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Abstract 
Dimensionality reduction approaches are commonly used for the deconvolution of high-
dimensional metabolomics datasets into underlying core metabolic processes.  However, current 
state-of-the-art methods are widely incapable of detecting nonlinearities in metabolomics data. 
Variational Autoencoders (VAEs) are a deep learning method designed to learn nonlinear latent 
representations which generalize to unseen data. Here, we trained a VAE on a large-scale 
metabolomics population cohort of human blood samples consisting of over 4,500 individuals. 
We analyzed the pathway composition of the latent space using a global feature importance 
score, which showed that latent dimensions represent distinct cellular processes. To 
demonstrate model generalizability, we generated latent representations of unseen 
metabolomics datasets on type 2 diabetes, schizophrenia, and acute myeloid leukemia and 
found significant correlations with clinical patient groups. Taken together, we demonstrate for 
the first time that the VAE is a powerful method that learns biologically meaningful, nonlinear, 
and universal latent representations of metabolomics data. 
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1. Introduction 

Modern metabolomics experiments yield high-dimensional datasets with hundreds to thousands 
of measured metabolites in large human studies with thousands of participants1. Such datasets 
are routinely generated to profile the molecular phenotype of disease and identify the underlying 
pathological mechanisms of action2–5. Extracting systemic effects from high-dimensional 
datasets requires dimensionality reduction approaches to untangle the high number of 
metabolites into the processes in which they participate. To this end, linear dimensionality 
reduction methods, such as principal component analysis (PCA) and independent component 
analysis (ICA), have been extensively applied to high-dimensional biological data6–10. However, 
metabolic systems, like most complex biological processes, contain nonlinear effects which arise 
due to high-order enzyme kinetics and upstream gene regulatory processes11,12. For example, 
metabolite ratios are an intuitive and widely used approach to detect nonlinear effects in 
metabolomics data, approximating the steady state between reactants and products of metabolic 
reactions13,14. Extending this concept, systematic methods that take nonlinearities into account 
are required to correctly recover the functional interplay between metabolites in an unbiased 
fashion. 
 
Autoencoders (AEs) are a type of neural network architecture developed as an unsupervised 
dimensionality reduction method that can capture nonlinear effects15. AEs reduce high-
dimensional data into latent variables through an encoding/decoding process which recreates 
the input data after passing through a lower dimensional space. Once the model is fitted, the 
latent variables represent a compact, often easier-to-interpret version of the original data. While 
AEs have been successful for prediction tasks on biological datasets16,17, they tend to learn 
latent spaces specifically fitted to the input dataset and are therefore not generalizable to unseen 
data. To address this, Variational Autoencoders (VAEs) were introduced as a probabilistic 
extension of the AE architecture that constrains the latent variables to follow a predefined 
distribution18. With this extension, the VAE not only reconstructs the input data, but infers the 
generative process behind the data, leading to high generalizability across datasets. The VAE 
architecture has, for example, proven effective for predicting cell-level response to infection in 
transcriptomic data not available during training, and predicting drug response from gene 
expression data where drug response information is sparse19–22. 
  
The application of deep learning architectures to metabolomics datasets has significantly lagged 
behind all other omics23 due to the unavailability of large metabolomics cohorts. By applying 
VAE architectures to metabolomics data, we have the potential to learn more accurate latent 
dimension representations that take nonlinearities into account. In addition, the probabilistic 
structure of VAEs will learn latent dimensions that are generalizable across multiple datasets.  
 
In this paper, we trained a VAE model on 217 metabolite measurements in 4,644 blood samples 
from the TwinsUK study24 and evaluated our model performance in comparison to a linear PCA 
model (Figure 1a). To investigate the biological relevance of the learned VAE and PCA latent 
dimensions, we employed the Shapley Additive Global Importance (SAGE) method25, which 
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determines the contribution of each input to each latent dimension. We calculated SAGE values 
at different granularities, i.e., metabolites, sub-pathways, and super-pathways (Figure 1b). We 
then applied the models on three additional blood metabolomics datasets to test their ability to 
recover disease phenotypes in unseen datasets: Type 2 Diabetes diagnosis in The Qatar 
Metabolomics Study on Diabetes (QMDiab, n = 358), therapy response in an acute myeloid 
leukemia dataset (AML, n = 85), and schizophrenia diagnosis in a third validation dataset (n = 
207) (Figure 1c). 
 

