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Abstract11

Motivation: Cancer is the process of accumulating genetic alterations that confer selective advan-

tages to tumor cells. The order in which aberrations occur is not arbitrary, and inferring the order

of events is challenging due to the lack of longitudinal samples from tumors. Moreover, a network

model of oncogenesis should capture biological facts such as distinct progression trajectories of

cancer subtypes and patterns of mutual exclusivity of alterations in the same pathways.

In this paper, we present the Disjunctive Bayesian Network (DBN), a novel oncogenetic model with

a phylogenetic interpretation. DBN is expressive enough to capture cancer subtypes’ trajectories

and mutually exclusive relations between alterations from unstratified data.

Results: In cases where the number of studied alterations is small (< 30), we provide an efficient

dynamic programming implementation of an exact structure learning method that finds a best DBN

in the super-exponential search space of networks. In rare cases that the number of alterations

is large, we provided an efficient genetic algorithm in our software package, OncoBN. Through

numerous synthetic and real data experiments, we show OncoBN’s ability in inferring ground truth

networks and recovering biologically meaningful progression networks.

Availability: OncoBN is implemented in R and is available at https://github.com/phillipnicol/OncoBN.
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1. Introduction13

Cancer is the process of accumulating molecular alterations that over time lead to cancer14

hallmarks (Hanahan and Weinberg, 2011). A natural question to ask is whether the order of alter-15

ations follows a particular pattern. Phylogenetic tree reconstruction methods answer this problem16

for individual tumors (Altrock et al., 2015). However, historically, due to the lack of high-resolution17

multi-region data of individual tumors, oncogenetic models were considered first. Oncogenetic18

models of tumorigenesis utilize many samples from the population of patients to estimate the order19

of alterations occur at the disease level, but are silent about the order of events at the individual20

tumor and cell levels. Recent technologies has enabled researchers to delineate various modes21

of evolution (Davis et al., 2017) and depict tumors’ evolutionary history in an unprecedented reso-22

lution (Gerstung et al., 2020). Although high-resolution data from individual tumors helps infer the23

tumor’s history, they do not provide the big picture of how a specific cancer type evolves. In this24

work, we are taking first steps to reconciling these two levels of cancer progression modeling.25

The first oncogenetic model of tumorigenesis by Fearon and Vogelstein, 1990 was developed26

for colon cancer and suggested that a chain of aberrations is required to transform normal cells27

into carcinoma. Desper’s Oncogenetic trees (Desper et al., 1999) modeled progression as a28

rooted directed tree. Mixtures of oncogenetic trees (Beerenwinkel et al., 2005b,a) were proposed29

to capture the presence of an aberration in multiple progression paths. Directed Acyclic Graphs30

(DAGs) are the next straightforward generalization of tree-based models, as they allow multiple31

alterations (parents) to set up the clonal stage for the appearance of a new aberration (the child).32

Bayesian networks (BN), which are DAGs equipped with a joint probability distribution (Barber,33

2012), lend themselves naturally to representing such models. Perhaps the most famous BN34

model of cancer progression is the Conjunctive Bayesian Network (CBN) (Beerenwinkel et al.,35

2007; Gerstung et al., 2009) which assumes all parent aberrations must be present in order for a36

child to occur.37

The evolutionary interpretation of oncogenetic graphs is challenging. The most concrete bi-38

ological way of thinking about an edge e = (v, u) in such DAGs is to assume mutation v fixates39

in the cell population and prepares the tumor for the next selective sweep by u (Gerstung et al.,40

2009). In other words, all mutations are assumed to be clonal, which is not accurate because of41

the observed intratumor heterogeneity in many cancer types (Dagogo-Jack and Shaw, 2018). Our42

proposed tumorigenesis model has a phylogenetic interpretation and accommodates the presence43

of sub-clonal alterations.44
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At its core, inferring cancer progression networks is the BN structure learning problem, which45

is NP-hard (Koller and Friedman, 2009). Various approximation and search algorithms have been46

proposed for cancer progression inference (Gerstung et al., 2009; Montazeri et al., 2016b; Fara-47

hani and Lagergren, 2013). These algorithms’ objective is to find a network structure that maxi-48

mizes a (regularized) likelihood. The optimal network learned by any approximation method may49

be far from the ground truth and iterative search methods can get trapped in local maximums. Here50

we show that for the number of driver alterations that we often encounter in tumors (< 30), one51

can use an efficient dynamic programming implementation of an exact structure learning algorithm52

