted the coverage frequencies for different credible interval sizes (Figure S14). The385

varying credible interval sizes help to validate that the posterior distributions are neither too peaked nor too flat due386

to heavy and light tailed distributions. Our results (Figure S14) demonstrate nicely that our forward simulator, our387

likelihood function, and our MCMC algorithm are all implemented correctly.388
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Figure S14: Validation of our derived likelihood function of the episodic fossilized-birth-death process with tree-wide events
of burst of births, mass extinction, and sampling. We performed simulation based calibration and validated that the true
parameter values are covered with the expected probability, i.e., the size of the credible interval and the frequency of being
including have to match. For all parameters in our example we observe a very good match between the expected and simulated
coverage frequencies, indicating correct derivation of the theory and implementation of the likelihood function as well as MCMC
algorithm.
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S15 Model parameterization389

S15.1 HSMRF390

In Listing 1 we provide the prior model specification for the speciation rates as employed in our analyses. RevBayes391

(Höhna et al., 2016) provides enormous flexibility in specifying how diversification rates vary through time and across392

lineages. While the model we have employed here has been shown to work well in certain circumstances (Magee393

et al., 2020), it remains open to the biologist and future work which type of diversification-rate variation is most394

prevalent and what model is most robust. Note that the speciation rate at present has two hyperparameters that are395

determined from a prior analysis of the dataset at hand using a constant-rate fossilized birth-death model.396

1 s p e c i a t i o n a t p r e s e n t ∼ dnGamma( s p e c i a t i o n r a t e h y p e r p r i o r a l p h a ,
2 s p e c i a t i o n r a t e h y p e r p r i o r b e t a )
3
4 s p e c i a t i o n g l o b a l s c a l e ∼ dnHalfCauchy (0 , 1 )
5
6 for ( i in 1 : (NUM INTERVALS−1)) {
7
8 # Variab le−s c a l e d var iances f o r h i e r a r c h i c a l horseshoe
9 s i g m a s p e c i a t i o n [ i ] ∼ dnHalfCauchy (0 , 1 )

10
11 # non−c e n t r a l i z e d parameter i za t i on o f horseshoe
12 d e l t a l o g s p e c i a t i o n [ i ] ∼ dnNormal ( mean=0,
13 sd=s i g m a s p e c i a t i o n [ i ]∗
14 s p e c i a t i o n g l o b a l s c a l e ∗
15 s p e c i a t i o n g l o b a l s c a l e h y p e r p r i o r )
16 }
17
18 # Assemble f i r s t −order d i f f e r e n c e s and s p e c i a t i o n at pre sen t
19 # in to the random f i e l d p r i o r f o r the s p e c i a t i o n ra t e
20 s p e c i a t i o n := fnassembleContinuousMRF ( s p e c i a t i o n a t p r e s e n t ,
21 d e l t a l o g s p e c i a t i o n ,
22 i n i t i a l V a l u e I s L o g S c a l e=FALSE,
23 order =1)

Listing 1: HSMRF on speciation rates.

We employed exactly the same type of model and priors on the extinction and fossilization rates. To keep this397

excerpt of our model concise, we show only the speciation rates.398

S15.2 Improving MCMC399

Applying the HSMRF prior distribution to birth, death, and fossilization rates can make MCMC difficult. We400

previously developed an MCMC framework for inference consisting of Metropolis-Hastings moves on the initial rate401

and a mixture of elliptical slice sampling and Gibbs sampling (Magee et al., 2020). This elliptical slice and Gibbs402

mixture works on the parameterization of the HSMRF prior in Listing 1, with the elliptical slice sampler working on403

the delta_log_speciation while the Gibbs sampler works on the sigma_speciation and speciation_global_scale.404