  
Figure 1. Overview of our approach. a, VAE and PCA models were trained using training and test sets in the TwinsUK dataset 
(n=4,644 samples, p=217 metabolites). Model performance was then evaluated using Mean Squared Error (MSE) of metabolite 
correlation matrix reconstruction. b, The SAGE method was applied to calculate the contribution of individual metabolites, sub-
pathways and super-pathways to each latent dimension. c, QMDiab (n = 358), AML (n = 85), and Schizophrenia (n = 207) 
datasets were encoded using VAE and PCA models trained on the TwinsUK data. Latent dimensions of each model were then 
associated with disease phenotypes. 
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2. Results 

2.1. VAE model construction and fitting 

 
Figure 2. VAE and PCA model construction on the TwinsUK dataset. a, Training and b, test set metabolite correlation matrix 
reconstruction for a range of latent dimensionality values d. The slope of the VAE curve plateaus after d = 18. Error bars 
correspond to one standard deviation from bootstrapping. c, Final VAE architecture, where 𝜇 is the mean vector and 𝜎 is the 
standard deviation vector that generates the latent space z. d, Reconstruction MSE for latent dimensionality d = 18 on training 
(top) and test sets (bottom). The VAE preserved feature correlations substantially better than PCA.  
 
Our VAE architecture consisted of an input/output layer, an intermediate layer and a latent layer. 
We split the TwinsUK cohort into an 85% training and a 15% test set, and the training set was 
used to optimize the hyperparameters in the VAE model. Keras Tuner26 identified the following 
optimal hyperparameters: Intermediate layer dimensionality = 200, learning rate = 0.001, and 
Kullback-Leibler (KL) divergence weight = 0.01. With these parameters fixed, we optimized the 
dimensionality d of the latent layer z by calculating the reconstruction MSE of the correlation 
matrix (CM-MSE) of metabolites (Figures 2a and 2b). We observed that the CM-MSE curve 
plateaus after d = 18, indicating that increasing the latent dimensionality beyond this value only 
marginally improves the models. The final architecture of the model consisted of a 217-
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dimensional input/output layer (the number of metabolites in our datasets), a 200-dimensional 
intermediate layer, and an 18-dimensional latent layer (Figure 2c). 
 
We used principal component analysis (PCA) as a baseline model to compare the VAE to a 
linear latent variable embedding method. To this end, we fitted a PCA on the TwinsUK train data 
and extracted the first d = 18 dimensions, i.e., principal components. While PCA reconstructs 
the data matrix better than the VAE (Extended Data Figure 1), the VAE outperforms PCA in 
terms of correlation matrix reconstruction via CM-MSE in both the TwinsUK train and test set 
(Figure 2d).  
 
This discrepancy between the MSE on the correlation matrix and the more commonly used 
sample-wise MSE18, where PCA outperforms our model, outlines ambiguities in the methods to 
assess VAE reconstruction performances. Notably, other authors have shown previously that 
sample reconstruction performance does not necessarily imply better model performance20,22. 
Our results suggest that while the VAE does not reconstruct the original data matrix precisely, it 
is superior to PCA at preserving metabolite correlations. 

2.2. Interpretation of VAE latent space dimensions in the context of 
metabolites and pathways 

 
Figure 3. Sub-pathway-level SAGE values for the VAE latent dimensions. a, SAGE values were scaled by dimension, i.e., 
set to standard deviation 1 for each column in the matrix. This highlights pathways that contribute the most to each dimension. 
Lipid and amino acid super-pathways showed the highest values for most dimensions, which can be attributed to the high number 
of metabolites in those pathways. b, SAGE values were scaled by pathway, i.e., set to standard deviation 1 for each row in the 
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matrix. This highlights dimensions that contribute to a pathway the most. Taking into consideration the largest scaled SAGE 
values per pathway (red square marks), almost all sub-pathways are represented by unique dimensions. The combination of 
these key sub-pathways of a dimension outlines the distinct cellular mechanisms a dimension encodes. 
 
