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Abstract  20 

High-throughput sequencing enables an unprecedented resolution in transcript 21 

quantification, at the cost of magnifying the impact of  technical noise. The consistent 22 

reduction of unreproducible, random background noise to capture true, functionally 23 

meaningful biological signals is still a challenge. Intrinsic sequencing variability that 24 

introduces low-level expression variations can obscure patterns in downstream analyses. 25 

We introduce noisyR, a comprehensive noise filter to assess the variation in signal 26 

distribution and achieve an optimal information-consistency across replicates and samples; 27 

this selection also facilitates meaningful pattern recognition outside the background-noise 28 

range. noisyR can be applied to count matrices and sequencing data; it outputs sample-29 

specific signal/noise thresholds and filtered expression matrices.  30 

We exemplify the effects of minimising technical noise on plant and animal datasets, across 31 

various sequencing assays: coding, non-coding RNAs and their interactions, at bulk and 32 

single cell level. An immediate consequence of filtering out noise is the convergence of 33 

predictions (differential-expression calls, enrichment analyses and inference of gene 34 

regulatory networks) across different approaches.  35 

Keywords: next generation sequencing, noise, bulk sequencing, single-cell sequencing, 36 

count matrix, expression profile, differential expression, enrichment analysis, gene 37 

regulatory network.  38 

 39 

Teaser  40 

Noise removal from sequencing quantification improves the convergence of downstream 41 

tools and robustness of conclusions. 42 

  43 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.17.427026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427026
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 19 

 

MAIN TEXT 44 

 45 

Introduction  46 

High-throughput sequencing (HTS) became a new standard in most life science studies 47 

yielding unprecedented insights into the complexity of biological processes. This increase 48 

in sequencing depth and number of samples, across both bulk and single cell experiments, 49 

facilitated a greater diversity in biological questions (1), at the same time allowing a higher 50 

sensitivity for the detection of perturbations in gene expression levels between samples 51 

(2).This increased accuracy greatly assists with the biological interpretation of results such 52 

as identification and characterisation of differential expression (DE) at tissue and cellular 53 

levels (3) or the inference and characterisation of gene regulatory networks (4). However, 54 

HTS may exhibit high background noise levels resulting from non-biological/technical 55 

variation, introduced at different stages of the RNA-seq library preparation, or from 56 

amplification/sequencing bias (5) to random hexamer priming during the sequencing 57 

reaction (6). These technical alterations of signal can affect the accuracy of the downstream 58 

DE call or create spurious patterns biasing downstream interpretations. Statistical methods 59 

developed to date (7-9), focused mainly on batch/background correction, normalisation, and 60 

evaluation of DE have been developed to mitigate the impact of these biases on DE analyses 61 

(10). A noise filter for pre-processing the data before these steps would ensure a reduction 62 

of further amplification of these biases. Here, we introduce a new high-throughput noise 63 

filter to remove random technical noise from sequencing data and illustrate the downstream 64 

information consistency that is achieved. 65 

While different technologies may exhibit different technical biases, the sequencing bias 66 

across an experiment was expected to be uniform. The initial assumption was that 67 

sequencing reads would uniformly cover the expressed transcripts, with the algebraic sum 68 

of reads from each gene being proportional to the expression of that gene (11). However, in 69 

practice we observe a reproducible, yet uneven distribution of signal across transcripts (11); 70 

moreover highly abundant genes show a higher consistency of  transcript-coverage than 71 

lower abundance genes. This coverage bias of lower abundance genes is one of the main 72 

origins of technical noise (12). The latter can be attributed to the stochasticity of the 73 

sequencing process, the limits of sequencing depth, and alignment inaccuracies during the 74 

mapping procedure. To further explore the coverage bias of lower abundance genes we 75 

define genes whose quantification is characterised by such lack of coverage-uniformity as 76 

“noisy”. 77 

The presence of noise in high-throughput sequencing data has been widely acknowledged, 78 

and there have been several attempts to understand and quantify it. A recent study (13) 79 

presented a variety of common experimental errors that may increase sequencing noise and 80 

proposed ways to avoid them such as using a mild acoustic shearing condition to minimise 81 

the occurrence of DNA damage. Fischer-Hwang and colleagues (14) presented a denoising 82 

tool that can be applied on aligned genomic data with high fold-coverage of the genome to 83 

improve variant calling performance. The recent prevalence of single-cell sequencing 84 

technologies has further highlighted the issue of noise, as the lower sequencing depth per 85 

cell leads to more uncertainty of the quantification of (low abundance) genes. Efforts have 86 

been made to reduce the noise levels experimentally, such as by utilizing a different 87 

barcoding approach (15).  88 

On the computational side, several imputation and denoising algorithms have been 89 

proposed, such as a machine learning (ML) based deep count autoencoder (16). Other tools 90 
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focus on differential expression analysis, such as TASC (17), which uses a hierarchical 91 

mixture model of the biological variation. However, successful methods usually rely on 92 

assumptions about the biological experiment being tailored to a specific setting or model 93 

system, thus leaving most large-scale sequencing efforts (that lack such specific 94 

experimental design) exposed to random technical noise. To our knowledge, there is little 95 

focus on bulk experiments, where technical noise still exists at low abundances, independent 96 

of biological assumptions; for these experiments the low number of replicates hinders 97 

imputation-based approaches. 98 

Existing approaches for calling DE genes mitigate to various extents the presence of noise, 99 

however these are not designed to identify and assess the impact of genes showing random, 100 

low-level variation (noise), some of which end up included in the DE call and thus bias the 101 

biological interpretation. In addition, the choice of tools used for pre-processing steps may 102 

influence the output (and relative quantification accuracy) of gene expression (18). These 103 

analytical biases mainly arise from differences in the detection and handling of isoforms or 104 

processing of unmapped and multi-mapping reads (3). Such variation in abundance 105 

estimation in turn can strongly affect the downstream analyses (19).  106 

We developed noisyR, a denoising pipeline to quantify and exclude technical noise from 107 

downstream analyses, in a robust and data-driven way. Our noise-filtering method is 108 

applicable on either the original, un-normalised count matrix, or alignment data (BAM 109 

format) for a more refined analysis. Noise is quantified based either on the correlation of 110 

expression across subsets of genes for the former, or distribution of signal across the 111 

transcripts for the latter, in different samples/replicates and across all gene abundances 112 

(Methods). We illustrate the approach on bulk and single cell RNA-seq datasets and 113 

highlight the impact of the noise removal on refining the biological interpretation of results. 114 

Results  115 

Noise quantification in bulk RNA-seq data 116 

To exemplify the impact of denoising on the biological interpretations from bulk RNA-seq 117 

experiments, we applied noisyR on mRNA-seq and smallRNA-seq (sRNA) data. First, we 118 

illustrated the advantages of using the pipeline on a subset of mRNA-seq samples from a 119 

2019 study by Yang et al (20). To assess the distributions of signal we used density plots 120 