The Gibbs move as previously implemented updates all the sigma_speciation in order, then updates405

speciation_global_scale. As the speciation_global_scale parameter can be quite difficult to sample, we have406

implemented a move that is a p, (1 − p) mixture of the previous Gibbs update and a Gibbs update solely on407

speciation_global_scale. The conditionals involved in updating speciation_global_scale are unchanged, but as408

the speciation_global_scale parameter depends on both the vector sigma_speciation and the vector409

delta_log_speciation, more frequent updates to the speciation_global_scale parameter allow it to adjust more410

quickly to changes in delta_log_speciation (and vice-versa).411

The other update is a simple swap move that operates jointly on the delta_log_speciation and the412

sigma_speciation. We outline this move in Listing 2; in brief, it simply swaps adjacent values of413

delta_log_speciation[i] and sigma_speciation[i] over the entire field. The move can migrate any pair414

(delta_log_speciation[i], sigma_speciation[i]) to any pair (delta_log_speciation[j], sigma_speciation[j]),415

however it does not add any new variation to the parameters, and thus the move can only be used to augment MCMC416

approaches that actually introduce new values into the vectors delta_log_speciation and sigma_speciation, such417
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as the elliptical slice sampler and Gibbs mixture. The move is symmetric, and so the Hastings ratio is 0. The418

motivation for the move is as follows. The HSMRF prior enforces that most delta_log_speciation[i] are very419

small, such that the speciation rate contains a number of relatively flat regions interspersed with “jumps” where420

the rate changes more rapidly. In practice, there is often considerable uncertainty regarding exactly which inter-421

vals contain the jumps, and this move allows us to directly explore this uncertainty and move the jump locations422

around. Simultaneously, this move preserves the large-scale features of the speciation rate: for any pair of indices423

i, j the total change in the speciation rate at i and at j will remain relatively consistent. The move operates on424

pairs of (delta_log_speciation[i], sigma_speciation[i]) because these are compatible with each other; swap-425

ping a large-magnitude delta_log_speciation[i] with a small-magnitude delta_log_speciation[j] would pair a426

large-magnitude delta_log_speciation[i] with the small sigma_speciation[j] and this would lead to rejection.427

1 u = randBernou l l i (p=0.5)
2
3 s t a r t = f l o o r (u)
4 end = s t a r t + 2 ∗ ( f l o o r ( l ength ( d e l t a l o g s p e c i a t i o n ) − s t a r t ) / 2) − 1)
5
6 i = s t a r t
7
8 while ( i < end ) {
9 tmp d = d e l t a l o g s p e c i a t i o n [ i ]

10 tmp s = s i g m a s p e c i a t i o n [ i ]
11
12 d e l t a l o g s p e c i a t i o n [ i ] = d e l t a l o g s p e c i a t i o n [ i +1]
13 s i g m a s p e c i a t i o n [ i ] = s i g m a s p e c i a t i o n [ i +1]
14
15 d e l t a l o g s p e c i a t i o n [ i +1] = tmp d
16 s i g m a s p e c i a t i o n [ i +1] = tmp s
17
18 i = i + 2
19 }

Listing 2: HSMRF swap move.

28



References428

Colless, D. H. 1982. Review of Phylogenetics: Theory and Practice of Phylogenetic Systematics. Systematic Zoology429

31:100–104.430

Cook, S. R., A. Gelman, and D. B. Rubin. 2006. Validation of software for Bayesian models using posterior quantiles.431

Journal of Computational and Graphical Statistics 15:675–692.432

Crisp, M. D. and L. G. Cook. 2009. Explosive radiation or cryptic mass extinction? interpreting signatures in433

molecular phylogenies. Evolution 63:2257–2265.434

Duchene, S., R. Bouckaert, D. A. Duchene, T. Stadler, and A. J. Drummond. 2019. Phylodynamic model adequacy435

using posterior predictive simulations. Systematic Biology 68:358–364.436

Fiala, K. L. and R. R. Sokal. 1985. Factors determining the accuracy of cladogram estimation: evaluation using437

computer simulation. Evolution 39:609–622.438

Gavryushkina, A., D. Welch, T. Stadler, and A. J. Drummond. 2014. Bayesian inference of sampled ancestor trees439

for epidemiology and fossil calibration. PLoS Computational Biology 10:e1003919.440

Gernhard, T. 2008. The conditioned reconstructed process. Journal of Theoretical Biology 253:769–778.441
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