We evaluated the composition of all latent dimensions in the context of metabolic pathways. For 
each metabolite in our dataset, a “sub-pathway” and “super-pathway” annotation was available 
(see Methods 4.2.). Sub-pathways refer to biochemical processes such as “TCA Cycle” and 
“Sphingolipid Metabolism”, while super-pathways are broad groups such as “Lipid” and “Amino 
acid”. To provide insights into the processes represented by different VAE dimensions, we 
computed SAGE scores, a measure of model feature relevance, at the level of metabolites, sub-
pathways and super-pathways (Figure 3 and Extended Data Figure 2 for VAE, Extended Data 
Figure 3 for PCA).  
 
The VAE sub-pathway heatmap (Figure 3a) shows that nearly all dimensions have major 
contributions by lipid and amino acid super-pathways. The prevalence of the two super-
pathways can be attributed to the fact that those groups contain the largest number of 
metabolites in the dataset. Note that we deliberately omitted the “Unknown” molecule group, 
which refers to unidentified metabolites that could originate from any pathway.  
 
Inspecting the SAGE values in the other direction, almost all sub-pathways are predominantly 
represented by a single VAE dimension that captures the respective pathway the most (Figure 
3b, red square marks). For instance, “glycolysis, gluconeogenesis and pyruvate metabolism” 
and other functionally related sub-pathways of central carbon metabolism are represented by 
VAE dimension 9. Another interesting example is VAE dimension 15, which captures 
functionally-related essential mitochondrial processes, such as oxidative phosphorylation, 
dicarboxylic fatty acids, and n3 and n6 polyunsaturated fatty acid metabolism. Taken together, 
these results show that VAE latent dimensions capture a complex mix of functionally-related 
sub-pathways, thus capturing major metabolic processes in the dataset. 
 
In contrast, PCA dimensions 1 to 3, which by construction represent the highest linear 
variations in the data, nonspecifically capture various sub-pathways. Most other PCA 
dimensions also primarily contain unrelated sub-pathways (Extended Data Figure 3). 
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2.3. VAE latent space captures signals in unseen diabetes, 
schizophrenia, and cancer metabolomics datasets 

 
Figure 4. VAE latent space associations with clinical outcomes. a, b, c, Sorted -log10(p-value) for all VAE and PCA 
dimensions for the type 2 diabetes, schizophrenia and AML datasets, respectively. The highest scoring VAE dimensions showed 
considerably lower p-values than the highest scoring PCA dimensions for all datasets. d, e, f, Latent space dimensions with the 
lowest p-values for the three datasets. g, h, i, Contributions of super-pathways, sub-pathways and metabolites to the highest 
scoring VAE latent dimensions, determined by SAGE values. All dimensions are driven by lipid metabolism and a mixture of 
other super-pathways, with differing sub-pathways contributing to the different dimensions. p = p-value. Schizo. = schizophrenic. 
 
We investigated whether VAE latent dimensions learned on the TwinsUK data contained 
information that is generalizable to other datasets. To this end, we encoded metabolomics data 
from three clinical datasets, type 2 diabetes, schizophrenia, and acute myeloid leukemia (AML) 
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using the VAE and PCA encoders trained on TwinsUK dataset. For each VAE and PCA latent 
dimension, we performed a two-sided t-test between diabetic vs. non-diabetic individuals, 
schizophrenic vs. non-schizophrenic individuals, and full vs. no response in an AML clinical trial, 
respectively. Across all datasets, the best performing VAE dimensions associated substantially 
stronger with the patient groups than any of the PCA dimensions (Figures 4a-f). The strength of 
associations between VAE dimensions and disease parameters were comparable to single 
metabolite associations (Supplementary Tables 1-3). However, unlike the VAE dimensions, 
these univariate associations do not represent system-level mechanisms related to the diseases.  
 