(Fig. 1A) and summaries of Jaccard similarity indices (Fig. 1B, JSIs) across all samples. 121 

For the former, we observed a multi-modal distribution that suggests a signal to noise 122 

transition range between [3,7] on log2 scale; for the latter, the high similarity along the 123 

diagonal mirrors the temporal component of the time series. To reduce the number of low 124 

abundance, high fold change DE calls (Fig. 1C for replicate-versus-replicate similarity and 125 

the secondary DE distribution visible in Fig. 1D), we used first the noisyR count-based 126 

pipeline, on default parameters: window length = 10% x #genes and sliding step = 5% x 127 

window length (Fig. 1, E and H). We used a correlation threshold of 0.25 and the boxplot 128 

median method, a combination of hyper-parameters producing the smallest coefficient of 129 

variation across abundance thresholds for the considered samples (Methods); the 130 

interquartile ranges (IQRs) of noise thresholds for the different samples ranged between 39 131 

and 63, with an average of 58, for sequencing depths varying between 58M and 82M. We 132 

detected an outlier with a low threshold of 18 (corresponding to a sequencing depth of 133 

~77M) and three with values of over 100, corresponding to sequencing depths of 73M, 71M 134 

and 96M respectively. Next, we applied the transcript approach focusing on the correlation 135 

of the expression profiles across exons/transcripts (Methods); despite the higher runtime 136 

compared to the count-based approach, the transcript-approach was more robust, as 137 
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illustrated by the lower variance in signal/noise thresholds across samples (Fig. 1I). The 138 

parameters that minimised the coefficient of variation were: correlation threshold = 0.26 139 

and the boxplot median method; the resulting noise threshold IQRs ranged between 64 and 140 

79, with an average of 75 and one outlier at 104. The signal/noise thresholds were similar 141 

for the two options, with an increased level of detail for the transcript-based approach.  142 

These thresholds were used to exclude noisy genes from the count matrix (~44k genes were 143 

excluded out of ~56k genes expressed); the number of retained genes were 19.7k and 15.6k 144 

for the counts and transcript approaches, respectively. As a DE pre-processing step, the 145 

averaged noise threshold was added to all entries in the count matrix (Methods). The effect 146 

of the noise removal is illustrated by the narrower distribution in the MA plot (Fig. 1F). 147 

Next, we performed a DE analysis between the 0h and 12h samples of the Yang dataset 148 

using the denoised matrix. Following the noise correction, we saw a 46% reduction in the 149 

number of DE genes - from 3,607 to 1,952. A large number of low abundance genes with 150 

spuriously high fold-changes were no longer called DE (12). Moreover, when comparing 151 

the outputs of two standard DE pipelines, edgeR (8) and DEseq2 (7), we noticed that the 152 

number of genes identified as DE by both methods only marginally decreased when the 153 

noise corrected input is used, whereas the number of DE genes called only with edgeR or 154 

only with DeSeq2 decreased significantly (Fig. 1J); therefore we observed an increase in 155 

output consistency across methods when the noise filtered inputs were used. Moreover, the 156 

fold-changes and p-values of denoised genes correlated better and we no longer saw a large 157 

set of DE genes with (adjusted) p-values marginally below the DE threshold (Fig. 1, D vs 158 

G). This step was followed by a functional enrichment analysis focusing on the DE genes, 159 

with the genes expressed (post filtering) as background set (21). The number of enriched 160 

terms was lower in the denoised data, 1,108 vs 4,671 in the original analysis; ~24% of the 161 

terms were retained and the terms found with the denoised dataset were approximately a 162 

subset of the ones found without the noise correction (~99.6% of terms found after denoising 163 

were also found prior to noise removal). In addition, the noise-correction terms 164 

corresponded to a higher percentage of genes assigned per pathway (Fig. 1K). Thus, 165 

applying noisyR focused the interpretation of results on the enrichment terms with highest 166 

confidence, ensuring biological relevance. 167 

The noisyR transcript approach was also applied on two small RNA (sRNA) datasets, from 168 

plants (A. thaliana) and animals (M. musculus), respectively. In contrast to the mRNAseq 169 

data, sRNAs samples had different correlation vs abundance distributions. Overall low 170 

abundance sRNA transcripts/loci contained more noisy entries (22). Also, we observed a 171 

sharper increase to high correlation entries highlighting the transition from degraded 172 

transcripts to precisely excised sRNAs (23, 24). For both model organisms, miRNA hairpins 173 

and transposable elements (TEs) were analysed separately. For the former, we observed 174 

overall higher correlations than for mRNAs, likely because of the precise cleavage of the 175 

mature duplex, and the lack of signal outside the duplex region (25); this characteristic is 176 

stronger for the animal case (fig. S1C). For both animals and plants the increasing 177 

distribution was clearly detectable (fig. S1, A and C). The TE distributions also reflected 178 

the characteristics of the underlying sRNAs; for the animal example (fig. S1D) we saw a 179 

sharper increase along the abundance bins, specific for the piRNAs (26), whereas in plants 180 

(fig. S1B), the distribution of signal (expressed siRNAs) mirrored the biogenesis of 181 

heterochromatin siRNAs (27). 182 

Effect of noise on single cell (smartSeq) data 183 

To illustrate the broad applicability of noisyR on different HTS data, we present its output 184 

on single cell (smartSeq2) sequencing output focusing  on a subset of samples from the 185 

dataset presented by Cuomo et al (28); we focused on 6 donors, and one time-point, the 186 

number of cells per donor varied between 45 and 107. A common difficulty in single-cell 187 
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experiments is that due to the higher number of samples/cells, the runtime is much higher if 188 

the pipeline is applied without modification, making the transcript approach in particular 189 

intractable. 190 

First, we applied noisyR using the count matrix approach on all cells with default 191 

parameters; we observed that correlation values rise to a weakly positive plateau (0.2-0.4) 192 

and remain stable for a wide range of abundances (Fig. 2A). Our interpretation of this result 193 

is that lower sequencing depths and higher resolution of smart-seq compared to bulk data 194 

induces more dissimilarity for medium abundances. To alleviate this effect, we grouped 195 

cells into a small number of “pseudosamples”, both randomly and using the structure of the 196 

experiment (grouping by donor). For each pseudosample, we averaged the expression of 197 

genes across cells and applied our count-based approach on the summarised matrix. In the 198 

resulting noisyR output, we observed a clearer step in the abundance-correlation plot (fig 199 

2B), especially when the summary was performed by donor. This indicates that an effect of 200 

the summarisation is a reduction in cell-to-cell variability which also focuses the noise 201 

identification procedure. The thresholds obtained via pseudo-sample summarisation and 202 

count-based noise identification varied between 2 and 4 with an average of 2.6 203 

