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SUMMARY 
 
Survival requires both the ability to persistently pursue goals and the ability to determine when it 
is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 
lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating 5 
the balance between reward-seeking and disengaged behavioral states remains unclear. Here, 
we show that LHb neural activity is tonically elevated during minutes-long disengagements from 
reward-seeking behavior, whether due to repeated reward omission or following sufficient 
consumption of reward. Further, we show that LHb inhibition extends ongoing reward-seeking 
behavioral states but does not prompt re-engagement. We find no evidence for similar tonic 10 
activity fluctuations in ventral tegmental area (VTA) dopamine neurons. Our findings implicate the 
LHb as a key mediator of disengagement from reward-seeking behavior in multiple contexts and 
argue against the idea that the LHb contributes to decisions solely by signaling aversion. 
 
Keywords: lateral habenula, ventral tegmental area, dopamine, reward, tonic activity, calcium 15 
imaging, motivated behavior, behavioral state, disengagement, demotivation 
 
INTRODUCTION 
 
Animals transition between directed pursuit of rewards and exploratory or quiescent behavioral 20 
states on a timescale of minutes to hours (Ferster and Skinner, 1957; Cohen et al., 2007; Flavell 
et al., 2013; Hills et al., 2015; Stern et al., 2017; Ebitz et al., 2018; Marques et al., 2020). Factors 
that influence the persistence of reward-seeking behavioral states include current and predicted 
homeostatic need (Aponte et al., 2011; Chen et al., 2015), reward proximity (Howe et al., 2013; 
McGinty et al., 2013; Westbrook and Frank, 2018; Guru et al., 2020), the history of action 25 
successes and failures (Vroom, 1964; Charnov, 1976; Ullsperger and von Cramon, 2003; Ebitz 
et al., 2019), opportunity costs (Niv et al., 2007; Kurzban et al., 2013; Boureau et al., 2015), and 
environmental threats (Lecca et al., 2017; Alhadeff et al., 2018). 

The past decade has seen an intense surge of interest in the role of the lateral habenula (LHb) 
in regulating reward-seeking behavior. The LHb, part of the epithalamus, is a major conduit of 30 
information from the forebrain to brainstem neuromodulatory centers, and regulates behavior at 
a range of timescales (Bianco and Wilson, 2009; Hikosaka, 2010; Proulx et al., 2014; Hu et al., 
2020). At a sub-second timescale, LHb neurons fire phasically when predicted reward is omitted, 
when cues that predict reward omission or punishment appear, and when shocks or air-puffs are 
delivered (Matsumoto and Hikosaka, 2007, 2009; Lecca et al., 2017). At longer timescales, neural 35 
and metabolic activity in the LHb is elevated during helplessness and passive coping (Caldecott-
Hazard et al., 1988; Morris et al., 1999; Shumake et al., 2003; Mirrione et al., 2014; Proulx et al., 
2018; Yang et al., 2018; Andalman et al., 2019), and excitatory synaptic transmission onto LHb 
neurons is potentiated in depression-like behavioral states (Li et al., 2011, 2013; Shabel et al., 
2014; Lecca et al., 2016).  40 
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Although these findings have been interpreted as evidence that elevated LHb neural activity 
reflects aversion (Friedman et al., 2011; Stamatakis and Stuber, 2012; Lammel et al., 2012; 
Proulx et al., 2014), they also raise the possibility that LHb neural activity may simply function as 
a valence-neutral brake on reward-seeking behavior. Indeed, there is anatomical and behavioral 
evidence that supports this idea. Midbrain dopamine (DA) neurons play an essential role in 5 
supporting sustained goal-directed behavior (Salamone and Correa, 2012; Dolan and Dayan, 
2013; Howe et al., 2013; Guru et al., 2020), and the LHb inhibits DA neural activity via the 
GABAergic rostromedial tegmental nucleus (RMTg) (Christoph et al., 1986; Ji and Shepard, 2007; 
Matsumoto and Hikosaka, 2007; Hong et al., 2011). LHb lesions reduce reward omission dips in 
DA neural activity (Tian and Uchida, 2015), LHb stimulation reduces the number of actions that 10 
animals are willing to perform for rewards (Proulx et al., 2018), and LHb stimulation reduces 
entries to spatial locations where stimulation is delivered (Stamatakis and Stuber, 2012). 
Intriguingly, lesioning the LHb or silencing excitatory inputs to the LHb elevates consumption of 
palatable food but not contaminated food (Paul et al., 2011; Stamatakis et al., 2016). These results 
are consistent with a role for the LHb in suppressing reward-seeking behavior but more difficult 15 
to reconcile with a model in which the primary role of the LHb is to signal aversion. 

Here, we combine fiber photometry, optogenetics, and multi-unit electrophysiology in freely 
behaving mice to investigate the role of tonic LHb neural activity in regulating the persistence of 
reward-seeking behavioral states. Our findings reveal that large, sustained increases in tonic LHb 
neural activity accompany minutes-long disengagements from reward-seeking behavior, and that 20 
these tonically excited LHb states can be driven either by task disengagement due to repeated 
reward omission (negatively valenced state) or by spontaneous task disengagement following the 
consumption of sufficient reward (positively valenced state). Further, we demonstrate a causal 
role for LHb neural activity in regulating reward-seeking behavior by showing that LHb inhibition 
extends reward-seeking behavioral states. Our results strongly support the hypothesis that a key 25 
role of tonic LHb neural activity is to promote disengagement from reward-seeking behavior. 
 
RESULTS 
 
Calcium Dynamics in Genetically Targeted LHb Neurons  30 
The LHb and surrounding brain tissue are composed primarily of glutamatergic neurons, and 
achieving expression of genetically encoded tools in the LHb while confidently excluding 
expression in adjacent brain regions is challenging. In the Klk8-Cre (NP171) mouse line Cre 
recombinase is expressed in the habenula but not in adjacent brain regions (GENSAT; Proulx et 
al., 2014), a feature that allowed us to restrict the expression of genetically-encoded optical 35 
indicators and actuators. Although Cre is also expressed in the medial habenula (MHb) in this 
line, we were able to consistently minimize MHb expression by refinement of viral vector serotype, 
injection volume, and coordinates (see Methods). To characterize Cre-dependent gene 
expression in Klk8-Cre (NP171) mice, we injected AAV9-CAG-Flex-GFP in the LHb and quantified 
co-localization of GFP and NeuN, a marker of neuronal identity (Mullen et al., 1992). We found 40 
that GFP expression was highly specific to neurons (97.8% +/- 0.49% specificity), and that most 
NeuN-labeled neurons at the injection site were GFP-positive (71.6% +/- 2.97% penetrance, 
Figure 1A).  
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To further validate use of the Klk8-Cre (NP171) mouse line for LHb neural targeting, we used 
fiber photometry to monitor LHb population neural dynamics during reward delivery and omission 
(Cui et al., 2013; Gunaydin et al., 2014). We injected a genetically-encoded calcium indicator, 
AAV9-CAG-Flex-GCaMP6s (Chen et al., 2013), into the LHb of Klk8-Cre (NP171) mice, and 
implanted an optical fiber over the LHb to monitor calcium-dependent fluorescence (Figures 1C 5 
and 1D). Because LHb neurons are inhibited by reward delivery and excited by the omission of 
predicted rewards (Matsumoto and Hikosaka, 2007, 2009; Bromberg-Martin and Hikosaka, 2011), 
we examined LHb activity during performance of a simple self-paced operant task. In this ‘poke-
reward’ task, mice poked their nose into a port on one side of an operant chamber in order to 
trigger the delivery of a water reward on the other side (Figure 1B). We recorded LHb activity 10 
while mice performed a probabilistic version of this task in which each trial had a 20% chance to 
yield no reward, a 60% chance to yield a medium reward (10 µl), and a 20% chance to yield a 
large reward (20 µl). As expected, LHb neural activity was negatively correlated with reward size 
(GCaMP6s (n = 7), GFP (n = 3), p < 0.0001, two-sample t-test, Figures 1E and 1F). 