(Silander and Myllymäki, 2006).53

1.1. Related Work54

Mutual exclusivity of alterations is another phenomenon that was considered in learning cancer55

progression networks. Two sets of alterations are mutually exclusive if they (almost) never cooccur56

in a tumor (Leiserson et al., 2015). Two potential explanations for this observation are functional57

redundancy and synthetic lethality (Deng et al., 2019). Existing approaches considering pathways58

and their effects on cancer progression either assume that the pathways are inputs of the progres-59

sion inference algorithm (Gerstung et al., 2011; Cheng et al., 2012) or learn them along with the60

progression network (Raphael and Vandin, 2015; Cristea et al., 2017).61

The CBN progression rule dictates that all parent alterations need to be present in the tumor62

for the child to occur, under which mutually exclusive genes cannot share any descendant alter-63

ations. CBN’s inability to capture mutual exclusivity of alterations has motivated a line of work in64

which the mutual exclusivity restriction and pathway information are introduced artificially to the65

CBN (Gerstung et al., 2011; Cheng et al., 2012). Moreover, since each cancer subtype has dis-66

tinct molecular characteristics and progression paths, one must first stratify samples to disjoint67

subtypes and then learn each subtype’s progression network separately. This extra step is re-68

quired for all of the above models mainly because they cannot naturally capture subtypes’ mutual69

exclusivity. PICNIC (Caravagna et al., 2016) is the state-of-the-art pipeline that clusters samples70

to subtypes, detects driver events, checks for statistically significant mutual exclusivity hypotheses71

or takes pathway information as an input, and infers the progression network.72

Several recent works attempt to model the accumulation of alterations by Suppes’ probability73

raising causal framework (Olde Loohuis et al., 2014; Ramazzotti et al., 2015; Caravagna et al.,74

2016; De Sano et al., 2016; Ramazzotti et al., 2018). Farahani and Lagergren, 2013 proposed75
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(B) Spontaneous activation

Figure 1: Bayesian networks of the cancer progression models investigated. Node N represents

normal cell state, and each random variable Xj is an observed alteration, and the corresponding pro-

gression probability parameter is θj . In all models, the conditional probability table of X3 is shown, and

probabilities of instance observations are computed. (A) Basic DBN model where further progression

is impossible if none of the parent alterations have occurred. (B) Spontaneous activation model where

there is a non-zero chance of a child occurring even if none of its parents are active.

(semi-)monotone progression networks without any biological interpretation. The class of montone76

BNs is a superset of our proposed model which makes it more flexible but prone to overfitting due77

to lack of enough samples in many real-world scenarios.78

1.2. Our Contribution79

Biological Modeling. We propose the Disjunctive Bayesian Network (DBN), which recon-80

ciles population-level progression models (oncogenetic models) and individual tumor evolution81

models (phylogenetic models). From the oncogenetic perspective, DBN relaxes the CBN progres-82

sion assumption by allowing progression even if one of parents has occurred, Figure 1A. From83

the phylogenetic perspective, each directed path starting from the wild-type root in a DBN graph84

represents a (sub)clone, Figure 2C, and each sample from the DBN graph represents an indi-85

vidual tumor consisting of (sub)clones, Figure 2B. Overall, the DBN itself is the overlay of all of86

the possible sub-clones corresponding to the modeled cancer, Figure 2A. The DBN can naturally87
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Figure 2: Phylogenetic interpretation of the DBN model. A. A DBN progression network that

models a cancer type at the population level (disease level). Root N represents the wild type state

(Normal) and there are six known driver alterations. B. A sample from the network (blue nodes) that

represents an individual tumor. C. The corresponding phylogenetic tree of the sample. Each path of

sampled graph forms a subclone living on the leaves of the phylogenetic tree that are distinguished by

various colors. D. Visualization of the tumor history and the subclonal relationships through time.

accommodate distinct progression paths for subtypes and is expressive enough to capture the mu-88

tual exclusivity of alterations present in the data. Therefore, one can skip two preprocessing steps89

necessary for the state-of-the-art models: stratifying samples by subtype and mutual exclusivity90

detection. We consider two extensions of DBN. The first extension relaxes the strict disjunction91

assumption and allows spontaneous (parent-less) alteration, Figure 1B. The second extension di-92

rectly models measurement error of alterations. To have an uncluttered presentation, we present93

the measurement error model only in the Supplement A.94

Computational Efficiency. We provide an efficient Dynamic Programming (DP) implementa-95

tion of an exact structure learning method (Silander and Myllymäki, 2006) that learns the optimal96