(corresponding to a sequencing depth per pseudo-sample between 590K and 689K, 204 

representative of the average sequencing depth per cell of 640K); these were used in a 205 

similar manner as for the bulk data,  to produce a denoised count matrix. 206 

As the transcript approach is more computationally intensive, we applied it on a subsampled 207 

set of 25 cells. The subsamples were chosen randomly, and the process was reiterated five 208 

times, with the requirement that the summarised cells originate from the same donor. 209 

Formatting the data for noisyR was achieved by concatenating the BAM files for the 210 

selected cells and treating them as one sample. Whereas for the count approach the results 211 

on individual cells were highly variable, with several instances of low or negative 212 

correlations, observed even at high abundances (fig 2A), for the transcript approach, applied 213 

on the concatenated BAM files, we observed the expected increasing trend in the 214 

distribution of correlations (Fig. 2C). The correlation distributions were high, even at low 215 

abundances, which may be a consequence of the summarisation; a suitable threshold may 216 

be selected on the median, IQR, or 5-95% range to infer a signal to noise threshold, as the 217 

distributions are stable for low values and increase as the abundance increases above ~2 on 218 

a log2-scale. 219 

To assess the impact of noisyR on the biological interpretation of results, we performed the 220 

same downstream analyses before and after the noise removal and compared the results. In 221 

this study, we focus on the structure and mathematical characteristics of the outputs, rather 222 

than specific biological interpretations. The gene abundances were normalised and the cells 223 

were clustered using the Seurat R package (see Methods). The different clusterings were 224 

visualised using the UMAP (non-linear) dimensionality reduction (29) (Fig. 2, D and E). 225 

We observed that for the raw data the cells cluster into 3 groups of 2 donors each, while in 226 

the denoised data cells corresponding to the four donors are mixed across clusters, 227 

suggesting the part of a putative initial bath effect might have been alleviated with the noise 228 

correction. We also observe a better separation of clusters in the denoised data, especially 229 

on the first UMAP component, which may be an indication of robustness. We further 230 

assessed the similarity of the two clustering results using a cell-centred contingency table 231 

(Fig. 2F). We observe a good correspondence between the original and denoised matrix; in 232 

particular, clusters 1 and 4 largely merge into cluster 0, and cluster 0 remains intact and 233 

turns into cluster 1. While the total number of clusters remains the same (under default 234 
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parameters), the partitioning of cells is altered, which led us to believe there may be a 235 

qualitatively different result between the original and denoised matrix with possible 236 

consequences for downstream biological interpretations. To evaluate the changes in 237 

interpretation, we compared the pre/post filtering clusters by identifying the (positive) 238 

markers and computing the JSI between the top 50 markers of each cluster (Fig. 2G). 239 

Similarly as for the contingency table, the JSI heatmap shows an analogous correspondence 240 

between clusters, albeit weaker. Finally, we performed a functional enrichment analysis of 241 

the markers identified pre/post filtering. Similarly to the bulk results, there were fewer DE 242 

genes (markers per cluster) identified in the denoised dataset, with the precision being 243 

higher on average across the different GO terms, pathways, and regulatory terms (Fig. 2H). 244 

This strengthens our conclusion that the noise filtering process can add focus to the 245 

downstream biological analysis without significantly altering the overall composition of the 246 

data. 247 

The results should describe the experiments performed and the findings observed. The 248 

results section should be divided into subsections to delineate different experimental 249 

themes. Subheadings should be descriptive phrases. All data must be shown either in the 250 

main text or in the Supplementary Materials.  251 

Effects of noise filtering on the biological interpretation of regulatory interactions 252 

One of the main aims of high-throughput sequencing projects, besides the identification of 253 

differentially expressed genes (the effect), is to infer the complex interactions of genes 254 

that lead to biological functions, the cause (e.g. disease, development or stress response). 255 

Understanding these interactions between genes and the corresponding regulatory 256 

elements (at transcriptional level, such as transcription factors (30, 31), or post-257 

transcriptional, small RNAs (32)) allows us to unveil the molecular mechanisms encoding 258 

phenotypic outcomes, including causes of diseases.  259 

 260 

Effect on PARE data on predicting regulatory miRNA/mRNA interactions  261 

First, we sought to understand the effect of noise removal on the identification of 262 

miRNA/mRNA interactions. We applied the noisyR transcript approach to a Parallel 263 

Analysis of RNA Ends Sequencing (PAREseq) dataset (33). The distribution of degraded 264 

fragments across transcripts observed the same distribution of correlation vs abundance as 265 

for the bulk RNAseq data (Fig. 3A). Using a correlation threshold of 0.25, we determined a 266 

signal/noise threshold of 60 for this dataset. We then matched the highly abundant reads to 267 

known miRNAs (Methods, Fig. 3B) and illustrated that by removing the noisy reads, with 268 

abundance less than the noise threshold (Fig. 3, C-D), the prediction of interactions is 269 

simplified (34) i.e. for most genes only a few peaks were left. In some cases (e.g. Fig. 3C), 270 

only a very clear peak was retained after the noise removal, while for other transcripts some 271 

secondary interactions were kept. 272 

 273 

Effect on the inference and interpretation of Gene Regulatory Networks 274 

However, characterising direct interactions between regulatory elements and their targets is 275 

only feasible for a limited set of interactions (such as the miRNA/mRNA interaction in 276 

plants, leading to mRNA degradation). To capture more of the vast complexity of gene 277 

interactions for thousands of genes in tandem, gene regulatory networks (GRNs) have been 278 

proposed as a systems biology tool to infer regulatory interactions from high-throughput 279 

sequencing data. After the network inference step, the topology of GRNs can be used as a 280 

proxy for capturing the underlying biological complexity of the studied process which in 281 
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combination with enrichment analyses based on various gene ontologies generates a 282 

comprehensive model of the investigated process. 283 

We evaluate the impact of noise-filtering on the inference of GRNs on particular network 284 

modules, associated with annotated pathways; we quantify the impact of random noise in 285 

altering network topologies and subsequent biological interpretations. To achieve this, we 286 

run our Network Inference Pipeline (NIP) and edgynode network analytics package 287 

(Methods) on both bulk and single cell RNAseq datasets using non-noise-filtered original, 288 

non-noise-filtered normalised, and noise-filtered normalised count matrices.     289 

Bulk RNAseq data has been widely used despite its well known effect to dilute expression 290 

signals of individual cells or tissue types. However, in the context of technical noise, this 291 

averaging across cells and tissues usually buffers the noise effect on general patterns while 292 

reducing the possibility to detect weak but biologically meaningful expression signals (e.g. 293 

transcription factor or transposable element expression).   294 

Using the Yang et al. dataset in four different setups (original, -F(iltered) -N(normalised); 295 

noise-filtered but not normalised, +F -N; not filtered but normalised, -F +N; and noise-296 

filtered and normalised, +F +N) and subsampled into five distinct biological pathways 297 

(Placenta development, 46 genes; Neuron differentiation, 102 genes; Cell differentiation, 298 

