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Abstract The inherent flexibility of intrinsically disordered proteins (IDPs) makes it difficult to14

interpret experimental data using structural models. On the other hand, molecular dynamics15

simulations of IDPs often suffer from force-field inaccuracies, and long simulations times or16

enhanced sampling methods are needed to obtain converged ensembles. Here, we apply17

metainference and Bayesian/Maximum Entropy reweighting approaches to integrate prior18

knowledge of the system with experimental data, while also dealing with various sources of errors19

and the inherent conformational heterogeneity of IDPs. We have measured new SAXS data on the20

protein �-synuclein, and integrate this with simulations performed using different force fields. We21

find that if the force field gives rise to ensembles that are much more compact than what is implied22

by the SAXS data it is difficult to recover a reasonable ensemble. On the other hand, we show that23

when the simulated ensemble is reasonable, we can obtain an ensemble that is consistent with the24

SAXS data, but also with NMR diffusion and paramagnetic relaxation enhancement data.25

26

Introduction27

Intrinsically Disordered Proteins (IDPs) play important roles in a wide range of biological processes in-28

cluding cell signalling and regulation (Uversky et al., 2005; Das et al., 2015; Snead and Eliezer, 2019),29

and their malfunction or aggregation is linked to neurodegenerative diseases such as Alzheimer’s30

and Parkinson’s diseases. A key, defining property of IDPs is that they do not adopt well-defined,31

permanent secondary and tertiary structures under native conditions, and their conformational32

properties are thus best described in statistical terms.33

Due to the dynamic nature of IDPs and their inherent conformational heterogeneity, IDPs are34

not easily amenable to high-resolution characterisation solely through experimental measurements.35

To characterise their structural and dynamic properties it is often necessary to integrate various36

biophysical experiments, and particularly nuclear magnetic resonance (NMR) spectroscopy (Dyson37

andWright, 2001), small angle X-ray scattering (SAXS or SANS) (Bernado and Svergun, 2012), circular38

dichroism (Chemes et al., 2012), and single-molecule Förster resonance energy transfer (sm-FRET)39
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(LeBlanc et al., 2018) have been widely used to characterise the structural properties of IDPs. For40

instance, pulsed-field-gradient NMR diffusion and SAXS experiment are especially useful to quantify41

the level of compaction of the IDP. Techniques such as sm-FRET and NMR paramagnetic relaxation42

enhancement (PRE) provide distance information between different residues or regions of the IDP43

(Dedmon et al., 2005; Eliezer, 2009). Nevertheless, since most experimental methods only convey44

ensemble averaged information and are also affected by random and systematic errors, it is difficult45

to extract directly information on the underlying heterogeneous ensemble of the IDP. To address46

this problem, theoretical and computational models can be used to extract detailed structural47

information from these experiments.48

Molecular dynamics (MD) simulations that use physics-based force fields may provide high-49

resolution temporal and spatial information about the structure and dynamics of IDPs. Extensive50

sampling of a force field with MD simulations can thus be used to generate conformational en-51

semble of the IDP. The quality of the results, however, depends heavily on the accuracy of the52

force field employed. For example it has been shown that many earlier generation of force fields53

produce overly compact conformations for many IDPs (Piana et al., 2015). It appears that these54

force fields fail to accurately describe the solvation of the protein by underestimating protein-water55

interactions (Sun and Kollman, 1995; Nerenberg et al., 2012; Best et al., 2014; Piana et al., 2015).56

Recently, however, significant advancements have been made to improve force field accuracy and57

correct the bias towards overly compact conformations (Best et al., 2014; Piana et al., 2015; Song58

et al., 2017; Robustelli et al., 2018). Adding to these issues, the large conformational phase space59

of IDPs, requires extensive sampling of the protein is in order to generate converged ensembles. To60

achieve sufficient sampling, and push the sampling capacity of MD simulations, one often employs61

enhanced sampling methods such as metadynamics (Barducci et al., 2008) or parallel-tempering62

replica exchange (Sugita and Okamoto, 1999). Notably, force field and sampling problems are63

expected to be more severe for longer IDPs.64

An approach to address the challenges of force-field accuracy is to combine experimental and65

theoretical information in order to obtain conformational ensembles of IDPs that agree with experi-66

mental measurements. In this way, the simulations are used as a tool to interpret experimental67

measurements. A number of different approaches have been described and can, roughly, be68

divided into two different classes in which the experimental data is either (i) used for on-the-fly69

restraining of a simulation to experimental data, or (ii) post-processing ensembles generated by70

simulations to match experimental data by reweighting or selection methods. Many different such71

methods exist and we refer to a recent reviews for additional details (Cesari et al., 2018; Orioli72

et al., 2020).73

Because the conformational ensembles are broad and the experimental data often have low74

information content and may be noisy, in particular Bayesian inference methods (Box and Tiao,75

