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ABSTRACT

Whereas brain imaging tools like functional Magnetic Resonance Imaging (fMRI) afford10

measurements of whole-brain activity, it remains unclear how best to interpret patterns found amid the11

data’s apparent self-organization. To clarify how patterns of brain activity support brain function, one12

might identify metric spaces that optimally distinguish brain states across experimentally defined13

conditions. Therefore, the present study considers the relative capacities of several metric spaces to14

disambiguate experimentally defined brain states. One fundamental metric space interprets fMRI data15

topographically, i.e, as the vector of amplitudes of a multivariate signal, changing with time. Another16

perspective considers the condition-dependency of the brain’s Functional Connectivity (FC), i.e., the17

similarity matrix computed across the variables of a multivariate signal. More recently, metric spaces that18

think of the data topologically, e.g., as an abstract geometric object, have become available. In the19

abstract, uncertainty prevails regarding the distortions imposed by the mode of measurement upon the20

object under study. Features that are invariant under continuous deformations, such as rotation and21
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inflation, constitute the features of topological data analysis. While there are strengths and weaknesses of22

each metric space, we find that metric spaces that track topological features are optimal descriptors of the23

brain’s experimentally defined states.24

AUTHOR SUMMARY

Time-Varying Functional Connectivity (TVFC) leverages brain imaging data to interpret brain function25

as time-varying patterns of coordinating activity among brain regions. While many questions remain26

regarding the organizing principles through which brain function emerges from multi-regional27

interactions, advances in the mathematics of Topological Data Analysis (TDA) may provide new insights28

into the brain’s functional self-organization. One tool from TDA, “persistent homology”, observes the29

occurrence and persistence of n-dimensional holes in a sequence of simplicial complexes extracted from30

a weighted graph. The occurrence of such holes within the TVFC graph may indicate preferred routes of31

information flow among brain regions. In the present study, we compare the use of persistence homology32

versus more traditional metrics at the task of segmenting brain states that differ across experimental33

conditions. We find that the structures identified by persistence homology more accurately segment the34

stimuli, more accurately segment high versus low performance levels under common stimuli, and35

generalize better across volunteers. These findings support the topological interpretation of brain36

dynamics.37

INTRODUCTION

One of the perennial questions in neuroscience concerns how neuronal signaling generates time-varying38

experiences. One foundation from which to address this question asserts that brain function emerges39

from neuronal communication within the context of multiscale neuronal networks. Having access to40

high-quality whole-brain imaging data, the field of Time-Varying Functional Connectivity (TVFC) (or41

chronnectomics (Calhoun, Miller, Pearlson, & Adalı, 2014)) offers an empirical approach to42

characterizing time-varying patterns of mesoscopic neuronal communication (Hansen, Battaglia,43

Spiegler, Deco, & Jirsa, 2015; Hutchison et al., 2013).44
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Early computational analysis of brain imaging data observed changes in vectors describing brain45

topography across conditions. FC instead defines a geometry among brain regions by computing46

pairwise similarities from their long-term spontaneous activity measures (Biswal, Zerrin Yetkin,47

Haughton, & Hyde, 1995). While often the similarity between regions is calculated using the Pearson48

correlation among spontaneous neuroimaging signals (Biswal et al., 1995; Buckner, 2011; Stoodley,49

Valera, & Schmahmann, 2010), in general, the idea of brain connectivity can apply to other methods of50

computing pairwise edges between nodes in the brain. For instance, the present study defines TVFC51

using instantaneous coherence.52

But is the overt geometry of brain imaging data an optimal set of features through which to view and53

compare brain dynamics? Or, does FC geometry tend to be an idiosyncratic and volunteer-specific54

descriptor of the brain’s state (Finn et al., 2015)? An alternative perspective observes that an FC graph55

may be treated as a network. From here, the analyst may compute graph-theoretic summaries such as56

centrality, strength, small-worldness, etc. (Bullmore & Sporns, 2009; Farahani, Karwowski, & Lighthall,57

2019). However, it is not clear that network properties become clearer when segmenting the brain into58

more parcels. Rather, the observation of important network properties may require a precise parcellation59

schema (Gordon et al., 2016).60

A more complete picture of neuronal dynamics should account for the brain’s differential61

establishment, and dissolution, of functionally connected ensembles of brain regions through time. One62

way to gain this perspective is to consider data as an approximate sampling of an underlying, typically63

low-dimensional, geometric object, that is, as a topological space. In this framework, we may describe64

the potentially many-body interactions between points or regions of interest using simplices. In the65

simplest and most abstract definition, a k-simplex σ = [p0, p1, . . . , pk] is a set of (k+1) points pi with an66

ordering. The topology of a space is defined by collections of simplices, called simplicial complexes,67

that are closed under intersection (i.e. X is a simplicial complex if ∀σ, σ′ ∈ X , then also σ ∩ σ′ ∈ X ).68

Disconnected holes and cavities are described by the homology groups Hk of the simplicial complex: H069

describes connected components of the complex, H1 its one dimensional cycles, H2 three-dimensional70

cavities, and so on for higher ks.71

Topological Data Analysis (TDA) attempts to reconstruct the data’s underlying abstract topological72

space by quantifying the presence and persistence of homological features across different scales (e.g.73
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distances between points, or intensity of correlation between different regions in FC graphs). Such74

features may include connected regions of a topological space, and its holes in various dimensions, from75

one-dimensional cycles to higher-dimensional cavities (Battiston et al., 2020; Phinyomark,76

Ibanez-Marcelo, & Petri, 2017). TDA has been described as “exactly that branch of mathematics which77

deals with qualitative geometric information” (Carlsson, 2009). In practice, one does not focus on a78

single complex X but rather on a filtration X = [X0, X1, X2, . . . , Xn], a sequence of nested simplicial79

complexes, such that Xi ∈ Xi+1, which approximates the topological structure at different scales. In this80

case, the analogues of homological groups are persistent homological groups, which not only capture the81

presence or absence of a hole, but also at what scale it appears and at what scale—if any—it disappears.82

In this way, persistent homology generates topological summaries, called persistence diagrams, that can83

then be used to compute topologically-informed distances between datasets (see Methods).84