To obtain a better understanding of the driving factors of the VAE associations, we ranked 
pathways and metabolites by their calculated SAGE values (Figures 4g-i): 
 
Type 2 diabetes. VAE latent dimension 9 showed the highest association with type 2 diabetes, 
with a considerably stronger signal than the highest correlating PCA dimension 16 (p=1.7x10-32 
vs. p=2.1x10-20, respectively; Figure 4d). The top sub-pathways were “acyl carnitine fatty acid 
metabolism”, “glycolysis, gluconeogenesis, and pyruvate metabolism”, “vitamin B6 metabolism”, 
and “histidine metabolism”. The top-ranking metabolite in dimension 9 was glucose, which is 
directly affected by the disease and thus serves as a positive control. Other high-ranking 
metabolites included pyridoxate, histidine, and medium chain acyl-carnitines (Figure 4g). Vitamin 
B6 metabolism, which includes pyridoxate, has been shown to associate with type 2 diabetes 
and with the predisposition of diabetic patients to other diseases27,28. Additionally, circulating 
medium chain acyl-carnitines have been shown to be associated with early stages of type 2 
diabetes29,30. We furthermore correlated dimension 9 with clinical lab measurements from the 
QMDiab study and found a strong association between this dimension and HbA1c (p=5.6x10-56 
compared to PCA p=1.1x10-30, Extended Data Figure 4), a widely used diabetes biomarker31,32. 
This finding demonstrates how a quantitative disease biomarker can carry more information than 
a crude disease yes/no classification, and further highlights the higher information content in the 
VAE latent dimensions compared to PCA. 
 
Schizophrenia. VAE dimension 11 had a stronger association with schizophrenia than PCA 
dimension 15 (p=2.0x10-8 vs. p=6.6x10-6, respectively; Figure 4e). The top scoring metabolites 
for this dimension (Figure 4h) were mainly acyl-carnitines, such as 4-decanoylcarninite, 
octanoylcarnitine, and hexanoylcarnitine, and a series of lysolipids. Acyl-carnitines, which are 
involved in energy metabolism and reflect an individual’s mitochondrial beta-oxidation function, 
have been previously shown to be associated with schizophrenia33,34. Vitamin B6 metabolism, 
through pyridoxate, is also one of the highest-ranking pathways for this dimension. Previous 
studies have demonstrated that low levels of vitamin B6 are associated with a subgroup of 
schizophrenic patients35,36.  
 
Acute myeloid leukemia (AML). AML response groups associated an order of magnitude 
stronger with VAE dimension 15 than with PCA dimension 10 (p=0.018 vs. p=0.16, respectively; 
Figure 4f). Note that the p-value would not withstand multiple testing correction (Supplementary 
Tables 1 and 2); the detected signal is thus merely suggestive and requires replication in future 
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studies. Phosphate, which regulates the oxidative phosphorylation pathway and is involved in 
energy metabolism, is the most important metabolite for dimension 15. It has been previously 
demonstrated that oxidative phosphorylation plays a paramount role in AML survival and drug 
resistance37–39 and could be an effective target for combination therapy in chemoresistant 
AML38,40. Additionally, dimension 15 is driven by various metabolites from the n3 and n6 
polyunsaturated fatty acid (PUFA) sub-pathway, such as docosahexaenoate (DHA) and 
eicosapentaenoate (EPA) (Figure 4i). It has been shown that treatment of AML cell lines with 
DHA and EPA has deleterious effects on their mitochondrial metabolism which leads to cell 
death41–44, indicating that PUFAs might play an essential role in AML. We furthermore 
investigated correlations of the latent dimensions with 21 major AML-related mutations; the 
analysis revealed no noteworthy results (Extended Data Figure 5). 
 
