
On-Line Supplement to: Exploring Parallel MPI Fault Tolerance

Mechanisms for Phylogenetic Inference with RAxML-NG

Lukas Hübner, Alexey M. Kozlov, Demian Hespe,
Peter Sanders, Alexandros Stamatakis

January 14, 2021

This is the on-line supplement to “Exploring Parallel MPI Fault Tolerance Mechanisms for Phylogenetic
Inference with RAxML-NG”. In Section 1 we describe the characteristics of the empirical datasets we use
in our experiments. In Section 2 we describe the hardware, software, and tree search settings we use. In
Section 3 we describe how we simulate rank failures when executing FT-RAxML-NG under ULFM and
OpenMPI. In Sections 4 and 5 we discuss the impact of mini-checkpointing (without failures) as well as the
combination of mini-checkpointing + recovery + additional work in case of (simulated) failures on the overall
runtime. In Section 6 we describe our modifications to, and implementation of, the tree-based phylogeny-
aware Multiple Sequence Alignment (MSA) compression scheme described by Ané and Sanderson [1].

1 Datasets

Table 1 lists the characteristics of the empirical datasets used in our experiments.

Table 1: Characteristics of the datasets used for evaluating RAxML-ng and FT-RAxML-NG

Designator Data # taxa # alignm. # unique # par- file size Reference
type sites patterns titions [MiB]

SongD1 DNA 37 1,338,678 746,408 1 48 Song et al. [15]
MisoD2a DNA 144 1,240,377 1,142,662 100 171 Misof et al. [10]
MisoD2b DNA 144 413,459 371,434 50 57 Misof et al. [10]
WickD3a DNA 103 436,077 422,676 14 43 Wicket et al. [20]
WickD3b DNA 103 290,718 277,375 8 29 Wicket et al. [20]
XiD4 DNA 46 239,763 165,781 1 11 Xi et al. [21]
PrumD6 DNA 200 394,684 236,674 75 76 Prum et al. [13]
TarvD7 DNA 36 21,410,970 8,520,738 1 736 Tarver et al. [19]
PeteD8 DNA 174 3,011,099 2,248,590 4,116 500 Peters et al. [12]
ShiD9 DNA 815 20,364 13,311 29 16 Shi and Rabosky [14]
StamD10 DNA 436 1,371 1,011 1 0.6 Stamatakis et al. [16]
NagyA1 AA 60 172,073 156,312 594 10 Nagy et al. [11]
ChenA4 AA 58 1,806,035 1,547,914 1 100 Chen et al. [2]
YangA8 AA 95 504,850 476,259 1,122 46 Yang et al. [22]

1

2 Experimental Setup

2.1 Hardware and Software

We conduct all experiments on the ForHLR II supercomputer located at the Steinbruch Center for Computing
(SCC) in Karlsruhe.1 It comprises a total of 1,178 worker nodes. Each node is equipped with two sockets
of Intel Xeon E5-2660 v3 (Haswell) Deca-Core CPUs with a clock rate of 2.1 GHz (max. 3.3 GHz) which
results in a theoretical maximum peak performance of 832 GFLOPS per node. Each CPU has 64 KiB L1-
cache (per-core), 264 KiB L2-cache (per core), 25 MiB L3-Cache (shared), and a 2,133 MHz bus as well as
64 GiB RAM. All nodes are connected via an InfiniBand 4X EDR interconnection [18]. Figure 1 shows the
architecture of ForHLR II.

Figure 1: ForHLR II architecture. A worker node comprises a two socket system with 10 CPU cores each.
All worker nodes and the file server nodes are connected using EDR InfiniBand. Image taken from the
ForHLR II’s website1; simplified to only show the part of the infrastructure we used.

ForHLR II has a Lustre distributed file system residing on a DDN ES7K RAID with 14 volumes. Each
file is striped across 1 volume. We can read files from disk with a theoretical maximum I/O performance of
2 GiB s−1 on a single node and 10 GiB s−1 across all nodes. Two file server nodes provide file accesses [17].
Each of them has identical hardware as the compute nodes. The above is the default configuration on the
ForHLR II. It is however possible to, for example, increase the number of stripes or file servers serving the
files. We do not use this feature for our experiments as we intend to measure the performance for a typical
use case, as typical RAxML-ng users will not manually tune their file-system configuration.