Re-thinking the more traditional brain dynamics metric spaces from the perspective of topology;85

values for nodal activity, edge weight, degree strength, etc., are properties that decorate k-simplices.86

Thus, we can consider more traditional metrics as adopting a ‘simplicial approach,’ while a ‘topological87

approach’ focuses on topological features associated to sequences of simplicial complexes. To compare88

simplicial and topological spaces of brain dynamics, we leverage pre-existing rest and task fMRI data89

from 18 volunteers (Gonzalez-Castillo et al., 2015). We compare instantaneous brain images using each90

of 6 metric spaces—3 simplicial metrics, and 3 topological metrics. Metric spaces are embedded onto91

2-dimensions to facilitate statistical tests relating clusters of brain images with common experimental92

conditions (for more details, see figure 1 and Methods). In part A of figure 2, we report an instance of the93

embeddings output from the six brain dynamics metrics spaces, that is, the metric space from differential94

node topography, differential edge geometry, differential degree strength, and also the three topological95

distances between homology groups in dimensions 1, 2, and 3 (the homology groups H0, H1, and H2).96

Points often form dense regions associated to certain experimental stimuli. After 256 bootstrap samples97

of the embedding process, we find that the topological approach excels at distinguishing experimentally98

distinct brain states.99

RESULTS
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Figure 1: Analysis pipeline. We present the analysis pipeline as a flow diagram in four steps. First,

the pipeline accepts preprocessed and spatially segmented BOLD fMRI data as inputs. Then, for each

scan, we compute time-varying functional connectivity (TVFC) matrices as the weighted mean of the

wavelet coherence between all brain regions, across all time points. Because the wavelet kernel operates

over a portion of the time-frequency domain, we remove the outside temporal and spectral edges of the

coherence matrix where data padding is required. Next, we compare instantaneous brain dynamics using 6

metrics. Three metrics quantify the similarity among simplex decorations, while the other three compare

the lifetimes of persistent homological groups at different dimensions. Finally, we embed each brain

dynamics metric space onto 2-dimensions for visualization, clustering, and statistical analysis. To improve

seperability among temporally adjacent time points, and to ensure an unbiased clustering of embedded

regions, we split volunteers into three groups: 1) an embedding training group, 2) a clustering training

group, and 3) a testing group. Statistical results are computed after 256 bootstrapped reinitializations of

the volunteer-wise split into the three groups.
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Figure 2: Brain dynamics embeddings for different underlying metrics. We display one realization of

the embedded clusters for each of the six metric spaces under investigation. Dense regions of the embed-

ding segment the space into clusters. Clusters are color coded if the underlying points bear statistically

significant associations with between 1 to 6 volunteers (part A), or with each of the 5 experimental con-

ditions (part B). (The label ’multi’ identifies regions independently associated with at least 2 different

stimuli).

Volunteer-wise representation100

As an initial test of the quality of each embedding space, we ask how well the clusters in each embedding101

generalize across volunteers. To do so, we count the number of points falling into clusters wherein102

between 1 and 6 volunteers contributed a not-insignificant number of points to each cluster. Figure 3103

displays the results of this count as percentages with respect to the total number of time points in the test104

embedding. Following the subsampling and bootstraping schema described in the methods,105

volunteer-wise generalizability was assessed over 256 independently reinitialized embeddings. Bold lines106

in figure 3 display the mean, while shaded regions show the 95% confidence interval. A right-skewed107

distribution indicates increased generalizability, because it means that the densest watershed regions are108

significantly populated with many volunteers. A left-skewed distribution indicates that most watershed109

regions are specific to one or few volunteers, i.e., that observed brain dynamics are idiosyncratically110

related to specific volunteers.111

–6–

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2020.09.06.285130doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.285130
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T ==

Journal: BIORXIV / Title: TDA TVFC

Authors: Billings Saggar Hlinka Keilholz Petri

Figure 3: Volunteer specificity of watershed regions. We plot the percentage of time points lying

within each of 6 bins. Each bin presents the proportion of points belonging to embedding clusters wherein

between 1 and 6 volunteers possessed ‘not an insignificant number of points’ in that embedding cluster

(inverse left-tail test). Data are presented as mean and 95% confidence interval over 256 independent

samples, each sample from a randomly initialized embedding. Bin 6 is expanded for clarity.

Overall, topological metric spaces offer embeddings that generalize better across volunteers than the112

other metrics we consider. Not only does homology present right-skewed distributions in figure 3, this113

category of metrics also aggregates significantly more points into embedding clusters that are general for114

all 6 volunteers.115

It may be possible for metric spaces to generalize too well. For instance, the metric space differing116

node activity agglomerates the largest percentage of time points into bins having between 4 and 6117

represented volunteers. However, as will become clear in the next section, this state generalizability118

comes at the cost of the capacity to distinguish between experimental conditions. Indeed, it appears that119

the node metric space produces embeddings with a single dense core, plus a few distant outliers.120

Stimulus segmentation121

A central indicator of embedding quality is the degree to which time points co-localize when belonging122

to the same stimulus condition. Part B of figure 2 shows an example result of testing watershed clusters123
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Figure 4: Comparison of task specificity for watershed regions across different metrics. We report

the percentage of time points assigned to clusters having a significant amount of points from each exper-

imental condition (blue boxplots). For those same clusters, we report the percentage of points from each

experimental condition after randomly permuting point labels (yellow boxplots). Additionally, we report

the effect size (Cohen’s D) between these two distributions (values above boxes). A third distribution

(black boxplots) shows the false positive rate for identifying significant clusters.
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against the hypothesis that a significant number of within-cluster points corresponds to any of the 5124

experimental conditions. For each stimulus type, figure 4 shows the percentage of points from that125

stimulus residing in clusters significantly associated with that stimulus (blue boxes). Here again, we126

report the result as a distribution after 256 independently reinitialized embeddings. Larger percentages of127

significantly co-localizing points indicate increased capacity to identify brain-states associated with128

experimental stimuli.129

For comparison, we offer two null models computed from randomly permuted point labels. The first130

null distribution (yellow boxes) permutes point labels among the significant clusters defined previously. It131

reflects the expected number of points that would randomly collect into the preidentified set of significant132

clusters. The inclusion of this null model is motivated by the fact that some embeddings clump more133

points than others into the same watershed region, and would thus hold a larger percentage of points from134

any experimental condition by default. The effect size (Cohen’s d) between this null distribution and the135

real distribution provides an indication of how well each embedding isolates brain states induced by136

distinct experimental stimuli. The second null distribution simply permutes point labels before attempting137

to find watershed clusters having a significant number of points from any of the 5 experimental conditions138