DBN (in terms of a regularized likelihood). Additionally, this algorithm can be incorporated into97

existing cancer progression frameworks such as Conjunctive Bayesian Networks (Gerstung et al.,98

2009) or CAPRI (Ramazzotti et al., 2015), which will likely improve their accuracies. For rare99

cases that the studied driver alterations are numerous, we provided an efficient Genetic Algorithm100

(GA) in our software package. To speed up the GA’s global search, we characterize a likelihood-101

equivalence relation over DBNs and only search through the representative DAGs of each class.102

Experimental Performance. Through numerous synthetic and real data experiments, we103

show the ability of our algorithms in reconstructing ground truth progression networks from simu-104

lated samples and inferring biologically interpretable progression networks for cutaneous melanoma,105

lung adenocarcinoma, and bladder cancer. Our scalable Oncogenetic Bayesian Network R pack-106

age, OncoBN, provides two easy to use routines (approximate and exact) for estimation of onco-107
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genetic Bayesian networks including DBN and CBN.108

2. Methods109

We model the observation of alterations as a binary random vector (X1, . . . , Xp), where Xj = 1110

if the j-th alteration is detected in the sample and x = (x1, . . . , xp) is an observed sample. We111

assume that a BN governs the order in which the events can occur. The BN consists of a DAG G112

and local Conditional Probability Distributions (CPD) P(xj |x(Pj);θ) where Pj is the set of parents113

of event j in G and θ parameterizes the distribution. Local CPDs form the joint distribution as114

P(x;G,θ) =
∏p

j=1 P(xj |x(Pj);θ).115

2.1. Progression Rule and Parameter Estimation116

Basic DBN. The DBN progression rule asserts that an event j occurs with probability θj if and117

only if at least one of its parents have occurred. Therefore, P(xj = 1|x(Pj);θ) = 0 if parents are118

inactive and θj otherwise, Figure 1A.119

Spontaneous Activation Model. The deviation from the DBN progression rule may be the re-120

sults of spontaneous activation caused by unknown sources. To capture that, we add a non-zero121

spontaneous activation probability εj > 0 for each node, Figure 1B.122

Given n cross-sectional samples and the network G, we wish to find θ̂G, the maximum likeli-

hood estimator (MLE) for θ. We focus on the spontaneous activation model, where the likelihood

is:

L(θ, G) = P(x;θ, G) =

p∏
j=1

[θj
xj (1− θj)1−xj ]1(x(Pj) 6=0)ε

1(x(Pj)=0)
j . (1)

Maximizing the log-likelihood results in θ̂Gj =
∑n

i=1 1(xij=1,xi(Pj) 6=0)∑n
i=1 1(xi(Pj) 6=0) and where xij is the realization of123

the jth event in the ith sample. From now on, to reduce the number of inferred parameters, we124

assume ∀j : εj = ε and we fix it throughout the experiments. Details of parameter estimation for125

the three models (basic, spontaneous, measurement error) are presented in Supplement B.126

2.2. Exact Structure Learning127

Although for a fixed network G the MLE parameters have closed form, finding the best G is128

NP-hard. We present an efficient Dynamic Programming (DP) method for p < 30 that finds a best129

graph with maximum likelihood. We use ”a best” instead of ”the best” graph to emphasize on the130

fact that the graph with the maximum likelihood is not unique.131
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To have more interpretability and avoid overfitting, we restrict our search space to the space

of p-node DAGs with an in-degree bound of k, Gp,k. To further penalize dense graphs, we follow

(Ramazzotti et al., 2015) and use the Bayesian information criterion (BIC) as our graph fitness

score. The final optimization objective takes the following form:

max
G∈Gp,k

BIC(G, θ̂G), BIC(G, θ̂G) , `(G, θ̂G)− log(N)

2
|E|. (2)

2.2.1. Dynamic Programming Algorithm132

An exhaustive search of Gp,k takes super-exponential time. Silander and Myllymäki, 2006133

introduced a dynamic programming algorithm that can find the optimal network in exponential time.134