249 genes; Phosphorus metabolic process, 493 genes; and Multicellular organism 299 

development 996 genes), we ran NIP to infer GRNs using three inference approaches 300 

GENIE3, GRNBoost2, and PIDC (Methods). The inferred weighted correlation networks 301 

were imported into edgynode and rescaled to [0,100] to allow comparisons across inference 302 

tools.  303 

Next, all rescaled weight matrices (fig. S2, A and B) were converted to binary format using 304 

the median value over the entire weight matrix as threshold to assign edge weights; a zero, 305 

if their weight was below the median value, and a one, if their weight was above the median 306 

value. The resulting binary adjacency matrices were then used as input to compute the gene-307 

specific node degrees and to calculate the pairwise Hamming distances for each gene 308 

between combinations of original, noise-filtered, and normalised datasets (fig. S3). This per-309 

gene Hamming distance is a direct assessment of the number of edges that differ between 310 

inferences and captures both edge gain and loss. A low Hamming distance illustrates a 311 

robust network, whereas a high Hamming distance is proportional to large changes in the 312 

GRN topology.  Fig. 3, G-I illustrate pairwise comparisons between all combinations of 313 

input datasets: 1) original -F -N; 2) not noise-filtered but normalised -F +N; 3) noise-filtered 314 

but not normalised +F -N; and 4) noise-filtered and normalised +F +N exemplified for 102 315 

genes corresponding to the neuron differentiation pathway and shown for all three network 316 

inference tools (GENIE3, Figure 3G; GRNBoost2, Figure 3H; and PIDC Figure 3I). For all 317 

network inference tools, a common pattern is the refining effect of noise-filtering on the 318 

overall network topologies. Interestingly, the normalisation step has, in most cases, much 319 

greater impact on the network topology than noise-filtering. This result implies that the 320 

filtering procedure can detect and remove technical noise without disrupting the global 321 

network topology. 322 

In addition, (fig. S2, A and B) shows a comparison between rescaled weight matrix 323 

distributions for an original and a noise-filtered and normalised network inferred with 324 

GENIE3. In this analysis, most genes had a large number of low-weight values within their 325 

edge-weight distributions that would result in thousands of biologically meaningless, 326 

weakly supported, connections with other genes. Noise-filtering in this bulk RNAseq 327 

dataset allows the exclusion of noisy genes as these fall below the median-threshold level 328 
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which results in a more refined and biologically meaningful network topology after 329 

binarisation was applied (Methods).  330 

Together, these results suggest that across network inference tools noise-filtering has 331 

refining effects on the inferred network topologies in original or normalised data, further 332 

illustrating the advantages of noise-filtering to magnify biological signals by reducing 333 

technical noise (34). 334 

 335 

noisyR package 336 

The noisyR package is available on CRAN (https://CRAN.R-project.org/package=noisyr) 337 

and comprises an end-to-end pipeline for quantifying and removing technical noise from 338 

high-throughput (sequencing) datasets. The three main pipeline steps are [i] similarity 339 

calculation across samples, [ii] noise quantification, and [iii] noise removal; each step can 340 

be finely tuned using hyper-parameters; optimal, data-driven values for these parameters 341 

are also determined. The package is written in the R (version 4.0.3) programming language 342 

and is actively maintained on https://github.com/Core-Bioinformatics/noisyR. 343 

For the sample-similarity calculation, two approaches are available. The count matrix 344 

approach uses the original, un-normalised count matrix, as provided after alignment and 345 

feature quantification; each sample is processed individually, only the relative expressions 346 

across samples are compared. Relying on the hypothesis that the majority of genes are not 347 

DE, most of the evaluations are expected to point towards a high similarity across samples. 348 

Choosing from a collection of >40 similarity metrics (35), users can select a measure to 349 

assess the localised consistency in expression across samples (12). A sliding window-350 

approach is used to compare the similarity of ranks or abundances for the selected features 351 

between samples. The window length is a hyperparameter, which can be user-defined or 352 

inferred from the data (supplementary methods 1). The transcript approach uses as input 353 

the alignment files derived from read-mappers (in BAM format). For each sample and each 354 

exon, the point-to-point similarity of expression across the transcript is calculated across 355 

samples in a pairwise all-versus-all comparison. The output formats for the two approaches 356 

are the same; the number of entries varies, since the count approach focuses on windows, 357 

whereas for the transcript approach we calculate a distance measure for each transcript. 358 

The noise quantification step uses the abundance-correlation (or other similarity measure) 359 

relation calculated in step i to determine the noise threshold, representing the abundance 360 

level below which the gene expression is considered noisy e.g. if a correlation threshold is 361 

used as input then the corresponding abundance from a (smoothed) abundance-correlation 362 

line plot is selected as the noise threshold for each sample. The shape of the distribution can 363 

vary across experiments; we provide functionality for different thresholds and recommend 364 

the choice of the one that results in the lowest variance in the noise thresholds across 365 

samples. Options for smoothing, or summarising the observations in a box plot and selecting 366 

the minimum abundance for which the interquartile range (or median) is consistently above 367 

the correlation threshold are also available. Depending on the number of observations, we 368 

recommend using the smoothing with the count matrix approach, and the boxplot 369 

representation with the transcript option. 370 

The third step uses the noise threshold calculated in step ii to remove noise from the count 371 

matrix (and/or BAM file). The count matrix can be calculated by exon or by gene; if the 372 

transcript approach is used, the exon approach is employed. Genes/exons whose expression 373 

is below the noise thresholds for every sample are removed from the count matrix. The 374 
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average noise threshold is calculated and added to every entry in the count matrix. This 375 

ensures that the fold-changes observed by downstream analyses are not biased by low 376 

expression, while still preserving the structure and relative expression levels in the data. If 377 

downstream analysis does not involve the count matrix, the thresholds obtained in step ii 378 

can be used to inform further processing and potential exclusion of some genes/exons from 379 

the analysis. 380 

Discussion  381 

User-defined or data-driven options for the hyperparameters 382 

noisyR hyperparameters can be used to finely tune the identification of the signal/noise 383 

thresholds. To optimise the noise filtering procedure and dampen the differences between 384 

samples (e.g. derived from variation in sequencing depth or sample read-complexity) the 385 

noise removal step is performed by adding the average of the signal/noise thresholds across 386 

samples, on the raw count matrix. Nevertheless, comparable thresholds across the dataset 387 

are essential for a meaningful filtering; we recommend the use of consistency and 388 

robustness checks throughout the pipeline to ensure that the input samples are comparable, 389 

coupled with the data-driven selection of threshold values for setting hyper-parameters. The 390 

option of user-defined values is available, however the selected values should be based on 391 

observations from the input dataset, rather than exclusively following default 392 

recommendations. Next, we discuss in detail the options available for selecting the 393 

hyperparameters for a more adaptive noise-filtering based on the structure of the input data.  394 