Taken together, these results suggest that our VAE has learned representations of metabolic 
processes that are essential for unseen clinical outcomes. 
 

3. Discussion 
In this study, we trained a VAE on metabolomics data from the TwinsUK population cohort and 
applied the learned latent representations on unseen data. Our VAE model outperformed PCA 
in metabolite correlation matrix reconstruction. Interpretation of VAE latent dimensions at the 
metabolite, sub-pathway, and super-pathway level revealed that these dimensions represent 
functionally-related and distinct cellular processes. Moreover, VAE latent dimensions showed 
substantially stronger disease associations than PCA in unseen Type 2 Diabetes, schizophrenia, 
and AML datasets.  This implies that the VAE learned a latent representation of metabolomics 
data that is biologically informative and transferable across different cohorts.   
 
The generalizability of the VAE across different datasets is especially remarkable given the 
vastly different underlying populations of the datasets analyzed here. The VAE was trained on 
the TwinsUK population cohort, a European-ancestry population cohort consisting 
predominantly of British women (~92%), while the validation datasets are mixed-gender and 
multi-ethnic cohorts from the US and Qatar. Despite the existence of these variations in our 
datasets, our VAE learned a generalized representation of metabolomics data which was able 
to identify disease-related differences. 
 
The main limitation of our study is the size of the TwinsUK training dataset with n=4,644. This is 
a general issue with human subject metabolomics studies, where even the largest cohorts reach 
only about n=15,00045. Deep learning models are currently more popular in larger datasets of 
n=60,000 samples or more, such as single cell transcriptomic16,46–48, image49–51, and text 
sources52. Learning the variation in such large datasets allows these models to significantly 
outperform their linear counterparts. Large metabolomics datasets, such as that of the UK 
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BioBank with a sample size of up to n = 500,00053, will be available in the near future, and will 
enable the creation of more expressive and deeper VAE models.  
 
To the best of our knowledge, this is the first study to construct a universal latent representation 
of metabolomics data using VAEs. Our results show that VAEs are well-suited for metabolomics 
data analysis and can potentially replace dimensionality reduction approaches, such as PCA, in 
creating a universal, systems-level understanding of metabolism.  
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4. Methods 

4.1. Datasets 
The TwinsUK registry is a population-based study of around 12,000 volunteer twins from all over 
the United Kingdom. The participants have been recruited since 1992 and are predominantly 
female, ranging in age from 18 to 103 years old. Study design, sampling methods, and data 
collection have been described elsewhere24. For our study, we included data from 4,644 twins 
(4,256 females, 388 males), the subset of TwinsUK for which plasma metabolomics 
measurements were available. Ethical approval was granted by the St Thomas’ Hospital ethics 
committee and all participants provided informed written consent. 

The QMDiab study was conducted between February and June of 2012 at the Dermatology 
Department of Hamad Medical Corporation (HMC) in Doha, Qatar. The study population was 
between the ages of 23 and 71, predominantly of Arab, South Asian, and Filipino descent. Data 
collection and sampling methods have been previously described elsewhere54. For this study, 
we included plasma data of 358 subjects (176 females, 182 males; 188 diabetic, 177 non-
diabetic). The study was approved by the Institutional Review Boards of HMC and Weill Cornell 
Medicine-Qatar (WCM-Q). Written informed consent was obtained from all participants. 

For the schizophrenia analysis, metabolomics samples were taken from an antipsychotics study 
conducted in Qatar between December 2012 and June 201455. A total of 226 participants 
between the ages of 18 and 65 years of age were recruited, predominantly of Arab descent. For 
our study, we included plasma metabolomics measurements from 207 subjects (84 females, 142 
males; 102 schizophrenic, 105 non-schizophrenic). Approval for the study was obtained from 
the HMC and WCM-Q Institutional Review Boards, and all participants provided written informed 
consent. 