Their algorithm assumes that each graph G can be assigned a decomposable score Score(G)135

such that Score(G) =
∑p

j=1 Scorej(Pj) where Scorej(Pj) is the score of the subgraph consisting136

of only vertex j and its parents Pj . Scorej(Pj) is called the local score of j. For us, Score(G) =137

BIC(G, θ̂G), is our decomposable score. The rest of this section is devoted to a high-level summary138

of the algorithm.139

Optimal Substructure. First note that each DAG has at least one sink node, which is a node with

no outgoing edges. The score of a best graph G∗(V ) can be broken down to the best parents

of any of its sinks s and a best subgraph obtained by removing s and its incoming edges. More

formally, for s, an arbitrary sink of G∗, P∗s should be a best set of parents, i.e., has highest local

score P∗s = argmaxPs
Scores(Ps). In addition, for G∗(V ) to be optimal, Score(G∗(V \{s})) should

also be optimal. This optimal substructure suggests the following recursive formula for finding a

best sink for set of nodes W ⊆ V :

Sink∗(W ) = argmax
s∈W

Scores(P∗s (W )) + Score(G∗(W\{s})), (3)

where P∗s (W ) = argmaxPs∈W Scores(Ps) is the pre-computed best parents of s in W . Best140

sinks can be computed in O
(
n2n−1

)
time using memoization.141

Reconstructing an Optimal Solution. Best sinks immediately result in a best ordering of nodes142

in reverse order. By having an optimal order and the best set of parents for all nodes, it is straight-143

forward to build an optimal graph. Starting from an empty graph, we add a node according to the144

optimal order and add incoming edges from its optimal parents that preexist in the graph.145

Computational Complexity. The most intensive portion of the algorithm is computing the set of146

best parents P∗s (W ) for every W ⊆ V \{s}. This step requires O
(
n22n−1

)
time and O

(
n2n−1

)
147
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space. By leveraging disk space, it is possible to implement the algorithm such that at most 2n+2
148

bytes of RAM are occupied at any given time.149

2.2.2. Pruning Spurious Edges150

When the data is corrupted by noise, the estimated graph is likely to contain spurious edges. To151

remove low confidence edges, we perform statistical tests on the estimated graph. In DBNs, if e =152

(u, v) is an edge in the ground-truth graph, we have P (Xu = 1 | Xv = 1) > P (Xu = 1 | Xv = 0).153

Thus, we use the Fisher’s exact test to check the inequality and retain edges for which the inequal-154

ity holds with high confidence.155

Algorithm 1 Genetic Algorithm of OncoBN Package

1: input: Data set D, parameters C, T , and r ≥ 0.

2: output: Inferred graph Ĝ

3: Generate population of random trees: S0 = {G0
i }2Ci=1.

4: for t = 1 to T do

5: Compute fitness score of each DAG as: vti = `(Gt
i; θ̂

MLE
Gt

i
,D)

6: if r = 0 then . MDL penalty

7: vti = vti + log n log p
∑

j∈Gt
i
|Pj |

8: end if

9: vt =
(vt1,v

t
2,...,v

t
2C)∑2C

j vtj
. Selection probabilities

10: for i = 1 to S do

11: (Gt
i, G

t
i+1)← Selection(vt, 2) . Select DAGs

12: (Gt+1
i , Gt+1

i+1)← Crossover(Gt
i, G

t
i+1)

13: Gt+1
i ← Mutate(Gt+1

i , r)

14: Gt+1
i+1 ← Mutate(Gt+1

i+1, r)

15: Gt+1
i ← Π∼(Gt+1

i ); Gt+1
i+1 ← Π∼(Gt+1

i+1)

16: end for

17: end for

18: Return the Ĝ corresponding to vmax = maxt∈[T ],j∈[2C] v
t
j

2.3. Approximate Structure Learning156

For large number of mutations the exhaustive search is infeasible. Here we propose a Genetic157

Algorithm (GA) to approximate the global maximum to the log-likelihood function l for p > 30. The158
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 1  4
3
 2

≜ (𝐎 =  000 1000 0    100 0110 0 , 𝛑 = (2,1,4, 3))

𝐀 =  010 0000 0    100 0101 0

Figure 3: DAG representation. The DAG can be decomposed into an upper triangular matrix O along

with a permutation π.