All nodes are running Red Hat Enterprise Linux (RHEL) 7.x and Slurm 20.02.3. We use OpenMPI 3.1
and ULFM v4.0.2u1 and GCC 9.2 for our experiments where not mentioned otherwise. FT-RAxML-NG is
based upon c2af275ae6 on branch coarse released on March 5th 2020.

2.2 Tree Search Settings

We conduct the profiling experiments with the following RAxML-ng options when not stated otherwise.
To use partial input file loading, we have to use random starting trees for initiating the tree search. The
respective random seeds used are listed in Table 2. The following performance-relevant and model-specific
RAxML-ng settings are used in each run: Tip-inner is disabled, pattern compression is enabled, per-rate
scalers are disabled, site-repeats are enabled, the fast Subtree Pruning and Regrafting (SPR) radius is
auto-detected, branch lengths scalers are proportional (ML estimate with NR-fast algorithm), the Single
Instruction Multiple Data stream (SIMD) parallelization kernel is AVX2, and the number of threads per

1https://www.scc.kit.edu/dienste/forhlr2.php

2

https://www.scc.kit.edu/dienste/forhlr2.php

Message Passing Interface (MPI) rank is one (see RAxML-ng2 for details). The number of partitions (models)
we use for each dataset is specified in each experiment.

Table 2: Random Seeds used in the Profiling Experiments

dataset random seed
NagyA1 1574547114
ChenA4 1574484011
YangA8 1574484011
PeteD8 1574549152
SongD1 1574549152
MisoD2a 1574443931
XiD4 1574528895
ShiD9 1574549152

3 Failure Simulation

We can simulate core failures in numerous ways without root access to the High Performance Computing
(HPC) machines. When using User Level Failure Mitigation (ULFM) with no heartbeat thread, it suffices
to put the application program into a long sleep to simulate a failure. When using a heartbeat thread,
sending the SIGKILL signal to the process ID of a rank will simulate a failure. The program cannot catch,
block ore ignore SIGKILL. It can therefore not perform any cleanup operation [8]. Other possible signals we
can send include SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGXFSZ, SIGPWR, and SIGXCPU. None of these signals
allow the receiving process to perform a cleanup operation. Our tests show that ULFM detects all of these
simulated failures as rank failures with no noticeable difference, that is, the next MPI operation will fail
with MPI ERROR PROC FAILED. We are able to revoke the communicator using MPI Comm revoke() and the
new communicator we subsequently build using ULFM’s MPI Comm shrink() does not contain this “failed”
node. We choose to simulate failures in experiments with ULFM by killing a process via signalling SIGKILL

either by invocing kill -SIGKILL [6] or via self-signalling using raise(SIGKILL) [7].
When using OpenMPI we simulate failures either by calling MPI Comm split() such, that all ranks remain

in the same communicator but the rank ids are shifted by one. This causes every rank to obtain a new site
(data) assignment. We then proceed by executing a full recovery procedure. This allows us, for example,
to measure the overhead induced by recovery but without having to account for the overhead caused by
continuing with fewer ranks, after a rank failure.

4 Runtime Overhead Without Failures

We measure the runtime overhead caused by mini-checkpointing when no failures occur. We want to deter-
mine the runtime overhead caused by ULFM separately from the runtime overhead induced by our mod-
ifications to RAxML-ng. We therefore measure the runtime of FT-RAxML-NG with OpenMPI v4.0 and
ULFM v4.0.2u1 as MPI implementations (see Table 3). In our measurements, the slowdown of FT-RAxML-
NG running with OpenMPI v4.0 compared to the unmodified RAxML-ng running under OpenMPI v4.0 is
1.02± 0.02. The slowdown of FT-RAxML-NG running under ULFM v4.0.2u1 compared to the unmodified
RAxML-ng running under OpenMPI v4.0 is 1.08± 0.07.