(black boxes). This second null distribution provides a good check on the rate of false positives.139

Here again, the homology-based embeddings perform very well compared to embeddings constructed140

from simplicial overlap. This is especially the case for the H0 metric space which tends to present, over141

all stimuli, the highest effect sizes. The second highest effect size is found from the H1 metric space.142

And the third from the strength metric space.143

It is interesting to note that, of all the homology-based metrics, the embeddings using Wasserstein144

distances in H2 provide the worst segmentation over stimuli. While this may indicate that aspects of145

TVFC topology are restricted to very low dimensions, the computationally-motivated coarsening of146

voxelwise information into 328 brain regions also limits the appearance of high-dimensional homologies.147

The embeddings over nodes produce states that are highly generalizable across volunteers, but that are148

very poor at distinguishing experimental conditions. In direct contrast, the embeddings over edges are the149

least generalizable across volunteers, but produce embeddings wherein many time points are found in150

watershed clusters with correctly labeled experimental conditions.151

–9–

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2021. ; https://doi.org/10.1101/2020.09.06.285130doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.285130
http://creativecommons.org/licenses/by-nc-nd/4.0/


== D R A F T ==

Journal: BIORXIV / Title: TDA TVFC

Authors: Billings Saggar Hlinka Keilholz Petri

Task performance152

Table 1: Primary statistics, over all distances between pairs of instantaneous brain dynamics.

min mean max

Nodes 5.7 38 82

Edges 0.0034 0.36 0.55

Strength 0.0013 0.20 0.54

H0 0.12 8.1 31

H1 0.14 2.8 9.0

H2 0.043 1.7 6.3

Assuming that differences in performance should be detectable as different brain states under common153

stimuli, we expect to see large differences between measures of brain dynamics during task time points in154

which volunteers made fewer or more correct responses. We can test this because the experimental155

design includes performance metrics for each task, especially the percentage of correct responses for156

each task block. To do this we computed “mean performance graphs” for each task and each valenced157

performance level (see Methods). Within each task, performance was valenced as having either more158

correct responses, or fewer correct responses with respect to a mean split of the performance159

characteristics for that task from the entire dataset.160

Part B of figure 5 displays distances between pairs of mean graphs (across metric spaces and161

performance levels). Of particular note are the distances computed across the valenced performance162

levels, but within the same category of metric space (figure 5, white annotations). These values directly163

measure the sensitivity of each metric space to distinguishing different brain states under common164

stimuli. Overall, the distance between valenced mean graphs is largest with respect to the topological165

metric spaces. This is especially true from the perspective of the Jaccard distance (part C of figure 5,166

lower triangles). From the perspective of the Wasserstein distance in H0 (upper triangles), the strength167

metric also demonstrates strong cross-valence differences.168
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Figure 5: Distances between mean graphs from different performance levels. Mean performance

graphs are calculated by taking the mean edge weights for all time points (from any volunteer or condi-

tion, and across all embedding reinitializations) located in watershed clusters that are both significantly

populated by a given task, and also wherein significantly more or fewer correct responses (with respect

to a mean split) were also found for that task (see Methods). Part A of the figure shows the RMS and

standard deviations for distances computed between each mean graph versus the set of graphs from which

each mean graph was drawn. An annotation is given for the maximum and minimum values in each row.

Separate colormaps depict the values in each row. The minimum value is set to 0 for all colormaps. Part

B shows distances between the mean performance graphs themselves. Annotations are provided for dis-

tances computed within each metric space, but between high performance and low performance mean

graphs. For the sake of comparison, distances between mean graphs are calculated with both the weighted

Jaccard distance between edges (lower triangle of part B), and also with the sliced-Wasserstein distances

between H0 persistence diagrams (upper triangle). The lower colorbar references the lower triangle, and

right colorbar references the upper triangle.
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The values in part B of the figure should be compared against summary statistics in part A, and to table169

1. Displaying the RMS and standard deviation of the set of distances between each mean graph and their170

component TVFC graphs provides some indication of the diversity of brain dynamics at times with171

common stimuli and response characteristics. Compared to table 1, the RMS edge distance between172

mean graphs and component graphs is below the average edge distance across all graphs. By contrast, the173

RMS Wasserstein distance in H0 between mean graphs and component graphs approaches the maximum174

H0 distance across all graphs. Through the lens of a simplicial approach, mean graphs localize centrally175

among all graphs. By contrast, through the lense of the Wasserstein distance in H0, mean graphs are very176

different from all other graphs. This observation confirms that the simplicial approach and the177

topological approach are observing very different features of the same datasets.178

Visualization of homological information179

Finally, having identified the high utility of brain-dynamics metric spaces developed from homology to180

disambiguate group-general brain states, we wanted to gain some insights into what features of TVFC the181

homology resolves. Owing to the optimal performance of the H0 metric space, in figure 6, we present a182

visualization of topological features of a mean performance graph, and also of an instantaneous TVFC183

graph. Parts A and B of the figure display the H0 and H1 homology groups at a single threshold. But the184

topology of a point cloud should be considered over multiple scales. Part C of the figure gives a sense of185

the multiscale properties of the lense through topology. Each point in the persistence diagram represents186

a different collection of homology groups. Interestingly, the observed homology groups in the mean187

performance graph are shifted to further birth coherence distances than the distrabution of homology188

groups from the sample TVFC graph. Both distributions of birth and death times are above the threshold189

for significant wavelet coherence distance, 0.6, as defined relative to an AR1 model of the input data (see190

part B of supplemental figure 0.1).191

DISCUSSION

Brain function is believed to emerge from extensive coordination among brain regions. However, what192

features typify state-specific brain organization remain a subject of intense and ongoing research193