pseudocode of this part is summarized in Algorithm 1.159

2.3.1. Genetic Algorithm160

Genetic algorithms searches for a global optimum using a “survival of the fittest” strategy. We161

begin with a population of 2C candidate solutions known as chromosomes and evolve them for T162

generations. Each chromosome is assigned a fitness value v which determines its quality. Then, S163

chromosome pairs are selected preferentially according to their fitness for reproduction. The next164

generation forms by performing a crossover operation on chromosome pairs. In each generation,165

there is a chance that a mutation operation changes chromosomes. In the setting of our model,166

chromosomes at generation t are 2C DAGs, {Gt
i}2Ci=1 and the fitness of each DAG is its maximum167

likelihood value.168

Representation. The most natural way to encode a DAG G is by using its adjacency matrix169

A. However, perturbing the entries in A may unintentionally introduce directed cycles into the170

resulting graph. To avoid this problem, following Carvalho, 2013, we representG with a pair (O,π),171

where O is the adjacency matrix for the topological ordering of G (i.e., an strictly upper triangular172

matrix), and π is a permutation vector describing how the vertices of O should be relabeled to173

generate A, Figure 3. We consider the ordering O and permutation π as separate chromosomes174

and evolve each of them individually. We can avoid introducing directed cycles by ensuring that175

our genetic operators always return an upper triangular matrix.176

Operations. Each crossover operation is defined to take in two DAGs and produce two offspring177

to keep the generation size constant. The orderings and permutations are crossed over separately178

(Supplement C). To maintain diversity in the population, we also define three mutation operators:179

edge, branch, permutation (Supplement C).180
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Figure 4: Examples of DAGs from the same equivalence class and their canonical form. For all

θ and x, P(x;θ) is the same for all of the three network structures shown above. B and C are similar

vertices in G1 and G2. Edge B → C is redundant in G3. By uniquely labeling similar vertices and

removing redundant edges we reach G1 as the canonical form of the other two DAGs.

2.3.2. Speeding up the GA with DAG Equivalence Classes181

Since mutation i activates with probability θi irrespective of which parent mutations are active,182

many different network structures induce the same probability distribution over {0, 1}p. We say183

that G ∼ G′ if, for every θ and x, P(x;G,θ) = P(x;G′,θ). It is clear that ∼ defines an equivalence184

relation over DAGs. To make the GA more efficient, we search only one DAG per equivalence185

class by defining a canonical form for each graph. Figure 4 gives an example of equivalent net-186

works. Algorithmically, we project back new solution graphs to the state space of canonical forms187

by removing redundant edges and uniquely labeling similar vertices in function Π∼(·) (line 12 of188

Algorithm 1.) More details on mathematical properties of DBNs is presented in the Supplement D.189

2.3.3. Controlling Complexity190

To prevent overfitting, we consider two types of penalty to control the complexity of the learned191

BN. First, if r = 0 in Algorithm 1, we perform regularized MLE by using the Minimum Description192

Length penalty introduced in (Lam and Bacchus, 1994) that simplifies to log n log p
∑p

j=1 |Pj | for193

the DBN. In another approach represented by r > 0 in Algorithm 1, we limit the number of parents194

of each node to r, i.e., maxj |Pj | ≤ r.195

3. Results196

3.1. Inferring Simulated Ground Truths197

To test the DP method against existing cancer progression algorithms, we generate datasets198

from simulated networks. Random graphs G are created using the PCALG R package (Kalisch199
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et al., 2012), which allows the user to specify the number of vertices and the average degree. For200

network parameters, we sample θj ∼ Unif(0.25, 0.75). Once θjs and G are known, a simulated201

dataset can be created by iterating over a topological sort of G. For tests on simulated data, we fix202

the number of observations n to be 400 and the number of alterations p to be 20 (this is similar to203

the size of existing cancer datasets). Unless specified otherwise, the average degree is set to 3.204

To simulate the noise that is likely present in real data, we flip the binary value of each entry with205

probability η.206

If Ĝ = (V, Ê) is the estimated network with ground truth G = (V,E), one can define a false207

positive edge to be an edge e ∈ Ê with e /∈ E and false negative edges similarly. Since the number208

of possible false positives is likely much larger than the number of possible false negatives, we209

assess performance using Matthew’s correlation coefficient (MCC), which is robust under uneven210

class sizes (Matthews, 1975). The MCC can be computed as211

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

where TP (FP) is the number of true (false) positives and TN (FN) is the number of true (false)212

negatives. A MCC of 1 corresponds to perfect reconstruction, While an MCC of 0 means the213