2https://github.com/amkozlov/raxml-ng/wiki

3

https://github.com/amkozlov/raxml-ng/wiki

Table 3: Overall runtimes of unmodified RAxML-ng vs FT-RAxML-NG when no failures occur. That
is, we perform mini-checkpoints (model updates) and tree updates but do not simulate failures. “s.dwn”:
slowdown

type dataset ranks OpenMPI OpenMPI s.dwn ULFM s.dwn
RAxML FT-RAxML FT-RAxML
[s] [s] [s]

AA NagyA1 80 2,985 3,014 1.01 3,025 1.02
AA ChenA4 160 685 720 1.05 686 1.02
AA YangA8 80 1,182 1,230 1.04 1,210 1.02
DNA SongD1 400 1,365 1,383 1.01 1,541 1.13
DNA XiD4 160 3,760 3,858 1.03 4,466 1.19
DNA TarvD7 400 700 709 1.01 739 1.06
DNA PeteD8 260 5,393 5,492 1.02 6,197 1.15

5 Runtime Overhead With Failures

We measure the runtime overhead caused by failures (see Table 4). We use OpenMPI v4.0 for all measure-
ments and simulate seven up to ten failures (see 4) as described in Section 3. The time points at which
we simulate the failures are evenly distributed across the runtime of the runs. In our measurements, the
slowdown of FT-RAxML-NG running with OpenMPI v4.0 compared to the unmodified RAxML-ng running
under OpenMPI v4.0 is 1.3± 0.2. In all experiments, the final likelihood-score deviates by less than 3× 10−8

from that of the reference run. A difference in final log likelihood scores might, for example, occur if there is
a failure during an SPR round. In this case, we restart the SPR round from the currently best known tree
topology and therefore evaluate a different sequence of SPR moves [9].

Table 4: Overall runtimes of unmodified RAxML-ng (“reference”) vs FT-RAxML-NG (“runtime”) when
failures occur. That is, we perform mini-checkpointing (models and tree updates) and simulate failures. We
use OpenMPI v4.0 for all measurements and simulate failures as described in Section 3. “s.dwn”: slowdown

type dataset ranks failures reference[s] runtime[s] s.dwn
AA NagyA1 80 10 2,985 3,077 1.03
AA ChenA4 160 10 685 1,093 1.60
AA YangA8 80 7 1,182 1,832 1.55
DNA SongD1 400 10 1,365 1,413 1.04
DNA XiD4 160 10 3,760 4,246 1.13
DNA TarvD7 400 10 700 998 1.43
DNA PeteD8 26 10 5,393 7,037 1.30

6 Tree-based Compression of Multiple Sequence Alignments

In this section, we describe our modifications and implementation of the tree-based phylogeny-aware MSA
compression method described by Ané and Sanderson [1]. A more detailed description can be found in
the following Master’s thesis [4]. An Open Source implementation of the algorithm is available at https:

//github.com/lukashuebner/ft-raxml-ng on the “tree-based-msa-compression” branch.
An MSA consists of a set of aligned sequences. We will limit ourselves to Deoxyribonucleic Acid (DNA)

sequences for now. This implies, that every sequence has the same length, possibly including gaps. Sequences
can be, for example DNA or Amino Acid (AA). DNA has four states (A, C, T, G). In real world datasets,
however, we sometimes want to encode that we are unsure of the exact nucleotide at a certain position.
This is generally known as ambiguity encoding. An ambiguity can also mean that we observed multiple

4

https://github.com/lukashuebner/ft-raxml-ng
https://github.com/lukashuebner/ft-raxml-ng

nucleotides at this position in different sequencing runs. The International Union of Pure and Applied
Chemistry (IUPAC) defines 4 nucleotide states, 11 ambiguities codes and a gap [5] code. For example the
character K represents either a G or a T at a position in the sequence. We expand the previously described
[1] compression scheme to include this ambiguity encoding as it is required for analyzing empirical datasets
and describe an algorithm to encode and decode the given MSA below.

The sequences of an MSA are located at the tips of a corresponding phylogenetic tree. The main idea
of the tree-based compression scheme is to fully store only one sequence. We store all other sequences as
a set of changes along the edges/branches of the tree (see Figure 2). We annotate these changes at the
edges, for example 5 → C means that the nucleotide state at the fifth site of the sequence changes to a C

along the edge. This means that, ancestral states (inner nodes) have a sequence associated with them. For
this compression approach, we evidently also need to store the corresponding tree topology for the specific
compression as well. Using the most parsimonious tree (i.e., the tree that can explain the data by the least
amount of mutations) guarantees the shortest encoding (best compression) [1].

For details on how to encode the tree in a binary Newick format and more details on how to encode
changes along the branches of the tree, see Ané’s and Sanderson’s publication [1].

