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Figure  S1.  Task  parameters.   (A)   Distribution  of  meta-parameters  corresponding  to  initial  position  (x 0 ,y 0 )  and  initial                 

velocity  (dx 0 ,  dy 0 )  for  the  task  RNN  training  set.  The  diagonal  panels  correspond  to  histograms  of  each  meta-parameter.                    

15 The  off-diagonal  panels  correspond  to  2D  histograms  showing  the  joint  distribution  for  each  pair  of  meta-parameters.   (B)                   

We  sampled  the  initial  ball  position  and  velocity  sufficiently  broadly  enough  to  ensure  that  the  task  was  reasonably                    

challenging.  Each  panel  shows  the  joint  distribution  of  each  meta-parameter  with  the  target  output  (final  ball  position,  y f ,                    

see   top   panels)   and   the   time   to   interception   (t f ,   see   bottom   panels).   
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Figure   S2:   
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(A)  Human  behavior  for  each  individual  subject,  separately  for  visible  and  occluded  trials.  Recall  that  visible  trials,  which                    

25 had  a  partially  opaque  occluder,  were  randomly  interleaved  with  occluded  trials.   Performance  is  shown  as  a  scatter  of  the                     

bias  (absolute  error,  after  averaging  across  trials  of  the  same  condition)   and  variance  (variability  across  trials  of  the  same                     

condition).  The  dotted  circles  correspond  to  lines  of  equal  root-mean-squared  error  (RMSE).  As  expected,  error  is  lower                   

on   visible   trials.    

(B)   Comparison  of  behavioral  error  patterns  between  two  spit-halves  of  human  subjects  reveals  virtually  identical  error                  

30 patterns,  demonstrating  that  we  measured  a  highly  reliable  human  behavioral  pattern.  Trials  from  all  12  subjects  were                   

pooled   to   characterize   the   “archetypal”   human   behavior.     

(C)   Dependence  of  error  patterns  on  task  variables.  Each  panel  shows  absolute  average  endpoint  error  against  task                   

parameters  varying  per  condition.  The  strength  of  each  dependence,  measured  via  a  Pearson  correlation,  is  shown  on  the                    

corresponding  panel  titles;  significant  dependences  are  highlighted  in  red.  Importantly,  error  patterns  depended  largely  on                 

35 dynamic  variables  relating  to  the  ball  speed  (dx 0 ,  dy 0 ,  |dy 0 |,  time_occluded)  but  not  initial,  intermediate,  or  final  ball                    

position  (y 0 ,  y f_visual ,  y f ).  Given  the  correlation  between  initial  x  position  and  ball  speed  built  into  this  dataset  (see  Figure                      

S1),  errors  were  additionally  correlated  to  the  initial  x  position  (x 0 ).  The  occurrence  of  bounces  also  caused  significantly                   

greater   errors,   on   average.     

(D)   Error  patterns  could  not  be  explained  by  a  simple  function  of  initial  position  and  velocity.  We  used  cross-validated                     

40 linear  regression  to  predict  the  error  pattern  from  the  initial  ball  position  and  ball  velocity;  the  resulting  prediction  was  not                      

better   than   expected   by   chance.   

(E)  Error  patterns  could  not  be  explained  by  a  simple  visual  tracking  strategy,  where  the  final  paddle  position  is  estimated                      

based  on  the  last  visible  position  of  the  ball  (y f_visible ).  To  demonstrate  this,  we  compared  the  distance  between  the  average                      

final  paddle  position  to  each  of  the  candidate  final  positions,  as  predicted  by  visual  tracking  (d visual )  and  mental  tracking                     

45 (d mental )  strategies.  We  observe  that  the  corresponding  bias  (d visual  -  d mental )  is  significantly  greater  than  zero  (see  red                    

annotation)  and  moreover  is  not  dependent  on  the  final  ball  position  (as  might  be  expected  if  this  bias  is  somehow  driven                       

by  boundary  conditions,  see  gray  title  annotation),  demonstrating  that  behavioral  error  patterns  are  inconsistent  with  a                  

simpler   visual   tracking   strategy.   

(F)   Dynamics  of  movements.  The  top  panels  show  the  distribution  of  movement  onset  times,  relative  to  the  beginning  of                     

50 the  trial  (left)  and  to  the  beginning  of  the  occluded  epoch  (right).  Subjects  initiated  movements  ~1000ms  before  the                    

beginning  of  the  occluded  epoch.  The  bottom  panels  show  the  distribution  of  unit  displacement  during  the  visible  and                    

occluded  epochs.  Unit  displacement  was  estimated  from  the  instantaneous  paddle  position  by  first  averaging  across  trials                  

of  the  same  conditions,  and  then  measuring  the  mean  absolute  change  in  position.  Subjects  moved  the  paddle  in  both                     

visible   and   occluded   epochs,   but   displacements   were   significantly   larger   in   the   occluded   epoch.   
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Figure   S3:   

  