2011) and the maximum entropy principle (Jaynes, 1957) have emerged as particularly successful76

frameworks for studying IDPs. In these frameworks, an ensemble generated using a prior model77

is minimally modified to match the experimentally observed data better. An extension of these78

frameworks for integrative structural ensemble determination is Metainference Metadynamics79

(M&M) (Bonomi et al., 2016a), that combines multi-replica all-atommolecular dynamics simulations80

with ensemble averaged experimental data (Bonomi et al., 2016b). In the M&M approach, the81

metainference (Bonomi et al., 2016a) part is a Bayesian inference method that allows for the82

integration of experimental information with prior knowledge of the system from e.g. physics-83

based force fields, while also dealing with uncertainty and errors as well as conformationally84

heterogeneous systems. In addition, metainference can be combined with metadynamics (Laio and85

Parrinello, 2002; Bonomi et al., 2016b) to accelerate sampling further. While metainference applies86

the bias on the fly, other Bayesian formalisms takes as input simulations that were generated87

without taking the experimental data into account, and subsequently updates this using statistical88

reweighting. Such approaches include our Bayesian/Maximum Entropy (BME) protocol (Bottaro89

et al., 2020) , as well as related methods (Hummer and Köfinger, 2015).90
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Here, we combined ensemble-averaged experimental SAXS data with MD simulations with the91

aim to achieve structural ensembles of the system which are in agreement with the experimental92

data. We did so using both metainference and BME. In particular, we used BME to refine ensembles93

that had previously been generated using MD simulations (Piana et al., 2015; Robustelli et al.,94

2018), while metainference was applied to restrain experimental SAXS data during MD simulations95

with an implicit solvent model (Bottaro et al., 2013). We used the intrinsically disordered protein96

�-synuclein (�SN) protein as a model, as this protein has been studied extensively by various97

experimental methods including SAXS and NMR measurements, and because of the availability98

of long MD trajectories generated from a range of force fields and water models. �SN is a 14099

residue long IDP that is primarily expressed in the brain and in its monomeric state is known to100

be disordered and populate multiple conformational states. �SN aggregation into amyloid fibrils101

is linked to Parkinson’s disease and dementia with Lewy bodies (Spillantini and Goedert, 2000;102

Ulusoy and Di Monte, 2013).103

We assessed the quality of existing ensembles before refinement, and the ability of metainfer-104

ence and BME methods to improve them through incorporation of experimental SAXS data, by105

comparing with independent measurements of the level of compaction (through the hydrodynamic106

radius,Rℎ, as probed by NMR) and previously measured paramagnetic relaxation enhancement data107

(Dedmon et al., 2005). We find that the inclusion of SAXS-restraint in the M&M simulation resulted108

in the generation of a reliable and heterogenous conformational ensemble that also improved the109

agreement with the NMR diffusion data. The BME reweighting improved the agreement with the110

experimental data when we applied the approach to simulations with the TIP4P-D water model. For111

simulations using the TIP3P water model, which were substantially more compact, it was difficult to112

find a suitably large ensemble compatible with the experimental SAXS data. Together, our result113

provide insight into how and when experimental SAXS data can be used to refine ensembles of IDPs,114

and the role played by the force field as a ‘prior’ in these Bayesian/Maximum entropy approaches.115

Methods and Materials116

Experimental data117

Human �SN for SAXS experiments was expressed, purified and lyophylized as previously described118

(van Maarschalkerweerd et al., 2014). Prior to SAXS data collection, the lyophilized powder was119

dissolved in PBS (20 mM Na2HPO4, 150 mM NaCl, pH 7.4) and filtered through a 0.22 �m filter to120

remove larger aggregates. The final sample concentration before SEC-SAXS was determined by121

A280 to be 4.5 mg/mL using an extinction coefficient of 5960 M−1 cm−1. SAXS data was collected as122

SEC-SAXS data on beamline P12 (Blanchet et al., 2015) operated by EMBL Hamburg at the PETRA123

III storage ring (DESY, Hamburg, Germany). 50 �L 4.5 mg/mL �SN in PBS buffer (20 mM Na2HPO4,124