For the count matrix approach, the length of the sliding windows plays a significant role for 395 

assessing the similarity across samples. Smaller windows require more computational time; 396 

however the intended level of detail may not always be preferable, as small gene expression 397 

fluctuations, from sample to sample, would reduce the across-sample similarity if the 398 

abundance range is not wide enough (Fig. 5A). Even for medium-high abundances, 399 

expression or rank inconsistencies characterise smaller windows, indirectly leading to 400 

higher (and more variable across samples) signal/noise thresholds. If the window size is too 401 

large, less information is captured by the similarity measure and the accuracy of the noise 402 

threshold identification is also reduced (Fig. 5B). We recommend medium-sized windows 403 

that cover the abundance range in small incremental steps as larger overlaps between 404 

windows result in a more robust estimation of similarity-variation. An intuitive approach 405 

for determining an informative window size for a dataset relies on monotony changes of the 406 

similarity measure, quantified as the number of times the derivative of the correlation (as a 407 

function of abundance) changes sign. On several datasets, this resulted in a window length 408 

of 1/10th of the total number of expressed genes and a sliding window step size of 1/20th 409 

of the total gene number. A different tactic, also implemented in noisyR,  tackles this task 410 

from a different direction; it relies on optimising the window length using an entropy-based 411 

approach with the Jensen-Shannon divergence to assess the stability achieved as the window 412 

length is increased (supplementary methods 1). The shape of the distribution of correlations 413 

changes as the window length increases; however the change is less significant (evaluated 414 

using a t-test) for larger windows. The first point of stability is selected as the optimal 415 

window length, as it provides the largest possible granularity while maintaining robustness. 416 

The results from this approach are also consistent with earlier, empirical findings when 417 

applied to the Yang dataset (20). 418 

Yet another hyperparameter is the similarity measure; we compared the results for different 419 

correlation and distance metrics. We aim to achieve a high consistency in quantifying the 420 

signal/noise thresholds that is independent of the similarity measure. We tested the standard 421 

parametric and non-parametric correlation measures as well as the ones implemented in the 422 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.17.427026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427026
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 19 

 

philentropy package (35), which provides a variety of >45 distance measures. Dissimilarity 423 

measures are being inverted for comparison purposes (Fig. 5, C-F illustrates the Spearman 424 

correlation, Euclidean distance, Kulbeck-Leibler divergence, and Jensen-Shannon 425 

divergence). Some measures have fixed ranges (e.g. the correlation coefficients), while 426 

others are semi- or unbounded. This raises the question of how to choose a similarity 427 

threshold when the range of values resulting from the similarity measure is unknown. 428 

Inspired by the correlation threshold, which provides a good separation at 0.25 for many 429 

datasets, we focus, as a starting point, on the naive assumption to use a quarter of the full 430 

range of the observed similarity values as a first cut-off approximation. Picking a threshold 431 

in a data-driven manner is however preferable, and in this case achievable. Selecting from 432 

a variety of threshold values that minimise the coefficient of variation (standard deviation 433 

divided by the mean) of the corresponding noise thresholds in different samples is an 434 

empirical approach that works in practice. If the samples are semantically grouped e.g. 435 

replicates or time points, it may be better to minimise the variation in each individual group 436 

rather than across the full experimental design.  437 

Effect of aligner choice on noise quantification 438 

The choice of the read-aligner was shown to influence the downstream DE analyses when 439 

the same quantification model was applied (18). To assess the effect of different alignment 440 

approaches on the quantification and observed levels of noise, mRNA quantification using 441 

featureCounts was performed on reads aligned with STAR (36), HISAT2 (37) and Bowtie2 442 

(38). The latter two were run both using their default parameters and with parameters set to 443 

match STAR functionality. For the count based approach, the distribution of the Pearson 444 

Correlation Coefficients across abundance bins (Fig. 6A) shows that noise levels were 445 

relatively consistent regardless of the applied alignment algorithm. Similarly, for the 446 

transcript-based approach, the correlation distributions across abundance bins (Fig. 6B) 447 

illustrate little variation across aligners (fig. S6, A and B). The estimated signal/noise 448 

thresholds were also comparable between the datasets generated by different aligners (Fig. 449 

6C), with transcripts-based noise results being less variable. Once the noise correction was 450 

applied, the substantial peak in the abundance distributions around zero (Fig. 6D) was 451 

removed or significantly diminished and a second peak corresponding to the true signal was 452 

revealed around log2(abundance) of five using both counts and transcripts based approaches 453 

(Fig. 6, E and F respectively). The similarity of the abundance distributions across the 454 

“datasets” produced by the different aligners was observable both before and after the noise 455 

correction. This demonstrates that the proposed correction approaches are non-destructive 456 

and preserve the underlying biological signal. To further validate this point, the overlap 457 

between edgeR and DESeq2 analyses was investigated. The DE genes (adjusted p-value < 458 

0.05 and |log2(abn)| > 1) detected by the two methods were compared for outputs produced 459 

using STAR (Fig. 1J), Bowtie2 (Fig. 6G) and HISAT2 (Fig. 6H). In all cases, there were 460 

fewer DE genes in total after noise correction was applied, and the specific differences for 461 

each DE method were reduced. The same conclusions were reached for the processing with 462 

Bowtie2 and HISAT2 applied with their default parameters (fig. S6C). 463 

 464 

Materials and Methods  465 

Materials 466 

The bulk mRNA-seq used to illustrate noisyR was generated by Yang et al (20). The 467 

dataset comprises 16 samples across 8 time points [0-72 hours post stem cell induction. 468 

The raw data (fastq files and metadata) were downloaded from GEO (accession numbers 469 

GSE117896, GSM3314677 - GSM3314692). 470 

 471 
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Next, sRNA data was retrieved from Paicu et al (39) for the plant dataset (2 samples, a 472 

wildtype and DCL1 knockdown, with 3 biological replicates each, in A. thaliana, 473 

GSM2412286 - GSM2412291) and from Wallach et al (40) for the  animal dataset, 6 474 

samples generated for the identification of microRNAs as TLR-activating molecules in M. 475 

musculus (PMID: 31940779, GSE138532, GSM4110737 - GSM4110742). For both 476 

datasets, the reads were aligned to mature and hairpin miRNAs, downloaded from 477 

miRBase (41) and TEs, downloaded from TAIR and ENSEMBL, for M. musculus. 478 

 479 

For assessing the impact of noise on direct biological interpretations and predictions, such 480 

as the interaction of miRNAs and mRNAs, we selected a PARE (parallel analysis of RNA 481 

ends, also known as degradome sequencing) dataset, consisting of 3 biological replicates 482 

(GSE113958) presented in Thody et al (33).  483 

 484 

The single-cell mRNA-seq dataset used to illustrate noisyR was generated by Cuomo et al 485 

(study of stem cell differentiation) (28). The data is available on ENA, ERP016000 - 486 