C

A

A

K

→1 A

→1 K

Index:

C;<C → A, 1>;<A → K, 4>;

1 2 · · ·

0010 0011 001 0100 100

G 1000

T 0100

C 0010

A 0001

K 0101

· · ·

1

5

2

3

4

Figure 2: Encoding of the MSA. Encoding of a single site of the MSA. We encode the nucleotide’s root state
(upper left). Then, we encode the changes to the nucleotide state along the edges of the tree. We encode
these changes in pre-order. We encode each change using the change mask and edge number (annotated
next to the edges). We obtain the change mask by XORing the nucleotide states before and after the change.
The index data structure points to the beginning of each site’s encoding.

To encode MSA’s sequences, we arbitrarily but deterministically choose one node as the root node. We
thereby also defined define the order in which all nodes are visited during tree-traversal. We can thus encode
the sequences in the MSA as a sequence at the root and the set of changes along the tree edges which result
in the MSA’s sequences at the tips of the tree. We then store the ancestral states of the sequence at the
choosen root with four bits using a one-hot encoding. In a one-hot encoding, a single bit encodes for one of
the four basic nucleotide states, that is, A = 0001, C = 0010, T = 0100, or G = 1000. A single nucleotide state
is therefore 4 bits long. We encode ambiguities by setting multiple bits at once. We encode a gap by clearing
all bits, thus distinguishing it from the state “any nucleotide” (N), which may also appear in the sequence.
We store the changes to a site directly after the nucleotide state at this site at the root sequences. By doing
so, we ensure that all the data we need for decoding the nucleotide states of one site are stored contiguously
in memory, thereby enabling a cache-efficient decoding. Additionally, we do not need to store the index of
the site this change modifies, which would need an additional log(sequenceLength) bits per change. We also
store an index data structure I mapping the site identifier to the start of the encoding for the specific site.
We implement this via an array. We thereby implement random read access to the sites of the encoding.

We encode the changes of a nucleotide along the edges of the tree as the change’s substitution mask and
the edge this changes occurs on. We obtain the substitution mask by XORing the nucleotide state before
and after the change. For example, if a T (0100) is replaced by a C (0010), the substitution mask will be

5

mask = C ⊕ T = 0100⊕ 0010 = 0110. This allows us to handle ambiguities.
We also identify the edges by a unique identifier. We obtain this identifier by enumerating the nodes in

pre-order (parent, left child, right child) and assigning each edge the same id as the node it leads to. We
chose pre-order instead of post-order as used by Ané and Sanderson [1] because this way we store the changes
“root to tip”. This yields the decoding more straightforward as we can implement it using a linear sweep
without look-back through the encoding. We store a dummy entry in the index data structure pointing just
past the last valid change to mark the end of the encoding.

6.1 Description of the Algorithm

In this Section, we provide a description of the algorithm for compression and decompression of the MSA
data. Compression consists of finding the ancestral states of the parsimony tree as well as encoding the
changes along the tree. We refrain from encoding and decoding the tree itself and keep it in memory in an
uncompressed format.

Computing the Ancestral States of the Parsimony Tree

We use Hartigan’s [3] algorithm to calculate an assignment of sequences to inner nodes. This assignment has
the property, that the number of mutations across the tree is minimal. It is not necessarily the only such
assignment.

The algorithm takes a phylogenetic tree with fixed topology and fixed sequences at its tips as input. The
algorithm consists of two phases (see Algorithm 1). The first phase assigns a set of possible ancestral states
to each inner node of the phylogenetic tree. The second phase then selects one ancestral state per inner
node. It does this in a way that minimizes the number of mutations across the tree.

Algorithm 1 Hartigan’s [3] algorithm: Overview

Given: A Tree T with i tips and the corresponding MSA S with i sequences S0 . . . Si

1: for each si ∈ S do
2: Phase1(si, T)
3: Phase2(si, T)
4: end for

To compute the possible ancestral states, we visit at each inner node in post-order (left child, right child,
parent). This means that once we arrive at a node, we have already processed both children. For each tip,
the set of possible states consists of the single fixed state in the input data. For all inner nodes, we check if
the current node’s children have possible common states. If they do, the current node’s possible states are
given by the intersection of the children’s states. In case they do not, we assign the union of the children’s
possible states to the current node (see Figure 3.a and Algorithm 2).