(A-F)    Formatting   identical   to   Figure   S2,   but   for   monkey   behavior.   
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Figure   S4:   
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(A)  Effect  of  RNN  optimization.  For  the  RNN  model  architecture  with  the  highest  human-consistency  score,  we  evaluated                   

key  RNN  metrics  (e.g.  performance,  simulation  index,  consistency  to  humans  and  to  monkeys)  while  varying  both  the                   

number  of  training  epochs  and  the  training  data  (number  of  training  samples  and  distribution  of  training  data).  We  found                     

65 that  these  metrics  were  largely  insensitive  to  such  variations  in  RNN  optimization,  suggesting  that  the  extent  of  RNN                    

training  was  sufficient  to  converge  upon  “stable”  network  solutions,  and  that  our  key  results  and  inferences  are  largely                    

robust  of  the  details  of  this  optimization  procedure.   (B)   Different  RNN  models  varied  with  respect  to  several                   

hyper-parameters:  different  cell  types  ( rnn_type :  LSTM  or  GRU ),  number  of  cells  ( n_hidden :  10  or  20 ),  input                  

representation  types  ( input :  pixel_pca  or  gabor_pca ),  and  regularization  types  ( reg :  L1_0.01,  L1_0.1,  L2_0.01,  or                
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70 L2_0.1 );  and  were  differently  optimized  ( loss_weight_type :  no_sim,  vis_sim,  all_sim,  or  all_sim2 ).  Each  of  the  four                 

panels  shows  the  effect  of  each  hyperparameter  choice  on  performance  metrics  (task  performance,  simulation  index)  and                  

primate  consistency  (with  respect  to  both  human  and  monkey  behavior).   (B)   The  left  panel  shows  the  causal  graph  of  our                      

RNN  experiments.  We  experimentally  controlled  five  different  RNN  hyper-parameters  (top  row,  blue),  and  from  the                 

resulting  RNN  model  instances,  we  measured  several  attributes  (bottom  row,  red),  including  the  simulation  index  and  the                   

75 human  consistency.  To  uncover  which  RNN  hyper-parameters   cause  the  strong  negative  correlation  (r)  between                

simulation  index  and  human  consistency,  we  measured  the  conditional  correlation  E[r|g],  conditioning  on  each  of  the  30                   

possible  combinations  (g)  of  the  five  hyper-parameter  types.  The  right  panel  shows  the  resulting  conditional  correlations                  

for  each  of  the  30  combinations.  Darker  values  correspond  to  smaller  magnitude  correlations.  The  observed  correlation                  

between  the  simulation  index  and  human  consistency  is  largely  driven  by  the  hyper-parameter  defining  the  optimization                  

80 target   ( loss_weight_type ).     
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Figure   S5:   
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(A)   As  a  control,  we  optimized  a  new  set  of  RNN  models  on  task  performance  with  additional  regularization  to  promote                      
simple  dynamics,  by  adding  regularization  terms  related  to  the  L2-norms  of  the  hidden  state  activity  and  the  derivative  of                     
the  hidden  state  activity  (see  Methods).  To  verify  that  this  regularization  had  the  intended  effect  on  RNN  representations,                    
the  four  panels  show  the  distribution  of  human-consistency  against  four  representational  metrics  (dimensionality,  speed,                

90 curvature,  and  norm)  for  all  trained  RNN  models,  grouped  by  their  optimization  type.  Statistical  comparisons  between                  
relevant  distributions  are  shown  above  each  scatter  (unpaired  t-test).  The  top  comparison  corresponds  to  ‘no_sim’  vs                  
‘simple_dynamics’  (blue  vs  purple),  and  the  bottom  comparison  corresponds  to  ‘all_sim2’  vs  ‘simple_dynamics’  (red  vs                 
purple).  We  observe  that  for  all  metrics  that  differed  across  RNN  types,  the  ‘simple_dynamics’  RNNs  (purple)  did  indeed                    
diverge  from  the  baseline  ‘no_sim’  (blue)  models  as  intended.   (B)  Comparison  of  average  velocity  coding  during  visible                   

95 and  occluded  epochs,  for  all  RNN  models.  The  left  panel  shows  velocity  coding  estimated  via  position-conditioned  linear                   
decoders,  whereas  the  right  panel  shows  the  corresponding  estimates  with  a  single  position-independent  linear  decoder.                 
(C)   Average  velocity  coding  during  visible  epoch  is  not  correlated  to  either  performance  or  simulation  index,  in  contrast  to                     
the  corresponding  metric  during  the  occluded  epoch  (see  Figure  5E).   (D)   We  estimated  a  measure  of  “feedback  control”                    
to  characterize  the  alignment  between  the  read-out  weights  and  the  recurrent  weights.  While  RNNs  do  not  receive  explicit                    

100 instantaneous  visual  feedback,  this  metric  aims  to  capture  the  extent  to  which  the  output  of  the  network  is  fed  back  into  its                        
activity.  The  scatter  plot  shows  the  comparison  of  this  metric  against  the  null,  for  each  RNN  model;  marker  color                     
corresponds  to  model  performance.  We  observed  that  the  median  amount  of  feedback  control  was  significantly  greater                  
than   expected   by   chance.       
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