For validation, we recorded LHb activity in Vglut2-ires-Cre mice (Vong et al., 2011) using fiber 15 
photometry (Figures S1A and S1B), and in C57BL6/J mice using multi-unit electrophysiology 
(Figures S1E and S1F) during performance of the same task. Both LHb Vglut2 neural activity 
(GCaMP6 (n = 3), GFP (n = 3), p < 0.0001, two-sample t-test, Figures S1C and S1D) and LHb 
multi-unit activity (n = 40 electrodes in 6 mice, p < 0.0001, two-sample t-test, Figures S1G and 
S1H) were negatively correlated with reward size, consistent with our findings in Klk8-Cre 20 
(NP171) mice and further supporting the use of these mice for investigating LHb neural dynamics 
and function. We also recorded activity from VTA DA neurons in DAT-Cre mice (Bäckman et al., 
2006) during performance of the same task. Consistent with previous findings (Schultz et al., 
1997; Matsumoto and Hikosaka, 2007; Cohen et al., 2012), we found that VTA DA neurons were 
phasically excited during delivery of medium and large rewards and inhibited during reward 25 
omission (GCaMP6 (n = 6), GFP (n = 3), p < 0.0001, two-sample t-test, Figures 1G-1J). 
 
Tonically Elevated LHb Activity During Spontaneous End-of-Session Task Disengagement 
Intriguingly, the largest LHb activity changes we observed were periods of sustained excitation 
that occurred toward the end of poke-reward task sessions when mice began to spontaneously 30 
disengage from task performance (Figures 2A and 2B). LHb neural activity was tonically elevated 
throughout these disengaged periods and decreased if mice spontaneously re-engaged in the 
task. To quantify this effect, we used a two-state hidden Markov model (HMM, see Methods) to 
identify periods of time during which mice were less engaged in task performance (low task 
engagement states) and periods during which mice were more strongly engaged (high task 35 
engagement states). We have previously used this approach to differentiate periods of exploration 
and exploitation (Ebitz et al., 2018, 2019). We regressed task engagement state onto ΔF/F for 
each session, and included running speed as a predictor to assess whether locomotor activity 
may also contribute to tonic LHb activity. LHb neural activity was negatively correlated with task 
engagement state, but was not correlated with either running speed or the interaction between 40 
task engagement state and running speed (GCaMP6 (n = 7), GFP (n = 3), engagement state: p 
< 0.0001, running speed: p = 0.7287, engagement state X running speed: p = 0.9637, two-sample 
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t-test, Figure 2C). Thus, tonically elevated LHb neural activity reflects spontaneous 
disengagement from reward-seeking task performance. 

Findings from Vglut2-Cre mice were similar (GCaMP6 (n = 3), GFP (n = 3), engagement state: 
p = 0.0029, running speed: p = 0. 2454, two-sample t-test, Figures S2A and S2B), but we 
observed a positive correlation between LHb neural activity and speed in multi-unit 5 
electrophysiology data (n = 40 electrodes in 6 mice, engagement state: p < 0.0001, running speed: 
p < 0.0001, t-test compared to shuffled sample, Figures S2C and S2D). Interestingly, when we 
examined VTA DA neural activity in DAT-Cre mice during this task we found no correlation 
between neural activity and engagement state or the interaction between engagement state and 
running speed (GCaMP6 (n = 6), GFP (n = 3), engagement state: p = 0.6767, engagement state 10 
X running speed: p = 0.1865, two-sample t-test, Figures 2D-2F), but neural activity was negatively 
correlated with running speed alone (running speed: p = 0.0203, two-sample t-test). The absence 
of tonic VTA DA neural activity changes between high and low task engagement states is 
reminiscent of previous reports of stable baseline spiking activity in VTA DA neurons through 
changing schedules of rewards or punishments (Cohen et al., 2015; Mohebi et al., 2019). 15 
 
Baseline Tonic LHb Activity Reflects Task Engagement State 
To confirm that tonic disengagement-related LHb excitation was not simply a consequence of 
differences in phasic reward-related activity across high and low engagement states, we 
examined average LHb activity during two specific task epochs in both high and low engagement 20 
states: the baseline epoch (1s prior to each trial-initiating poke) and the reward epoch (1s following 
the first lick). We found greater mean LHb neural activity in low compared to high engagement 
states during both epochs in Klk8-Cre (NP171) mice (n = 7, baseline: p = 0.0003, reward: p = 
0.0001, paired samples t-test, Figures 3A and 3B). We found the same effect in Vglut2-Cre mice 
(n = 3, baseline: p = 0.0115, reward: p = 0.0104, paired samples t-test, Figures S3A and S3B) 25 
and via multi-unit electrophysiology (n = 40 electrodes in 6 mice, baseline: p < 0.0001, reward: p 
< 0.0001, paired samples t-test, Figures S3C and S3D). In contrast, VTA DA neural activity 
during the baseline epoch did not depend on task engagement state (n = 6, p = 0.4183, paired 
samples t-test, Figures 3C and 3D). However, VTA DA neural activity during the reward epoch 
was significantly greater in high engagement states (n = 6, p < 0.0001, paired samples t-test, 30 
Figures 3C and 3D), likely due to the enhanced phasic VTA DA reward response in this state 
(Bassareo and Chiara, 1999; Branch et al., 2013; Papageorgiou et al., 2016). 