To select an ancestral state for each node, we start at the root and traverse the tree in pre-order. This
means, that we once we visit a node, we have already processed its parent. For the root, we choose one of
the possible states at random. For each inner node, we choose its parents state, if this state is a possible
state of the current node. If it is not, we choose a random state of the current node’s possible states. In this
case, one mutation occurred. For the tips, the states are already given, and we do not alter them. If the
tip’s state differs from its parent’s state, a mutation occurred (see Figure 3.b and Algorithm 3).

In a bifurcating tree with vertex set V and edge set E, |E| = |V | − 1 holds. Therefore, we can perform
a Depth First Search (DFS) in O(|V |) time. As the sequences of the MSA are located at the tips, the
tree has |V | = 2n − 1 nodes, where n is the number of sequences in the MSA. In Phase 1, we compute
a set intersection and possibly a set union for each node. There are only 16 possible values in the sets.
We can therefore compute unions and intersections in O(1) time. We can use, for example, a binary set
representation and bitwise OR and AND operations for this. In phase 2, we have to compute an element-of and
random choice. We can compute element-of in O(1) time using a bitmask. We replace the random choice

6

{A} {T}{A} {A} {C}

{A,T}

{A}

{A,C}

{A}

{A} {T}{A} {A} {C}

{A}

{A}

{A}

{A}

(a) (b)

+1

+1

Figure 3: Reconstruction of the ancestral states as described by Hartigan [3]. A bifurcating phylogenetic
tree with fixed topology and sequences at the tips is given. (a) In the first phase, we build possible ancestral
states. If both children of the same parent have common states, we set these as possible ancestral states. If
the two children do not have common states, we set the union of the children’s states as possible ancestral
states. (b) In the second phase, we chose ancestral states. For the root, we randomly chose a state from its
possible ancestral states. For each node, we check if its parent’s ancestral state is a possible ancestral state
of the node. If it is, we set it as the node’s ancestral state. If it is not, we set a random state from the child’s
possible ancestral states. In this case, a mutation occurred (+1).

Algorithm 2 Hartigan’s [3] algorithm: Build possible ancestral states

1: function Phase1(Site si, Tree T)
2: traverse T in post-order
3: if current node N is a tip then
4: V (N)← {nucleotide(N)}
5: else
6: let A and B be the children of N .
7: if V (A)

⋂
V (B) 6= ∅ then

8: V (N)← V (A)
⋂
V (B)

9: else
10: V (N)← V (A)

⋃
V (B)

11: end if
12: end if
13: end traversal
14: end function

Algorithm 3 Hartigan’s [3] algorithm: Select ancestral states

1: function Phase2(Site si, Tree T)
2: For the root R of T , choose an element S from V (R) at random.
3: traverse T in pre-order . Skipping the root
4: let the current node be A and its parent be P .
5: if V (P) ⊆ V (A) then . We already set V (P) to a single element.
6: V (A)← V (P)
7: else
8: V (A)← {RandomChoice(V (A))}
9: end if

10: end traversal
11: end function

7

with always choosing the Most Significant Bit (MSB) in O(log(16)) = O(1) time. The overall runtime for
computing the ancestral states is therefore O(n).

Encoding of the Sequences

Given a tree T with n sequences S∗ = {S1, S2, . . . , Sn} at the tips and n − 1 ancestral sequences A∗ =
{A1, A2, . . . , An} at the inner nodes, we can now describe the compression of a MSA (see Figure 2 and
Algorithm 4). We will denote the s-th site of the j-th sequence as Sj

s .
To facilitate read access to random sites, we store the start of the encoding of each site in an index data

structure I.
For each site i, we store the nucleotide state srooti at the root sequence, followed by the changes to this

site along the tree. To encode the changes, we traverse the tree in pre-order. We number the tree edges in
pre-order, too. If the current node’s nucleotide state for this site differs from that of its parent, we have to
encode a change. We do this using the edge number leading to the current site as well as the nucleotide
change mask.