(Battaglia & Brovelli, 2020; Lurie et al., 2020). To better understand the correspondence between the194

methods we use to describe brain dynamics, and the quality of the eventual descriptions, we compared195
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Figure 6: Illustrative examples of persistent homology in H0 and H1 Whereas persistent homology

operates over a multiscale filtration over inter-node distances, parts A and B of the figure illustrate some

of what the algorithm is observing by representing the H0 and H1 homology groups at a single scale. The

image in part A was computed from the mean graph of more correct memory task responses, as observed

by the H0 metric space. The image in part B represents a single time point consistently identified as a

member of the mean graph from part A. The threshold corresponds to the first appearance of a cocycle

in H1. The variegated (’cubehelix’ colormap) lines in the brain images display the edges involved the

cocycle. The red numbers indicate the nodes connected by cocycle edges. Dotted gray lines indicate

all edges below this threshold that connect nodes involved in the indicated cocycle. The black dashed

line indicates the edge born on or above the threshold that fills in the cocycle. Brain regions are color

coded with respect to their clustering with-respect-to an agglomerative clustering with the ‘single’ linkage

distance. Light colored lines point between brain regions sharing the same cluster. Colored dots represent

the brain region having the largest weighted degree strength of the cluster. Black dots represent the other

brain regions of the cluster having less than the maximum weighted degree. For reference, part C of the

figure displays the persistence diagrams associated to the graphs from parts A and B. The threshold for the

brain images in parts A and B are shown as large ’x’ markers in part C. The birth time of all H0 connected

components is at zero coherence distance, however, the data are shifted in the ‘x’ axis for clarity.
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the performance of two broad classes of TVFC metric spaces: one based upon overlap distances between196

decorated k-simplices, and the other based upon k-dimensional homological structures. The results of the197

present study provide evidence that the homology of coherence-based TVFC effectively disambiguates198

experimentally defined brain states in the population-general brain. By contrast, the performance of199

approaches based on network and simplicial overlap generally performed worse at distinguishing200

population-general and experimentally relevant brain states (see figures 3 and 4).201

Intrinsic geometries: Given a good space for representing brain dynamics, it is possible to observe202

stereotypical brain states between more subtly different conditions. Utilizing the same dataset as the203

present study, Saggar et al. (2018) computed a distance between node activities to visualize204

two-dimensional mappings of within-volunteer temporal similarity. In the majority of cases, the205

visualization depicts even transitions across time points. Smooth transitions over short distances are206

clearly depicted during the resting state. Smooth transitions are also a feature of most temporally207

adjacent transitions during task states. However, for some volunteers, the mapping depicts modularized208

transitions within the context of a single experiment.209

Using a complimentary dataset, Billings et al. (2017) also computed maps of node activity distances.210

Distances were mapped across a population of volunteers. Even at the group level, a general trend was211

observed of variable activity punctuated by moments of clear transitions between focal brain states.212

Similarly, a sample of the nodes embedding shown in figure 2 contains O10 very dense nodes distributed213

along the circumference of a more sparsely populated embedding.214

Towards a topological view: While studies implementing simplicial metrics evidence that brains select215

conserved dynamical patterns towards the production of brain function, the empirical and theoretical216

support for emphasizing homological and other topological descriptors has prompted several authors to217

reinterpret neuronal dynamics from a topological perspective (Curto, 2017; Giusti, Ghrist, & Bassett,218

2016; Lerda, 2016; Rasetti, 2017; Reimann et al., 2017; A. E. Sizemore, Phillips-Cremins, Ghrist, &219

Bassett, 2019; Stolz, 2014). A. E. Sizemore et al. (2018) evidence that cliques and homological cavities220

in the mesoscopic space of structural brain images reflect known brain networks. Further evidence that221

cliques and homologies encode microscopic interactions among neuronal circuits have been discovered222
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within the hippocampal place field (Basso, Arai, & Dabaghian, 2016; Dabaghian, Brandt, & Frank, 2014;223

Giusti, Pastalkova, Curto, & Itskov, 2015) and in the somatomotor representation of the head (Chaudhuri,224

Gerçek, Pandey, Peyrache, & Fiete, 2019). The present results provide further support for the utility of225

the topological approach to discern the evolution of brain states through time, thus to possibly improve226

our comprehension of the brain’s multiscale self-organization.227

As a quantitative tool, persistent homology is tailor-made for defining topological similarities among228

metric spaces (Carlsson, 2009). Indeed, fMRI studies have implemented persistent homology to discern229

group-level FC differences in task performance (Ibáñez-Marcelo, Campioni, Phinyomark, Petri, &230

Santarcangelo, 2019), and with respect to pharmacological treatments (Petri et al., 2014a). Similar231

findings are observed in MEG data (Duman et al., 2019). Stateful segmentation was also achieved from232

homological features in H0 for 8-channel EEG TVFC as volunteers engaged in a visuo-motor task (Yoo,233

Kim, Ahn, & Ye, 2016).234

Visualizing topology: Certainly, functional connectivity describes a multiscale process. And while there235

are ongoing questions regarding the pathways through which otherwise structurally distributed brain236

networks form TVFC networks (Damoiseaux & Greicius, 2009); the development of data-drivin237

functions that operate over spectral and spatial features of complex networks may drive new insights. The238

view from homology may be especially useful when topological features are expected to be important,239

that is, when one expects multiple scales of patterned connectivity among clusters in H0, and/or higher240

order (dis)-connected cycles in H1 and above. In pursuit of this hypothesis, it may be useful to start with241

a more dense spatial sampling over brain regions. Also, the expansion of the spectral data into a242

multi-layer graph may improve stateful representations. In any case, the present observation of243

meaningful homology in H0 may relate to the fundamental description of brains as functioning through244

multiple scales of interacting brain regions. Given the theoretical significance of homology in H0 (e.g.,245

multiscale clustering), and it’s computational speed increases relative to computing homology in H1 and246

above; it appears to be worthwhile to use persistent homology in H0 as a general tool for describing and247

comparing brain states.248
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Limitations and future directions: Future research should strive to make a more detailed catalogue of the249

homologies that commonly appear among brain regions. While the present study resorted to a very coarse250

brain parcellation to visualize homology (see figure 6), it is not clear how stable these minimal cycles are.251