PRJEB14362. The six donors with the highest number of cells (hayt, naah, vils, pahc, 487 

melw, qunz) were selected, all four time points were included.  488 

 489 

The reference genomes used for alignment were: Homo_sapiens.GRCh38.98 (Ensembl 490 

version 98),: Mus_musculus.GRCm38.98 (Ensembl version 98) and A. thaliana (42). 491 

Methods, bulk mRNAseq data 492 

Data pre-processing and quality checking  493 

Initial quality checks were performed using fastQC (version 0.11.8), summarised with 494 

multiQC (version 1.9) (43). Alignments to reference genomes were performed using STAR 495 

(version 2.7.0a) with default parameters (36); the count matrices were generated using 496 

featureCounts (version 2.0.0) (44) against the M. musculus exon annotations obtained from 497 

the Ensembl database (genome assembly GRCm38.p6). Additional quality checks included 498 

density plots, (comparable distributions are a necessary but not sufficient condition for 499 

comparability), MA plots for the sufficiency check (expected to have a funnelling shape; 500 

observed outliers are candidates for differentially expressed transcripts), incremental 501 

dendrograms and PCA plots to evaluate the similarity of distributions (12, 45). 502 

Data post-processing and biological interpretation of results 503 

The differential expression analysis was performed after quantile normalisation of the count 504 

matrix using the standard functions from edgeR, version 3.28.0 (8) and DESeq2, version 505 

1.26.0 (7). The thresholds for DE were |log2(FC)| > 1 and adjusted p-value < 0.05 506 

(Benjamini-Hochberg multiple testing correction). The enrichment analysis was performed 507 

using g:profiler (R package gprofiler2, version 0.2.0) (21), against the standard GO terms, 508 

and the KEGG (46) and reactome (47) pathway databases. The observed set consisted of 509 

the DE genes, the background set comprised all expressed genes, using the full or de-noised 510 

count matrix respectively. 511 

To assess the effect of noise correction across the multiple options of mRNA quantification, 512 

the sequencing reads were aligned to the reference genome using Bowtie2 (version 2.4.2) 513 

(38)  and HISAT2 (version 2.1.0) (37). Aligners were run both with default parameters and 514 

with parameters set to match the STAR functionality of searching for up to 10 distinct, valid 515 

alignments for each read ("bowtie2 --end-to-end -k 10" and "hisat2 -q -k 10"). The transcript 516 

expression was quantified using featureCounts. The robustness of the quantification was 517 

assessed by investigating the overlap between edgeR and DESeq2 analyses. The genes with 518 
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adjusted p-value < 0.05 (Benjamini-Hochberg multiple testing correction) and |log2(FC)| > 519 

1 were considered before and after noise correction. 520 

Gene regulatory network inference  521 

To assess the implications of the noise filter on downstream biological interpretations, we 522 

used the bulk and single-cell datasets as inputs for various gene regulatory network (GRN) 523 

inference tools and compared the results for filtered and unfiltered inputs. For this purpose, 524 

we selected several gene subsets, ranging in size from 49 to 996 genes for the bulk dataset 525 

and from 57 to 246 genes for the single-cell dataset, based on enrichment analyses 526 

performed on the DE genes according to their inclusion in annotated pathways. 527 

(Supplementary table 1) 528 

We chose a subset of the GRN inference tools benchmarked by BEELINE (48): GENIE3 529 

(49), GRNBoost2 (50), and PIDC (51). We packaged the tools as Singularity containers 530 

(https://github.com/drostlab/network-inference-toolbox) and then assembled them into a 531 

custom pipeline (https://github.com/drostlab/network-inference-pipeline). 532 

This pipeline extracts the subsets of genes corresponding to selected pathways and uses 533 

them as inputs for the GRN inference tools. The results are rescaled, binarised and compared 534 

using the edgynode package (v0.3.0, https://github.com/drostlab/edgynode). The edge 535 

weights and node degree distributions for all genes across the selected subsets are then 536 

visualised. 537 

In detail, the similarity assessment of network topologies was performed using the edgynode 538 

function network_benchmark_noise_filtering() and was visualized using 539 

plot_network_benchmark_noise_filtering(). For this purpose, the inferred networks were 540 

converted to a binary format (presence/absence of an edge) using the overall median edge 541 

weight per network as a threshold. In network_benchmark_noise_filtering() four different 542 

types of matrices are used as input: a weighted adjacency matrix returned by a network 543 

inference tool where 1) no noise filter and no quantile normalisation (original) was 544 

performed (denoted in the figures as -F -N), 2) a noise filtering but no quantile normalisation 545 

was performed (+F -N), 3) no noise filtering but a quantile normalisation was performed (-546 

F +N), and 4) both, noise-filtering and quantile normalization were performed (+F +N). 547 

In a pairwise all versus all comparison, for each gene, the Hamming distance over the binary 548 

edge weight vectors was computed using the hamming.distance() function from the R 549 

package e1071 v1.7-4 (ref), yielding a distribution of distances, which captures how many 550 

genes gained or lost their connection with other genes. A Kruskal-Wallis Rank Sum Test 551 

was performed using the stats::kruskal.test() function in R to assess whether comparisons 552 

of Hamming distance distributions between original, noise-filtered, and normalized 553 

combinations were  statistically significantly different. Furthermore, visualising these 554 

distributions across comparisons and for all network inference tools facilitated an evaluation 555 

of the overall change of network topologies driven by the network inference tool or the 556 

normalisation/noise-filtering that was applied. These visualizations were then used to assess 557 

the impact and robustness of our noise-filter on the interpretation of biological network 558 

topologies. We applied the pipeline, including edgynode, with the same parameter 559 

configurations to both, bulk (Yang et al.) and single-cell (Cuomo et al.) data to retrieve 560 

comparable results for direct comparisons. Computationally reproducible analysis scripts to 561 

perform all inference steps, data transformations, and visualisations, including the ones used 562 

in this study can be found at https://github.com/drostlab/network-inference-pipeline.   563 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2021. ; https://doi.org/10.1101/2021.01.17.427026doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.17.427026
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 13 of 19 

 

Methods, sRNAseq data 564 

The 6 A thaliana sRNA samples were assessed using multiQC version 1.9 (43). Next, the 565 

sequencing adapters (both standard and HD) were trimmed using Cutadapt (version 3.2) 566 

(52) and the UEA sRNA Workbench (53). The larger 3 samples were subsampled without 567 

replacement to 8M reads (12); the smaller 3 samples were left unchanged. The read/sRNA-568 

length distributions were bimodal with peaks at 21nt and 24nt, corresponding to miRNAs 569 

and TE- sRNAs, respectively. These sRNAs were aligned (using STAR (version 2.7.0a) 570 

(36)) to both microRNA hairpins (miRBase Release 22.1) (41) and TEs (obtained from 571 