algorithm is outputting a random network.214

The DP algorithm requires that the spontaneous activation rate ε and in-degree bound k are215

chosen in advance. We suggest (and use) the following heuristic to set ε: set ε = fm/2, where fm216

is the frequency of the least frequent alteration. One should always select ε < fm, as otherwise217

there may be incentive to misplace the node corresponding to this alteration. In the interest of218

efficiency, we set k = 5, although in theory one could test every possible k to select the one219

that best trades expressivity for complexity. For pruning spurious edges, Fisher’s exact test with220

significance level of 10−5 is used.221

First, we compare the DP algorithm to CBN. The original approach of Gerstung et al. (2009)222

uses simulated annealing to approximate the network structure alongside a computationally ex-223

pensive expectation-maximization (EM) algorithm for parameter estimation. As a result, their224

method is only applicable when the number of mutations is less than 12. Montazeri et al. (2016a)225

addresses this issue by developing an efficient Monte Carlo algorithm, named MC-CBN, to esti-226

mate the parameters and structure of a CBN. Figure 5A compares MC-CBN and the DP algorithm227

for various choices of η ∈ [0, 0.2]. In the case of low error (η ≈ 0) both methods are extremely228

accurate. However, as η becomes larger, the MCC for MC-CBN drops to 0 at a faster rate.229
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Figure 5: Comparison to existing cancer progression algorithms on simulated data. A. Compar-

ing the DP algorithm to CAPRI and MC-CBN for various noise rates. For each value of η, 100 datasets

were generated. Points represent the median MCC over all trials and error bars give interquartile range.

B. Comparing the DP algorithm to CAPRI for various levels of network complexity. Network complexity

was quantified by varying the average degree of random graphs from 1 to 8. 100 datasets for each

degree were generated. C. Cross-comparison between DBN and CBN. 100 datasets were generated

from the CBN model and 100 datasets were generated from the DBN model. Then the DBN and CBN

models were fitted to all of the datasets, and the mean MCC in each class are reported.
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# of samples # of drivers # of frequent drivers

SKCM 467 20 15

LUAD 567 24 14

BLCA 414 45 31

Table 1: Number of samples (n), number of driver mutations, and number of frequent driver mutations

(5% frequency cutoff threshold) (p) for the three used TCGA cancer types.

Next, we compare the DP algorithm to CAPRI (Ramazzotti et al., 2015). CAPRI is a flexible230

framework for inferring cancer progression networks which can account for many types of inter-231

actions between nodes. CAPRI first applies a constraint-based algorithm to obtain a prima facie232

network, and then applies a local search algorithm to prune spurious edges. CAPRI is available233

through TRONCO De Sano et al. (2016). Figure 5A compares the ability of CAPRI and the DP234

algorithm to recover networks with various levels of noise. To understand how the algorithms per-235

form as network complexity increases, Figure 5B varies the average degree while keeping the236

noise constant at η = 0.05.237

Finally, we perform a cross-comparison of the CBN and DBN models. To do this, we simulate238

100 datasets from the CBN model and 100 datasets from the DBN model. We fit the DBN model239

to the CBN datasets and vice verse. Figure 5C reports the mean MCC in each category.240

3.2. Real Data Experiment241

We use our method to recover the order of driver mutations in three cancer types from The242

Cancer Genome Atlas (TCGA) program (Cancer Genome Atlas Research Network et al., 2013).243

We selected Skin Cutaneous Melanoma (SKCM) and Lung Adenocarcinoma (LUAD) because244

there are known molecular subtypes and mutual exclusivity relationships characterized for them.245

To determine the driver mutations, we used results from (Bailey et al., 2018) where 26 computa-246

tional methods had been applied to the TCGA data. The number of resulted driver mutations for247

SKCM and LUAD are below 30 and therefore exact DP method of Section 2.2 is applicable. We248

chose the Bladder Cancer (BLCA) for our third experiment since it has the highest driver mutation249

rate per sample in the TCGA data set (Bailey et al., 2018) and therefore is suitable to check the250

scalability of our proposed genetic algorithm. Number of samples, driver mutations, and frequent251

driver mutations (5% frequency cutoff threshold) for each cancer type is listed in Table 1.252

To quantify our uncertainty in the estimated progression network, we run the algorithm on 100253
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bootstrapped datasets. We form the mean graph by only reporting the edges that are present in a254

sufficiently large number of networks estimated from the bootstrapped datasets (this cutoff will be255