Task disengagements occurring near the end of each 30-minute task session suggest satiety, 
but it is also possible that disengagements occurred because of fatigue or reward omission. If 
fatigue induced task disengagement, mice might be expected to move less during low 35 
engagement states. To investigate this possibility we compared locomotor activity during periods 
of high and low task engagement, but we found that average speed was not significantly different 
between states (high engagement speed: 5.6326 ± 0.1348 cm/s, low engagement speed: 5.0406 
± 0.1062 cm/s, n = 105 sessions, p = 0.6031, two-sample t-test). If reward omission drove 
disengagement, entries into low engagement states would be preceded by non-rewarded trials 40 
more often than expected by chance. Contrary to this hypothesis, we found that entries into low 
engagement states were actually less likely than chance to be preceded by reward omissions and 
more likely than chance to be preceded by medium or large rewards (no reward: p < 0.0001, 
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medium reward: p = 0.0037, large reward: p = 0.0001, binomial test, Figure S3E). Thus, mice 
were more likely to disengage after rewards that brought them closer to satiety. We also found 
that entries into high engagement states were more likely than chance to be preceded by reward 
omissions and less likely than chance to be preceded by medium rewards (no reward: p < 0.0001, 
medium reward: p < 0.0001, large reward: 0.8418, binomial test, Figure S3E), which may reflect 5 
the extinction burst (Skinner, 1938; Cooper et al., 1987). Together, these findings argue against 
the hypothesis that fatigue or reward omission drove entry into low engagement states in the 
probabilistic poke-reward task and suggest that mice disengaged from task performance toward 
the end of sessions because they had satisfied their homeostatic need. 
 10 
LHb Activity is Tonically Elevated During Task Disengagement Due to Repeated Reward 
Omission 
We next asked whether tonic LHb excitation is specific to end-of-session task disengagement, or 
if LHb neural activity might also be elevated when mice disengage in response to other factors 
such as repeated reward omission. To address this question, we recorded LHb neural activity in 15 
Klk8-Cre (NP171) mice while mice performed a blocked version of the poke-reward task in which 
5-minute blocks of medium-reward trials alternated with 5-minute blocks of no-reward trials 
(Figure 1B). As in the probabilistic poke-reward task, we found that LHb neural activity was high 
during task disengagements and low during on-task behavior (Figures 4A and 4B). To quantify 
this effect, we regressed task engagement state onto ΔF/F for each session and included block 20 
reward contingencies and running speed as predictors. LHb neural activity was negatively 
correlated with task engagement state and block reward, but was not correlated with running 
speed (GCaMP6 (n = 6), GFP (n = 3), engagement state: p = 0.0295, block reward: p = 0.0268, 
running speed: p = 0.4364, two-sample t-test, Figure 4C). Regression coefficients for two- and 
three- way interactions were not different between GCaMP and GFP groups (p > 0.05 for all 25 
comparisons, paired samples t-tests). These results were confirmed in Vglut2-Cre mice (GCaMP6 
(n = 3), GFP (n = 3), engagement state: p = 0.0145, block reward: p = 0.6470, running speed: p 
= 0.1563, two-sample t-test) and via multiunit electrophysiology (n = 40 electrodes in 6 mice, 
engagement state: p < 0.0001, block reward: p < 0.0001, running speed: p < 0.0001, two-sample 
t-test, Figure S4). VTA DA neural activity in DAT-Cre mice positively correlated with block reward, 30 
but we found no correlation with engagement state or running speed (GCaMP6 (n = 6), GFP (n = 
3), engagement state: p = 0.7294, block reward: p = 0.0407, running speed: p = 0.5685, two-
sample t-test, Figures 4D-4F). Together, these data reveal that tonically elevated activity in LHb 
neurons accompanies task disengagements prompted by factors with both negative and positive 
valence. 35 

 
Rising LHb Activity Precedes Task Disengagement 
In order to characterize the emergence of elevated tonic LHb activity during task disengagement, 
we examined the trials leading up to and following transitions into low engagement states. We 
averaged LHb neural activity during the baseline period (1 s prior to the trial-initiating poke) for 40 
each of the 10 trials preceding disengagement, and we calculated the slope of the change in 
average activity from the first to the last of these trials. In the probabilistic poke-reward task, we 
observed that average LHb activity in Klk8-Cre (NP171) mice increased across the trials 
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preceding disengagement, while average VTA DA activity did not (Klk8-Cre: GCaMP6 (n = 7), 
GFP (n = 3), DAT-Cre: GCaMP6 (n = 6), GFP (n = 3), Klk8-Cre slope: p = 0.0195, DAT-Cre slope: 
p = 0.4850, two-sample t-test, Figures 5A and 5B). We found similar effects during the blocked 
poke-reward task (Klk8-Cre: GCaMP6 (n = 6), GFP (n = 3), DAT-Cre: GCaMP6 (n = 6), GFP (n 
= 3), Klk8-Cre slope: p = 0.0060, DAT-Cre slope: p = 0.7910, two-sample t-test, Figures 5C and 5 
5D). To determine how far in advance of the state transition LHb tonic activity began to increase, 
we calculated the slope of the change in baseline activity across a symmetrical 10 trial window 
slid in 1 trial steps across the transition into low engagement states. For both tasks, LHb activity 
began increasing about 10 trials prior to entry into low engagement states (Figure 5E-F). 
 10 
LHb Inhibition Extends Reward-Seeking Behavioral States  
If tonically elevated LHb neural activity promotes task disengagement, inhibiting the LHb should 
disrupt the ability to disengage from on-task behavior. To test this hypothesis, we optogenetically 
inhibited LHb neurons while mice performed the poke-reward task. We bilaterally injected AAV-
EF1α-DIO-eNpHR3.0-eYFP into the LHb of Klk8-Cre (NP171) mice and implanted optical fibers 15 
above the LHb for light delivery (Figures 6A and 6B). We asked two questions: 1) does LHb 
inhibition during disengaged states prompt re-engagement in task performance? 2) does LHb 
inhibition during task-engaged states disrupt the ability to disengage from task performance? 

To examine whether LHb inhibition during disengaged states prompts task re-engagement, 
we allowed mice to freely perform poke-reward trials for medium rewards and waited until they 20 
spontaneously refrained from task performance for two minutes. At this point light delivery was 
initiated, and inhibition was maintained until mice spontaneously performed another trial (Figure 
6C). We found that inhibiting LHb during disengaged states had no effect on the latency to re-
engage (NpHR (n = 5), GFP (n = 5), p = 0.6669, paired samples t-test, Figure 6D). To examine 
whether LHb inhibition disrupts the ability to disengage we began as above, but instead of starting 25 
inhibition after two minutes without trials we continued to wait until mice spontaneously completed 
another trial. At this point light delivery was initiated, and inhibition was maintained until mice 
again refrained from task performance for two minutes. Here, we found that LHb inhibition 
increased the mean number of trials completed before the next disengagement (NpHR (n = 5), 
GFP (n = 5), p = 0.0316, paired samples t-test, Figure 6E). Thus, LHb inhibition extends task-30 
engaged states but does not prompt re-engagement in disengaged mice.  

Finally, we asked whether extended task engagement upon LHb inhibition was specific to 
conditions in which reward was available, or whether LHb inhibition promoted persistent task 
performance even in the absence of reward. To address this question, mice were allowed to 
perform the poke-reward task as above, but no rewards were delivered at any time during task 35 
performance during this session. Here, we found no effect of LHb inhibition on either the latency 
to re-engage (NpHR (n = 5), GFP (n = 5), p = 0.8208, paired samples t-test, Figure S6A) or on 
the number of trials completed before the next disengagement (NpHR (n = 5), GFP (n = 5), p = 
0.3367, paired samples t-test, Figure S6B). Thus, LHb inhibition only prolongs task-engaged 
states when rewards are available. Together, these findings support a framework where LHb 40 
neural activity serves as a brake on the neural systems that promote reward-seeking behavior. 
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DISCUSSION 
 
Here, we sought to investigate how LHb neural activity regulates the balance between engaged 
reward-seeking and disengaged behavioral states. LHb recordings during a self-paced reward-
seeking task revealed large, sustained increases in neural activity that occurred during minutes-5 
long task disengagements. We observed these activity increases both when disengagement 
followed repeated reward omission and when disengagement occurred spontaneously at the end 
of task sessions following sufficient reward consumption. Phasic LHb neural activity upon reward 
omission was also observed, but was moderate in comparison to state-dependent tonic changes. 
In contrast, we observed large phasic reward signals in VTA DA neural activity but did not detect 10 
state-dependent tonic changes, consistent with previous studies (Cohen et al., 2015; Mohebi et 
al., 2019). Finally, we found that inhibiting LHb neurons prolonged ongoing reward-seeking 
behavioral states but did not prompt disengaged mice to resume task performance. 