Algorithm 4 MSA compression

1: function Encode(Tree T , Sequences S∗) . TEncodeTree + m ∗ Tdfs

2: let I be a vector mapping each site to its start location in the encoding
3: EncodeTree(T)
4: Skip space for |Sroot |+ 1 pointers in the output stream to later store I in
5: for each srooti ∈ Sroot do
6: I.PushBack(< i, current position>)
7: Write si to output stream . 4 bit
8: traverse T in pre-order . Skipping the root
9: let A be the current node

10: let ej be the edge from A’s parent to A; number edges by pre-order
11: if sAi 6= sparenti then
12: Write <sAi , j>.
13: end if
14: end traversal
15: end for
16: M .PushBack(<EOF, current position + 1>)
17: Go back and write I
18: end function

To decode an MSA (see Figure 2 and Algorithm 5) we read the index data structure, mapping the site
identifiers to the start of their encoding in the bitstream. For each site s we intend to decode, we move to
the specified location and start reading. The first four bits we read are the site’s nucleotide state at the root
sequence sroot . We then traverse the tree T , applying the changes along the edges. We read the changes in
the same order as we wrote them, that is, in pre-order. Thus, we will never have to move backwards during
the tree traversal to apply a change.

We encode sites independently of each other. We can therefore compute and write the encoding for
each site sequentially on a single Processing Element (PE). Alternatively, we can distribute the sites across
multiple PEs and collect the encoding afterwards. At no point in time do we have to keep all sites in memory
on the same PE. We therefore do not introduce a memory bottleneck.

6.2 Experimental Results

We use the algorithm described in section 6.1 to compress eleven different DNA datasets with sequences with
a pairwise-identity-score ranging of 0.38 to 0.86 (see Figure 4). The compression ratio we observe ranges from

8

Algorithm 5 MSA decompression

1: function Decode(File F , Range of Sites R ⊆ [1, |S1|]) . Runtime: |R| ∗ Tdfs ∈ O(m ∗ n)
2: T ← DecodeTree(F)
3: I ← ReadI(F)
4: for each s ∈ R do
5: Go to start of the site’s encoding in the file . As indicated by I
6: Read Sroot

s from the input stream . One hot-encoded
7: Read < substitutionMask , edgeID > from input stream
8: traverse T in pre-order
9: Set the node’s nucleotide state to its parent nucleotide state

10: if next change is on the edge leading to the current node then
11: Apply change-mask to the current node’ state
12: Read < substitutionMask , edgeID > from input stream
13: end if
14: end traversal
15: end for
16: end function

1.9 to 21.7 with a median of 3.4 and a standard deviation of 6.5 (not normally distributed). We conclude,
that the compression ratio is not sufficient to store the full MSA in memory on each node for all datasets.

5

10

15

20

W
ic
kD

3a

 0
.3

84
 a

vg
 P

IS XiD
4

 0
.3

95
 a

vg
 P

IS

W
ic
kD

3b

 0
.4

3
av

g
PIS

M
is
oD

2a

 0
.4

45
 a

vg
 P

IS

Ta
rv

D
7

 0
.5

34
 a

vg
 P

IS

M
is
oD

2b

 0
.5

42
 a

vg
 P

IS

Son
gD

1

 0
.5

87
 a

vg
 P

IS

Pet
eD

8

 0
.5

99
 a

vg
 P

IS
Shi

D
9

 0
.7

53
 a

vg
 P

IS

Pru
m

D
6

 0
.8

21
 a

vg
 P

IS

Sta
m

D
10

 0
.8

63
 a

vg
 P

IS

c
o
m

p
re

s
s
io

n
 r

a
ti
o

Figure 4: Compression ratio of different datasets using the tree-based MSA-compression. The compression
ratio is defined as the size of the compressed sequences divided by the size if the uncompressed sequence. The
average pairwise-sequence-identity score (avg PIS) quantifies how similar two sequences are. It is defined as
the average over the number of sites each pair of sequences has in common.

References

[1] Cécile Ané and Michael J. Sanderson. Missing the forest for the trees: Phylogenetic compression and its
implications for inferring complex evolutionary histories. Systematic Biology, 54(1):146–157, February
2005.

[2] Meng-Yun Chen, Dan Liang, and Peng Zhang. Selecting question-specific genes to reduce incongru-
ence in phylogenomics: A case study of jawed vertebrate backbone phylogeny. Systematic Biology,
64(6):1104–1120, August 2015.

9

[3] J. A. Hartigan. Minimum mutation fits to a given tree. Biometrics, 29(1):53, March 1973.