Indeed, it is not clear that 333 parcels provides a maximal resolution of brain dynamics. In theory, more252

parcels should enhance the capacity for persistent homology to distinguish brain states; albeit, up to some253

plateau. By contrast, elementwise operations over simplicial decorations benefit from clustering (Glasser254

et al., 2016; Gordon et al., 2016) and unmixing (Kunert-Graf et al., 2019; Smith et al., 2009). Future255

should utilize this stability property of TDA to catalogue the stability of cycles across multiple scales of256

parcellation. Another limitation of the present study is the reliance on clustering in the low-dimensional257

space. Even while low-dimensional embeddings provide an efficient means for visualizing data, there is258

always some loss of information. For instance, the UMAP method for embedding point cloud data259

transduces an explicit nearest-neighbor approximation of the high-dimensional simplicial complex into260

the low-dimensional space. This approximation may be causally related to the observation that metric261

spaces based upon, especially, 1-dimensional simplicial overlap organize into temporally-adjacent262

clusters. While edge overlap may be a volunteer-specific trait. And while the trait may be partially263

alleviated by deconvolution of the volunteer-specific hemodynamic response function, future work that264

biases the low-dimensional embedding in a more appropriate way—perhaps by learning a transductive265

vector embedding as in Bai et al. (2019)—may offer some additional improvements. In any case,266

approaches that circumvent dimensionality reduction entirely by operating in the native high-dimensional267

space may offer the most general solution to the loss of information during low-dimensional embedding.268

Finally, it is always interesting to consider more concise multispectral decompositions than provided269

by Morlet wavelet kernels. Perhaps kernels that imitate the canonical hemodynamic response function270

would offer a more compact representation of fMRI data. Also, while the Morlet wavelet is roughly271

symmetric, it may be useful to implement asymmetric filters that place more emphasis on information272

from more recent time points.273

In conclusion: To understand the dynamic self-organization of complex systems like the brain, it helps274

to view system dynamics through lenses that highlight the presence and the structure of complexes.275

Given the kinds of weighted graphs typical of TVFC analysis, persistent homology is well-suited for276
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interpreting complexes of brain regions. The view from homology outperforms more traditional graph277

metrics —like the activity measures of 0-dimensional nodes, and like the weights of 1-dimensional278

edges—at the task of segmenting experimentally defined brain states into patterns that generalize well279

across multiple volunteers. The utility of these data-drivin multiscalar methods inspires additional280

research into the topology of high-dimensional connected objects.281

METHODS

As described in figure 1, our procedure unfolds across 4 steps:282

1. Acquire task and resting-state BOLD fMRI data from a group. Apply minimal preprocessing.283

2. Compute TVFC as instantaneous coherence.284

3. Differentiate instantaneous brain dynamics via each of 6 metrics:285

(a) Euclidean distance between node topographies286

(b) Weighted Jaccard distance between edge geometries287

(c) Weighted Jaccard distance between the weighted degree strength of networks288

(d) Sliced-Wasserstein distance between topographic persistence diagrams in H0289

(e) Sliced-Wasserstein distance between topographic persistence diagrams in H1290

(f) Sliced-Wasserstein distance between topographic persistence diagrams in H2291

4. Embed distance onto 2-dimensions for visualization and statistical analysis292

Data acquisition and preprocessing293

To discern the relative capacities of a range of distance metrics to disambiguate the dynamical294

brain-states induced by stimuli, for the present study, we adopted a dataset acquired during the295

presentation of multiple experimentally defined tasks. The present study benefited from scans acquired296

continuously over relatively long time spans as the process of spectral filtration requires complete overlap297

between the signal and the filtration kernel to avoid affects at the undefined edges of the time series. And,298

whereas we are interested in signals in the low-frequency fluctuation range (1/100 seconds2), we required299

scans to be at least longer than 200 seconds.300
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The data acquired by Gonzalez-Castillo et al. (2015) meet these criteria. These data have been301

publicized as an open-access dataset through the XNAT neuroimaging database (https://central.xnat.org;302

Project ID: FCStateClassif). Here, we briefly summarize the dataset as follows: 18 volunteers were303

scanned continuously over 25.5 minutes (7 Tesla, 32-element coil, gre-EPI, TR=1.5s, TE=25ms, 2mm304

isotropic). Preprocessing was performed to transform individual datasets into a common MNI space and305

to remove artifacts from slice timing, motion, linear trends, quadratic trends, white matter signals, and csf306

signals. Data were spatially smoothed using a 4mm FWHM Gaussian filter. They were temporally307

band-pass filtered to between 0.009 Hz and 0.08 Hz. Finally, images were downsampled to 3mm308

isotropic, and normalized to common (MNI) coordinates. Data were acquired in compliance with a309

protocol approved by the Institutional Review Board of the National Institute of Mental Health in310

Bethesda, MD. For complete preprocessing details, please refer to Saggar et al. (2018). In addition to the311

aforementioned steps, voxelwise data were spatially aggregated onto an atlas of 333 brain regions312

(Gordon et al., 2016). Up to 5 brain regions contained no information from some volunteers, and were313

excluded from all datasets for the remainder of the analysis. (Numbers 133, 296, 299, 302, and 304,314

indexed from 0. See also the missing patches in figure 1, part A) Thus, the finest granularity of study315

results are over 333-5=328 brain regions. During the scan, volunteers interacted with 3 block-design316

tasks and one rest stimulus. Each task was presented twice. Each task presentation lasted 3 min, and was317

proceeded by a 12s instruction block. Tasks included: ‘video,’ watching videos of a fish tank while318

responding to a visual target; ‘math,’ computing algebra problems; and ‘memory,’ a 2-back memory task319

with abstract shapes. A ‘rest’ stimulus was also included, and entailed the presentation of a fixation cross320

for 3 minutes. Stimuli were randomly ordered in a fixed sequence for all volunteers. For each task block,321

performance metrics were collected, including the percentage of correct responses.322

Time-varying connectivity323

Considering that individual frequency bands develop significantly different FC parcellations (Billings et

al., 2018) and different connectivity hubs (Thompson & Fransson, 2015). And, considering that

neuroelectric activity is intrinsically rate coded. The delayed and (hemodynamic response function)

band-pass filtered version of neuroelectric activity that is the BOLD signal is likely to retain some

rate-coded information. Given these observations, the present study recasts the BOLD signal from each

brain parcel in terms of time-frequency spectrograms generated through the use of the Continuous
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Wavelet Transform (CWT)