The cohort of patients with acute myeloid leukemia (AML) comes from the ECOG-ACRIN Cancer 
Research Group phase 3 trial NCT00049517. This study was conducted between December 
2002 and November 2008, recruiting 657 patients with AML between the ages of 17 and 60. A 
subset of these patients had follow-up profiling to determine their response to therapy. For this 
study, we included the serum metabolomics measurements of 85 subjects of which 43 
responded to therapy and 42 did not (34 females, 51 males). The study was approved by the 
institutional review board at the National Cancer Institute and each of the study centers, and 
written informed consent was provided by all patients. 
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4.2. Metabolomics measurements and metabolite annotations 

Metabolic profiling for all four cohorts was performed using non-targeted ultrahigh-performance 
liquid chromatography and gas chromatography separation, coupled with mass spectrometry on 
the Metabolon Inc. platform as previously described56. Notably, the AML dataset was based on 
serum samples, while TwinsUK, QMDiab, and schizophrenia metabolomics were run on plasma 
samples. However, previous studies have shown that these two sample types are comparable, 
as shown by high correlations and good reproducibility between plasma and serum 
measurements in the same blood sample57. 

For each metabolite measured on the Metabolon platform, a super-pathway and sub-pathway 
annotation was provided. For super-pathways, we have nine annotations referring to broad 
biochemical classes, namely “Amino acid”, “Carbohydrate”, “Cofactors and vitamins”, “Energy”, 
“Lipid”, “Nucleotide”, “Peptide”, “Xenobiotics”, and “Unknown”. Note that “Unknown” is assigned 
to unidentified metabolites. Furthermore, we have 54 sub-pathway which represent more 
functional metabolic processes, such as “Carnitine metabolism”, “TCA Cycle”, and 
“Phenylalanine and Tyrosine Metabolism”. 
 

4.3. Data processing and normalization across datasets 

For each dataset, metabolite levels were scaled by their cohort medians, quotient normalized58 
and then log-transformed. Samples with more than 30% missing metabolites and metabolites 
with more than 10% missing samples were removed. Missing values were imputed using a k-
nearest neighbors imputation method59. Datasets with BMI measurements (Schizophrenia, 
QMDiab, and Twins) were corrected for that confounder and then mean-scaled. 217 metabolites 
were overlapping between the 4 datasets and were kept for further analysis.  

Semi-quantitative, non-targeted metabolomics measurements are inherently challenging to 
compare across datasets due to heterogeneity between studies. This prevents any machine 
learning model from being transferable from one study to the other. To ensure comparability, 
datasets were normalized using a uniform group of participants as a reference set. This group 
was selected as follows: Male, within a 20-year age range (30-50 for TwinsUK, QMdiab, and 
schizophrenia, 40-60 for AML due to low sample size of younger participants), BMI between 25 
and 30 (not available for AML data, thus not filtered for that dataset), and in the respective control 
group. Each metabolite in each dataset was then scaled by the mean and standard deviation of 
their respective uniform sample groups. The assumption of this approach is that the uniform 
group of reference participants has the same distributions of metabolite concentrations. 
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4.4. Variational Autoencoders 

To train our VAE model, we first split the TwinsUK data into 85% training and 15% test sets. We 
then fixed our VAE architecture to be composed of an input/output layer, an intermediate layer 
which contains nonlinear activation functions, and a d-dimensional latent layer. The latent layer 
consists of a mean vector 𝜇 and a standard deviation vector 𝜎, both of length d, which 
parametrize each latent dimension as a Gaussian probability distribution. This latent space, 
denoted by z, is constructed by the simultaneous learning of the 𝜇 and 𝜎 encoder through the 
use of a reparameterization trick that enables back propagation during training18. The d x d 
covariance matrix 𝝨 of the underlying multivariate Gaussian is assumed to be diagonal (i.e., no 
correlation across latent dimensions), allowing the covariance matrix to be represented by a 
single vector 𝜎 of length d. 
 
 
For the parameter fitting procedures, all weights were initialized using Keras’ default model 
weight initialization, i.e. Glorot uniform60. Leaky rectified linear units (ReLUs)61 were used for 
nonlinear activation functions. The VAE models were trained for 1,000 epochs using MSE loss 
for sample reconstruction and a batch size of 32. 
 