150 mM NaCl, pH 7.4) was injected on a Superdex 200inc 5/150 GL column with a flowrate of 0.4125

mL/min. The column was pre-equilibrated with the running buffer (PBS with 2% (v/v) glycerol).126

SAXS data were collected at 20 ◦C, with continuous exposure of 1 s per frame throughout the SEC127

elution. Data processing was done using CHROMIXS (Panjkovich and Svergun, 2018), averaging128

sample data from the frames in the monomeric peak and subtracting the buffer signal taken from129

the flow-through prior to the sample elution to obtain the final scattering profile (Fig. S1).130

We purified �SN for NMR experiments as previously described (Skaanning et al., 2020). Trans-131

lational diffusion constants for �SN (50�M) and 1,4-dioxane (0.2% v/v; as internal reference) were132

determined by fitting peak intensity decay from diffusion ordered spectroscopy experiments (Wu133

et al., 1995), using the Stejskal-Tanner equation as described (Prestel et al., 2018). Spectra (a total134

of 64 scans) were obtained over a gradient strength of 2 to 98%, with a diffusion time (Δ) of 200135

ms and gradient length (�) of 3 ms. Diffusion constants were used to estimate the hydrodynamic136

radius for �SN described (Wilkins et al., 1999; Skaanning et al., 2020) (Fig. S2).137

We used previously measured PRE data obtained by measuring intensity ratios with spin-labels138

added at five different positions (residue: 24, 42, 62, 87 and 103) (Dedmon et al., 2005).139
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Force field Water model Time(�s) Rg Force field(∀) Rg Reweighted(∀) Rℎ Force field(∀) Rℎ Reweighted(∀)
A12 TIP3P 5 15.4 ± 0.1 19 ± 1 20.8 ± 0.1 23.0 ± 0.1

A99SB-ILDN TIP3P 5 15.3 ± 0.2 16.0 ± 0.3 20.6 ± 0.3 21.3 ± 0.3
C22* TIP3P 6 17.1 ± 0.4 23 ± 1 22.2 ± 0.3 26.1 ± 0.5

A99SB-ILDN TIP4P-EW 5 17.9 ± 0.8 24 ± 1 22.8 ± 0.6 26.4 ± 0.6
C22* TIP4P-D 20 23.3 ± 0.6 29.3 ± 0.9 26.7 ± 0.3 29.6 ± 0.4

A99SB-ILDN TIP4P-D 11 25.7 ± 0.1 31 ± 1 27.2 ± 0.6 30 ± 1
A12 TIP4P-D 11 29.7 ± 0.5 34.1 ± 0.3 29.7 ± 0.2 32 ± 0.5
A03ws TIP4P/2005 20 30 ± 2 34.3 ± 0.6 29.1 ± 1.1 32 ± 1

A99SB-disp 1 73 28.7 ± 1.3 31.9 ± 0.9 27.8 ± 0.6 30.8 ± 0.8
CHARMM362 EEF1-SB 3.23 46.1 ± 3.7 35.4 ± 0.5 37.6 ± 2.5 33.1 ± 0.5
Experiment 35.5 ± 0.5 28.6 ± 0.7

Table 1. Ensembles analysed and refined. 1 A99SB-disp uses a modified version of the TIP4P-D water model. 2
CHARMM36 with EEF1-SB was only used for the metainference metadynamics simulations; here ‘force field’ and

‘reweighted’ refers to two different simulations with and without the experimental bias, respectively. 3

Metadynamics simulation time.

Bayesian/Maximum Entropy Reweighting of Unbiased MD simulations140

We used previously generated ensembles of �SN obtained by long timescale MD simulations141

with different force fields from the CHARMM and Amber families (here abbreviated by C and A,142

respectively) and water models (Piana et al., 2015; Robustelli et al., 2018) (Table 1). The published143

simulation using Amber ff99SB-disp (Robustelli et al., 2018) was later found to be affected by inter-144

actions with its periodic image, and has here been replaced by a 73 �s long simulation performed145

using the same setup but in a 160Å box and available directly from D. E. Shaw Research.146

We used our Bayesian/Maximum Entropy (BME) protocol (Bottaro et al., 2020; Ahmed et al.,147

2020) to reweight the initial force field ensembles (Table 1) with the experimental SAXS data, thus148

obtaining ensembles that are in closer agreement to the experimental data. Briefly described, the149