Wt(s) =
T−1∑
t=0

f(t)
1

s
ψ∗
(
t− u
s

)
δt,

where ·∗ indicates the complex conjugate. By adjusting the time localization parameter u and the scale324

parameter s for the wavelet kernel ψ, the CWT affects a multiscale decomposition of input signal f(t) for325

all times t ∈ T . For the present study, the filterbank comprised 15 scales log-distributed between 0.007326

and 0.15 Hz.327

Following Torrence, Compo, Torrence, and Compo (1998), symmetric wavelets will produce similar328

coherence values. And without strong support for any particular wavelet kernel, we adopt the complex329

Morlet wavelet as the CWT kernel. The filter is a plane wave modified by a Gaussian,330

ψ = eiω0t/se−t
2/(2s2). And we set the base frequency to ω0 = 6. Following Farge and Marie (1992), an331

ω0 > 6 ensures the function’s non-zero average is outside machine precision (Farge & Marie, 1992).332

Spectral selectivity increases with increasing ω, at the expense of decreased temporal selectivity (e.g.,333

sharper filters require more temporal support). Thus, a base frequency of ω0 = 6 ensures maximal334

temporal resolution.335

A complex valued kernel computes instantaneous amplitude and phase information. From there, it is

possible to compute wavelet coherence as follows. For a pair of complex-valued spectrograms, WX and

W Y , the quantity WXY
t (s) = WX

t (s)W Y ∗
t (s) is the cross-wavelet spectrum. Its absolute value,

|WXY
t (s)|, is the cross wavelet power which represents the shared power between signals at scale s and

time t. Coordinated changes in amplitude may be computed in terms of the wavelet squared coherence,

R2
t (s) =

|〈s−1WXY
t (s)〉|2

〈s−1|WX
t (s)|2〉〈s−1|W Y

t (s)|2〉
.

The functional 〈·〉 indicates smoothing in both time and scale. The factor s−1 is used to convert to

scale-dependent energy densities. The wavelet squared coherence is an instantaneous and multispectral

analogue of the Pearson correlation (Marwan, Thiel, & Nowaczyk, 2002; Torrence et al., 1998; Torrence,

Webster, Torrence, & Webster, 1999). Its values range between 0 (completely incoherent) and 1

(completely coherent). While it is theoretical possible to treat TVFC as a multilayer graph having as

many layers as spectral scales, practical computational concerns prompt us to concatenate multispectral

coherence into a single broadband average. To do so, we take the weighted mean of the wavelet squared
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coherence with respect to the normalized cross wavelet power:

TV FCXY
t = 1−

s∑ |WXY
t (s)|

maxs |WXY
t (s)|

R2
t (s). (1)

Normalizing the cross wavelet power ensures that the mean coherence remains bounded between 0 and 1.336

The peak of the mean cross wavelet power occurs in the frequency range between 0.01 and 0.02 Hz and337

(see part A of supplemental figure 0.1). TVFC graph edges are 1 minus the power-weighted coherence to338

represent coherence distances between brain regions.339

To account for the cone of influence at the temporal edges of the wavelet filtration, as well as the loss340

of precision at the temporal and spectral edges of the smoothed coherence data, the outside 120 time341

points and the outside 2 scales are dropped before taking the summation in equation 1. The removed time342

points include one whole “rest” block, and one whole “video” block. Coherence graphs are thus available343

for the middle 777 images of the scan, and for 11 spectral scales between 0.0095 and 0.1 Hz.344

Distance metrics comparing brain dynamics345

Theory: Having constructed TVFC graphs for all included time points and for all volunteers, we346

pursue two broad alternatives for comparing brain dynamics. The first is related to elementwise347

differences between the decorations (e.g. weights) applied to graphs. And the second relates to common348

topological features. To describe in detail these two views, it is useful to supply some definitions.349

A graph G = (V,E) represents a set of V nodes interconnected by E edges. Nodes and edges may be350

decorated with properties such as value, weight, directionality, sign, layer, degree centrality, degree351

strength etc. A collection of k completely interconnected nodes forms a clique, C. In the following, we352

identify cliques with geometric primitives called ‘simplices’ in standard fashion (Petri et al., 2014b; Petri,353

Scolamiero, Donato, & Vaccarino, 2013); that is, to a clique of k + 1 nodes we associate the354

corresponding k-simplex, σk. For instance, 2 connected nodes form a 2-clique. The surface enclosing a355

2-clique is a 1-simplex, i.e., an ‘edge’. A 2-simplex formed by a clique of 3 connected nodes is a ‘filled356

triangle’, and so forth for higher-order simplices.357

Formally, a simplicial complex is a topological space, K, composed of all σk and their subfaces. Along358

the same lines, a clique complex, Cl(G), is a simplicial complex formed from an unweighted graph G by359
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promoting every k-clique into a (k − 1)-simplex. Holes in dimension k may develop within the360

boundaries established by closed chains of (k − 1)-simplices. Such holes are called ‘homologies.’361

The ‘topological approach,’ TDA, includes methods for identifying topological features of an abstract362

geometric object represented by a data sampling. By contrast, the more traditional approach to363

comparing brain dynamics constitutes a ‘simplicial approach’ that directly compares the decorations364

applied to sets of simplices.365

Homology: The boundary of a homology is termed a, ‘homological cycle’ or ‘generator.’ To illustrate366

the concept, consider the case of four nodes connected in a cycle such that each node has exactly two367

edges. The nodes form neither a 4-clique nor a 3-dimensional simplex because there are two missing368

edges. Rather, these nodes form a connected cycle that is the boundary of a 2-dimensional hole. This369

void space is also called a homology in dimension 1 (i.e., formed by a set of 1-d edges). The kth370

homology group, Hk(K), describes the (k + 1)-dimensional holes bounded by chains of k-simplices. For371

example, the H1 homology group are the holes bounded by edges in K; H2 are the voids bounded by372

filled triangles; etc.373

The term ‘homology’ follows from the Greek ‘homo,’ the same, and ‘logos,’ relation, to indicate that374

the hole belongs to an equivalence class that is categorically the same across continuous deformations375

that neither break the boundary nor create new simplices spanning the boundary: e.g., inflation,376

compression, rotation, and translation. Different representative cycles may therefore exist that describe377

the same homological cycle. For instance, a very elastic coffee cup could be continuously contracted into378

the shape of a donut, as they share the same toroidal topology. For the sake of convenience, a379

homological cycle is often represented as the minimal representative cycle (Guerra, De Gregorio,380