Our findings suggest that LHb neural activity may function as a brake or stop signal (Seeley 
et al., 2012), potentially acting in opponency to DA signals that promote reward-seeking behavior, 15 
a canonical circuit architecture that can be found in neural circuits ranging from the retina to 
essential escape circuits (Joesch and Meister, 2016; Koyama et al., 2016) and which has an 
extensive theoretical foundation in evidence accumulation models of perceptual decision making 
(Shadlen and Newsome, 2001; Gold and Shadlen, 2007; Bogacz et al., 2006; van Ravenzwaaij 
et al., 2012). LHb neural activity has been linked to the cessation of motor output (Hikosaka, 20 
2010), but it also has been shown to facilitate active escape behavior (Lecca et al., 2017), both 
of which are compatible with a primary role for LHb circuits in prompting disengagement from 
reward-seeking behavior. 

Disengagement from reward-seeking behavior can be triggered by a variety of factors with 
positive or negative valence. For example, an animal might stop attempting to obtain water either 25 
because it has already consumed enough water and its homeostatic needs have been met, or 
because its actions to obtain water have proven ineffective. Homeostatic resolution is positively 
valenced (Betley et al., 2015; Garfield et al., 2015; Schéle et al., 2017) and action failure is 
negatively valenced (Skinner, 1953; Leitenberg, 1965; Amsel, 1992; Papini and Dudley, 1997), 
but both factors prompt task disengagement. Supporting this notion, the LHb receives its 30 
strongest afferents from basal ganglia circuits involved in action selection and evaluation and 
hypothalamic circuits involved in homeostatic regulation (Tachibana and Hikosaka, 2012; 
Jennings et al., 2013; Mahler et al., 2014; Root et al., 2015; Stephenson-Jones et al., 2016; Chang 
et al., 2017; Ottenheimer et al., 2018). Inputs from lateral hypothalamus, lateral preoptic area, 
ventral pallidum, and entopeduncular nucleus/internal globus pallidus are particularly robust 35 
(Herkenham and Nauta, 1977; Hong and Hikosaka, 2008; Shabel et al., 2012, 2014; Proulx et al., 
2014; Yetnikoff et al., 2015; Stamatakis et al., 2016; Barker et al., 2017; Lecca et al., 2017; Zahm 
and Root, 2017; Lazaridis et al., 2019). 

Other LHb inputs arise from brainstem regions essential for defensive behavior, such the 
periaqueductal gray, superior colliculus, and raphe nuclei (Zhao et al., 2014; Shang et al., 2015; 40 
Yetnikoff et al., 2015; Tovote et al., 2016; Zahm and Root, 2017; Huang et al., 2017; Evans et al., 
2018; Seo et al., 2019). LHb neurons fire when animals receive air puffs and shocks that trigger 
escape or startle movements (Matsumoto and Hikosaka, 2009; Lecca et al., 2017), and silencing 
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glutamatergic inputs to LHb neurons impairs escape (Lecca et al., 2017). We hypothesize that in 
threatening situations LHb neural activity may play an essential role in terminating ongoing 
reward-seeking behavioral states in order to permit defensive circuits to quickly assume control 
of behavior. The LHb also receives inputs from frontal cortical regions essential for behavioral 
flexibility (Greatrex and Phillipson, 1982; Miller and Cohen, 2001; Monsell, 2003; Kim and Lee, 5 
2012), and LHb inactivation impairs task switching (Thornton and Evans, 1982; Baker et al., 2015; 
Baker and Mizumori, 2017). Thus, a diverse array of LHb afferents provides potential mechanistic 
substrates for disengaging from ongoing reward-seeking behavior in response to a variety of 
negatively and positively valenced factors.   

An intriguing finding was the lack of tonic engagement-related signals we observed in VTA 10 
DA neuron activity, particularly given that the LHb is thought to contribute to reward related 
processing primarily through the inhibition of VTA DA neurons (Christoph et al., 1986; Ji and 
Shepard, 2007; Matsumoto and Hikosaka, 2007; Balcita-Pedicino et al., 2011; Tian and Uchida, 
2015). Our findings suggest that LHb is not simply an inverse of VTA DA neuron activity. 
Interestingly, the tonic activity fluctuations we observed in LHb resemble fluctuations in striatal 15 
DA release that reflect motivational state (Mohebi et al., 2019). If long timescale engagement-
related signals are present in tonic LHb activity and striatal DA release, but not VTA DA neuron 
activity, which downstream circuits might be contributing to the regulation of sustained reward-
seeking and disengaged behavioral states? One possibility is that signals related to sustained 
disengagement are transmitted from LHb to the raphe nuclei, but recent evidence showing that 20 
chemogenetic inhibition of the LHb-dorsal raphe projection reduces perseverative reward seeking 
argues against this hypothesis (Coffey et al., 2020). However, the LHb also sends a major 
projection to the median raphe which may serve a distinct function (Proulx et al., 2014). 

Another interesting finding was the behavioral specificity of LHb inhibition. While LHb inhibition 
extended task engagement, it did not facilitate task re-engagement. Further, LHb inhibition had 25 
no effect on persistence if rewards were not available. These findings are consistent with the idea 
of LHb as a brake on reward-seeking behavior – releasing the brake would not promote task re-
engagement if a signal that promotes reward-seeking behavior is not active. 

Our findings strongly support the hypothesis that a key role of tonic LHb neural activity is to 
promote disengagement from reward-seeking behavior, suggest that tonic LHb neural activity 30 
acts as a valence-neutral brake on reward-seeking behavior, and add to mounting evidence that 
the functional role of LHb neural activity extends beyond the processing of negative events or 
costs. This shift in our understanding of LHb circuit function is essential for assessing the potential 
and limitations of the LHb as a therapeutic entry point for mood and anxiety disorders, and 
provides a conceptual framework of potential utility for deepening our understanding of the 35 
functional roles of downstream neuromodulatory circuits.    
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RESOURCE AVAILABILITY 5 
 
Lead Contact 
Further information and requests for resources and reagents should be directed to the Lead 
Contact, Melissa R. Warden (mrwarden@cornell.edu). 
 10 
Materials Availability 
This study did not generate new reagents. 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial and Virus Strains 

AAV9-CAG-Flex-GCaMP6s UPenn VectorCore N/A 

AAVDJ-hSyn-DIO-GCaMP6m 
Stanford Gene Vector and 
Virus Core GVVC-AAV-95 

AAV5-CAG-Flex-GCaMP6f UPenn VectorCore N/A 

AAV9-CAG-Flex-GFP UNC Vector Core N/A 

AAV5-CAG-Flex-GFP UNC Vector Core N/A 

AAV9-EF1α-DIO-eNpHR3.0-eYFP Vector Biolabs N/A 

Chemicals 

DAPI Sigma-Aldrich D9542-5mg 

DABCO Sigma-Aldrich 290734-100ML 

Experimental Models: Organisms/Strains 

Mouse: Tg(Klk8-cre)NP171Gsat/Mmucd GENSAT RRID: MMRRC_036080-UCD 

Mouse: B6.SJL-Slc6a3 tm1.1(cre)Bkmn/J The Jackson Laboratory RRID: IMSR_JAX:006660 