BME approach is based on a combined Bayesian/Maximum entropy framework, that enables one150

to refine a simulation using experimental data while also taking into account the potential noise in151

the data and in the so-called forward model used to calculate observables for the ensemble. The152

purpose of the reweighting is to derive a new set of weights for each configuration in a previously153

generated ensemble so that the reweighted ensemble satisfies the following two criteria: (i) it154

matches the experimental data better than the original ensemble and (ii) it achieves this improved155

agreement by a minimal perturbation of the original ensemble. When the initial weights in the156

ensemble are uniform (w0
j = 1∕n), such as when the ensemble has been generated by standard MD157

simulations, the BME reweighting approach seeks to update the weights, wj , by minimising the158

function:159


(

w1…wn
)

= 1
2
�2

(

w1…wn
)

− �Srel
(

w1…wn
)

(1)

Here, �2 quantifies the agreement between the experimental data and the corresponding observ-160

able calculated from the reweighted ensemble. Srel = −
∑n

j wj log
(

wj∕w0
j

)

measures the devia-161

tion between the original ensemble weights, w0
j , in our case taken as 1∕n, and the reweighted162

ensemble weights. Finally, the hyperparameter � tunes the balance between the two terms,163

and needs to be determined, by evaluating the compromise between the two terms in Equa-164

tion 1 (Orioli et al., 2020). Reweighting and analysis scripts are available at github.com/KULL-165

Centre/papers/blob/master/2021/aSYN-ahmed-et-al/.166

Metainference Metadynamics167

We conducted SAXS-restrained MD simulation using the metainference metadynamics (M&M)168

method, where we employed the parallel-bias (PBMetaD) flavour of well-tempered metadynamics169

(Pfaendtner and Bonomi, 2015) in combination with the multiple-walkers scheme (Raiteri et al.,170

2006). During the M&M simulation, the SAXS back-calculation step utilises a hybrid-resolution171

approach, where the SAXS data is calculated on-the-fly using ‘Martini beads’ that are superimposed172
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on the all-atom structures using PLUMED (Bonomi and Camilloni, 2017; Paissoni et al., 2019, 2020;173

Jussupow et al., 2020). The approach is particularly efficient as the SAXS back-calculation is calcu-174

lated using the Debye equation from a coarse-grained model and the excess of electron density in175

the hydration shell is neglected (Niebling et al., 2014; Paissoni et al., 2020). We note here that the176

Martini model is only used for calculating the SAXS data, and the simulations are performed using177

an all-atom, implicit solvent model as detailed below.178

We used GROMACS 2018.1 (Abraham et al., 2015) with PLUMED version 2.4 (Tribello et al., 2014)179

to perform theM&M simulations. We used the CHARMM36 force field (Best et al., 2012) with the180

EEF1-SB implicit solvent model (Bottaro et al., 2013). We used a previously generated structure181

of �SN bound to micelles (Ulmer et al., 2005) as starting point for an initial 100-ns long high182

temperature (500 K) simulation, from which we extracted 64 starting conformations for the multi-183

replicaM&M simulation. Charged amino acids were neutralised in line with the parameterisation184

of the EEF1 model (Lazaridis and Karplus, 1999; Bottaro et al., 2013), leaving a neutral molecule,185

and performed a minimisation to a maximum force of 100 kJ/mol/nm. The system was further186

equilibrated for 20 ns per replica with the metainference bias. For the production simulations the187

sampling of each replica was enhanced by PBMetaD along with twelve collective variables (CVs)188

consisting of the radius of gyration and 11 AlphaRMSD CVs to enhance sampling of local backbone189

conformations (Tribello et al., 2014). Gaussians were deposited every 200 steps with a height of 0.1190

kJ/mol/ps, and the � values were set to 0.2 nm for CVrg and 0.010 for all AlphaRMSD CVs, respectively.191

We rescaled the height of the Gaussians using the well-tempered scheme with a bias-factor of 20192

(Barducci et al., 2008).193

Because calculation of the SAXS data is limiting in these simulations, we re-binned the experi-194

mental SAXS data to a set of 19 SAXS intensities at different scattering vectors, ranging between195

0.01 Å−1 and 0.20 Å−1. Metainference was applied every 10 steps of the simulation. We used196

a Gaussian noise model, that applies a single Gaussian per SAXS data-point. The scaling factor197

between experimental and calculated SAXS intensities was sampled with a flat prior between 0.5198

and 2.0 (Löhr et al., 2017). We average the estimated metainference weights over a time window of199