Fugacci, Petri, & Vaccarino, 2020; Petri et al., 2014b).381

Simplicial distances: The first approach, which we will denote as ‘simplicial,’ computes an average of

the elementwise differences between the decorations applied to each k-simplex in the complex. For

example, in the present study, we compute the weighted Jaccard overlap distance between the weights of
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TVFC edges as

DJ(G1, G2) = 1−
∑

e∈E min(ewG1, e
w
G2)∑

e∈E max(ewG1, e
w
G2)

,

where ewG is the weight of the eth edge in graph G.382

Further we compute distances between the explicit 0-dimensional values decorating each node; e.g.383

with respect to the signal activity of each node. Specifically, for each point in time, we treat the absolute384

values of multispectral wavelet coefficients from all brain regions as an ordered vector. We then compute385

the Euclidean distance between vectors from different points in time.386

The third distance is inspired by previous work on relations between graph networks and homological387

cycles. Lord et al. (2016) demonstrate that the nodes’ weighted degree (also called strength) is388

significantly correlated with the frequency and the intensity with which nodes participate in the shortest389

representatives of homological cycles. The third distance is thus the weighted Jaccard distance between390

vectors of the node-wise weighted degree, also called the strength, of each TVFC graph.391

Homological distances: While many TVFC studies regard only the graph’s connectivity as the feature of392

primary import, TDA provides a suite of tools to further develop network properties into conserved393

higher-order structures in point-cloud data (Carlsson, 2009; Edelsbrunner, Letscher, & Zomorodian,394

2002; Patania, Vaccarino, & Petri, 2017) and in weighted networks (Chung, Lee, Di Christofano, Ombao,395

& Solo, 2019; Petri et al., 2013; A. Sizemore, Giusti, & Bassett, 2017).396

Homology is defined on simplicial complexes. In the case of persistent homology of weighted graphs,397

simplices are added to the complex incrementally, and appear at and beyond some threshold. Varying this398

threshold allows to track how homological features appear and persist across thresholds (Petri et al.,399

2013). A complete representation of homolocial features within some range of thresholds is called a400

‘filtration.’ By observing topological features over a filtration, “persistent homology” allows to take a401

multiscale view of the data which accounts for both the explicit connectivity structure of the system, as402

well as the relative importance of ensembles of connections that emerge over some range of scales.403

Formally, we define the Vietoris-Rips simplicial complex Kr = Rips(G(E < r)) as the404

clique-complex of the weighted graph G composed after removing all edges, E, longer than r. From this,405

we may recover the complex’s k-dimensional homology group, Hk(Kr). Within the boundaries of406
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thresholds a and b, let [ra, . . . , r − ε, r, . . . , rb] be the longest series wherein any Hk(Kr) and Hk(Kr − ε)407

are not identical. The ordered set [Hk(K)] defines a ‘filtration’ over G. A homology class α ∈ Hk is said408

to be born at radius u if a class of homotopy equivelant homologies is not supported in Kr for any r < u.409

The homology class α is said to die going into Kv if v is the lowest index wherein at least one410

(k + 1)− clique is established within the boundary of the homology. Persistent homology was computed411

using version 0.4.1 of the Ripser package as bundled with the Scikit-TDA toolbox for python (Tralie,412

Saul, & Bar-On, 2018). Ripser finds it is faster to compute cohomology, the covariant functor of413

homology. Thus the algorithm computes cocycles in Hk that track the disappearance of σk+1 along the414

reversed filtration De Silva, Morozov, and Vejdemo-Johansson (2011).415

The persistent homology of a filtration over G is summarized by collecting the birth/death pairs of416

k-dimensional homology classes as points (u, v) in a “persistence diagram”. It is naturally possible to417

compute a persistence diagram for each simplicial dimension up to the maximum dimension of the418

simplicial complex. But because the computational load to calculate persistence homology increases419

exponentially with the homology dimension, we limit the present study to the investigation of persistence420

homology in dimensions 0, 1, and 2. The case of 0-dimensional persistence diagrams—corresponding to421

0-dimensional holes, that is, disjoint sets of connected nodes—is particularly interesting as the422

homological classes are slices through an agglomerative clustering among nodes when using the ‘simple’423

linkage distance.424

Persistence diagrams can, themselves, be endowed with a metric structure. This means that it is425

possible to measure distances between persistence diagrams. Such distances encode how different the426

homological structures of two TVFC graphs are. One such distance is a multi-dimensional analogue of427

the earth-mover distance, known as the sliced-Wasserstein distance (Carrı̀, Cuturi, & Oudot, n.d.). The428

sliced-Wasserstein distance between persistence diagrams is bounded from above by the total distance429

between the associated topological spaces (Mileyko, Mukherjee, & Harer, 2011). In the present study, for430

each pair of persistence diagrams of a given dimension, we calculate the average Wasserstein distance,431

over 20 slices (see Carrı̀ et al. (n.d.) for details). That is, for all pairs Gi = Gj we compute,432

d(Hk(Ki), Hk(Kj)).433

Visualization/Output434
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Having developed metric spaces to compare simplicial and homological brain dynamics, we want to435

assess their relative capacities to represent apparent brain states. To this end, we embed each metric space436

onto a 2-dimensional manifold using the Uniform Manifold Approximation and Projection (UMAP)437

algorithm (McInnes, Healy, & Melville, 2020). As illustrated in figure 2, the embedding process438

facilitates state-space visualization and segmentation. UMAP approximates a metric space’s439

n-dimensional manifold in three steps. First, the algorithm calculates the k-nearest neighbors of each440

point. Second, each neighborhood is promoted to a local simplicial complex. Third, the algorithm441

searches for the n-dimensional distribution of points that best approximates the original simplicial442

complex. This search is conducted over successive iterations, with the initial position of low-dimensional443

points derived from a random distribution.444

To better understand the distribution of points in the resulting embedding spaces, we transformed point445

clouds into a Gaussian distribution and estimated clusters via a watershed transform. An illustration of446

watershed clustering is found in part B of figure 2. The Gaussian grid size was initially set to 256x256.447