Mouse: STOCK Slc17a6 tm2(cre)Lowl/J The Jackson Laboratory RRID: IMSR_JAX:016963 

Mouse: C57BL/6J The Jackson Laboratory RRID: IMSR_JAX:000664 

Software and Algorithms 

MATLAB script for analysis Brianna J. Sleezer N/A 
Med Associates script for operant 
conditioning Dave A. Bulkin, Ryan J. Post N/A 
MATLAB toolbox for multi-unit 
electrophysiology processing 

Daniel N. Hill, Samar B. 
Mehta, David Kleinfeld N/A 
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Data and Code Availability 
Data and source code supporting the current study will be made available upon request. 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 5 
 
Animals 
All experiments were carried out under protocols approved by Cornell University’s Institutional 
Animal Care and Use Committee and conformed to NIH guidelines. Both male and female mice 
(postnatal 3-6 months) were used in this study. Mice were group housed in a vivarium on a 10 
standard 12h light/dark cycle. All experiments were conducted during the dark portion of the cycle. 
Klk8-Cre (GENSAT, RRID: MMRRC_036080-UCD, New York, NY), DAT-Cre (The Jackson 
Laboratory, Bar Harbor, ME), and Vglut2-Cre (The Jackson Laboratory, Bar Harbor, ME) mice 
were used for photometry experiments. Klk8-Cre mice were used for optogenetic inhibition 
experiments. C57BL/6J mice were used for electrophysiology experiments. All Cre driver lines 15 
were fully backcrossed to C57BL/6J mice. Mice were provided with ad libitum access to food and 
water prior to training on the poke-reward task. 
 
METHOD DETAILS 
 20 
Viral Vectors 
For photometry experiments, Klk8-Cre (NP171) and Vglut2-Cre mice were injected with AAV9-
CAG-Flex-GCaMP6s (Penn Vector Core, Philadelphia, PA). DAT-Cre mice were injected with 
AAV5-Syn-Flex-GCaMP6f (Penn Vector Core, Philadelphia, PA) or AAV-DJ-EF1α-DIO-
GCaMP6m (Stanford Vector Core, Stanford, CA). For optogenetic experiments, Klk8-Cre (NP171) 25 
mice were injected with AAV9-EF1α-DIO-eNpHR3.0-eYFP (Vector Biolabs, Malvern, PA). For all 
experiments, control animals were injected with AAV9-CAG-Flex-GFP (UNC Vector Core, Chapel 
Hill, NC). 
  
Surgical Procedures 30 
Mice were anesthetized with isoflurane (5%). Fur was trimmed, and mice were placed in a 
stereotaxic frame (Kopf Instruments, Tujunga, CA) on a heating pad to prevent hypothermia. 
Isoflurane was delivered at 1-3% throughout surgery; this level was adjusted to maintain a 
constant surgical plane. Ophthalmic ointment was used to protect the eyes. Lactated ringers (500 
ml, subcutaneous) was administered before the start of surgery. A mixture of 0.5% lidocaine and 35 
0.25% bupivicaine (100 ml) was injected subdermally along the incision line. The scalp was 
disinfected with betadine and alcohol. A midline incision exposed the skull, which was thoroughly 
cleaned, and a craniotomy was made above the LHb or VTA. Virus was targeted to the LHb (-
1.80 AP, 0.40 ML, -2.80 and -2.60 DV) or VTA (-3.10 AP, 0.35 ML, -4.60 and -4.30 DV), and 
slowly pressure injected (100 nl min-1) using a 10 ml Hamilton syringe (nanofil; WPI, Sarasota, 40 
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FL), a 33 gauge beveled needle, and a micro-syringe pump controller (Micro 4; WPI, Sarasota, 
FL). After each injection, the needle was left in place for 10 minutes and then slowly withdrawn. 
For photometry experiments, a total of 600 nl (300 nl at each DV site) of vector was injected and 
an optical fiber (400 µm diameter, 0.48 NA, Doric Lenses, Québec, Canada) was implanted in the 
right hemisphere. Implants were targeted to LHb (-1.70 AP, 0.40 ML, -2.40 DV) or VTA (-3.10 AP, 5 
0.35 ML, -4.45 DV). For LHb inhibition experiments, a total of 1200 nl (300 nl at each DV site in 
each hemisphere) of vector was injected and an optical fiber (200 µm diameter, 0.22 NA, Thorlabs 
Inc., Newton, NJ) was implanted at a 20 degree angle in each hemisphere (-1.80 AP, +-1.23 ML, 
-2.21 DV). A layer of metabond (Parkell, Inc., Edgewood, NY) and dental acrylic (Lang Dental 
Manufacturing, Wheeling, IL) was applied to firmly hold the fiber in place, and the surrounding 10 
skin was sutured closed. Post-operative buprenorphine (0.05 mg/kg) and carprofen (5 mg/kg) 
were administered subcutaneously. Virus was allowed to express for a minimum of 6 weeks 
before behavioral testing. 
 
Immunohistochemistry 15 
To determine the specificity of the Klk8-Cre (NP171) to the LHb, male Klk8-Cre (NP171) mice 
were injected with AAV9-CAG-Flex-GFP in the LHb, as described above. After 4 weeks of 
expression, mice were perfused with PBS and 4% paraformaldehyde. Brains were extracted, 
post-fixed in 4% PFA for 24 h, and stored in 30% sucrose in PBS until sliced into 50 µm coronal 
sections. Sections containing the LHb were blocked (10% normal goat serum; ThermoFisher 20 
Scientific, Waltham, MA) and incubated with 1:400 anti-NeuN primary antibody (ABN78, EMD 
Millipore, Darmstadt, DE) and 1:500 Cy3-expressing secondary antibody (AB_2307443, Jackson 
Immunoresearch, West Grove, PA) (Zhong et al., 2017). Sections were imaged under a confocal 
microscope (LSM800, Zeiss, White Plains, NY) to determine the specificity of the NP171 marker 
for neurons and the penetrance of Cre-dependent viral vectors for neurons in the injection area. 25 
  
Fiber Photometry 
Fiber photometry was performed using a Doric photometry system. A 490 nm LED was 
sinusoidally modulated at 211 Hz and passed through a GFP excitation filter. A 405 nm LED was 
modulated at 531 Hz and passed through a 405 nm bandpass filter. Both light streams were 30 
coupled to an optical fiber patch cord (0.48 NA; 400 μm core), which was connected to an optical 
fiber brain implant in each mouse. GCaMP6 fluorescence was collected by the same fiber, passed 
through a GFP emission filter, and focused onto a photoreceiver. To calculate ΔF/F, a least-
squares linear fit was applied to the 405 nm signal to align it to the 490 nm signal, producing a 
fitted 405 nm signal that was used to normalize the 490 nm according to the following: ΔF/F = 35 
(490 nm signal − fitted 405 nm signal)/fitted 405 nm signal. 
  