TAIR10) (42). 572 

  573 

The 6 M musculus sRNA samples were processed in a similar way as the plant samples and 574 

subsampled without replacement to 3.5M sequences (12). The distribution of read lengths 575 

was bimodal with peaks at 22nt and 30nt corresponding to microRNAs and piRNAs 576 

respectively. The sRNAs were aligned to microRNA hairpins (miRBase Release 22.1) (41) 577 

and TEs (Ensembl release 101). 578 

 579 

Methods, PARE data 580 

The 3 A. thaliana PARE samples (GSE113958) were QCed (multiQC version 1.9) (43) and 581 

the reads trimmed to 20nt; next, all samples were randomly subsampled without 582 

replacement to 25M (12). The subsampled reads were aligned to the reference genome 583 

(obtained from TAIR10 (42)) using STAR (using STAR (version 2.7.0a) (36)), with default 584 

parameters. The reads aligned to each position along a transcript were grouped on sequence 585 

and summarised by frequency. Each summarised fragment was matched (as reverse 586 

complement) to A thaliana miRNAs. To visualise the distribution of signal across 587 

transcripts, t-plots were created, where each point corresponds to a summarised PARE 588 

fragment; the points for which a corresponding miRNA was identified were highlighted 589 

using the miRNA label (33). 590 

 591 

Methods, single cell data 592 

For the single cell SmartSeq2 data, the cellranger software version 3.0 (54) was used for 593 

pre-processing, initial quality checks, and to generate the count matrix (it internally uses the 594 

STAR aligner). Further quality checks included distribution plots for the number of features, 595 

counts, mitochondrial and ribosomal reads per cell; significant outliers were removed during 596 

pre-processing. Dimensionality reduction and clustering were performed with the Seurat R 597 

package version 3.2 (55). The UMAP reduction method (29) was used for visualisation and 598 

assessment of results. 599 

 600 

Methods, noise quantification 601 

Two approaches were implemented for the identification of noise. (1) The “count matrix 602 

approach” is a simple, fast way to obtain a threshold utilising solely the un-normalised count 603 

matrix (m genes x n samples). (2) The “transcript approach” is more refined, as it takes into 604 

account the distribution of signal across the transcript obtained by summarising the aligned 605 

reads from the BAM alignment files. For both approaches, a variety of correlation and 606 

distance measures are used to assess the stability of signal across samples (35). Most results 607 

were obtained using Pearson Correlation Coefficient (by default); similar results are 608 

obtained with other similarity or inverted dissimilarity measures such as Spearman 609 

Correlation, Euclidean distance, Kulbeck-Leibler divergence, and Jensen-Shannon 610 

divergence. 611 

 612 

Count matrix approach 613 
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For each sample in the count matrix, the genes are sorted, in descending order, by 614 

abundance. A sliding window approach is used to scan the sorted genes (genes with similar 615 

abundances are grouped into “windows”). The window length is a hyper-parameter that can 616 

be user-defined or a single value inferred from the data using a Jensen-Shannon entropy 617 

based approach (supplementary methods 1). The sliding step can be varied to reduce 618 

computational time at the cost of reducing the number of data points and potentially losing 619 

accuracy. For each window, the correlation of the abundances of the genes from the sample 620 

of interest and all other samples is calculated and averaged using the arithmetic mean. Per 621 

sample, the variation in correlation coefficient (y-axis) is represented vs the average window 622 

abundance, x-axis. A correlation threshold (as a hyper-parameter) is used to determine a 623 

corresponding abundance threshold as a cut-off - the noise threshold. The correlation 624 

threshold is inferred from the data to minimise the variance of noise thresholds across the 625 

different samples. Several available approaches are based on the (smoothed) line plot or a 626 

binned boxplot of abundance against correlation (supplementary methods 2). Genes with 627 

abundances below the sample specific noise thresholds across samples were excluded from 628 

downstream analyses; the average of the thresholds were added to the count matrix, to avoid 629 

further biases. By increasing the minimum values in the count matrix from zero to the noise 630 

threshold, methods that are based on fold-changes will not emphasise small differences in 631 

abundance at very low values, which becomes especially problematic for genes that are 632 

seemingly absent in some samples but present and lowly expressed in others. This effect is 633 

particularly striking in single-cell data. 634 

 635 

Transcript approach  636 

Using the transcript coordinates of the aligned reads as input, the expression profile for each 637 

individual transcript was built as an algebraic point sum of the abundances of reads incident 638 

to any given position (56); if the alignment was performed per read, the corresponding 639 

abundance for every entry was set to +1. For each sample j, and for each transcript T, the 640 

point-to-point Pearson Correlation between the expression profile in j and the one in all 641 

other samples is calculated. The noise detection is based on the relative location of the 642 

distribution of the point-to-point Pearson Correlation Coefficient (p2pPCC) versus the 643 

abundances of genes and is specific for each individual sample. For low abundance 644 

transcripts the stochastic distribution of reads across the transcript leads to a low p2pPCC; 645 

the aim of the approach is to determine the range where the distribution of correlation 646 

coefficients (used as proxy for the distribution of reads across a transcript) are above a user-647 

defined threshold; to approximate the signal-to-noise threshold a binning on the abundances 648 

was performed. For all examples presented in this study, the binning was done on log2 649 

ranges; the signal-to-noise thresholds were defined as the abundance above which the first 650 

quartile of the p2pPCC distribution consistently remains above 0.25 (IQR method - see 651 

supplementary methods 2). Once a noise threshold was determined for each sample, the 652 

original count matrix was then filtered analogous to the count matrix approach. The BAM 653 

files can also be filtered directly by removing all genes which fall below the noise threshold 654 

in every sample. Downstream analysis that is not based on the count matrix, such as 655 

alternative splicing analysis can also be informed by the noise threshold by setting a lower 656 

bound of expression acceptance.  657 

 658 
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 792 

Figures and Tables 793 

Figure 1 Overview of QC measures and original vs denoised outputs on standard components 794 

of an mRNA-seq pipeline. 795 

(A) Distributions of gene abundances by sample; the RHS distribution corresponds to the biological 796 

signal, the LHS distribution to the technical noise; the aim of noisyR is the identification of 797 

biologically meaningful values for the signal/noise threshold in between. (B) JSI on the 100 most 798 

abundant genes per sample; the replicates, and consecutive time points  share a larger proportion of 799 

abundant genes. (C) MA plot of the raw abundances for the two 12h biological replicates; a larger 800 

proportion of low abundance genes exhibit high fold-changes, potentially biasing the DE calls. (D) 801 