To select the latent dimensionality d of our VAE model, we initially fixed this value to d = 50. We 
then optimized the model hyperparameters using Keras Tuner26 and the TwinsUK training set 
and identified the following optimized values: Intermediate layer dimensionality = 200, learning 
rate = 0.001, and Kullback-Leibler (KL) divergence weight = 0.01. Note that despite our 
hyperparameter choices, other optimal hyperparameters exist and can be chosen through Keras 
Tuner. Using these hyperparameters, we then optimized d by calculating the reconstruction MSE 
of the correlation matrix (CM-MSE) of metabolites for d = 5, 10, 15, 18, 20, 30, 40, 60, 80, 100, 
120, 160, and 200 on the TwinsUK test set. Our final model consisted of a 217-dimensional 
input/output layer (the number of metabolites in our datasets), a 200-dimensional intermediate 
layer, and an 18-dimensional latent layer. For all sample encodings in the study, we used their 
respective 𝜇 values. 
 
All models were computed on a deep learning-specific virtual machine running on Google 
Compute Engine with two NVIDIA Tesla K80 GPU dies and 10 virtual CPUs.  
 
 

4.5. PCA embedding and reconstructions 

We used PCA with d = 18 latent dimensions as a baseline model. On the mean-centered 
TwinsUK training set data matrix with n = 3,947 samples (rows) and k = 217 metabolites 
(columns), we calculated the rotation matrix Q, a k x k matrix of eigenvectors ordered by 
decreasing magnitudes of eigenvalues. To embed a new m x k dataset X with m samples into 
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the m x d PCA latent space A, we first calculated XQ = A and subsetted to the first d columns, 
denoted by A∗,d. To simulate the process of encoding and decoding in PCA for dataset X, we 

calculated the reconstructed dataset as X̂ = A∗,dQ-1d,∗.  
 

4.6. Model assessments 
We assessed our PCA and VAE models using sample reconstruction mean squared error (MSE) 
and metabolite-wise correlation matrix MSE (CM-MSE). We calculated CM-MSE by first 
computing the metabolite-wise correlation matrix of an input dataset and reconstructed input 
dataset. Afterwards, we calculated the MSE between the upper triangular matrix of the two 
symmetric correlation matrices.  

To calculate a confidence interval for both MSE and CM-MSE between our input and 
reconstructed data, we randomly sampled the same samples with replacement from the two 
datasets and then calculated MSE and CM-MSE. We performed this for 1,000 iterations. 

4.7. Model interpretation 
In order to interpret each latent dimension for our VAE and PCA models, we calculated Shapley 
Additive Global Importance (SAGE) values30 for metabolites, sub-pathways, and super-
pathways. Briefly, SAGE is a model-agnostic method that quantifies the predictive power of each 
feature in a model while accounting for interactions between features. This is achieved by 
quantifying the decrease in model performance when combinations of model variables are 
removed. Since there are exponentially many combinations of variables, the current approach 
is to sample the feature combination space sufficiently. For each of the tested combinations, a 
loss function, such as MSE, is used to quantify the decrease in performance compared to the 
model output (here each VAE or PCA latent dimension) computed using the full model. Then, 
the mean of all MSEs is calculated, which represents the contribution of the model variables to 
a latent dimension. To calculate pathway-level SAGE values, metabolites were grouped into 
pathways and each pathway was treated as a single variable. For each of our VAE and PCA 
models, we ran SAGE using our TwinsUK test set with default parameters, e.g., marginal 
sampling size of 512, as suggested by Covert, et al. (2020)30. We used the SAGE code from 
https://github.com/iancovert/sage.  
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Data availability 
Datasets to reproduce the paper are available upon request from the authors and will be 
shared publicly when the peer-reviewed version of the manuscript is published. 