[4] Lukas Hübner. Load-balance and fault-tolerance for massively parallel phylogenetic inference. Master’s
thesis, Karlsruhe Institute of Technology, 2020.

[5] IUPAC. Nucleotide codes.

[6] Michael Kerrisk. Manual page of linux’s kill. http://man7.org/linux/man-pages/man1/kill.1.

html.

[7] Michael Kerrisk. Manual page of linux’s raise. http://man7.org/linux/man-pages/man3/raise.3.
html.

[8] Michael Kerrisk. Manual pages of Linux’s signals. http://man7.org/linux/man-pages/man7/signal.
7.html.

[9] Alexey M. Kozlov, Andre J. Aberer, and Alexandros Stamatakis. ExaML version 3 a tool for phyloge-
nomic analyses on supercomputers. Bioinformatics, 31(15):2577–2579, March 2015.

[10] B. Misof, S. Liu, K. Meusemann, R. S. Peters, A. Donath, C. Mayer, P. B. Frandsen, J. Ware, T. Flouri,
R. G. Beutel, O. Niehuis, M. Petersen, F. Izquierdo-Carrasco, T. Wappler, J. Rust, A. J. Aberer, U. As-
pock, H. Aspock, D. Bartel, A. Blanke, S. Berger, A. Bohm, T. R. Buckley, B. Calcott, J. Chen,
F. Friedrich, M. Fukui, M. Fujita, C. Greve, P. Grobe, S. Gu, Y. Huang, L. S. Jermiin, A. Y. Kawahara,
L. Krogmann, M. Kubiak, R. Lanfear, H. Letsch, Y. Li, Z. Li, J. Li, H. Lu, R. Machida, Y. Mashimo,
P. Kapli, D. D. McKenna, G. Meng, Y. Nakagaki, J. L. Navarrete-Heredia, M. Ott, Y. Ou, G. Pass,
L. Podsiadlowski, H. Pohl, B. M. von Reumont, K. Schutte, K. Sekiya, S. Shimizu, A. Slipinski,
A. Stamatakis, W. Song, X. Su, N. U. Szucsich, M. Tan, X. Tan, M. Tang, J. Tang, G. Timelthaler,
S. Tomizuka, M. Trautwein, X. Tong, T. Uchifune, M. G. Walzl, B. M. Wiegmann, J. Wilbrandt,
B. Wipfler, T. K. F. Wong, Q. Wu, G. Wu, Y. Xie, S. Yang, Q. Yang, D. K. Yeates, K. Yoshizawa,
Q. Zhang, R. Zhang, W. Zhang, Y. Zhang, J. Zhao, C. Zhou, L. Zhou, T. Ziesmann, S. Zou, Y. Li,
X. Xu, Y. Zhang, H. Yang, J. Wang, J. Wang, K. M. Kjer, and X. Zhou. Phylogenomics resolves the
timing and pattern of insect evolution. Science, 346(6210):763–767, November 2014.

[11] László G. Nagy, Robin A. Ohm, Gábor M. Kovács, Dimitrios Floudas, Robert Riley, Attila Gácser,
Mátyás Sipiczki, John M. Davis, Sharon L. Doty, G. Sybren de Hoog, B. Franz Lang, Joseph W.
Spatafora, Francis M. Martin, Igor V. Grigoriev, and David S. Hibbett. Latent homology and convergent
regulatory evolution underlies the repeated emergence of yeasts. Nature Communications, 5(1), July
2014.

[12] Ralph S. Peters, Lars Krogmann, Christoph Mayer, Alexander Donath, Simon Gunkel, Karen Meuse-
mann, Alexey Kozlov, Lars Podsiadlowski, Malte Petersen, Robert Lanfear, Patricia A. Diez, John
Heraty, Karl M. Kjer, Seraina Klopfstein, Rudolf Meier, Carlo Polidori, Thomas Schmitt, Shanlin Liu,
Xin Zhou, Torsten Wappler, Jes Rust, Bernhard Misof, and Oliver Niehuis. Evolutionary history of the
hymenoptera. Current Biology, 27(7):1013–1018, April 2017.

[13] Richard O. Prum, Jacob S. Berv, Alex Dornburg, Daniel J. Field, Jeffrey P. Townsend, Emily Moriarty
Lemmon, and Alan R. Lemmon. A comprehensive phylogeny of birds (aves) using targeted next-
generation DNA sequencing. Nature, 526(7574):569–573, October 2015.