Volcano plot of differentially expressed genes on the original, normalised count matrix; the colour 802 

gradient is proportional with the gene abundance. (E) Line plot of the PCC calculated on windows 803 

of increasing average abundance for the count-matrix based noise removal approach. (F) MA plot 804 

of the de-noised abundances for the two 12h biological replicates; the low-level variation is 805 

significantly reduced. (G) Volcano plot of differentially expressed genes on the denoised count 806 

matrix. (H) Box plot of the PCC binned by abundance for the count-matrix based noise removal 807 

approach. (I) Box plot of the PCC binned by abundance for the transcript-based noise removal 808 

approach. (J) Histogram of the differentially expressed genes found by applying DESeq and edgeR 809 
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on the original and denoised count matrix respectively, binned by abundance; counts are on a log-810 

scale for visualization. (K) Violin plot of the precision (intersection size divided by the query size) 811 

for the results of the enrichment analysis performed on the differentially expressed genes found for 812 

the original (raw) and denoised (noNoise) matrices  (log-scale). In the Gene Ontology set (GO) the 813 

terms from Biological Processed, Cellular Component and Molecular Function were grouped; in 814 

the Pathway set (path) the Kegg and Reactome terms were grouped; in the Regulatory terms (reg) 815 

the enriched Transcription Factors and microRNA entries were grouped. 816 

Figure 2 Overview of noise filtering on smartSeq data and impact on biological interpretation 817 

of results. 818 

(A) PCC calculated on windows of increasing average abundance for the count-matrix based noise 819 

removal approach applied to the full count matrix of all cells (four cells shown). (B) PCC calculated 820 

on windows of increasing average abundance for the count-matrix based noise removal approach 821 

applied to the “pseudosamples” formed by grouping all cells from each donor. (C) Box plot of the 822 

PCC binned by abundance for the transcript-based noise removal approach applied to five groups 823 

of five cells each obtained by concatenating the corresponding BAM files. (D) UMAP 824 

representation of the cells using the raw count matrix grouped by donor (left) and by inferred cluster 825 

(right). (E) UMAP representation of the cells using the denoised count matrix grouped by donor 826 

(left) and by inferred cluster (right) (F) Contingency matrix of the clusters formed before and after 827 

the noise removal; the shade of each tile represents the proportion of the cluster from the raw matrix 828 

(row) that belongs to the corresponding cluster of the denoised matrix (column). (G) Heatmap of 829 

the Jaccard similarity index between the 50 most significant markers identified for each cluster on 830 

the raw matrix (rows) and denoised matrix (columns). (H) Violin plot of the precision (intersection 831 

size divided by the query size) for the results of the enrichment analysis performed on the marker 832 

genes found for each cluster of the raw and denoised matrix respectively (log-scale). 833 

Fig. 3 Effect of noisyR on PARE-Seq and GRN inference 834 

(A) Box plot of the PCC binned by abundance for the transcript-based noise removal approach 835 

applied to PARE-Seq data.  (B) Schematic of the microRNA/mRNA interaction; cleavage of the 836 

mRNA transcript occurs between the 10th and 11th nucleotide of the microRNA; the 5’ fragment 837 

of the mRNA degrades, while the 3’ fragment is sequenced; sequencing outputs are compared with 838 

known microRNAs for A. thaliana. (C, D) PARE t-plot illustrating the distribution of degradation 839 

products (each point) across the transcripts AT2G28350 and AT3G53420, respectively. All reads 840 

with summarised abundance less than the signal/noise thresholds are represented in red; degradation 841 

products corresponding to the signal, consistently identified across replicates, are represented in 842 

blue. The ones potentially generated by miRNAs, are labelled. (E) For the bulk RNAseq (Yang et 843 

al.) dataset the node degree distributions (total number of edges connected to a node/gene) of 102 844 

genes assigned to the neuron differentiation pathway are shown (Supplementary Data XY). All four 845 

input data variants are shown: original (-F -N, purple); not noise-filtered but normalised (-F +N, 846 

green); noise-filtered but not normalised (+F -N, red); and noise-filtered and normalised (+F +N, 847 

blue) sorted by increasing values using -F -N as sorting key. (F) Analogous node degree distribution 848 

plot to (E) for the single-cell (Cuomo et al.) dataset showing 133 genes associated with catalytic 849 

activity pathways (Supplementary Data XY). (G-L) Pairwise hamming distance comparisons for 850 

each gene between all combinations of original (-F -N), noise-filtered (+F), and normalised (+N) 851 

input datasets using 102 Neuron differentiation genes from the bulk RNAseq (Yang et al.) dataset 852 

and 133 genes associated with catalytic activity pathways (Methods) show a comparable pattern 853 

across different gene regulatory network inference tools: (G) GENIE3, 102 genes / Yang; (H) 854 

GRNBoost2, 102 genes / Yang; (I) PIDC, 102 genes / Yang; (J) GENIE3, 133 genes / Cuomo; (K) 855 

GRNBoost2, 133 genes / Cuomo; (L) PIDC, 133 genes / Cuomo. The results consistently show that 856 
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across network inference tools and bulk vs single-cell data noise-filtering has only refining effects 857 

on the inferred network topologies in original or normalised data, further illustrating the advantages 858 

of noise-filtering to magnify biological signals by reducing technical noise. 859 

Figure 4 Workflow diagram of the noisyR pipeline. 860 

Workflow diagram describing the series of steps comprising the noisyR pipeline. Individual 861 

algorithms, finely tuned through hyper-parameters, are highlighted in  blue. Optional steps are 862 

indicated through higher transparency. Common data pre- and post- processing steps not included 863 

in the package are indicated in gray. 864 

Figure 5 Effects of hyperparameter selection on noise quantification. 865 

(A) PCC-abundance plot for a window length of 1,000 genes, ~1/5th of the default (B) PCC-866 

abundance plot for a window length of 20,000 genes, ~4 times the default (C) Spearman correlation 867 

plotted against abundance for the default window length of ~5,500 (D) Inverse of the Euclidean 868 

distance plotted against abundance for the default window length of ~5,500 (E) Inverse of the 869 

Kulbeck-Leibler divergence plotted against abundance for the default window length of ~5,500 (F) 870 

Inverse of the Jensen-Shannon divergence plotted against abundance for the default window length 871 

of ~5,500 872 

Figure 6 Assessment of aligner choice on noise quantification. 873 

(A) The distribution of PCC across abundance bins in datasets for a single mRNAseq sample 874 

obtained by STAR, Bowtie2 and HISAT2 alignment followed by featureCounts quantification 875 

using counts-based noise removal approach (B) The distribution of PCC across abundance bins in 876 

aligned reads counts obtained by the five aligners for the same sample in transcript-based noise 877 

correction approach (C) The detected signal-to-noise thresholds in the four mRNAseq samples 878 

varied when the counts or transcripts-based noise correction methods were applied. 879 

(D) The distribution of abundance of reads aligned by the five algorithms and quantified by 880 

featureCounts (E) The distribution of abundance of the quantified counts after counts-based noise 881 

correction (F) The distribution of abundance of the quantified counts after transcripts-based noise 882 

correction (G) The number of the differentially expressed genes found by applying DESeq and 883 

edgeR on the original and denoised (using transcripts-based approach) count matrices obtained by 884 

Bowtie2 alignment (H) The overlap between the DESeq and edgeR analyses performed on the 885 

original and denoised counts matrices obtained by HISAT2 886 
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