Multi-Unit Electrophysiology 
To record multi-unit activity (MUA), we implanted male C57BL/6 mice with 16-channel electrode 
arrays (35 µm tungsten electrodes with 200 µm electrode spacing, 200 µm row spacing, 6 mm in 40 
length; Innovative Neurophysiology, Inc., Durham, NC) centered over the right LHb. Target 
coordinates, relative to bregma, were: AP: -1.20 mm to -2.80 mm (anterior and posterior edges 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.15.426914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426914
http://creativecommons.org/licenses/by/4.0/


Sleezer*, Post*, Bulkin* et al.  22 of 38 

of the array); ML: 0.30 mm and 0.50 mm (medial and lateral electrode rows, respectively); DV: -
2.55 mm. A ground wire, affixed to the array, was attached to two stainless steel screws placed 
in the cerebellum. We used a Tucker-Davis Technologies acquisition system and Synapse 
software to record spike data (Tucker-Davis Technologies, Alachua, FL). Voltage measurements 
were collected and saved at 24.414 kHz. MUA was extracted from the raw voltage trace through 5 
a series of offline processing steps. First, signals were filtered and large artifactual voltage 
fluctuations were removed from each channel using stationary wavelet decomposition/transform. 
Next, a common average reference for each array was calculated by taking the sample by sample 
average of all channels; this global average was then subtracted from the signal on each channel. 
This method of referencing has been found to outperform alternative referencing methods, such 10 
as single best electrode referencing (Ludwig et al., 2009). MUA spiking activity was then extracted 
using the toolbox UltraMegaSort2000 and a voltage threshold of 2.5 standard deviations above 
the mean of the voltage trace. To determine the location of electrode tips, we used an optical 
clearing technique that allowed us to visualize the entire electrode tract (including electrode tips) 
for all 16 electrodes in each array. Following collection of MUA data, mice were perfused using 15 
saline and 4% paraformaldehyde and decapitated. Skin and other tissues were removed from the 
head (keeping electrode arrays intact) and skulls (with intact arrays) were drop fixed in 4% 
paraformaldehyde for 48 to 72 hours at 4°C. Brains were then carefully dissected from the skull 
and arrays were gently removed. A 1.5 mm thick sagittal slice of brain tissue centered around the 
electrode array was taken from each brain. Slices were then drop fixed in glutaraldehyde for 24 20 
hours at 4°C, washed in PBS-T for 24 hours, and then placed in 6% SDS at 37°C and checked 
daily to monitor clearing progress. Slices were typically sufficiently cleared in 6 to 10 days. Slices 
were then washed in PBS-T at 37°C for 48 hours and subsequently placed in an iodixanol solution 
composed of 50 g diatrizoic acid, 40 g N-methyl-d-glucamine, 55 g iodixanol, and 0.02% sodium 
azide per 100 ml water (Murray et al., 2015). Slices were gently swirled daily and monitored for 25 
transparency and refraction changes over the course of 2 to 5 days. Samples were then 
transferred to a fresh iodixanol solution for 24 hours and, finally, mounted in the iodixanol solution 
between two cover glasses which were separated by 1.5 mm rubber gaskets. Slices were then 
imaged using a confocal microscope (LSM800, Zeiss, White Plains, NY). A 647 nm wavelength 
excitation light was used for imaging. To determine the location of the medial and lateral electrode 30 
rows, z-stacks were constructed from optical sections taken in 50 µm increments. Given that 
electrode arrays extended posterior to LHb, the posterior most 3 to 4 electrodes in both the medial 
and lateral rows were typically excluded from further analysis based on inspection of the electrode 
tract locations. 
  35 
Optogenetic Inhibition 
During behavioral testing, external patch cords (200 µm diameter, 0.22 NA, Doric Lenses, 
Québec, Canada) were coupled to implanted fiber optic cannulae (CFM22U-20, Thor Labs, NJ, 
US) with zirconia sleeves. Cannulae were placed above LHb bilaterally as described above. An 
optical commutator allowed for unrestricted rotation (Doric Lenses, Québec, Canada). Optical 40 
inhibition was provided with 594 nm laser light diode pumped solid state laser (Mambo 100, 
Colbalt, Solna, SE). Inhibition experiments used 4 mW light (127 mW/mm2 at the fiber tip). 
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Behavioral Testing 
In all versions of the poke-reward task, mice were first water restricted over the course of three to 
five days until they reached 80% of their pre-restriction body weight. After restriction, mice were 
trained to poke their nose into a hole (ENV-313W; Med Associates, VT, US) on one wall of a 20 
x 22 cm operant chamber (ENV-307W-CT) housed in a sound-attenuating box (ENV-022MD) and 5 
containing a lickometer (ENV-250B) on the end of the chamber opposite the nose-poke. At the 
start of each session, a light in the nose-poke hole was illuminated. Upon completion of a 
successful nose-poke, the light in the nose-poke hole was turned off, a soft white noise was turned 
on to indicate the availability of reward, and a water reward was delivered via syringe pump 
(PHM100) to a fluid port on the opposite wall of the chamber. A nose-poke entry followed by a 10 
lick was considered a single trial. Mice were free to run back and forth between the nose-poke 
hole and the reward spout and complete trials at their own pace. Training continued daily until 
mice were able to perform 90 or more trials within a 30 minute session across two consecutive 
daily sessions. Following training, mice were placed on other versions of the task. Mice were run 
on one 30-minute session each day, 7 days a week. 15 
 
Probabilistic task. In the probabilistic version of the poke-reward task, each successful nose-poke 
had a 20% chance of yielding a large reward (20 µl of water), a 60% chance of yielding a medium 
reward (10 µl of water) and a 20% chance of yielding no reward (0 µl of water). No cues were 
provided to indicate the reward size or probabilities. 20 
 
Blocked task. In the blocked version of the poke-reward task, no reward trials (0 µl of water) and 
reward trials (10 µl of water) were grouped into 5-minute long blocks of trials that alternated 
between reward available and no reward available. Because we wanted to be sure that mice 
experienced each block, block reward contingencies were only changed once animals completed 25 
a successful nose-poke following 5 minutes within a block - this design minimized instances in 
which mice may not complete any trials during a 5-minute long period and subsequently would 
not be aware of the block transition. As such, the absolute duration of each block was a minimum 
of 5 minutes, but varied depending on mouse behavior. All photometry experiments for the poke-
reward task were run using the same mice and occurred in the following order: training (5-10 30 
days), probabilistic task (5 days), blocked task (5 days). 
 

Optogenetic inhibition: Re-engagement task. For optogenetic experiments only, mice performed 
a task designed to probe the capacity for LHb inhibition to drive task re-engagement after entering 
a disengaged state (Figure 6C). In this task, we provided mice with a medium reward (10 µl water) 35 
following each successful nose poke, consistent with the training paradigm above. We then waited 
for mice to disengage from the task (we defined disengagement as the point at which mice had 
not completed a trial - i.e., a successful nose poke - over the course of a 2-minute period). We 
then turned the laser on (or began a sham laser off period), and measured the latency for mice to 
re-engage (i.e. perform a successful nose poke) in the task. We collected behavioral data over 40 
the course of four consecutive daily sessions, alternating between sessions in which the laser 
was turned on and sessions in which the laser was off. The order of laser on and laser off sessions 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.15.426914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426914
http://creativecommons.org/licenses/by/4.0/