200 steps; this is done to avoid large fluctuations and prevent numerical instabilities due to too200

high instantaneous forces (Löhr et al., 2017). The Plumed input file is available in the PLUMED-NEST201

database (Bonomi et al., 2019) (plumID:21.003; www.plumed-nest.org/eggs/21/003/).202

Paramagnetic Relaxation Enhancement203

Paramagnetic Relaxation Enhancement (PRE) via nitroxide spin-labels has been used extensively to204

study long-range interactions within IDPs. The measured PRE depends in particular on the distance205

between a paramagnetic centre and protein nuclei, in this case backbone amides. Because the206

PRE originates from a dipolar interaction, the observed PRE depends on r−6, and is thus particularly207

sensitive to transient, short distances. Because simulations were performed without the spin-labels,208

and because multiple spin-labels were used to probe the structural ensemble of �SN , we used a209

post-processing approach to estimate the location of the unpaired electron on the nitroxide label. In210

particular, we used DEER-PREdict (Tesei et al., 2020), which is based on a Rotamer Library Approach211

to place spin labels on the protein, to estimate PRE rates. We calculated and compared results from212

five paramagnetic labelling positions (residue: 24, 42, 62, 87, 103) in �SN (Dedmon et al., 2005).213

Additional details are available in the Supplementary Information and in the DEER-PREdict paper214

(Tesei et al., 2020).215

Results and Discussion216

Using �SN as an example, we compared conformational ensembles generated either directly using217

molecular dynamics simulations with a molecular mechanics force field, or the same ensemble218

refined using SAXS data. We also analysed the results of an approach (M&M) that performs this219

refinement during the simulation. We thus performed (i) a SAXS-restrained multi-replica simulations220

using metainference metadynamics and (ii) a reference simulation both using CHARMM36 force221
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field (Best et al., 2012) used with the EEF1-SB implicit solvent model (Bottaro et al., 2013). Both222

simulations consisted of 64 replicas, with one simulation using metainference to enforce the223

agreement with experimental SAXS data, whereas a second, reference simulation did not use224

experimental restraints and thus sampled the force field only. We also analysed nine previously225

published multi-�s MD simulations which had been generated using different combinations of226

proteins force fields and water models (Piana et al., 2015; Robustelli et al., 2018) from the AMBER227

(Lindorff-Larsen et al., 2010; Hornak et al., 2006; Best and Hummer, 2009; Robustelli et al., 2018)228

and CHARMM (Piana et al., 2011) families in combination with either standard TIP3P (Jorgensen,229

1981), TIP4P-EW (Horn et al., 2004), TIP4P/2005 (Abascal and Vega, 2005) or the TIP4P-D (Piana230

et al., 2015) water model. Table 1 summarises the simulations and below we refer to the prior231

(not refined) ensemble as the ‘force field’ ensemble and the posterior (refined) ensemble as the232

‘reweighted’ ensemble.233

Force Field Accuracy and Sampling234

Before the refinement procedure we calculated SAXS intensity curves from each structure in the235

ensembles using PEPSI-SAXS (Grudinin et al., 2017). We also calculated the Rg from the protein236

coordinates and used them to estimate the hydrodynamic radius (Rℎ) for each conformation using237

a previously described empirical relationship (Nygaard et al., 2017; Ahmed et al., 2020) (Table 1).238

The experimental Rg = 35.5 Å was obtained through Guinier analysis of the experimental SAXS239

curve (see Methods), while the experimental Rℎ = 29.0 Å was obtained through NMR diffusion240

measurements (Table 1).241

In line with previous observations (Piana et al., 2015; Robustelli et al., 2018), the ensembles242

show very different levels of compaction depending on the force field and, in particular, water243

model used (Table 1 and Fig. 1). When paired with the TIP3P water model, both the Amber or244

CHARMM force fields produce very compact conformations and show poor agreement with the245

experimental value of Rg . On the other hand, when paired with the recently parameterised TIP4P-D246

water model the force fields give rise to more expanded structures and match the experimental247

values of Rg and Rℎ considerably better. The ensemble generated using CHARMM36 with the248

EEF1-SB implicit solvent model on the other-hand produce more expanded structures (Table 1).249