The number of grid points in the dimension having the smaller range was trimmed to maintain the aspect448

ratio of the embedding. The Gaussian kernel bandwidth factor was set to 0.08. The watershed transform449

marks the local densities as cluster centers, then grows clusters by adding adjacent pixels whose directed450

gradient is maximal in the direction of the cluster center.451

Subsampling and Bootstrapping452

In the present study, we were concerned with resolving 2-dimensional embeddings that generalize across453

volunteers, while also segmenting experimental stimuli. One challenge in the way of resolving this ideal454

embedding is that brain states tend to change slowly through time. An example of this issue is shown in455

supplemental figure 0.2 for the metric between TVFC edges. Temporal similarities draw the distance456

between adjacent time points closer than the distance between two different volunteers experiencing the457

same stimuli. For dimensionality-reduction algorithms like UMAP and tSNE that leverage458

nearest-neighbor approximations, the attractive force between temporally-adjacent time points can force459

the embedding to over-emphasize information about the order of the scanning sessions when attempting460

to resolve population-wise brain states.461
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To help disentangle graphs representing intrinsically similar brain states from those that are simply462

autocorrelated, we subsampled our dataset in several ways. Statistics over the results could then be463

generated via bootstrapping, with 256 random permutations of data subsamplings.464

Volunteer-wise scans were split into three equal groups. The first group supplied data to train the465

UMAP embedding. The second group supplied data to segment the space of the embedding into466

watershed clusters. The third group supplied data to test how metric spaces segment brain states during467

contrasting experimental conditions.468

The data were also split in time. To balance the number of time points from each experimental469

condition, one of each of the repeated mathematics and memory tasks were removed, at random, from470

each volunteer’s dataset. Also, embeddings were trained using 100 time points from the remaining 537471

time points of 6 volunteers. These 100 training points were selected to emphasise maximal temporal472

separation.473

Statistical Analysis474

Watershed clusters provide a data-driven basis for hypothesis testing over the likelihood that certain475

metadata labels—that is, volunteer number, stimulus type, and performance—were more or less likely to476

be found in a given embedding region. For all statistical tests, we generated null distributions by477

randomly permuting the labels of cluster points (e.g. volunteer number, experimental condition, etc.) 300478

times. This procedure obtained a mean and standard deviation that indicates the labels we should expect479

to find by chance in any given cluster. The significance threshold was always set to an α = 0.05.480

Bonferroni correction was applied relative to the number of simultaneous tests performed. And the total481

number of clusters was O100 in each embedding.482

Tests related to volunteer co-localization calculated significant volunteer-wise under-representation in483

each cluster (left-tail test, Bonferroni correction equal to the number of volunteers (6) times the number484

of clusters per embedding (O100)). Tests related to stimulus co-localization identified clusters that were485

more than likely to contain time periods during each stimulus condition (right-tail test, Bonferroni486

correction equal to the number of stimulus conditions (5) times the number of clusters in each embedding487

(O100)). Tests related to task performance were conducted for each task condition independently, and488

were confined only to the clusters that were significantly more likely to contain points from the task489
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being tested (two-tailed test, null-distribution is the mean and standard deviation of task performance,490

Bonferroni correction equal to the number of clusters showing significantly many within-condition time491

points (O10)).492

Secondary Statistics over Mean Graphs493

It is possible to generate mean FC matrices from select time points of TVFC graphs. For instance, the494

mean TVFC graph over all time points reveals the average coherence between regions.495

Condition-dependent mean graphs such as that over all rest conditions may also be calculated. In the496

present study, we were particularly interested in mean graphs calculated with respect to within-task497

performance levels.498

Given the identification of clusters significantly associated with task performance. For each task, and499

for each cluster associated to the task, we tested whether the task-specific points within that cluster500

contained significantly more or fewer correct responses than the mean percentage of correct response for501

all of that task’s time points (no Bonferroni correction). For each task, every time point from clusters502

having significantly more correct responses is stored into a task-specific list. The same process occurs for503

clusters showing fewer correct responses. The mean TVFC graph from each list constitutes a ‘mean504

performance graph.’ Mean performance graphs may be compared to one another to measure a difference505

between apparent brain states.506
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TECHNICAL TERMS

topography The vector if a multivariate signal measuring a system at a given instant.510
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geometry The study of distance functions.511

graph A finite set of nodes, equipped with a finite set of edges.512

network A graph where-in edges convey the property ”interacts with.”513

topology A collection of subsets of a set.514

topological space A totality of two elements: a set of points, and a topology on this set.515

clique A set of k nodes.516

simplex The k-dimensional convex hull of a clique of k + 1 nodes.517

simplicial complex A collection of multiple simplices.518

homology A k-dimensional hole bounded by cyclically connected (k + 1)-dimensional simplices.519

filtration Varying the threshold parameter of a weighted graph to resolve simplicial complexes with520

altered homology.521

functor A function between categories which maps objects to objects and morphisms to morphisms.522

Functors exist in both covariant and contravariant types.523
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Figure 0.1: Describes the mean values of the input data across frequency bands. Part A of the figure

displays the absolute value of the mean cross wavelet power. Frequencies between 0.01 and 0.02 Hz are

most likely to contribute to the mean wavelet coherence used to quantify TVFC edges. Part B of the

figure displays a significance threshold level indicating significantly high coherence. The threshold was

calculated as an average against the background power spectrum. A distribution over the background

power spectrum was calculated from 300 lag-1 approximations of each time series. Following Torrence

et al. (1998), the 95% confidence interval is the product of the background power spectrum and the 95th

percentile value of a chi-squared distribution with two degrees of freedom.
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Figure 0.2: Observes an embedding of the weighted Jaccard distance between edges at several

levels of subsampling. With no subsampling, successive time points from within the same scan retain

strong attractive forces in the UMAP nearest-neighbor embedding. This produces string-like masses.

Subsampling the data by half retains the similarities present within each volunteer’s scan, thereby grouping

volunteers into their own cluster. A noticeable degree of volunteerwise clustering—e.g., temporal self-

similarity—is still present when seeding the embedding with 1/8 the total number of data points. None-

the-less, some mutual attraction does emerge among edge-centric brain states measured across multiple

volunteers.
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