Sleezer*, Post*, Bulkin* et al.  24 of 38 

was counterbalanced across mice. Following the completion of these four sessions, mice 
performed an additional four sessions on a similar version of the re-engagement task. In these 
sessions, all task and laser conditions were the same, with the exception that all trials yielded no 
reward (0 µl). 
 5 
Optogenetic inhibition: Persistence task. For optogenetic experiments only, mice were run on a 
task that was designed to probe the capacity for LHb inhibition to drive task persistence (Figure 
6E). In this task, we again provided mice with a medium reward (10 µl water) following each 
successful nose poke, consistent with the training paradigm above and waited for mice to 
disengage from the task (once again, we defined disengagement as the point at which mice had 10 
not completed a successful nose poke over the course of a 2-minute period). In this version of 
the task, we waited for mice to re-engage in the task (i.e. complete a successful nose poke) and 
then turned the laser on (or began a sham laser off period). We terminated the session once mice 
disengaged from the task once again. We measured persistence as the number of trials 
(successful nose pokes) mice performed during the laser on (or sham laser) period. We again 15 
collected behavioral data over the course of four consecutive daily sessions, alternating between 
sessions in which the laser was turned on and sessions in which the laser was off. The order of 
laser on and laser off sessions was counterbalanced across mice. Following the completion of 
these four sessions, mice performed an additional four sessions on a similar version of the 
persistence task. In these sessions, all task and laser conditions were the same, with the 20 
exception that all trials yielded no reward (0 µl). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Identification of State Transitions (Hidden Markov Model) 25 
To identify periods of high and low engagement, we modeled high and low engagement as two 
latent states that could underlie behavior. Because the level of engagement could be measured 
in multiple ways (the frequency of licks and/or the frequency of nose pokes), we used a 
multivariate HMM to simultaneously account for both types of observations. Behavior was coded 
as binary vectors indicating the presence or absence of each behavior during each second of the 30 
task. These emissions were modelled as Poisson random variables whose probability of occurring 
was free to differ across latent states. The model was fit via expectation-maximization using the 
Baum Welch algorithm (Bilmes, 1998; Murphy, 2012), which finds a (possibly local) maxima of 
the complete-data likelihood. The behavioral data was oversampled relative to the slow changes 
in engagement of interest here, so we used two methods to highlight the slow changes in 35 
engagement states. First, observations were smoothed across neighboring time bins (10 bins) to 
disrupt the irrelevant local structure that occurred because licks and nose pokes happened at 
opposite ends of the chamber. Second, we added a regularization term that penalized frequent 
transitions between states (Montanez et al., 2015). The algorithm was initialized with a random 
seed once, and the model that maximized the observed (incomplete) data log likelihood was 40 
ultimately taken as the best for each session. Finally, we used the Viterbi algorithm to discover 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2021. ; https://doi.org/10.1101/2021.01.15.426914doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.15.426914
http://creativecommons.org/licenses/by/4.0/


Sleezer*, Post*, Bulkin* et al.  25 of 38 

the most probable a posteriori sequence of latent states, given the model and behavioral 
observations (Murphy, 2012). 
 
Statistics 
All statistical analyses were performed using MATLAB (MathWorks, Natick, MA). Effects with a P 5 
value less than 0.05 were considered significant. All variance estimates and error bars represent 
standard error of the mean (SEM). 
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Figure 1. Calcium Dynamics in Genetically Targeted LHb Neurons  
(A) Colocalization of NeuN and GFP expression in the LHb of Klk8-Cre (NP171) mice.  
(B) Schematic of probabilistic and blocked poke-reward task designs.  
(C) Schematic of LHb viral vector injection and optical fiber placement.  5 
(D) GCaMP6 expression in LHb neurons in a Klk8-Cre (NP171) mouse.  
(E) Average baseline-subtracted ΔF/F in GCaMP Klk8-Cre (NP171) mice (n = 7) during probabilistic task 
sessions, aligned to reward receipt and separated by reward size (no reward, red; medium reward, blue; 
large reward, green).  
(F) Average regression coefficients obtained by regressing ΔF/F 0-1 s following the start of reward 10 
consumption onto reward size in GCaMP (n = 7) and GFP (n = 3) Klk8-Cre (NP171) mice.  
(G-J) Same as C-F, but for VTA DA neurons in GCaMP (n = 6) and GFP (n = 3) DAT-Cre mice.  
****p < 0.0001, two-sample t-test. Shaded regions and error bars indicate SEM. 
See also Figure S1.  
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Figure 2. Tonically Elevated LHb Activity During Spontaneous End-of-Session Task 
Disengagement 
(A) Example LHb Klk8-Cre (NP171) photometry from a complete probabilistic task session. Lines above 
the plot indicate all poke and lick times (no reward, red; medium reward, blue; large reward, green). The 5 
line under the poke and lick timestamps indicates whether mice were in a high or low task engagement 
state. Black and gray arrows correspond to example trials shown in B. 
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(B) Two single trials from the example photometry trace in A. Left: trial during high engagement state. 
Right: trial during low engagement state.  
(C) Average regression coefficients obtained by regressing ΔF/F from each session onto engagement 
state and running speed in GCaMP (n = 7) and GFP (n = 3) Klk8-Cre (NP171) mice. 
(D) Example VTA DAT-Cre photometry from a complete probabilistic task session, same conventions as 5 
in A. Black and gray arrows correspond to example trials shown in E. 
(E) Two single trials from the example photometry trace in D. Left: trial during high engagement state. 
Right: trial during low engagement state.  
(F) Average regression coefficients obtained by regressing ΔF/F onto engagement state and running 
speed in GCaMP (n = 6) and GFP (n = 3) DAT-Cre mice. 10 
*p < 0.05, ****p < 0.0001, two-sample t-test. Error bars indicate SEM. 
See also Figure S2. 
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Figure 3. Baseline LHb Activity Reflects Task Engagement State 
(A) Average ΔF/F in GCaMP Klk8-Cre (NP171) mice (n = 7) during probabilistic task sessions, aligned to 
reward receipt and separated by engagement state (solid versus dotted lines) and reward size (no 
reward, red line; medium reward, blue; large reward, green).  5 
(B) Average ΔF/F during baseline and reward epochs in high and low engagement states.  
(C-D) Same as A-B but for VTA DA neurons in DAT-Cre mice (n = 6). 
***p < 0.001, ****p < 0.0001, paired samples t-test. Error bars and shaded regions indicate SEM. 
See also Figure S3. 
 10 
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Figure 4. LHb Activity is Tonically Elevated During Task Disengagement Due to Repeated Reward 
Omission  
(A) Example LHb Klk8-Cre (NP171) photometry during a blocked task session. Lines above the plot 
indicate all poke and lick times (no reward, red; medium reward, blue). The line under the poke and lick 5 
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timestamps indicates whether mice were in a high or low task engagement state. Black and gray arrows 
correspond to example trials shown in B. 
(B) Two single trials from the example photometry trace in A. Left: trial during high engagement state. 
Right: trial during low engagement state.  
(C) Average regression coefficients obtained by regressing ΔF/F onto engagement state, block reward, 5 
and running speed in GCaMP (n = 6) and GFP (n = 3) Klk8-Cre (NP171) mice. 
(D) Example VTA DAT-Cre photometry during a blocked task session, same conventions as A. Black and 
gray arrows correspond to example trials shown in E. 
(E) Two single trials from the example photometry trace in D. Left: trial during high engagement state. 
Right: trial during low engagement state.  10 
(F) Average regression coefficients obtained by regressing ΔF/F onto engagement state, block reward, 
and running speed in GCaMP (n = 6) and GFP (n = 3) DAT-Cre mice. 
*p < 0.05, two-sample t-test. Error bars indicate SEM. 
See also Figure S4. 
 15 
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Figure 5. Rising LHb Activity Precedes Task Disengagement   
(A) Average reward-aligned ΔF/F for the trials immediately before and after entry into low engagement 
states, probabilistic task sessions. Left, LHb ΔF/F in Klk8-Cre (NP171) mice. Right: VTA DA ΔF/F.  
(B) Slope of the increase in baseline ΔF/F over the 10 trials before entry into low engagement states in 5 
LHb Klk8-Cre (NP171) (GCaMP (n = 7), GFP (n = 3)) and VTA DAT-Cre (GCaMP (n = 6), GFP (n = 3)), 
probabilistic task sessions. 
(C) Average reward-aligned ΔF/F for the trials immediately before and after the start of no-reward blocks 
and entry into low engagement states, blocked task sessions. Left, LHb ΔF/F in Klk8-Cre (NP171) mice. 
Right: VTA DAT-Cre ΔF/F. 10 
(D) Slope of the increase in baseline ΔF/F over the 10 trials before entry into low engagement states in 
LHb (GCaMP (n = 6), GFP (n = 3)) and VTA (GCaMP (n = 6), GFP (n = 3)), blocked task sessions. 
(E) Slope of the increase in baseline ΔF/F over a 10 trial sliding window, probabilistic task. 
(F) Slope of the increase in baseline ΔF/F over a 10 trial sliding window, blocked task. 
*p < 0.05, **p < 0.01, two-sample t-test. Error bars indicate SEM. 15 
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Figure 6. LHb Inhibition Extends Reward-Seeking Behavioral States 
(A) Schematic of LHb viral vector injection and optical fiber placement.  
(B) eNpHR3.0-eYFP expression in LHb neurons in a Klk8-Cre (NP171) mouse.  
(C) Experimental schematic, task re-engagement. 5 
(D) Average latency to re-engage in task performance. LHb inhibition initiated during disengagement. 
NpHR (n = 5) and GFP (n = 5) Klk8-Cre (NP171) mice. 
(E) Experimental schematic, task persistence. 
(F) Average number of trials completed after task re-engagement. LHb inhibition initiated upon re-
engagement. NpHR (n = 5) and GFP (n = 5) Klk8-Cre (NP171) mice. 10 
*p < 0.05, paired samples t-test. Error bars indicate SEM. 
See also Figure S5. 
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Supplemental Information 
 