Of particular relevance to the reweighting described below it is worth noting how the compact250

ensembles either do not sample any, or at most very few, structures that are expanded as the251

average Rg observed in experiment (Fig. 1). This observation already suggests that it will be difficult252

robustly to derive ensembles that are in agreement with the SAXS data as this in particular is253

sensitive to the Rg .254

Ensemble refinement using SAXS data255

In the following section we exemplify the BME refinement against the SAXS data using two repre-256

sentative combinations of force field and water models, specifically A12 paired with either the TIP3P257

or the TIP4P-D water model (Figure 2). We also present the results obtained from ‘on-the-fly’ SAXS-258

restrained simulation with M&M which we compared to an unrestrained simulation with otherwise259

identical simulation settings (see Methods). Note that while the Rg values for the simulations were260

calculated using protein coordinates, the experimental value also includes potential contributions261

from the solvent. The refinement, analysis and plots for the remaining force fields are shown in the262

supplementary information (Figs. S4–S10).263

The BME procedure works by assigning weights to a previously generated ensemble so as to fit264

the experimental data better. For BME to successfully reweight an ensemble it is thus required that265

the initial prior ensemble contains the most relevant conformational states of the protein, such266

that the ensemble that gives rise to the experimental data is a sub-ensemble of the initial prior267

ensemble. Consequently, if the sampling is incomplete or the unbiased ensemble is very far away268

from the true ensemble, it may not be possible to reweight the ensemble to reach a satisfactory269

agreement with the experiments. An indication that this is occurring is that BME will effectively270
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A12 TIP4P-D
C22* TIP4P-D
A12 TIP3P
EXP

Figure 1. Radius of gyration during simulations with different force fields and water models. As
representative examples we show the time-evolution of the radius of gyration for simulations of �SN
performed with the A12 force field (orange), C22* (blue) and A12 (green) with the TIP4P-D, TIP4P-D and TIP3P

water model respectively. The experimental value (black) was obtained from a Guinier analysis of the SAXS data.

The orange and blue curves have been smoothed to ease visualization. The insert shows probability densities

and averages of Rg . Representative structures with different degree of compaction is also shown. The length of
the simulations are 11 �s, 20 �s and 5 �s, respectively, but are shown here on a normalised timescale to make
comparisons easier.

down-weight most of the structures in the prior ensemble and the posterior ensemble will be271

dominated by a few structures with large weights. This can in turn be quantified by calculating272

the (effective) fraction of structures, �eff = exp(Srel), that contribute to the ensemble (Orioli et al.,273

2020), so that when �eff ≈ 1most of the structures are retained, whereas �eff ≈ 0 indicates a few274

structures with very large weights275

In the BME reweighting the confidence in the prior ensemble with respect to the experimental276

data can be tuned by the hyper-parameter � (Eq. 1). One usually does not know the optimal value277

for � beforehand. Here, we choose � by performing an L-curve analysis (Hansen and O’Leary, 1993;278

Orioli et al., 2020) in which we plot the �2red value (quantifying the difference between experiments279

and calculated value) as a function of �eff , for different values of � and choose a value corresponding280

to the ‘elbow’ region (blue region in Fig. 2A and B). The L-curve analysis for the A12 force field paired281

with TIP4P-D water model, lead us to choose � = 1000, after which the ensemble retains 88% of282

the initial structures in the final reweighted ensemble, and show much better agreement with283

the experimental data, indicative by a low �2red (Fig. 2A). In contrast, the analysis for the TIP3P284

water model, after reweighting with � = 6000, show that only 12% of the initial structures are285

used in the final reweighted ensemble in order to achieve significant improved agreement with286

the experimental data (Fig. 2B). Even at a lower � value there is still a large discrepancy between287

experimental and calculated SAXS data (�2red = 17 at � = 500). This is a clear example of a poor288

prior ensemble, which is caused by insufficient overlap between the force field ensemble and that289

probed by experiment. In fact, the highest value observed (Rg =23 Å) is significantly lower than290

the experimental value (black). As a consequence, BME ‘throws out’most of the structures from291
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the initial force field ensemble, and the final reweighted ensemble mainly consist of a few highly292