[14] Jeff J. Shi and Daniel L. Rabosky. Speciation dynamics during the global radiation of extant bats.
Evolution, 69(6):1528–1545, June 2015.

[15] S. Song, L. Liu, S. V. Edwards, and S. Wu. Resolving conflict in eutherian mammal phylogeny using
phylogenomics and the multispecies coalescent model. Proceedings of the National Academy of Sciences,
109(37):14942–14947, August 2012.

10

http://man7.org/linux/man-pages/man1/kill.1.html
http://man7.org/linux/man-pages/man1/kill.1.html
http://man7.org/linux/man-pages/man3/raise.3.html
http://man7.org/linux/man-pages/man3/raise.3.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html

[16] Alexandros Stamatakis, Markus Göker, and Guido W. Grimm. Maximum likelihood analyses of 3,490
rbcl sequences: Scalability of comprehensive inference versus group-specific taxon sampling. Evolution-
ary Bioinformatics, 6:EBO.S4528, 2010. PMID: 20535232.

[17] Steinbruch Center for Computing (SCC). ForHLR - hardware and architecture. https://wiki.scc.

kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture, 2020.

[18] Steinbruch Center for Computing (SCC). Konfiguration des ForHLR II. https://www.scc.kit.edu/

dienste/forhlr2.php, 2020.

[19] James E. Tarver, Mario dos Reis, Siavash Mirarab, Raymond J. Moran, Sean Parker, Joseph E. O’Reilly,
Benjamin L. King, Mary J. O’Connell, Robert J. Asher, Tandy Warnow, Kevin J. Peterson, Philip
C. J. Donoghue, and Davide Pisani. The interrelationships of placental mammals and the limits of
phylogenetic inference. Genome Biology and Evolution, 8(2):330–344, January 2016.

[20] Norman J. Wickett, Siavash Mirarab, Nam Nguyen, Tandy Warnow, Eric Carpenter, Naim Matasci,
Saravanaraj Ayyampalayam, Michael S. Barker, J. Gordon Burleigh, Matthew A. Gitzendanner, Brad
R. Ruhfel, Eric Wafula, Joshua P. Der, Sean W. Graham, Sarah Mathews, Michael Melkonian, Douglas
E. Soltis, Pamela S. Soltis, Nicholas W. Miles, Carl J. Rothfels, Lisa Pokorny, A. Jonathan Shaw, Lisa
De Gironimo, Dennis W. Stevenson, Barbara Surek, Juan Carlos Villarreal, Béatrice Roure, Hervé
Philippe, Claude W. De Pamphilis, Tao Chen, Michael K. Deyholos, Regina S. Baucom, Toni M.
Kutchan, Megan M. Augustin, Jun Wang, Yong Zhang, Zhijian Tian, Zhixiang Yan, Xiaolei Wu, Xiao
Sun, Gane Ka Shu Wong, and James Leebens-Mack. Phylotranscriptomic analysis of the origin and
early diversification of land plants. Proceedings of the National Academy of Sciences of the United States
of America, 111(45):E4859–E4868, November 2014.

[21] Zhenxiang Xi, Liang Liu, Joshua S. Rest, and Charles C. Davis. Coalescent versus concatenation
methods and the placement of amborella as sister to water lilies. Systematic Biology, 63(6):919–932,
July 2014.

[22] Ya Yang, Michael J. Moore, Samuel F. Brockington, Douglas E. Soltis, Gane Ka-Shu Wong, Eric J.
Carpenter, Yong Zhang, Li Chen, Zhixiang Yan, Yinlong Xie, Rowan F. Sage, Sarah Covshoff, Julian M.
Hibberd, Matthew N. Nelson, and Stephen A. Smith. Dissecting molecular evolution in the highly
diverse plant clade caryophyllales using transcriptome sequencing. Molecular Biology and Evolution,
32(8):2001–2014, April 2015.

11

https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture
https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture
https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php

	Datasets
	Experimental Setup
	Hardware and Software
	Tree Search Settings

	Failure Simulation
	Runtime Overhead Without Failures
	Runtime Overhead With Failures
	Tree-based Compression of Multiple Sequence Alignments
	Description of the Algorithm
	Experimental Results