Code availability  
Codes used in this study are available at the GitHub repository 
https://github.com/krumsieklab/mtVAE 
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Extended data 
 

 
Extended Data Figure 1. Sample reconstruction MSE. a, TwinsUK training and, b, test set sample reconstruction MSE for 
latent dimensionality d = 18. VAE has a lower reconstruction error in the training set. However, PCA has a lower reconstruction 
MSE in the training set, implying that PCA performs better at sample reconstruction. 
 
 
 

  
Extended Data Figure 2. Super-pathway and metabolite-level SAGE values for the VAE latent dimensions. a, SAGE 
values were scaled by dimension, i.e. set to standard deviation 1 for each column in the matrix. This highlights pathways that 
contribute the most to each dimension. Lipid and amino acid super-pathways showed the highest values for most dimensions, 
which can likely be attributed to the high number of metabolites in those pathways. b, SAGE values were scaled by pathway, 
i.e. set to standard deviation 1 for each row in the matrix. This highlights dimensions that contribute to a pathway the most. 
Taking into consideration the largest scaled SAGE values per pathway (red square marks), all super-pathways are represented 
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by unique dimensions. c, Absolute metabolite SAGE were scaled by dimension, i.e. set to standard deviation 1 for each column 
in the matrix. This highlights metabolites that contribute the most to each dimension. Metabolites in the lipid and amino acid 
super-pathways showed the highest values for the majority of the dimensions. d, Absolute metabolite SAGE values were scaled 
by metabolite, i.e. set to standard deviation 1 for each row in the matrix. This highlights dimensions that contribute to a metabolite 
the most. Each dimension has a specific metabolic signature. The combination of these metabolites of a dimension outlines the 
distinct cellular mechanisms a dimension encodes. 
 
 

 
Extended Data Figure 3. Sub-pathway-level SAGE values for the PCA latent dimensions. a, SAGE values were scaled by 
dimension, i.e. set to standard deviation 1 for each column in the matrix. This highlights pathways that contribute the most to 
each dimension. Lipid, unknown, and amino acid super-pathways showed the highest values for most dimensions, which can 
likely be attributed to the high number of metabolites in those pathways. b, SAGE values were scaled by pathway, i.e. set to 
standard deviation 1 for each row in the matrix. This highlights dimensions that contribute to a pathway the most. Taking into 
consideration the largest scaled SAGE values per pathway (red square marks), sub-pathways concentrate on the first 3 
dimensions, especially on dimension 1.  Other dimensions have primarily unrelated sub-pathways. 
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Extended Data Figure 4. Type 2 Diabetes clinical variable associations with VAE and PCA latent dimensions. Association 
heatmap between for a, VAE and b, PCA latent dimension values. Each latent dimension is associated with different 
combinations of clinical variables. Both VAE dimension 9 and PCA dimension 16, which associate with QMDiab diabetes groups, 
strongly associate with HbA1c (%). VAE dimension 9 HbA1c association p = 5.6x10-56, PCA dimension 16 HbA1c association p 
= 1.1x10-30. 
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Extended Data Figure 5. AML mutation profile and latent dimension associations. Our dataset initially contained 21 AML-
related mutations: AML1-ETO, ASXL1, CBF, CEBPa, DNMT3A, EVI1, FLT-ITD, FLT3, IDH1, IDH2, KIT, KRAS, MLL, NPM1, 
NRAS, PHF6, PTEN, RUNX1, TET2, TP53, WT1. To ensure adequate statistical power, we selected mutations with at least 10 
samples per group, i.e. mutant or wildtype. This criterion retained 4 mutations and “complex karyotype” for our final statistical 
analysis. a, VAE latent dimensions association heatmap. b, PCA latent dimension association heatmap. IDH and NPM1 show 
the strongest associations to the latent dimensions. c, boxplot of VAE and PCA latent values for IDH. PCA dimension 8 
associates stronger with IDH. d, boxplot of VAE and PCA latent values for NPM1. VAE dimension 8 associates more with NPM1. 
Color bars for a and b are -log10(p-value). For c and d M = mutant, WT = wildtype.  
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