weighted structures (Fig. 2D).293

Exp: 
35.5 ± 0.5 Å
Force Field: 
29.7  Å
Reweighted: 
34.1  Å 

Force Field: 
29.7  Å
Reweighted: 
32.0  Å 

Experiment

Force Field

Reweighted

Exp: 
35.5 ± 0.5 Å

Force Field: 
15.4  Å
Reweighted: 
18.8  Å 

Exp: 
28.6 ± 0.7 Å

Force Field: 
20.8  Å
Reweighted: 
23.0  Å 

Experiment

Force Field

Reweighted

A12 TIP3PA12 TIP4P-D

A B

C D

E F

G H

Exp: 
28.6 ± 0.7 Å

Figure 2. Refinement of two ensembles using BME with SAXS data. SAXS refinement of an ensemble
sampled with A12 and either (left) the TIP4P-D water model or (right) the TIP3P water model. (A, B) In the
L-curve analysis to select the parameter � we plot �2 against �eff . � balances the prior (force field) and the
experimental data, �eff is the effective number of frames used in the final reweighted ensemble. A value of � is
selected from the region marked in blue. We here used � =1000 and � = 6000 for the TIP4P-D ensemble and
TIP3P ensemble, respectively. Probability distribution of (C, D) Rg and (E, F) Rℎ for the prior (red) and
reweighted (blue) ensembles. Solid vertical lines represents the ensemble averaged Rg and Rℎ. The
experimental values are shown in black. The error of the distributions and on the averages (shown as shades)

were estimated by block averaging. (G, H) Calculated SAXS intensities from the prior ensemble and the
reweighted ensembles and are compared to the experimental SAXS data.

The ensemble generated with the TIP4P-D water model (Fig. 2C) contains structures that span a294

greater range of Rg values, both above and below the experimental value. After refinement the295

reweighted ensemble is shifted to give greater weight to more expanded structures and bringing296

the average Rg , substantially closer to the value estimated from the SAXS data. We note here that297

we do not fit the Rg value but rather the SAXS data. Because the experimental value of Rg (obtained298

from a Guinier analyses of the data) contains a contribution from the solvent we do not expect a299

perfect agreement with the average Rg calculated from the protein coordinates (Henriques et al.,300

2018) . Indeed, this is one of the reasons why we fit the SAXS data directly rather than the Rg .301
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SAXS

NMR

Figure 3. Radius of gyration and hydrodynamic radius calculated from the initial force field ensemble (red) and
the experimentally refined ensembles (blue). Experimental values from SAXS (Rg = 35.5Å) and NMR (Rℎ = 29.0Å)
are shown as horizontal lines with the shaded area indicating the error of the experimental values.

The effect of reweighting of the two ensembles can also be seen on the distributions of Rℎ302

(Fig. 2E and F). Similarly to Rg distributions, the TIP4P-D ensemble is shifted to give greater weight303

to more expanded structures (Fig. 2E). As was also evident from the distribution of Rg , the more304

compact TIP3P ensemble gives rise to a very noisy distribution, because the reweighted ensemble305

predominantly consist of a few highly weighted structures (Fig. 2F). To illustrate the consequences of306

reweighting we also compared the calculated SAXS data from the initial force field and reweighted307

ensembles to the experimental scattering data (Fig. 2G and H). As expected, the refined ensembles308

show better agreement with experiments, in particular for the A12 paired with TIP4P-D. As agree-309

ment between experimental and calculated data is the target for BME this observation again just310

illustrates that the BME method is indeed optimising agreement.311

We repeated these analysis for the remaining combinations of force fields and water models312

(Figs. S4–S10) and summarise the results by assessing how well the ensembles reproduce Rg and313

Rℎ before and after refinement (Fig. 3). We note that the improvement of the Rg observed is due314

to the use of SAXS data in the refinement, as SAXS intensity curve inherently contains information315

of the Rg , and that improved agreement with the Rg is thus a sign of the BME approach working316

rather than a validation of the ensemble.317

To evaluate the effectiveness of the SAXS-restrained M&M simulation we monitored the agree-318

ment between the back-calculated and the experimental data over the simulation time by mon-319

itoring their correlation rather than the �2 (Paissoni et al., 2020). Both the SAXS-restrained and320

the unrestrained reference simulation show a high correlation between back-calculated and ex-321

perimental data (> 0.98) (Fig. S3A). As expected, the agreement improves substantially when the322
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experimental data is used as a bias in the metainference simulations, confirming the effective-323

ness of the inclusion of experimental SAXS data (Fig. S3A). Likewise, the average Rg , Rℎ and the324

back-calculated SAXS intensity data show improved agreement with the experimental data in the325

metainference produced ensemble (Fig. 3 and Fig. S3).326

In total our analyses show that it is possible to refine MD simulations against SAXS data, though327

the extent to which agreement can be reached depends on the quality of the input ensemble. For328

the most compact ensembles we are able to increase the average compaction by fitting to the329

data, though the average Rg and Rℎ are still substantially below the experimental values. While the330