Figure S1 (Related to Figure 1). Phasic LHb Activity Upon Reward Omission, Vglut2-Cre 
Photometry and Multi-unit Electrophysiology 
(A) Schematic of LHb viral vector injection and optical fiber placement, Vglut2-Cre mice.  5 
(B) LHb GCaMP6 expression, Vglut2-Cre mouse.  
(C) Average baseline-subtracted ΔF/F in Vglut2-Cre mice (n = 3) during probabilistic task sessions, 
aligned to reward receipt and separated by reward size (no reward, red; medium reward, blue; large 
reward, green).  
(D) Average regression coefficients obtained by regressing ΔF/F 0-1 s following the start of reward 10 
consumption onto reward size in GCaMP (n = 3) and GFP (n = 3) Vglut2-Cre mice. ****p < 0.0001, two-
sample t-test. 
(E-H) Same as in A-D, but for LHb multi-unit electrophysiology (n = 40 electrodes in 6 mice). ****p < 
0.0001, t-test compared to shuffled sample. 
Shaded regions and error bars indicate SEM. 15 
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Figure S2 (Related to Figure 2). Tonically Elevated LHb Activity During Spontaneous End-of-
Session Task Disengagement, Vglut2-Cre Photometry and Multi-unit Electrophysiology 
(A) Example LHb Vglut2-Cre photometry during a complete probabilistic task session. Lines above the 
plot indicate all poke and lick times (no reward, red; medium reward, blue). The line under the poke and 5 
lick timestamps indicates whether mice were in a high or low task engagement state. 
(B) Average regression coefficients obtained by regressing ΔF/F onto task engagement state and running 
speed in GCaMP (n = 3) and GFP (n = 3) Vglut2-Cre mice. **p < 0.01, two-sample t-test.  
(C) Example LHb multi-unit activity during a complete probabilistic task session. Same conventions as A. 
(D) Average regression coefficients obtained by regressing multi-unit activity onto engagement state and 10 
running speed (n = 40 electrodes in 6 mice). ****p < 0.0001, t-test compared to shuffled sample. 
Error bars indicate SEM. 
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Figure S3 (Related to Figure 3). Baseline LHb Activity Reflects Task Engagement State, Vglut2-Cre 
Photometry and Multi-unit Electrophysiology 
(A) Average ΔF/F in GCaMP Vglut2-Cre mice (n = 3) during probabilistic task sessions, aligned to reward 
receipt and separated by engagement state (solid versus dotted lines) and reward size (no reward, red 5 
line; medium reward, blue; large reward, green). 
(B) Average ΔF/F during baseline and reward epochs in high and low engagement states. *p < 0.05, 
paired samples t-test. 
(C) Average multi-unit activity (n = 40 electrodes in 6 mice) during probabilistic task sessions, aligned to 
reward receipt and separated by reward size. Same conventions as A. 10 
(D) Average multi-unit activity during baseline and reward epochs in high and low engagement states. 
****p < 0.0001, paired samples t-test. 
(E) Proportion of transitions to low and high engagement states preceded by trials that yielded no reward, 
medium reward, or large reward. Chance proportions indicated by dashed gray lines. **p < 0.01, ***p < 
0.001, ****p < 0.0001, binomial test. 15 
Shaded regions and error bars indicate SEM. 
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Figure S4 (Related to Figure 4). LHb Activity is Tonically Elevated During Task Disengagement 
Due to Repeated Reward Omission, Vglut2-Cre Photometry and Multi-unit Electrophysiology 
(A) Example LHb Vglut2-Cre photometry during a blocked task session. Lines above the plot indicate all 
poke and lick times (no reward, red; medium reward, blue). The line under the poke and lick timestamps 5 
indicates whether mice were in a high or low task engagement state. 
(B) Average regression coefficients obtained by regressing ΔF/F onto engagement state, block reward, 
and running speed in GCaMP (n = 3) and GFP (n = 3) Vglut2-Cre mice. *p < 0.05, two-sample t-test.  
(C) Example LHb multi-unit spiking activity during a blocked task session. Same conventions as A. 
(D) Average regression coefficients obtained by regressing multi-unit activity onto engagement state, 10 
block reward, and running speed (n = 40 electrodes in 6 mice). ****p < 0.0001, t-test compared to shuffled 
sample. 
Error bars indicate SEM. 
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Figure S5 (Related to Figure 6). LHb Inhibition Does Not Extend Reward-Seeking Behavioral States 
When Rewards Are Not Available 
(A) Average latency to re-engage in task performance without rewards. LHb inhibition initiated during 5 
disengagement. NpHR (n = 5) and GFP (n = 5) Klk8-Cre (NP171) mice. 
(B) Average number of trials completed after task re-engagement without rewards. LHb inhibition initiated 
upon re-engagement. NpHR (n = 5) and GFP (n = 5) Klk8-Cre (NP171) mice. 
Paired samples t-test. Error bars indicate SEM. 
 10 
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