25 or 50).256

3.2.1. Progression of Mutations in Cutaneous Melanoma and Lung Adenocarcinoma257

We run the DP method of the OncoBN package on 100 bootstrapped datasets with the in-258

degree bound of k = 3 and fixed universal spontaneous activation probability of ε = 0.025. The259

mean progression network is illustrated in Figure 6. Note that out of 24 LUAD mutations, only 11260

of them are present in the mean progression network. This is because the rest of mutation are not261

connected with enough confident to the other nodes or to each others.262

For SKCM, we recovered three root mutations with a high mean presence: BRAF, NRAS,263

and COL5A1. In the rest of the graph, two connections have highest confident: BRAF→PTEN264

and MECOM→DDX3X. The only mutation with multiple parents is MECOM. For LUAD, three high265

confident roots have been recovered: KRAS, KEAP1, and EGFR plus a high confident edge266

TP53→RB1. STK11 and ARID1A each have two parents.267

3.2.2. Progression of Mutations in Bladder Cancer268

We run the GA of OncoBN package with 2S = 100 solutions for T = 300 generations on 100269

bootstrap data sets. The mean progression network is illustrated in Figure 7. Out of p = 31 nodes,270

only 18 are inferred in the mean progression network because the remaining 13 are not connected271

with enough confident to the rest or to each others.272

We recover three root mutations with a high mean presence for the progression of bladder273

cancer: TP53, KDM6A, and KMT2D. From the several children of these roots, three have a mean274

presence greater than 50%: RB1, STAG2, and KMT2C. Finally, roots with meager mean pres-275

ence (ELF3, ATM, and CREBBP) and childless PIK3CA are mutations for which OncoBN can not276

find enough supporting evidence to place them in the main progression graph. Note that these277

placements are possible because of the flexibility of the spontaneous activation model.278

4. Discussion279

4.1. Simulation Study280

Figure 5 shows that the DP algorithm outperforms existing cancer progression algorithms when281

the noise rate is small. For high noise rates (η ≈ 0.2), CAPRI is slightly more accurate. A future282

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2020.04.13.040022doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.040022
http://creativecommons.org/licenses/by/4.0/


[0%, 20%) [20%, 40%) [40%, 60%)
75%, 100%

50%, 75%

Lung adenocarcinoma (LUAD)

N
100%
(567)

EGFR
11%(66)

RB1
6%(37)

SMARCA4
8%(47)

ATM
8%(47)

RBM10
6%(39)

KRAS
26%(150)

TP53
47%(270)

KEAP1
17%(97)

STK11
14%(81)

NF1
10%(58)

ARID1A
5%(31)

Melanoma (SKCM)

N
100%
(467)

ARID2
12%(57)

BRAF
49%
(233)

NRAS
25%
(117)

NF1
13%(65)

TP53
13%(64)

PPP6C
6%(30)

PTEN
9%(45)

CDKN2A
11%(54)

CTNNB1
7%(29)

MAP2K1
8%(33) DDX3X

5%(26)

MECOM
17%(84)

COL5A1
17%(81)

DACH1
8%(38)

RAC1
6%(29)

A

B

Figure 6: Mutation progression networks of melanoma and lung adenocarcinoma inferred by the

exact dynamic programming learning method. A. We recover three known subtypes of melanoma

(BRAF, NRAS, and NF1 in blue) as separate roots. Mutations linked to metastasis such as PTEN

and DDX3X are captured as late events. B. Synthetically lethal mutations of LUAD, KRAS and EGFR

(green nodes), appear in disjoint branches. Frequently co-occurred mutations STK11, KEAP1, and

SMARCA4 occupy a branch of the inferred network (red nodes). Subtype defining mutations TP53 and

RB1 are ordered with high confident.
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improvement to the method could be to integrate some of CAPRI’s regularization steps to improve283

robustness to noise. When η is small and fixed, DP uniformly outperforms CAPRI at different levels284

of network complexity (Figure 5B).285

The cross-comparison (Figure 5C) shows that the DBN model is adequate even when the286

underlying data generating process assumes the CBN model. Although the CBN model performs287

slightly better when the data generating process assumes the CBN model (MCC 0.585 vs. MCC288

0.44), the DBN model is significantly better when the data generating process assumes the DBN289

model (MCC 0.749 vs. MCC 0.448).290

4.2. Melanoma and Lung Adenocarcinoma291

Inferred melanoma progression network captures multiple known characteristics of melanoma.292