SAXS data (and thus Rg) were used as target values, we also cross-validated with Rℎ which was not331

used in the fitting. Here, the picture is less clear. Overall, for the more compact ensembles, fitting332

the SAXS data lead to improved prediction of Rℎ. For other ensembles, such as A12 with TIP4P-D,333

that show good agreement with Rℎ before reweighting, the agreement became slightly worse334

after reweighting. Finally, for the most expanded ensemble obtained with CHARMM36/EEF1-SB,335

agreement with Rℎ improved after biasing with the SAXS data. We note, however, that the approach336

we use to estimate Rℎ from the ensembles is approximate and requires further assessment before337

these small differences can be interpreted further.338

Validation with PRE data339

PRE experiments probe the population-weighted average of the distance (as r−6) between a param-340

agnetic centre and protein nuclei, and given the r−6 dependency is sensitive to the shorter distances341

even if the populations are small. Here, we compare previously published PREs from spin-labelled342

�SN (Dedmon et al., 2005) and back-calculated PRE intensity ratios from five labelling sites, for343

each of the force field in Table 1, before and after refinement (see also Supporting Information).344

PRE intensity-ratio profiles from a more expanded ensemble generated using A12 with TIP4P-D345

(Fig. 4A) and a more compact one generated with A12 with TIP3P (Fig. 4B) show clear differences in346

agreement before refinement with the SAXS data.347

BME refinement leads only to small changes in the calculated PRE data for A12/TIP4P-D, whereas348

the selection of more expanded structures by applying BME to the ensemble generated with349

A12/TIP3P leads to more substantial changes as quantified for example by calculating the RMSD350

between simulation and experimental data (Fig. 4C and 4D). We performed similar calculations and351

analyses for all ensembles (Figs. S11–S18) and summarize the overall RMSD before and after BME352

(Fig. 4E). Especially for the force fields paired with TIP3P we observe many of the long-range contacts353

diminish after reweighting. These results suggest that the reweighting decreases contributions354

from structures that are too compact, and that the final reweighted ensemble contains more355

extended structures. In the TIP4P-D ensembles we still observe that some long-range contacts356

persist even after reweighting and the better agreement is not alone achieved at the cost of a357

complete elimination long-range contacts; nevertheless, the improvements of the PREs are generally358

small for these ensembles, and in the case of the metainference ensemble we even observe a small359

worsening of the agreement.360

Conclusions361

We have employed ‘on-the-fly’ or ‘post-facto’ integration between MD simulations and SAXS data362

�SN to derive structural ensembles that are in improved agreement with experiments. These363

approaches take their outset in a Bayesian framework, and thus the results of the posterior364

distribution may depend on the choice of the prior. Our results show, in line with previous365

observations (Larsen et al., 2020), clearly that if the prior distribution is a poor model for the366

experimental data, reweighting becomes noisy. Despite this we find that fitting against SAXS data367

generally improved or had no effect on the agreement with NMR data (Rℎ and PREs) that were not368

target of the optimisation. Thus, the inclusion of a SAXS-restraint in the metainference simulation369

and the BME refinement showed both methods were able to generate reliable and heterogenous370

ensemble that maintained good agreement with independent experimental data. We nevertheless371
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42 10324 8762
A

42 6224 10387
B

A12 TIP4P-D A12 TIP3P
EC D

Figure 4. Comparing ensembles to PRE data. We calculated the PRE intensity ratios both from the prior (red)
and the reweighted (blue) ensembles and compared to the experimental data (grey). As representative

examples we again show results with the A12 protein force field combined with either (A) TIP4P-D or (B) TIP3P

water models, and where the location of the spin label probe is denoted in each plot. Experimental intensity

ratios slightly exceeding the value 1 were set to 1 in these plots. (C, D) We also calculated the RMSD between

the experimental and calculated intensity ratios for each probe and the two force fields both before and after

reweighting. (E) Finally, we calculated the RMSD between experiment and calculated values over all probe

position for and all force fields in Table 1.
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also find that the prior used in such protocols are important, and that more robust analyses are372

obtained with the best priors. Our calculations of Rℎ and PREs suggest that when the ensembles373

are ‘far’ away from the experimental data, then improvements driven by the SAXS refinement lead374

to clear improvements in independent parameters. For ensembles that show better agreement375

between with the SAXS data to begin with, the picture is less clear. While we on average observe376

improvements, they are often modest. While some of this is likely because the ensembles are377

already in reasonably good agreement with experiment, we also suggest that we are observing the378

limitations of the forward models for calculating SAXS, Rℎ and PREs. Thus, in addition to improving379

force fields, future research into finding improved and consistent forward models may be required380

to provide better models for intrinsically disordered proteins.381
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