Namely, there are three distinct known molecular subtypes for cutaneous melanoma with BRAF,293

NRAS, and NF1 as biomarkers (The Cancer Genome Atlas Network, 2015). All three of these294

mutations are roots of our inferred progression network, which suggests that they are important295

early occurring events. Strong metastasis inducing cooperation of PTEN with BRAF (Dankort296

et al., 2009) is captured with BRAF→PTEN. DDX3X that is linked with metastasis in melanoma is297

captured as a late stage event (Phung et al., 2019).298

In the inferred progression network of lung adenocarcinoma, synthetically lethal mutations299

KRAS and EGFR (Unni et al., 2015) appear as distinct roots. Moreover, KRAS, KEAP1, STK11,300

SMARCA4, and NF1 form a subgraph. It is known that KRAS, KEAP1, STK11 and SMARCA4301

cooccur in non-small cell lung cancers (Schoenfeld et al., 2020) and our algorithm suggests that302

KRAS and KEAP1 are early events in those tumors.303

4.3. Bladder Cancer304

The recovered progression network for bladder cancer reflects existing biological research.305

First, bladder cancer is known to have two histologically different subtypes known as papillary and306

non-papillary (Kamat et al., 2016). Papillary tumors are finger-like, which start in the lining and307

grow toward the center of the bladder. Non-papillary tumors also initiate in the lining but are flat in308

shape. Both types can be muscle-invasive, which means the tumor has grown outward, escaped309

the lining, and infiltrated bladder muscles, or non-muscle invasive (Kamat et al., 2016). All of the310

bladder cases in TCGA are muscle-invasive, but papillary and non-papillary cases are not known.311

There are known molecular signatures for papillary and non-papillary bladder cancers. Muta-312

tions in TP53, RB1, and KMT2D (green nodes in Figure 7) are very frequent in non-papillary sub-313
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Figure 7: Mutation progression network of bladder cancer inferred by OncoBN. Focusing on the

three high confidence roots (TP53, KDM6A, and KMT2D), the two subtypes of bladder cancer are

clearly separated. The middle subgraph (rooted in KDM6A) is enriched for hallmark aberrations of the

papillary subtype (blue nodes), and the other two subgraphs correspond to flat tumors (green nodes).

Known mutual exclusive alteration pairs such as (KDM6A, KMT2D) and (TP53, CDKN2A) are occurring

in different subgraphs. Four established highly perturbed pathways of bladder cancer are represented

with varying outline colors. Each subtype has at least one mutated gene from these pathways is its

subgraphs, therefore in both subtypes, all of the four pathways are perturbed.
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type while KDM6A, STAG2, and FGFR3 (blue nodes in Figure 7) are hallmarks of papillary tumors314

(Dinney et al., 2004; Cancer Genome Atlas Research Network, 2014; Gui et al., 2011; Solomon315

et al., 2013). Focusing on the high confident recovered roots (TP53, KDM6A, and KMT2D) and316

their descendants, our inferred network of Figure 7 shows separate progression paths for papillary317

and non-papillary subtypes. The middle sub-graph rooted at KDM6A contains KDM6A, STAG2,318

and FGFR3 mutations and is mostly separated from the rest of the network. Therefore we can319

match it to the progression of the papillary subtype. Sub-graphs on the right and left of the fig-320

ure (rooted at TP53 and KMT2D) are enriched with molecular hallmarks of non-papillary subtype.321

Our result shows the ability of OncoBN to infer the cancer progression network while maintaining322

subtype-specific biology.323

In addition, we know that usually single perturbation of a pathway is enough for the manifesta-324

tion of a cancer hallmark. Therefore, another mutated gene in the same pathway does not confer325

a selective advantage. Thus, patterns of mutual exclusivity of cancer events arise among genes326

in the same pathways. In bladder cancer, high rate of alteration of p53/Rb, RTK/Ras/PI(3)K, and327

histone modification pathways are observed (Cancer Genome Atlas Research Network, 2014).328

Figure 7 highlights the corresponding pathways of genes with different outline color for each path-329

way. It confirms that the two subtypes (papillary and non-papillary) both have perturbation in p53,330

RTK/Ras/PI(3)K, methylation, and acetylation pathways. The only mutation that is shared between331

the two subtypes is EP300, which corresponds to acetylation.332
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